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Maximum supercurrent in two Josephson-junction stacks: Theory and experiment
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Unità INFM and Dipartimento di Fisica, Universita` di Salerno, I-84081 Baronissi, Italy

S. Sakai
Electrotechnical Laboratory, 1-1-4 Umezono, Tsukuba-shi, Ibaraki 305, Japan

N. F. Pedersen
Department of Physics, B309, The Technical University of Denmark, DK-2800 Lyngby, Denmark

~Received 19 March 1998!

The interaction between two long Josephson junctions in a stack is investigated experimentally in the
absence of applied magnetic field. Mutual interaction is observed when both junctions or only one junction in
the stack is in the zero voltage state. To account for the observed phenomena we propose a model that takes
into account the nonuniform self-fields generated by the bias currents.@S0163-1829~98!02834-3#
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INTRODUCTION

In recent years the double-barrier stacked structure
which two Josephson junctions have in common the mid
electrode has received much attention. This structure is
garded as the basic block of some layered high-Tc supercon-
ducting materials~Bi-Sr-Ca-Cu-O family!, so stimulating a
strong theoretical interest. However, for the variety of n
physical phenomena exhibited by the double-barrier stac
is also regarded as an interesting device with potential ap
cation in superconducting electronics, principally as a thr
terminal device. In fact, in the three-terminal configurati
the device is shown to support a variety of flux motion sy
chronization phenomena, useful to the improvement of
existing fluxon oscillators. Moreover, the nonequilibriu
phenomena that can occur in the structure might also be
sidered for applications. For example, by polarizing one
the two junctions of the stack~generator junction! at a volt-
age larger than the gap sum voltage we can inject quas
ticles in the intermediate~common! electrode, causing a qua
siparticle excess in the same electrode. Some of these ex
quasiparticles can tunnel the barrier of the second junc
~detector junction! with a modification of the quasiparticl
curve ~rise of the subgap current and depression of the
voltage!. Such a behavior could be attractive for the imp
mentation of a transistorlike device. So far, there are so
open questions concerning the dominant mechanism of in
layer coupling in this system. Nonequilibrium injection
quasiparticles and suppression of the order parameter m
play an important role in the case of a very thin midd
electrode~thinner than the coherence lengthj), very high
Josephson current density, and very small junctions. The
ductive~or magnetic! coupling, which is due to the screenin
currents in the common electrode when its thickness is ab
equal or smaller than the London penetration depthlL , is
regarded as the dominant one, especially when the phy
dimensions of the junctions are larger than the Joseph
penetration lengthlJ . In fact such a coupling, which ha
been elegantly formalized in a model1 for the multilayered
structures, accounts for many dynamical phenomena in l
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stacked junctions, including synchronization of fluxon m
tion. If we remain in the limit of the inductive coupling, w
expect that for a full description of a three-terminal devi
we have to take care of the geometrical factors, i.e., we m
include in a realistic model the effects due to the bound
conditions that add up to the bulk magnetic interaction.
other words, due the magnetic nature of the coupling,
self-fields generated by the currents feeding the device m
be taken into account.

The above considerations concerning the domin
mechanism for the interaction are suggested by the exp
mental evidence that the maximum supercurrent in one ju
tion of the stack depends on the value of the bias current
of the voltage across the other junction. In this paper
report on the measurements of the maximum supercurren
three terminal devices consisting of two long stacked Jose
son junctions with adouble overlapgeometry. We also de
scribe a theoretical procedure to include the geometrical
fects in three terminal devices and compare the experime
data with the prediction of the model. The paper is organiz
as follows. In Sec. I we present the general two-dimensio
inductive model for a two junction stack and its applicati
to the special case of thedouble overlapgeometry. In the
one-dimensional approximation for this geometry we sh
how the self-fields generated by the bias currents trans
into the model of coupled sine-Gordon equations. The re
istic situation of nonuniform self-fields is considered as w
as the classic uniform approximation. In Sec. II we pres
experimental results demonstrating static interactions
tween junctions in the stack. We discuss the possible me
nisms that could be causing the observed interactions and
show that the dominant one is the nonuniform current dis
bution of the bias currents. Experimental results are th
compared with the numerical results of the proposed mo

I. TWO-DIMENSIONAL INDUCTIVE MODEL
FOR A TWO JUNCTION STACK

We are considering the stack configuration and orien
tion shown in Fig. 1; the bottom and the top junctions will b
6497 © 1998 The American Physical Society
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named, respectively,A andB. For the sake of simplicity we
shall assume that the external electrodes are much thi
than the London penetration depthlL ; this assumption, of
course, does not apply to the middle electrode. Moreover
are also assuming~but this assumption can be easily r
lieved! that the two junctions are identical. The basic steps
this derivation closely follow the classical approach f
single junctions ~see, e.g., Ref. 2!. We start from the
Ginzburg-Landau equation

¹u5
2p

F0
S A1

4p

c
lL

2JD ~1!

that we shall integrate along the path shown in the figure.
first focus the attention on the junction defined by the el
trodes 2 and 1 in the figure. Integrating Eq.~1! along the path
CA2 in the middle electrode to the barrier we obtain

u2~x1dx!2u2~x!5
2p

F0
S E

CA2

A•dl1
4p

c
lL

2Jx~0!dxD .

Integrating Eq.~1! along the pathCA1 in the bottom elec-
trode we have, instead,

2u1~x1dx!1u1~x!5
2p

F0
S E

CA1

A•dlD
as we may choose the side of the path parallel to thex axis to
make negligibleJx . Adding these two equations and defi
ing w[u22u1 we get

w~x1dx!2w~x!5
2p

F0
S R A•dl1

4p

c
lL

2Jx~0!dxD ,

where the barrier thickness has been neglected. The
equation can be rewritten as

dw5
2p

F0
S FA~Hy!1

4p

c
lL

2Jx~0!dxD ,

whereFA (Hy) is the flux of they component of the mag
netic field threading the integration path for junctionA.

Following the same procedure, we will get an analogo
equation for the other junction:

FIG. 1. Sketch of the stack geometry.
er
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dc5
2p

F0
S FB~Hy!2

4p

c
lL

2Jx~0!dxD ,

wherec[u32u2 .
Dividing the last two equations bydx we may write

wx5
2p

F0
S FA~Hy!

dx
1

4p

c
lL

2Jx~0! D , ~2a!

cx5
2p

F0
S FB~Hy!

dx
2

4p

c
lL

2Jx~0! D . ~2b!

For a generic orientation of the magnetic field in the plane
junctions, we have to take into account thex component of
the field. Applying the same procedure to a path in thez-y
plane and taking care of the fact that the sign of the integ
tion path is determined by sign ofHx , we find similar equa-
tions, but with opposite sign:

wy52
2p

F0
S FA~Hx!

dy
1

4p

c
lL

2Jy~0! D , ~3a!

cy52
2p

F0
S FB~Hx!

dy
2

4p

c
lL

2Jy~0! D . ~3b!

To evaluate terms in Eqs.~2! and~3! we need an expressio
for H(z) and forJ(z).

An expression for the fieldH(z)5@Hx(z),Hy(z),0# can
be obtained from London equation

]2H

]z2
5

1

lL
2

H ~4!

with the proper boundary conditions~b.c.!. If H1 andH2 are
the magnetic fields in the junction barriers, the solutions
Eq. ~4! will decrease exponentially in electrodes 1 and
while in the middle electrode we get

H~z!5
H11H2

2

cosh~z/lL!

cosh~d/2lL!
1

H22H1

2

sinh~z/lL!

sinh~d/2lL!
.

From this equation we may now also calculate the screen
current Jx(0) in the middle electrode~for the other elec-
trodes we already know that it will be exponentially decre
ing as we move from the internal surface to the outsid!.
From Maxwell equation

¹3H5
4p

c
J, ~5!

we obtain

Jx~0!52
c

4plL
S H2y2H1y

2

1

sinh~d/2lL! D ,

Jy~0!52
c

4plL
S H2x2H1x

2

1

sinh~d/2lL! D .

From this, we may write our fundamental equations~2!
and ~3! as
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wx5
2p

F0
d8~H1y1«H2y!, ~6a!

cx5
2p

F0
d8~H2y1«H1y!, ~6b!

wy52
2p

F0
d8~H1x1«H2x!, ~6c!

cy52
2p

F0
d8~H2x1«H1x!, ~6d!

where we have defined

d8[t1lL1lLcothS d

lL
D

and

«[2
lL

sinh~d/lL!

1

@ t1lL1lLcoth~d/lL!#
. ~7!

If d/lL→` ~very thick intermediate electrode!, «
→0, d85t12lL , as we should expect in the limit of non
interacting junctions. In a more compact form, the obtain
phase-field relations are

¹x,yw5
2p

F0
d8~H11«H2!3 ẑ, ~8a!

¹x,yc5
2p

F0
d8~H21«H1!3 ẑ. ~8b!

We have now to combine the Maxwell equations with t
Josephson relations. Thez component of Eq.~5! in the two
barriers is written as

]H1y

]x
2

]H1x

]y
5

4p

c
J1z , ~9a!

]H2y

]x
2

]H2x

]y
5

4p

c
J2z , ~9b!

where

J1z5J0sin~w!1C
]V1

]t
1

V1

R
,

J2z5J0sin~c!1C
]V2

]t
1

V2

R
,

C5
e r

4pt
; V15

\

2e
w t ; V25

\

2e
c t .

Substituting into Eqs.~9!, taking into account Eqs.~8!, we
obtain the two equations

wxx1wyy2
1

c̄2
w tt5

1

l j
2
sin~w!1āw t1«~cxx1cyy!,

~10a!
d

cxx1cyy2
1

c̄2
c tt5

1

l j
2
sin~c!1āc t1«~wxx1wyy!.

~10b!

were we have introduced the Swihart velocity

c̄5cA t

e rd8~12«2!
, ~11!

the Josephson penetration depth

lJ5A \c2

8ped8~12«2!J0

, ~12!

and the~dimensional! loss parameter

ā5
d8~12«2!4p

c2R
. ~13!

So far no direct reference to the geometry of the stack
been necessary. Geometric considerations enter, of co
through the boundary conditions. The appropriate b.c.~Neu-
mann type! require specification of normals components
¹w and¹c at the junctions boundaryC1 andC2 . By Eqs.
~8! we have

¹w•n1̂uC1
5

2p

F0
d8~H11«H2!3 ẑ•n1̂uC1

, ~14a!

¹c•n2̂uC2
5

2p

F0
d8~H21«H1!3 ẑ•n2̂uC2

, ~14b!

wheren1̂ andn2̂ are the unit normal vector of contoursC1
and C2 , respectively. In the special case of rectangular
ometry (0<x<L; 0<y<W) these b.c. became

wxu0,L5
2p

F0
d8~H1y1«H2y!u0,L , ~15a!

cxu0,L5
2p

F0
d8~H2y1«H1y!u0,L , ~15b!

wyu0,W52
2p

F0
d8~H1x1«H2x!u0,W , ~15c!

cyu0,W52
2p

F0
d8~H2x1«H1x!u0,W ~15d!

where the fields include both self-fields~generated by the
bias currents! and externally applied fields.

A. One-dimensional approximation
for the double overlapgeometry

We will consider the special case of the one-dimensio
approximation for thedouble overlapgeometry~see Fig. 2!,
that has been extensively investigated experimentally
has demonstrated very rich dynamics, also without app
magnetic field.3,4 In this geometry the two junctions can b
biased independently. To make our approximation to
one-dimensional case we will proceed as for the single ju
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tion. SinceW!l j we expect the phases and fields to depe
very weakly~the phases at most quadratically5 and the field
at most linearly! on y. To the first order inW, integrating
Eqs.~10! alongy, betweeny50 andy5W, and using Eqs.
~15! we have

wxx2
1

c̄2
w tt5

1

l j
2
sin~w!1āw t1«cxx1GA~x!, ~16a!

cxx2
1

c̄2
c tt5

1

l j
2
sin~c!1āc t1«wxx1GB~x!, ~16b!

where

GA~x!5
c

4plJ
2J0W

@H1x~x,W!2H1x~x,0!#, ~17a!

GB~x!5
c

4plJ
2J0W

@H2x~x,W!2H2x~x,0!#. ~17b!

As the bias currents flow in they direction ~see Fig. 2!,
the magnetic field in this same direction will be negligib
so for this geometry self-fields do not enter in the bound
conditions of the one-dimensional approximation. Evaluat
of bias-dependent termsGA andGB depends on the assump
tions made for the currents distributions into the electrod
Here we will consider the classical assumption of unifo
current distribution and the case of nonuniform current d
tribution.

1. Uniform current distribution

If the bias current distribution into the elecrodes is a
sumed uniform, then the fields of interest are

H1x~0!5
2p

c

1

L
~ I A2I B!, ~18a!

H1x~W!52
2p

c

1

L
~ I A1I B!, ~18b!

H2x~0!5
2p

c

1

L
~ I B2I A!, ~18c!

FIG. 2. Double overlap geometry.
d

,
y
n

s.

-

-

H2x~W!52
2p

c

1

L
~ I A1I B!. ~18d!

From Eqs.~17! we have

GA~x!52
I A

LlJ
2J0W

52
1

lJ
2

I A

I 0
[2

1

lJ
2
gA , ~19a!

GB~x!52
I B

LlJ
2J0W

52
1

lJ
2

I B

I 0
[2

1

lJ
2
gB . ~19b!

Inserting the last two equations in Eqs.~17!, normalizing the
lengths with respect tol j and the time to the inverse ofv j

5 c̄/l j , we finally find

wxx2w tt5sin~w!1aw t1«cxx2gA , ~20a!

cxx2c tt5sin~c!1ac t1«wxx2gB , ~20b!

wx~0!5wx~ l !5h~11«!, ~20c!

cx~0!5cx~ l !5h~11«!, ~20d!

with l 5L/lJ anda5(1/R)A\/(2eCJ0). Theh term in the
boundary conditions accounts for an external magnetic fi
~e.g., given by a coil! parallel to they direction, normalized
with respect tol j (12«2)(4p/c)J0 .

2. Nonuniform current distribution

It is well known6,7 that the current distribution in a long
and thin strip is highly nonuniform across its widthL. In the
past, this fact has been considered for explanation8–10 of de-
viation from ideal behavior of the singleoverlap junctions.
In fact, these junctions consist of an interruption by an ox
layer of a long superconducting strip and, according to
shortening principle,11 the real current distribution is as th
current distribution in the strip.

When the film thicknessd is comparable with the penetra
tion depthlL and the widthL is much greater thanlL , so
that Ld@lL

2 , a good approximation for the linear curre
density in an isolated long strip is:6,7,12,13

J~x!5
I

pL

L

Ax~L2x!
. ~21!

Near the edges of the strip the distribution~21! has an expo-
nential correction that, extending over a length appro
mately equal tolL , prevents from singularities atx50 and
x5L and sets a relation between the current density at
edges and that at the center13

J~0!

J~L/2!
5

1.165

lL
ALd

a
, ~22!

wherea is a constant near unity.
In our geometry~see Fig. 2! the distribution Eq.~21! is

appropriate for the middle electrode. For the outer electro
we also expect a nonuniform current distribution, but mu
less drastic. For the current component whose magnitud
the same in both electrodes but whose flow~relative to they
direction! is opposite, we can expect a current distributi
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almost uniform because the separation between them is
small ~typically of order of d'lL). From the geometrica
symmetry, it may also be assumed that the current com
from the middle electrode is divided equally into the tw
outer electrodes. This gives rise to a current componen
the outer electrodes having the same magnitude and pola
When we expressI A and 2I B as I A5(I A1I B)/21(I A
2I B)/2 and2I B52(I A1I B)/21(I A2I B)/2, their first and
second terms correspond to the opposite and equal pol
components, respectively. For the calculation inH1x(W) and
H2x(W), the contributions from the second terms in the tw
equations are canceled when summed. For what concer
first terms, we can assume a uniform current distribution
described above. By these considerations the fields of in
est are

H1x~0!5
2p

c

1

L
~ I A2I B!

L

pAx~L2x!
, ~23a!

H1x~W!52
2p

c

1

L
~ I A1I B!, ~23b!

H2x~0!5
2p

c

1

L
~ I B2I A!

L

pAx~L2x!
, ~23c!

H2x~W!52
2p

c

1

L
~ I A1I B!, ~23d!

that we can insert in Eqs.~17! to have

GA~x!52
1

lJ
2S gA1gB

2
1

gA2gB

2

L

pAx~L2x!
D ,

~24a!

GB~x!52
1

lJ
2S gA1gB

2
1

gB2gA

2

L

pAx~L2x!
D ,

~24b!

wheregA5I A /J0WL, gB5I B /J0WL. From this, by using
Eqs.~16! and normalizing as in the uniform current case,
finally find

wxx2w tt5sin~w!1aw t1«cxx2hA~x!, ~25a!

cxx2c tt5sin~c!1ac t1«wxx2hB~x!, ~25b!

wx~0!5wx~ l !5h~11«!, ~25c!

cx~0!5cx~ l !5h~11«!, ~25d!

where

hA~x!5
gA1gB

2
1

gA2gB

2

l

pAx~ l 2x!
, ~26a!

hB~x!5
gA1gB

2
1

gB2gA

2

l

pAx~ l 2x!
, ~26b!
ry
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and the other symbols have the same meaning of the unif
current model. The above equations could also be deri
using the approach of Ref. 1.

Note that here we have maximum nonuniformity for equ
and opposite physical bias currents (I A52I B). Perfect uni-
formity is obtained for equal bias currents (I A5I B), but we
remark that this is a result of the assumption of unifo
current distribution made for the outer electrodes. How go
it is this approximation can be established only by compa
son with the experimental results, that we will present in
next section. Figure 3 shows a sketch of distribution of
normalized current densitieshA(x) andhB(x) for the cases
I A52I B andI A5I B . For other cases the current distributio
is somewhere in between Figs. 3~a! and 3~b!. A particular
interesting case is that for which only one junction is bias
e.g.,I B50. In this case@Fig. 3~c!#, there is a nonzero curren
distribution in junctionB, such that current flows in two
opposite directions. However, net current flow through jun
tion B is, consistently, zero, as can be easily checked ca
lating *0

l hB(x) from Eq. ~26! for gB50. From the under-
standing of the behavior of two junction stacks with t
geometry of Fig. 2, it is easy to generalize to more junctio
with different variations of the geometry of Fig. 2.

FIG. 3. The current distributionshA and hB , calculated from
Eqs. ~26! for a junction of lengthl 510, are plotted assuming
ugA,Bu51 ~singularities at the edges have been eliminated!. ~a! The
nonuniformity is the largest, the two distributions mirror each oth
for sake of comparison, the uniform distributionuhA,B51u is also
plotted.~b! The currents in the two juctions are equal and unifor
~c! The nonuniform current inA ~continuous line! induces a non-
uniform current inB ~dashed line!; the net current inB, however, is
null.
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II. EXPERIMENTAL RESULTS

A. The samples

We have fabricated and tested Nb/AlOx /Nb/AlOx /Nb
stacks with electrodes patterned in thedouble overlapgeom-
etry shown in Fig. 2. In all of tested samples the intermed
electrode was thinner than the London penetration depthlL

while the external electrodes were quite larger thanlL . Due
to the fabrication process,lL in our Nb films is rather large
about 100 nm. The physical dimensions of the junctions
the stacks wereL3W5(600320) mm2 and a typical Jo-
sephson penetration depthlJ was greater than 40mm, so
that we have long and narrow junctions. In the two repres
tative samples on which we report here, the magnetic c
pling constant was«520.56 and «520.89, respect-
ively. These values are calculated by Eq.~7! and agree with
those extimated by the procedure based on the splitting
voltage spacing of Fiske steps.14 In the stack with«5
20.56 the two junctions have very similar critical curre
densities~evaluated by the current rise in theI -V character-
istic at the gap sum voltage! JA576 A/cm2, JB
580 A/cm2, and normalized lengthl A' l B513. In the other
stack («520.89) the critical current densities are slight
different, JA566 A/cm2, JB560 A/cm2, and the normal-
ized lengths arel A; l B510.

B. Measurements

The experiments were performed at 4.2 K with a c
operm shielded sample holder and in zero applied magn
field. We carefully avoided trapped flux and checked t
there was no crosstalk between the biasing circuits.

The measurements concern how the stability of the z
voltage state of one junction is influenced by the state of
other junction in the same stack. In other words we ha
measured the critical current of one junction as a function
the bias current in the other junction, in both possible volta
configurations for the second junction: zero voltage state
McCumber state. Typical experimental results are sum
rized in Fig. 4. Figure 4~a! shows the stability boundary o
the zero voltage state in the stack, i.e., in the region betw
the two curves in the planeI cA2I cB is VA5VB50. To ob-
tain this stability boundary we start with both junctions in t
zero voltage state, then we fix the bias of one junction a
we change the current in the other junction until it switch
to a resistive state. Equivalently, we can start with both ju
tions in the zero voltage state~at I A5I B50) and then
change both bias currents simultaneously until one junc
undergoes a transition to the dynamical state. In Fig. 4~b! we
show the dependence of the positive and negative crit
current of junctionA as a function of the current in junctio
B biased on the McCumber curve. Similar results are
tained inverting the role of the junctions. We notice abse
of experimental points aroundI B50. This is because fo
small values of current in junctionB we are in the instability
region of the McCumber curve. Finally, we note that in t
range of currents inB where a comparison is possible, th
critical current in junctionA depends on the voltage state
the junctionB, as shown in an expanded scale in Fig. 4~c!.
e
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-
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e
f
e
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-
e

The results shown in Fig. 4 are obtained without a grou
plane. Stability boundaries of the zero voltage state in
same stack with and without a ground plane are compare
Fig. 5~a!. From this figure is evident that the influence of
ground plane is relevant only in the region around the l
I A52I B . We remark that the ground plane was spac
about 1mm, the thickness of the substrate, from the stack
its function was quite weak.

Nevertheless, Fig. 5~a! suggests that some nonuniformi
in current distribution is working, especially whenI A'
2I B . Nonuniformity should create some appreciable seco
spatial derivative of the phases and consequently an incr
ing of ~static! interaction between junctions for increasin
inductive coupling constant«. In Fig. 5~b! is shown the sta-
bility range of the zero voltage state for stacks with tw
different «. To allow comparison, in this plot we have no
malized, in each of the stacks, the currents to the value of
critical current of junctionA for junction B unbiased. Be-
sides the deformation of the stability range, due to the d
ference between critical currents of the junctions in the st
with «520.89, we note that increasing of the inductive co
pling effectively reduces the stability range~i.e., increases
static interaction between junctions!, again principally
aroundI A52I B .

FIG. 4. ~a! Stability boundary of the zero voltage state in th
stack.~b! Critical current of junctionA versus current in junctionB
on the McCumber curve.~c! Critical current of junctionA versus
current in junctionB polarized in the zero voltage state~circles! or
in the McCumber state~squares!.
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C. Discussion

In the uniform model Eqs.~20! interaction between the
junctions takes place only whenwxx or cxx are different from
zero. If, as in our experiments, we have not trapped flux
the films, we have not applied magnetic field and we are
in some solitonic zero-field step~ZFS! regime,wxx andcxx
should be zero and consequently the boundary of stabilit
Fig. 4~a! should be a square and the dependence in Fig.~b!
a constant. So, the uniform model Eqs.~20! cannot explain
our experimental results.

Below we consider several possible mechanisms that
modify the predictions of the uniform junction model. Th
interaction in the zero voltage state looks similar to ear
experimental observations15 in closely coupled microbridge
that was explained in terms of current-induced ord
parameter depression in the region between the bridges15,16

Nevertheless, in Ref. 15 the current in a weak link was
ways depressing the critical current in the other, while in o
results the depression is obtained only for opposed curre
in agreement with results of Ref. 17 that were explained w
a Cooper pair coupling between the outer electrodes of
two weak links.17,18 Both the quoted experimental resul
were obtained near the critical temperature of the superc
ductors, to have a coherence length quite larger than
spacing between weak links. This is not the case for mos

FIG. 5. ~a! Stability boundary of the zero voltage state withou
ground plane~open circles! and its modification caused by a remo
ground plane~solid circles!. ~b! Range of existence of the zer
voltage state in a stack with«520.56~crosses! and in a stack with
«520.89 ~open squares!. In both curves, the currents are norma
ized to I cA(I B50).
n
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our stacks in which we observe interaction. However,
notice that our stacks are double-barrier tunnel devic
qualitatively different from the coupled microbridges whe
the above-mentioned interaction was investigated. In
case, the Cooper pair tunneling between outer electrode~if
any! should be of the order of the single electron reson
tunneling19 between the same electrodes. Such a tunne
should be appreciable in the limit of extremely thin~i.e., few
nanometers! intermediate electrode. Due to the macrosco
thickness of our intermediate electrodes, we can rule out
presence of such a coupling in our experimental resu
Also, we notice that induced gap suppression is too sm
lower than 2% for typical used current values, to account
the observed large variations of critical currents. This,
gether with the too small quasiparticle curve modificatio
also weakens the hypotheses that some nonequilibrium
cess of quasiparticle injection is causing the results of Fig

The results of Fig. 5 suggest that we should look for t
predominant mechanism in some spatial nonuniformity. T
results in Fig. 5~a! rule out the possibility of a spatially de
pendent critical current density. In fact, such a critical c
rent density should be caused by a shaped barrier thickn
that should not depend on a ground plane action. Absenc
defects or pinning centers in the barriers has been dem
stated by dedicated measurements~diffraction patterns in
magnetic field! performed on single junctions fabricated wi
the same fabrication process as the stacks. Finally, we h
carefully avoided misalignments of the electrodes form
the junctions in the stack to reduce in-line current comp
nents.

From all this, we conclude that the most effective mech
nism is the nonuniformity and this nonuniformity is due
the bias currents. So we will describe our experimental
sults with the model Eqs.~25!.

D. Numerical simulations

We have integrated the model Eqs.~25! without applied
magnetic field:

wxx2w tt5sin~w!1aw t1«cxx2hA~x!, ~27a!

cxx2c tt5sin~c!1ac t1«wxx2hB~x!, ~27b!

wx~0!5wx~ l !50, ~27c!

cx~0!5cx~ l !50. ~27d!

To remove singularities at edges in the forcing termshA(x)
andhB(x), we have used the relation Eq.~22!. Another pos-
sibility is to choose values at the edges such that the phys
relation ~charge conservation!

gA,B5
1

l E0

l

hA,B~x!dx ~28!

is numerically satisfied, as it is analytically. Numerically, w
have found no significant differences between these
methods.

The values of the parameters in the simulation are cho
equal to the experimental ones, so that a direct compar
can be made. Experimental and numerical results for«5
20.56 are shown in Fig. 6. Globally, we found the agre
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ment quite satisfactory. In Fig. 6~b! a significant deviation is
evident forugBu.1.3 where mechanisms other than nonu
form current distribution, possibly quasiparticle injectio
play a role. A small deviation is evident in Fig. 6~a!, around
the line gA5gB where the experimental points seem not
point to the valuesgcA5gcB561. This means, by consid
erations of the previous section, that bias current distribu
in the outer electrodes is not perfectly uniform. Neverthele
we found that the deviation is small enough to exempt
from a further correction to the model.

In Fig. 7, numerical and experimental results are co
pared for the stack with«520.89. In the simulations, the
relatively small difference between critical current densit
of the junctions has been accounted for introducing only
parameter in the model. In fact, if the difference is not
large, we can account for it by introducing only the ratioj
5JB /JA to multiply the sin(c) term in Eqs.~27!. The result
in Fig. 7, obtained withj 50.85, shows that this is enough
reproduce quite well the deformation of the stability boun
ary of the zero voltage state observed when the critical c
rents are different.

In Fig. 8 we show the spatial phase distribution for so
selected states of the stack. In Fig. 8~a!, the phase of junc-
tionsA andB are recorded just before and just after juncti
A undergoes the transition to the dynamical state, while ju
tion B is unbiased. Here we can note that the transition

FIG. 6. Experimental results~solid circles! of Fig. 4 compared
with the numerical results~open squares! of the nonuniform model.
Both in the experiment and in the simulation was«520.56, lA
5lB513, a50.1, h50.
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junction A is caused by the formation of a fluxon and a
antifluxon at the opposite edges of the junction, and that
phase of the unbiased junction is spatially modulated mirr
ing ~because of the inductive coupling! the phase of the bi-
ased junction. In Figs. 8~b! and 8~c! is shown the phase dis
tribution of junctionA ~in the zero voltage state!, while B is

FIG. 7. Experimental results for the stack with slightly differe
critical current densities (JB /JA50.9) compared with the numerica
results. In the simulation wasl A5 l B510 andj 5JB /JA50.85.

FIG. 8. ~a! Phase of junctionA @w(x)# and junctionB @c(x)#
for junction B unbiased and junctionA biased with a current
slightly lesser or slightly greater than its critical currentgcA . ~b!
Phase of junctionA in the zero voltage for junctionB also in the
zero voltage state~dashed line! or on the McCumber curve~solid
line!. ~c! Same as that in~b!, but here the bias currents have opp
site polarities.
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biased atVB50 or VBÞ0, in two configurations of relative
current polarities. Here, beside the different degree of n
uniformity caused by the termhA(x), we can notice the
small modulation induced on the phase distribution wh
VBÞ0. This modulation is observed also in the phase dis
bution of junctionB and results from possibile excitation o
self-resonances in theI -V characteristic.

CONCLUSIONS

We have discussed the results obtained in the statio
state of stacked long Josephson junctions, but, obviously
model can account for deviation from the ideal unifor
model also in the dynamical state. However, because of
very slow dependence from the junction length, we exp
-

d

e

,

n-

n
i-

ry
he

e
ct

that the interaction due to the bias currents should not
negligible in three-terminal devices with double overlap g
ometry also in the limit of small junctions. The geomet
discussed here is a special one, but the results present
this paper indicate that the geometrical factors should no
overlooked for a full description of the three-terminal d
vices.
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