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Maximum supercurrent in two Josephson-junction stacks: Theory and experiment
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The interaction between two long Josephson junctions in a stack is investigated experimentally in the
absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in
the stack is in the zero voltage state. To account for the observed phenomena we propose a model that takes
into account the nonuniform self-fields generated by the bias cur{&1463-18208)02834-3

INTRODUCTION stacked junctions, including synchronization of fluxon mo-
tion. If we remain in the limit of the inductive coupling, we

In recent years the double-barrier stacked structure iexpect that for a full description of a three-terminal device
which two Josephson junctions have in common the middlave have to take care of the geometrical factors, i.e., we must
electrode has received much attention. This structure is rénclude in a realistic model the effects due to the boundary
garded as the basic block of some layered Higtsupercon- conditions that add up to the'bulk magnetic mteracpon. In
ducting materialgBi-Sr-Ca-Cu-O family, so stimulating a Other words, due the magnetic nature of the coupling, the
strong theoretical interest. However, for the variety of newself-fields generated by the currents feeding the device must
physical phenomena exhibited by the double-barrier stack, #€ taken into account. . .
is also regarded as an interesting device with potential appli- The _above CO”.S|defat|.0”S concerning the domlnan_t
cation in superconducting electronics, principally as a threemechanism for the interaction are suggested by the experi-
terminal device. In fact, in the three-terminal configurationmental evidence that the maximum supercurrent in one junc-
the device is shown to support a variety of flux motion syn-tion of the stack depends on the value of the bias current and
chronization phenomena, useful to the improvement of th@f the voltage across the other junction. In this paper we
existing fluxon oscillators. Moreover, the nonequilibrium report on the measurements of the maximum supercurrent in
phenomena that can occur in the structure might also be cofree terminal devices consisting of two long stacked Joseph-
sidered for applications. For example, by polarizing one ofSon junctions with alouble overlapgeometry. We also de-
the two junctions of the stacigenerator junctionat a volt-  Scribe a theoretical procedure to include the geometrical ef-
age larger than the gap sum voltage we can inject quasipafeCtS in three term_mz_il devices and compare the _experlm_ental
ticles in the intermediatécommon electrode, causing a qua- data with the prediction of the model. The paper is organized
siparticle excess in the same electrode. Some of these excesfollows. In Sec. | we present the general two-dimensional
quasiparticles can tunnel the barrier of the second junctioftductive model for a two junction stack and its application
(detector junction with a modification of the quasiparticle 0 the special case of theouble overlapgeometry. In the
curve (rise of the subgap current and depression of the gaﬁne-dlmensmnal approximation for this geometry we show
voltage. Such a behavior could be attractive for the imple-how the self-fields generated by the bias currents translate
mentation of a transistorlike device. So far, there are som#to the model of coupled sine-Gordon equations. The real-
open questions concerning the dominant mechanism of intefStic situation of nonuniform self-fields is considered as well
layer coupling in this system. Nonequilibrium injection of @s the classic uniform approximation. In Sec. Il we present

quasiparticles and suppression of the order parameter migRkperimental results demonstrating static interactions be-

electrode(thinner than the coherence lengh, very high ~ Nisms that could be causing the observed interactions and we
Josephson current density, and very small junctions. The inshow that the dominant one is the nonuniform current distri-
ductive (or magneti coupling, which is due to the screening bution of the bias currents. Experimental results are then
currents in the common electrode when its thickness is aboiompared with the numerical results of the proposed model.
equal or smaller than the London penetration depth is
regarded as the dominant one, especially when the physical
dimensions of the junctions are larger than the Josephson
penetration length\;. In fact such a coupling, which has
been elegantly formalized in a moddbr the multilayered We are considering the stack configuration and orienta-
structures, accounts for many dynamical phenomena in lontion shown in Fig. 1; the bottom and the top junctions will be

I. TWO-DIMENSIONAL INDUCTIVE MODEL
FOR A TWO JUNCTION STACK
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FIG. 1. Sketch of the stack geometry.

named, respectivelyA andB. For the sake of simplicity we
shall assume that the external electrodes are much thick
than the London penetration depth ; this assumption, of

course, does not apply to the middle electrode. Moreover, we

are also assumingbut this assumption can be easily re-
lieved) that the two junctions are identical. The basic steps o0
this derivation closely follow the classical approach for
single junctions(see, e.g., Ref. )2 We start from the
Ginzburg-Landau equation

|

that we shall integrate along the path shown in the figure. W
first focus the attention on the junction defined by the elec
trodes 2 and 1 in the figure. Integrating Eg). along the path
C,2 in the middle electrode to the barrier we obtain

41

21 2
A+ —N\{J
C

VG:(}TO

oY)

T 41 5
f A-dl+ —\[J,(0)dx].
Caz2 c

2
O5(X+dX)— 0,(X)=
2 dX) = 050 = -

Integrating Eq.(1) along the pathC,; in the bottom elec-
trode we have, instead,
o
( f A-dl)
Ca1

2
—01(X+dx)+ 6,(x)= D
0

as we may choose the side of the path parallel tocthgis to
make negligibleJ, . Adding these two equations and defin-
ing o= 6,— 0, we get

2w 4ar
e(x+dx)— @(X)= qT( fﬁ A-dl+ T)\EJX(O)dx),
0
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2 41 2
le:(}TO (DB(Hy)_T)\LJx(O)dX .

wherey=60;—0,.
Dividing the last two equations bgx we may write

_277 Dp(Hy) 4w,

QDX_E()( dx +T)\LJX(O) ) (28
2w Dg(Hy) 47 ,

X_CDTO dx _T)\L‘Jx(o) . (Zb)

For a generic orientation of the magnetic field in the plane of
junctions, we have to take into account theomponent of
the field. Applying the same procedure to a path in zhe
plane and taking care of the fact that the sign of the integra-
tion path is determined by sign éf, , we find similar equa-

ans, but with opposite sign:

2w Dp(Hy) AT,
‘Py___fbo( iy to )\LJy(O)), (3a)
f
2w dg(Hy) 4
W o) @

To evaluate terms in Eq$2) and(3) we need an expression
for H(z) and forJ(z).

An expression for the fieldd(z) =[H,(z),H,(2),0] can
be obtained from London equation

e

1
FH (4)

L
with the proper boundary conditiorib.c). If H; andH, are
the magnetic fields in the junction barriers, the solutions of
Eqg. (4) will decrease exponentially in electrodes 1 and 3,
while in the middle electrode we get

H{+H, coshz/\|)
2 coshd/2\n))

H,—H; sinh(z/\))

H(z)= 2 Sindi2n,)’

From this equation we may now also calculate the screening
currentJ,(0) in the middle electrodéfor the other elec-
trodes we already know that it will be exponentially decreas-
ing as we move from the internal surface to the oufside
From Maxwell equation

where the barrier thickness has been neglected. The last

equation can be rewritten as

do= 2" @ (H)+ 27223 (0)d
=, a(Hy)+ - A3x(0)dx],

where®, (H,) is the flux of they component of the mag-
netic field threading the integration path for junctian

4
VXH=—1J, )
C
we obtain
10)= ¢ (Hp—Hyy 1
X 4mn\ 2 sinh(d/2\ )]’
3(0)=— C [Ha—Hyy 1
y Amn | 2 sinhd/i2n)))

Following the same procedure, we will get an analogous From this, we may write our fundamental equatid@s

equation for the other junction:

and(3) as
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2w

(Px:aod (H1y+8H2y)1 (6a)
2 ,

';bx:aod (H2y+8H1y)l (6b)
27

‘Py:_(}Tod (HixteHay), (60
2 )

‘/’yz_aod (Haxt+eHyy), (6d)

where we have defined

d
d’Et+)\L+)\LcotI-<—)
AL
and
B AL 1
= sinh(d/\y) [t+A + A coth(d/h )]

(@)

If d/N_,— (very thick intermediate electrofle &
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1 1 _
Yxxt hyy— ? lﬂnzpsm( D)+ ate(uxt @yy) .
j
(10b)
were we have introduced the Swihart velocity

— t
e\ ———— 11
c=c cd (1 o7 (11

r

the Josephson penetration depth

\,= e (12)
7 Vgred(1-62)d,

and the(dimensional loss parameter

d'(1-e?4nw

c’R (13

a=

So far no direct reference to the geometry of the stack has
been necessary. Geometric considerations enter, of course,
through the boundary conditions. The appropriate tNeu-
mann type require specification of normals components of

—0, d’'=t+2\_, as we should expect in the limit of non- V¢ andV ¢ at the junctions boundar§, andC,. By Egs.
interacting junctions. In a more compact form, the obtained8) we have

phase-field relations are

2 , “
Vx,y(p:aod (Hi+eH,) Xz, (8a)

2 N
nyy¢=¢#7:d’(H2+sHl)><z. (8b)

— 2 n o~
qu~nllclzaod,(Hl'f'SHz)XZ-n1|cl,

(14a
— 2 o~
V(ﬂ-n2|cz=aod’(H2+eH1)XZ-I’l2|c2, (14b)

wheren; andn, are the unit normal vector of contou@y

We have now to combine the Maxwell equations with theand C,, respectively. In the special case of rectangular ge-

Josephson relations. Thlreecomponent of Eq(5) in the two
barriers is written as

&Hly &Hlx_477

ax ay =g i (%3

(9H2y (7H2X_47T
ax gy ¢

‘]22! (gb)

where

3= Jesin(e)+CVr Ve
12=JoSIN( @) - TR

3, = Jsin(u)+C vz, Ve
2= JoSIN(¢) - TR
€ h Voe h
Z_E‘//t-

= A V1:£<Pt;

Substituting into Egs(9), taking into account Eq98), we
obtain the two equations

1 1 _
Pxxt Pyy— ? (Pttzgsm( )T apite(Pyyt ‘r/’yy)v

' (103

ometry (0=x<L; 0<y<W) these b.c. became

2
<Px|o,L:¢TOd’(H1y+8H2y)|o,L1 (153
2 )
¢x|o,L:¢TOd (Hay+eH1y)|op (15b)
2 ,
¢y|o,W:_¢TOd (HixteHz) low, (150
2T ,
¢y|O,W:_¢TOd (H2x+8H1x)|0,W (150

where the fields include both self-fieldgenerated by the
bias currentsand externally applied fields.

A. One-dimensional approximation
for the double overlapgeometry

We will consider the special case of the one-dimensional
approximation for thelouble overlapgeometry(see Fig. 2,
that has been extensively investigated experimentally and
has demonstrated very rich dynamics, also without applied
magnetic field* In this geometry the two junctions can be
biased independently. To make our approximation to the
one-dimensional case we will proceed as for the single junc-
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FIG. 2. Double overlap geometry.

tion. SinceW<\; we expect the phases and fields to depend

very weakly(the phases at most quadraticalgnd the field
at most linearly ony. To the first order inW, integrating
Eqgs.(10) alongy, betweeny=0 andy=W, and using Eqgs.
(15) we have

1 1 _
@xx_?(Ptt:PSin((p)—i_a§0t+8¢xx+FA(X)v (169
i
11 _
‘/’xx_?‘//ttzpsw(l//)'i_alr/ft+8‘Pxx+FB(X)v (16b)
i
where
FA(X):47T)\§JOW[H1X(X,W)_HlX(X,O)], (17@
Fe(x)= [Ha( X W)~ Hay(x,O1.  (17b)

4mN3IW

As the bias currents flow in thg direction (see Fig. 2,

the magnetic field in this same direction will be negligible,
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Hax(W) ==~ = (Ia*1p). (18
From Egs.(17) we have
I A 11, 1
Fr\(x)=——5—"—=———=-— , (199
8 LAZIgW A2 1o 27
lg 11g
Ng(X)=——5—=—— —=-— 190
o= g aEle jere (%

Inserting the last two equations in Eq47), normalizing the
lengths with respect ta; and the time to the inverse of;

=c/);, we finally find

Pxx— @1t =SIN(@) + a @i+ &= Ya, (209
thyx— Yu=SINY) + aht e 8., (20b)
ex(0)=ex()=n(1+e), (209
P(0)= () =n(1+e), (200

with |=L/A; anda=(1/R) yh/(2eCJy). The  term in the
boundary conditions accounts for an external magnetic field
(e.g., given by a cojlparallel to they direction, normalized
with respect tok;(1— &%) (4m/c)Jy.

2. Nonuniform current distribution

It is well knowrP"’ that the current distribution in a long
and thin strip is highly nonuniform across its width In the
past, this fact has been considered for explan&ti§rof de-
viation from ideal behavior of the singleverlap junctions.

In fact, these junctions consist of an interruption by an oxide
layer of a long superconducting strip and, according to the
shortening principlé! the real current distribution is as the
current distribution in the strip.

When the film thicknesd is comparable with the penetra-
tion depth\| and the widthL is much greater thain, , so

2 . . .
so for this geometry self-fields do not enter in the boundaryNat Ld>A{, a good approximation for the linear current

conditions of the one-dimensional approximation. Evaluatiorf€nsity in an isolated long strip e ia s
of bias-dependent ternis, andI'; depends on the assump-
tions made for the currents distributions into the electrodes. I(x)= '_
Here we will consider the classical assumption of uniform

L
mL X(L—x)
current distribution and the case of nonuniform current dis- ] o
tribution. Near the edges of the strip the distributi@1) has an expo-

nential correction that, extending over a length approxi-
mately equal to\ , prevents from singularities at=0 and

. L ) x=L and sets a relation between the current density at the
If the bias current distribution into the elecrodes is as'edges and that at the cerfer

sumed uniform, then the fields of interest are

(21)

1. Uniform current distribution

Ld

J(L/2) N, a’

J0) 1.165

2w 1
Hlx(o):TE(IA_IB)v

22
(189 (22
wherea is a constant near unity.

In our geometry(see Fig. 2 the distribution Eq(21) is
appropriate for the middle electrode. For the outer electrodes
we also expect a nonuniform current distribution, but much
less drastic. For the current component whose magnitude is
the same in both electrodes but whose flgelative to they
direction is opposite, we can expect a current distribution

27 1
Hi(W) == (1 1), (18b

271
Ha(0)= = (1e=12), (189
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almost uniform because the separation between them is very
small (typically of order ofd~X\,). From the geometrical
symmetry, it may also be assumed that the current coming
from the middle electrode is divided equally into the two
outer electrodes. This gives rise to a current component in
the outer electrodes having the same magnitude and polarity.
When we expresd, and —lg as Ia=(la+1g)/2+ (I
—1g)/2 and —lg=—(Io+1g)/2+ (1 o—1g)/2, their first and
second terms correspond to the opposite and equal polarity
components, respectively. For the calculatiomip (W) and

H,. (W), the contributions from the second terms in the two
equations are canceled when summed. For what concern the
first terms, we can assume a uniform current distribution as
described above. By these considerations the fields of inter-
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est are

Hid 0= LIyl (234
lx( )_ C L( A B)W\/m,
271
Hu(W)=— "= T (Ia+1e), (230
H O—Z—WEI —1 ); (230
ZX()_CL(B Aﬂ_\/mu 0
271
HZX(W):_TE(IA+IB)1 (230
that we can insert in Eq$17) to have
1/ yatve  va— 78 L
Fa0=~ ,
AX) a2l 2 T2 m/x(l_—x))
(243
1/ vatys  ¥8=7a L
T - —
Y N A m/ix(L—x)>’
(24b

where ya=1/JgWL, yg=Ig/JoWL. From this, by using
Eqgs.(16) and normalizing as in the uniform current case, we
finally find

Exx— 1= SIN(@) + @p+ & Phyy— Na(X), (253
Pyx— dltt:Sin( '7[’)+al/ft+8‘:0xx_ WB(X)n (25b)
ex(0)=ox(1)=n(1+e), (250
I(0)=thy(1)=n(1+e), (250
where
YATYB YA YB |
= , 26

77A(X) 2 + 2 ﬂ_\/m ( @

+ — [
77B(X):7’A27’B+?’323’A (26b)

ax(1—x)

10
ol (a I=-I
& (a) 4= -Ip
4
=
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5
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FIG. 3. The current distributiong, and zg, calculated from
Egs. (26) for a junction of lengthl=10, are plotted assuming
|va.sl=1 (singularities at the edges have been eliminaté) The
nonuniformity is the largest, the two distributions mirror each other;
for sake of comparison, the uniform distributipn, g= 1/ is also
plotted.(b) The currents in the two juctions are equal and uniform.
(c) The nonuniform current i\ (continuous ling induces a non-
uniform current inB (dashed ling the net current iB, however, is
null.

and the other symbols have the same meaning of the uniform
current model. The above equations could also be derived
using the approach of Ref. 1.

Note that here we have maximum nonuniformity for equal
and opposite physical bias currents € —1g). Perfect uni-
formity is obtained for equal bias currents,&1g), but we
remark that this is a result of the assumption of uniform
current distribution made for the outer electrodes. How good
it is this approximation can be established only by compari-
son with the experimental results, that we will present in the
next section. Figure 3 shows a sketch of distribution of the
normalized current densities,(X) and ng(x) for the cases
Io=—Igandl,=1g. For other cases the current distribution
is somewhere in between Figs@@Band 3b). A particular
interesting case is that for which only one junction is biased,
e.g.,1g=0. In this casgFig. 3(c)], there is a nonzero current
distribution in junctionB, such that current flows in two
opposite directions. However, net current flow through junc-
tion B is, consistently, zero, as can be easily checked calcu-
lating f}7g(x) from Eq. (26) for yg=0. From the under-
standing of the behavior of two junction stacks with the
geometry of Fig. 2, it is easy to generalize to more junctions
with different variations of the geometry of Fig. 2.
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Il. EXPERIMENTAL RESULTS 6 117717
44 (a) o™ ]
A. The samples . f _ g 1
2 V=0, Vg0 §
We have fabricated and tested Nb/AKDIb/AIO, /Nb < 1
stacks with electrodes patterned in thauble overlapyeom- g 0'_?__?__
etry shown in Fig. 2. In all of tested samples the intermediate 3 2 M .
electrode was thinner than the London penetration depth 418 ]
while the external electrodes were quite larger than Due . M e=-0.56; 1=13
to the fabrication process, in our Nb films is rather large, N P RS 0 a4 6
about 100 nm. The physical dimensions of the junctions in I, (mA)
the stacks weré. X W= (600x20) um? and a typical Jo- — Ic —_
sephson penetration depth was greater than 4Qum, so 1 (b)
that we have long and narrow junctions. In the two represen- 4 7]
tative samples on which we report here, the magnetic cou- 2 ﬁﬁ” V=0 V0
pling constant wase=—0.56 and e=—0.89, respect- < o] |
ively. These values are calculated by Ef). and agree with % 1 e
those extimated by the procedure based on the splitting of 7] o 7]
voltage spacing of Fiske steps.In the stack withe= 4 w e= - 0.56: 1=137]
—0.56 the two junctions have very similar critical current P I S
densities(evaluated by the current rise in theV/ character- ‘-2 8 4 0 4 8 12
istc at the gap sum voltage J,=76 Alcn?, Jg Iy [McCumber] (mA)
=80 Alcn?, and normalized lengthy,~1g=13. In the other P —
stack €=—0.89) the critical current densities are slightly (¢
differeﬁt, JA=66)A/crr12, Jg=60 Alcn?, and the normal- 4 (©) d’“:’:x::g?%
ized lengths aré,~1g=10. é , 1 o _ |
< - nun B= -
577 \V o]
0 ' I ! 1 ! I = v
B. Measurements -4 2 0 2 4
I; (mA)

The experiments were performed at 4.2 K with a cry-
operm shielded sample holder and in zero applied magnetic - )
field. We carefully avoided trapped flux and checked that FIG. 4. (&) Stability boundary of the zero voltage state in the
there was no crosstalk between the biasing circuits. stack.(b) Critical current ofJunt_:t_lorA versus cu_rrent_ln junctioB

The measurements concern how the stability of the zer8" the McCumber curvec) Critical current of junctionA versus
voltage state of one junction is influenced by the state of gh&urrent in junctionB polarized in the zero voltage starcles or

) . . In the McCumber statésquares
other junction in the same stack. In other words we have
measured the critical current of one junction as a function of The results shown in Fig. 4 are obtained without a ground
the bias current in the other junction, in both possible voltagelane. Stability boundaries of the zero voltage state in the
configurations for the second junction: zero voltage state osame stack with and without a ground plane are compared in
McCumber state. Typical experimental results are summaFig. 5a). From this figure is evident that the influence of a
rized in Fig. 4. Figure @) shows the stability boundary of ground plane is relevant only in the region around the line
the zero voltage state in the stack, i.e., in the region betweery,=—15. We remark that the ground plane was spaced
the two curves in the plankg ,—I.g is VA=Vg=0. To ob-  about 1mm, the thickness of the substrate, from the stack, so
tain this stability boundary we start with both junctions in theits function was quite weak.
zero voltage state, then we fix the bias of one junction and Nevertheless, Fig.(8) suggests that some nonuniformity
we change the current in the other junction until it switchesin current distribution is working, especially when~
to a resistive state. Equivalently, we can start with both junc— 1 5. Nonuniformity should create some appreciable second
tions in the zero voltage statéat |,=I1g=0) and then spatial derivative of the phases and consequently an increas-
change both bias currents simultaneously until one junctioing of (statig interaction between junctions for increasing
undergoes a transition to the dynamical state. In Fig) we  inductive coupling constant. In Fig. 5b) is shown the sta-
show the dependence of the positive and negative criticability range of the zero voltage state for stacks with two
current of junctionA as a function of the current in junction differente. To allow comparison, in this plot we have nor-
B biased on the McCumber curve. Similar results are obmalized, in each of the stacks, the currents to the value of the
tained inverting the role of the junctions. We notice absenceritical current of junctionA for junction B unbiased. Be-
of experimental points arountg=0. This is because for sides the deformation of the stability range, due to the dif-
small values of current in junctioB we are in the instability ference between critical currents of the junctions in the stack
region of the McCumber curve. Finally, we note that in thewith ¢ = —0.89, we note that increasing of the inductive cou-
range of currents iB where a comparison is possible, the pling effectively reduces the stability randee., increases
critical current in junctiorA depends on the voltage state of static interaction between junctionsagain principally
the junctionB, as shown in an expanded scale in Figc)4  aroundl,=—Ig.
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our stacks in which we observe interaction. However, we
notice that our stacks are double-barrier tunnel devices,
qualitatively different from the coupled microbridges where
the above-mentioned interaction was investigated. In our
case, the Cooper pair tunneling between outer electrtfles
any) should be of the order of the single electron resonant
tunneling® between the same electrodes. Such a tunneling
should be appreciable in the limit of extremely tliire., few
nanometersintermediate electrode. Due to the macroscopic
thickness of our intermediate electrodes, we can rule out the
presence of such a coupling in our experimental results.
Also, we notice that induced gap suppression is too small,
lower than 2% for typical used current values, to account for
the observed large variations of critical currents. This, to-
gether with the too small quasiparticle curve modification,
also weakens the hypotheses that some nonequilibrium pro-
cess of quasiparticle injection is causing the results of Fig. 4.
The results of Fig. 5 suggest that we should look for the
predominant mechanism in some spatial nonuniformity. The
results in Fig. %a) rule out the possibility of a spatially de-
pendent critical current density. In fact, such a critical cur-
rent density should be caused by a shaped barrier thickness,
that should not depend on a ground plane action. Absence of
defects or pinning centers in the barriers has been demon-
stated by dedicated measuremefdsfraction patterns in
—r— ——7 magnetic field performed on single junctions fabricated with
-5 .10 05 00 05 10 15 the same fabrication process as the stacks. Finally, we have
I 5 (normalized units) carefully avoided misalignments of the electrodes forming
the junctions in the stack to reduce in-line current compo-
FIG. 5. (a) Stability boundary of the zero voltage state without a nents.
ground plandopen circlesand its modification caused by aremote  From all this, we conclude that the most effective mecha-
ground plane(solid circle. (b) Range of existence of the zero nism is the nonuniformity and this nonuniformity is due to

voltage state in a stack with= —0.56 (crossepand in a stack with  the bias currents. So we will describe our experimental re-
¢=—0.89 (open squargsin both curves, the currents are normal- gyjts with the model Eqg25).

ized tol A(1g=0).

I. o (normalized units)

e=-0.89; 1=10|
x  e=-0.56;1=13]

D. Numerical simulations
C. Discussion
) ) ) We have integrated the model Eq&5) without applied
In the uniform model Eqgs(20) interaction between the magnetic field:

junctions takes place only whem, or ¢, are different from

zero. If, as in our experiments, we have not trapped flux in Oxx— @1t=SIN(@©) + ap;+ & y— na(X), (273
the films, we have not applied magnetic field and we are not

in some solitonic zero-field stefZFS) regime, oy, and o= Pu=sin(P) + agy+ e —np(x), (27
should be zero and consequently the boundary of stability in

Fig. 4(a) should be a square and the dependence in Fij. 4 ex(0)=¢x(1)=0, (279
a constant. So, the uniform model Eg20) cannot explain

our experimental results. Px(0)=th(1)=0. (279

Below we consider several possible mechanisms that mayo remove singularities at edges in the forcing termgx)
modify the predictions of the uniform junction model. The gnd 54(x), we have used the relation E@2). Another pos-

interaction in the zero voltage state looks similar to earliersipility is to choose values at the edges such that the physical
experimental observatioltsin closely coupled microbridges  relation (charge conservation

that was explained in terms of current-induced order-

parameter depression in the region between the britfg8s. 1!

Nevertheless, in Ref. 15 the current in a weak link was al- 'yA,B:'_fO 7a,8(X)dX (28)
ways depressing the critical current in the other, while in our

results the depression is obtained only for opposed currentis numerically satisfied, as it is analytically. Numerically, we
in agreement with results of Ref. 17 that were explained witthave found no significant differences between these two
a Cooper pair coupling between the outer electrodes of thenethods.

two weak links'”*® Both the quoted experimental results  The values of the parameters in the simulation are chosen
were obtained near the critical temperature of the supercorequal to the experimental ones, so that a direct comparison
ductors, to have a coherence length quite larger than thean be made. Experimental and numerical resultsefer
spacing between weak links. This is not the case for most of- 0.56 are shown in Fig. 6. Globally, we found the agree-
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< 0.0 FIG. 7. Experimental results for the stack with slightly different
= M critical current densitiesdg /J,=0.9) compared with the numerical
0.5 . - results. In the simulation wdg =15=10 andj=Jg/J5,=0.85.
e Exp.
10 W o junction A is caused by the formation of a fluxon and an
2 A 0 1 2 antifluxon at the opposite edges of the junction, and that the
g [McCumber] phase of the unbiased junction is spatially modulated mirror-
10 . ing (because of the inductive couplinthe phase of the bi-
ased junction. In Figs.(8) and &c) is shown the phase dis-
tribution of junctionA (in the zero voltage statewhile B is
S 05
o

® Exp.
O Num.|

0.0 P11 T
0.75-0.50 -o.2syo.oo 025 0.50 0.75
B

FIG. 6. Experimental result&olid circleg of Fig. 4 compared
with the numerical result®pen squargf the nonuniform model.
Both in the experiment and in the simulation was —0.56, |5
=1g=13, «=0.1, »=0.

ment quite satisfactory. In Fig(l6) a significant deviation is
evident for| yg|> 1.3 where mechanisms other than nonuni-
form current distribution, possibly quasiparticle injection,
play a role. A small deviation is evident in Fig(§, around

the line yo= yg Where the experimental points seem not to
point to the valuesy.o= y.g= = 1. This means, by consid-
erations of the previous section, that bias current distribution
in the outer electrodes is not perfectly uniform. Nevertheless,
we found that the deviation is small enough to exempt us
from a further correction to the model.

In Fig. 7, numerical and experimental results are com-
pared for the stack witle=—0.89. In the simulations, the
relatively small difference between critical current densities
of the junctions has been accounted for introducing only one
parameter in the model. In fact, if the difference is not so
large, we can account for it by introducing only the ratio
=Jg/J, to multiply the sin()) term in Eqs.(27). The result
in Fig. 7, obtained wittj =0.85, shows that this is enough to
reproduce quite well the deformation of the stability bound-
ary of the zero voltage state observed when the critical cur-

17.5

15.0-
s’ |
;.: 1009 ... o) 15=0; 14 =Y *5 []
% 7.5-_ oo W(X) 1= Tamad |

'2'5 1 I 1 ) ) ) 1 ) ) ) 1 1
012345678 910111213
X
15 . . 15
(b) 7,=030] {(c) v, =030
1 ¥g =0.35 B =-0.35¢
1.0 1.0
Py ;|
M
N’
4 :
F o5
0.0 T T 0.0

130 x 13

FIG. 8. (a) Phase of junctio® [¢(x)] and junctionB [ ¢(x)]

rents are different. _ o for junction B unbiased and junctiol\ biased with a current
In Fig. 8 we show the spatial phase distribution for somegjightly lesser or slightly greater than its critical current,. (b)

selected states of the stack. In Figa)8 the phase of junc-  phase of junctiom in the zero voltage for junctioB also in the

tions A andB are recorded just before and just after junctionzero voltage statédashed lingor on the McCumber curvésolid

A undergoes the transition to the dynamical state, while junctine). (c) Same as that ifb), but here the bias currents have oppo-

tion B is unbiased. Here we can note that the transition okite polarities.
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biased atvg=0 or Vg#0, in two configurations of relative that the interaction due to the bias currents should not be
current polarities. Here, beside the different degree of nonrnegligible in three-terminal devices with double overlap ge-
uniformity caused by the termy,(x), we can notice the ometry also in the limit of small junctions. The geometry
small modulation induced on the phase distribution wherdiscussed here is a special one, but the results presented in
Vg#0. This modulation is observed also in the phase distrithis paper indicate that the geometrical factors should not be
bution of junctionB and results from possibile excitation of overlooked for a full description of the three-terminal de-
self-resonances in tHeV characteristic. vices.
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