PHYSICAL REVIEW B VOLUME 58, NUMBER 10 1 SEPTEMBER 1998-II

Phase transitions in the spin-halfJ;-J, model

Raymond F. Bishop
Department of Physics, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88,
Manchester M60 1QD, United Kingdom

Damian J. J. Farnell
Institut fur Theoretische Physik, Universttau Kdn, Zupicher Strasse, 50674 Km Germany

John B. Parkinson
Department of Physics, University of Manchester Institute of Science and Technology (UMIST), P.O. Box 88,
Manchester M60 1QD, United Kingdom
(Received 7 April 1998

The coupled cluster metho@CCM) is a well-known method of quantum many-body theory, and in this
article we present an application of the CCM to the spin-Baif, quantum spin model with nearest- and
next-nearest-neighbor interactions on the linear chain and the square lattice. We present results for ground-state
expectation values of such quantities as the energy and the sublattice magnetization. The presence of critical
points in the solution of the CCM equations, which are associated with phase transitions in the real system, is
investigated. Completely distinct from the investigation of the critical points, we also make a link between the
expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state
correlation coefficients. We are thus able to present evidence of the breakdown, at a given Valll ,abf
the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg dgird)( on any
bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and
at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively,
given byJ,/J, ~0.26 andJ,/J; ~0.61.[S0163-182698)05333-§

[. INTRODUCTION nalizations on small finite clusters of spins drawn from the
infinite lattice under consideration. However, even with
Antiferromagnetic materials have conveniently been modmodern computers, one considers clustersNo$pins with
eled, since the early work of Heitler and London, as a latticeN<36. Extrapolation to the infinite latticeN—c, then
of magnetic atoms upon which the active electrons are localreeds to be performed. While exact results from finite-size
ized. Furthermore, the exchange interactions between thecaling theory are often of great help in this regard, the ex-
electrons are conventionally described solely in terms of thérapolation does need to be handled with great care. This is
spin degrees of freedom of the electrons. An archetypaparticularly true when using the results from finite clusters to
model of this class remains the Heisenberg model in whichmake quantitative predictions for such quantities as the order
only nearest-neighbor exchange interactions are includegharameter. Many wrong claims have been made in the past
and these are all taken to be equal. Although the Heisenbeffgom an improper treatment of the very subtle phenomena
model on the one-dimensionélD) chain has been exactly which need to be taken into account in the extrapolations, as
solved many years ago by Bethat is still the case that has been stressed and discussed with great care by Lhuillier
relatively few other exact solutions have been found in theand her co-worker$.Furthermore, one expects that such
intervening 65 years or so to comparable models in highefinite-cluster calculations will become less accurate the
dimensions or to models involving more complicated inter-closer one approaches a quantum phase transition between
actions, especially those containing an element of frustratiorstates of different quantum order, marked by a critical value
On the other hand, various approximate numerical techef some coupling parameter, at which a correlation length
nigues have by now been applied to a large number of sucbharacterizing the order typically diverges.
magnetic lattice Hamiltonians. For example, many varia- Results for much larger clusters are typically obtained by
tional calculations have been undertaken, employing a widstochastic simulation of the many-body Satirger equa-
variety of trial wave functions. Although these often give tion using various quantum Monte Cal@MC) algorithms.
accurate upper bounds for the ground-state energy, for ex¥here the basic spin-lattice Hamiltonian can be mapped
ample, one often finds that the differences between the estonto an equivalent bosonic problem, as in the case of the
mated energies for trial states of widely differing kinds areHeisenberg model on a bipartite lattice, such QMC tech-
very small. Hence, predictions based on variational calculaniques can readily be applied to clusters containing several
tions for properties other than the energy, or to such quediundred or more spins, and very accurate results thereby
tions as whether the exact ground state is ordered or disopbtained. In these cases, such as the Heisenberg model on the
dered, are notoriously unreliable. two-dimensional2D) square latticé;* the QMC results can
As a common alternative one may perform exact diagousually be considered as “exact,” with the resulting errors
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arising only, or largely, from statistical errors which are openmost accurate at attainable levels of computational imple-
to systematic reduction within the limits of the available mentation, of all availableb initio formulations of micro-
computing power. scopic quantum many-body theory. Furthermore, in recent
What ultimately underpins these bosonic mappings, angears it has been widely applied to many spin-lattice
what therefore makes such QMC simulations so readily atHamiltonians®?°~23 For example, very successful applica-
tainable, is the knowledge that in some appropriate represetions have by now been made to the solid phase3Hz2°
tation the multispin cluster coefficients describing tNe  the isotropic Heisenberg and anisotropi Z models in 1D
body wave function are all positive-definite. For example, inand on the 2D square lattice, both for spin-half syst8mté
the case of the Heisenberg model on a bipartite lattice, thiand higher-spin systerfis and the spin-one Heisenberg-
information is provided by the well-known Marshall-Peierls biquadratic model on the 1D chaifias well as to such frus-
sign rule theorem. trated spin-half models as thiig-J, model in 1D (and 2D
Conversely, where such prior knowledge of the nodal(Refs. 31-33 and the 2D triangular-lattice anisotropic
structure of a many-body wave function is not exactly Heisenberg antiferromagn@t®22
kann, QMC calculations are beset by the notoriOLPS In the present paper we app|y the CCM Specifica"y to
“minus-sign problem,” and are usually then much less reli-jnyestigate phase transitions in the spin-kiHJ, model on
able or much more difficult to implement with known algo- (the 1D chain and, especially, bthe 2D square lattice. Our
rithms. A typical way that such complications arise in spin-ain aim is to use this model as an archetypal example for
lattice problems is from the introduction of frustration. This which no exact information is known for the nodal structure

can arise either from the geomt_etry_of the Iattlce_und_er CON%Gf the exact ground-state wave function, apart from the
sideration or from the introduction into the Hamiltonian of . . . .
Marshall-Peierls sign-rule results in the pure Heisenberg

competing exchange interactions. An example of the formey. . : . . . . .
is the basic Heisenberg model on a 2D triangular Iatticer'm't' There is particular interest in studying whether the sign

r{ule is preserved when weak next-nearest-neighbor exchange
a bipartite lattice of (antiferromagnetic next-nearest- mteraptions are inclu'ded and,.if so, whether there is a critical
neighbor interactions in addition to thantiferromagnetic ~ cOUPling beyond which the sign rule breaks down. We be-
nearest-neighbor interactions of the pure Heisenberg modd|€ve that the CCM is an excelleprima faciecandidate for
resulting in the so-called,-J, model studied here. such studies, since in virtually all previous applications to
Relatively few QMC calculations on such frustrated Spin_models for which the Marshall-Peierls sign rule holds, the
lattice systems have been performed. As a starting point thefpeorem is exactly obeyed at virtually all levels of implemen-
typically require a good trial wave function, in terms of tation in different CCM approximation schemes.
which the true wave function is well approximated, espe- Finally, we are also interested in examining the phase
cially for its nodal surface structure. In such calculationstransition points, as the strength of the next-nearest-neighbor
there can still be a considerable systematic uncertainty, benteractions is varied, at which the Bleantiferromagnetic
yond the unavoidable statistical errors, which arises fronlong-range order present in the 2D square-lattice case at the
whether the simulations have eliminated the bias inherent illeisenberg point vanishes and in studying whether there is
the starting function. A typical recent calculation of this type any relationship between the phase boundaries and the points
was the fixed-node Green function Monte Carlo mefhod at which the Marshall-Peierls sign rule breaks down. We
simulation of the spin-half 2D triangular-lattice Heisenbergnote that any reliable information gained on the pattern of
antiferromagnet by BoninseghiWhile undoubtedly repre- the signs of the multispin cluster coefficients in the decom-
senting a very ambitious calculation of its kind, the resultingposition of the ground-state wave function should be very
prediction for the sublattice magnetization, which is the sim-useful for two distinct reasons, namely) for use in devis-
plest measure of the antiferromagneticeNieng-range order ing improved trial starting wave functions for future QMC
in this system, seems to be clearly too high by comparisoralculations and(ii) for spotting possible patterns for the
with the results from the best of the alternative techniquessigns of the cluster coefficients in different phases or differ-
including exact diagonalizations of small clusfeeid the ent regimes of coupling constants. The latter could be used,
coupled cluster methdt.Furthermore, even the resulting inter alia, to suggest possible generalizations of the
QMC estimate for the ground-state energy of the triangulaMarshall-Peierls sign rule, and thereby to motivate the search
Heisenberg antiferromagnet gives an upper bound which ifor the proofs of suitably generalized theorems. Any such
relatively easily bettered by the alternative techniques. generalizations would clearly have immediate impact for a
For such frustrated and similarly “difficult” systems, pre- next generation of QMC calculations.
dictions based on even very large-scale QMC simulations The rest of this paper is organized as follows. In Sec. II
share, at least to some extent, the uncertainties discussea discuss the Marshall-Peierls sign rule and the CCM for-
above for variational calculations. In order to overcome thesgnalism. The sign rule is first outlined for the Heisenberg
uncertainties, therefore, there is a real need to apply alternanodel on bipartite lattices, before we describe theJ,
tive semianalytical approaches, especially those that have threodel and previous results. The CCM formalism is then re-
demonstrated power to provide accurate predictions for thgiewed in very general terms before describing one means of
guantum order and for the positions and critical properties ofpplying it to theJ;-J, model. Results for the ground-state
any quantum phase transitions. One such method, namely tlemergy and staggered magnetization are discussed in Sec. I,
coupled cluster metho@CCM),°1° stands to the fore in this together with results on the breakdown of the Marshall-
respect. It has long been acknowledged as providing one d?eierls sign rule for the model. Finally, we present our con-
the most powerful, most widely applicable, and numericallyclusions in Sec. IV.

while an example of the latter arises from the introduction o
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Il. THE MARSHALL-PEIERLS SIGN RULE where the sum oKi,j) runs over all nearest-neighbor pairs
AND THE CCM FORMALISM of sites, counting each paior bond once and once only and
A. The sign rule for the spin-half Heisenberg antiferromagnet the_ sum on_(<|,k>>_5|mllarly_ runs over all next_-nearest-
] ] i : _ _neighbor pairs of sites, again counting each gair bond
In this section we consider the spin-half Heisenberg antiyce and once only. We note that in order to consider a wide
ferromagnet(HAF) on a bipartite lattice, where the Hamil- range of the coupling parameteds and J, it is useful to

tonian is given by introduce the variable such that);=cosw andJ,=sinw.

N In 1D, no exact solution has been found for general values
H= 2 s.S, (1) of the coupling constant3;, andJ,, though there are some
{0y : exact solutions including the Heisenberg poily£€0) and a

and the index runs over all lattice points andruns over the point at J,/J,=0.5 at which the ground state is fully

nearest neighbors o The angular brackets indicate that we d|mer|zed_?‘5 Prevpus coupleq C“.JSter methedefs. 3133
count each nearest-neighbor bond only once. We note th&"d density matrix renormalization grodpMRG) (Ref. 9
for a bipartite lattice we can divide the lattice into two sub- c@lculations have very successfully been carried out for this
lattices such that if is on one particular sublattice thgn model. The phase diagram is comphcated_, with three distinct
must be on the other and vice versa. phases. These phases may be characterized for our purposes
For the one-dimensional linear chain, there is an exac®s ferromagnetic, antiferromagnetic, and frustrated. The fer-
solution to this model via the Bethe ansatz techniyer ~ romagnetic phase is a highly degenerate phase in which the
the two-dimensional square-lattice HAF, there is no exacground-state energy is equal to that of the classical fully
solution to this problem, though many approximate calcula@ligned state. There is a first-order phase transitiod,at
tions, including those using various quantum Monte Cdrlo =0 with negativeJ, to an antiferromagnetic phase. The an-
methods and exact series expandtaachniques, have been tiferromagnetic phase classically has its energy minimized
performed. by the Neel state, and the quantum-mechanical phase transi-
Although no exact solution is known for the 2D casetion point to the frustrated phase is @ is very near tp
stated here we note that there is an exact sign rule first del./J;=0.5. The frustrated phase classically contains a spin
rived by Marshafl (and which we shall refer to here as the “spiral” state which has a periodicity which varies with the
Marshall-Peierls sign ruje The rule for the square lattice ratio of the coupling constant3,/J;. There is some evi-
HAF is in fact an illustration of the more general Marshall- dence that this changing periodicity willh/J; might also be
Peierls sign rule for the HAF on any bipartite lattice. This seen in the quantum-mechanical systenf,
sign rule provides exact information regarding the signs of For the square lattice there are no exact results, though
the expansion coefficients of the ground-state wave functioepproximate spin-wave theotWT) (Ref. 37 calculations,
in an Ising basis, which is denotéfi }}. The exact ground- exact diagonalizations of finite-sized lattic8sand CCM
state wave function for aN-body spin system may be writ- (Ref. 31 calculations have been performed. The ferromag-
ten as netic to antiferromagnetic phase transition point is, as for the
1D case, atl;=0 with negativeJ,, and the antiferromag-
netic to frustrated phase transition is believed to be near to
[wy=2 wiln), @ 3,13,-05.

The Marshall-Peierls sign rule, as discussed in Sec. Il A,
where{W¥} are the expansion coefficients. We now divide is true for the Heisenberg model on a bipartite lattice. It is
the bipartite lattice into its two sublattices, denofe@andB, ~ Simple to prove that it is also preserved for theJ, model
such that each nearest-neighbor site toAasublattice site is ~With negativeJ, and positiveJ;. However, it is not in gen-
on theB sublattice and vice versa. If the number of up spinseral true for positivel, and positive;. In fact, the results
on theA sublattice is called, then it is possible to shdw from 1D short-chain calculatiorfs suggest that the break-

that the coefficient$¥,} satisfy down occurs very near to the Heisenberg point, at
J,13,=0.032-0.003. By contrast, finite-size lattice
W, =(—1)Pa,, 3  calculation’® on the square lattice indicate that the sign rule

at the Heisenberg point may well be preserved up to some
where the new coefficienta, are all positive. This exact critical value ofJ,/J; in the 0.2<J,/J,;<0.3.
information regarding the signs of the coefficients may be
used to define the nodal surface of the wave function in this
basis, and hence is of use in QMC calculatidfis. C. The CCM formalism

In this article we wish to perform CCM calculations for

B. The J,-J, model the J;-J, model in the antiferromagnetic regime. We now
We shall now discuss the spin-hd}-J, model on the 1D present a brief survey of the CCMm formalism .and note that a
linear chain and the 2D square lattice. The Hamiltonian ignuch fuller account of the formalism as applied to quantum

given by spin-lattice problems has been given in Ref. 8. A more ex-
tensive overview of the method and its applications has also

N N been given in Ref. 17. The starting point for any CCM cal-

H=1] s+ S, (4  culation is the choice of a normalized model or reference

1@2;’) 59 2<<§>> 55 state, denoted®). We define a complete set of mutually
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commuting, multispin creation operatof€,"} with respect We now wish to find values for the ket-state and bra-state

to |®) such that any Ising staf¢) may be obtained as correlation coefficients. We do this by defining the expecta-

y=C/|® ©) tion valueH=(W|H|¥) and by requiring that this quantity
)=Crl®), is a minimum with respect to the ket-state and bra-state cor-

for an N-body spin system. The ground-state wave functionrelation coefficients. Hence, we have

has previously been written in EQR) as a linear combina-

tion of the state$|l)}, and we now introduce the usual CCM

g;’:\\/r:':ns)tlnzatmns of the ket and bra ground states which are SH/86S,=0=(®d|C; e SHeSP)=0, VI+#0, (10

[W)=e%®), S=2, §C/, 6) SHI 58, =0=(®[Se~H,C; 1e®)=0, VI=0.
(11
(U|=(d[SeS, §=1+|202§,c,‘. (7)
*

This formalism is exact in the limit that we include all

The ket-state correlation operator in E) is, as we can see, possible multispin cluster correlations withi and S,
formed from a linear combination of the creation operatorghough in any real application this is usually impossible. We
{C,"} multiplied with the relevant ket-state correlation coef- therefore need to consider approximation schemes whereby

ficients{S,}. The Hermitian adjoints of the multispin opera- {he expansions d andS in Egs. (6) and (7) may be trun-
tors {C,"} are the multispin destruction operatd(S; }, and  cated to some finite or infinite subset of the full set of inde-
the bra state in Eq7) is formed by the linear combination of yendent(fundamental multispin configurations. The three
these destruction operators multlphed with the corresponding, ot commonly employed schemes have bédén the
bra-state correlation coefficien{S;}. The bra and ket states, SUBn scheme, in which all correlations involving onfyor
defined by Eqs(6) and (7), are not manifestly Hermitian fewer spins are retained, but no further restriction is made
adjoints of each other and so the variational property of aRoncerning their spatial separation on the latti(®, the
upper bound on the ground-state energy is not preservedypgn-m subapproximation, in which all SUBcorrelations
However, we note that the Hellmann-Feynman theorem ig,,nning a range of no more thamadjacent lattice sites are
preserved. We also note that sing|C, =0=C'[®) by  |aaineq. and3) the localized LSUBh scheme, which re-
def|n|t|0n,~we have the explicit normalization relations tains all multi-spin correlations over distinct locales on the
(V) =(V|V)=(P[|D)=1. lattice defined bym or fewer contiguous sites. In the next
The ground-state expectation value of the energy mayypsection we consider the application of the CCM tolthe

now simply be written using the Schlimger equation J, model in the antiferromagnetic regime.
H|¥)=E4|V), as

Eg=(®|e °He%|®). (8)

Equation(8) shows an example of the well-known similarity  ag stated in the previous section, the starting point for any
transform which plays a crucial role in the CCM formalism. CCM calculation is the choice of the modér reference
We further note that the similarity transform of any state. Here, we choose the classicaleNstate to be our
guantum-mechanical operator may be written in terms of A odel sta'te in accordance with previous CCM
series of nested commutators, so that for the Hamiltorian calculationss'3i in order to study the antiferromagnetic re-

we have gime of theJ;-J, model. We visualize the Mg state by
1 again dividing the lattice into two sublatticés and B on
e SHeS=H+[H,S]+ E[[H,S],SH cee (9 which each of the nearest-neighbors sites to a given sublat
' tice site are on the other sublattice. We populateArsub-
The infinite series of Eq(9) terminates at finite order if the lattice with “up” spins (i.e., eigenvectors of the* operator
HamiltonianH contains sums of products of only finite num- with eigenvalue+3) and theB sublattice with “down”
bers of single-body operators, as is almost always the casspins(i.e., eigenvectors of the” operator with eigenvalue
and is, indeed, true for the model considered here. We alse 3).
note that each time we perform a commutation operation in In order to perform a CCM calculation we would like to
Eq. (9) we produce a link or contraction, so that every singletreat each site on an equal footing. We do this by performing
operator in eact$ within the nested commutator expansion a rotatior#31 of the local axes of the spins on tiesub-
is directly linked to an operator in the original Hamiltonian. lattice (up sping by 180° about the axis such that all spins
In this way the Goldstone linked cluster theorem is satisfiedn each sublattice appear mathematically to point down-
and the expectation value of the energy, as well as all othewards (i.e., in these new local axgesSince this rotational
expectation values, are size extensiive., they are well de- transformation is a canonical one, it has no effect on the
fined in the asymptotic thermodynamic limit—o at all commutation relations. It does however, have a number of
levels of approximation for the operat@®). Indeed, the consequences. First, the Hamiltonian is rewritten in local co-
CCM works from the outset in the thermodynamic limit.  ordinates as

D. The CCM applied to the J;-J, model
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H=-32
(

B)

1 1
ZoZ + -t e

—— LSUB2
-=--- LSUB4| 2\
——- LSUB6
-0.45 | —— LsuBS8

+J, >,

(1K)

1
ZoZ -t + o

2

(12 -0.65 |
We also note that the set of creation operatdZs } may
now be formed purely from products of spin raising opera-
tors with respect to the rotated, “ferromagnetic” model -0.85 s it 0 >
state. We write this expression for &sspin cluster a<C,” ®
Esf;sﬁ;- . -sflr . Conversely, the destruction operators are now

. . . _ FIG. 1. Results for the CCM ground-state energy of the spin-

formed purely from th_e_spln 1ower|ng operators in an analo half J,-J, model on the 2D square lattice, using the LSUBp-
gous manner, wher€, =s; s, ---s

) 11712 i ) proximation based on the Mk model state, withm=2,4,6,8.
The Marshall-Peierls sign rule for the Heisenberg model SUBm critical pointswr andw, are indicated by the boxes. Note

is also modified. We obtain a new and exact rule for thethatJ;=cosw andJ,=sin .
Hamiltonian of Eq.(12) in an expansion of the ground-state

wave function in terms of an Ising basffl)} in the local, Ill. RESULTS
rotated spin coordinates. The corresponding expansion coef- A. Ground-state expectation values
ficients{¥,} must now be positive for all of the states la-

beled byl . (A proof of this statement is not given here, butit 1 he ground-state energy of E() is approximately ob-
is made in exactly the same manner as that of Marghall. t2ined once the CCM equations are first derived and then
The {W,} coefficients are henceforth explicitly stated in re- SCIvéd for a particular approximation scheme and approxi-
lation to the Ising basis in the local, rotated spin coordinatesMation level. Descriptions of the method are given in Refs.
We now wish to provide a link between the,} coeffi- 31.—33. Detglls of how one may obtgm a comlputa}tlona_l so-
cients, in terms of the local axes, and the CCM ground-stati/tion for high-order LSUBn approximations is given in
parametrization of the ket state of E@). This is done by Ref. 8.(It should be n_oted that the calcylatlon of Ref. 31 was
applying the destruction operat@y , for a particular cluster mostly concerned with SUB2 calqulatlons for the spm-half
defined by the index, to the expressions for the ket-state J1-J mpdel._However, a calculgtlon for the square lattice
wave function of Eqs(2) and (6). Note we choose only one system in wh!ch only nearest-ne|g_hbor correlau_ons and four-
ordering out of the indicesiy,i,, . ..,i|} of the total of body correlations between fourspms on th.e unit square were
N(I1) » possible equivalent oro’leri,ngs ’f@_ on the lattice retained was also perfor_med._Thls calculatl_on was referred to
Whérev is a symmetry factor dependentl on the lattice 'Weas an “LSuB4” calpulatlon within the_ text in this reference
therefore write thd W} coefficients as ' to deno_te the addition o_f the extra, single type of four-body
! correlation. However, this “LSUBA4"” calculation was not the
same as the LSUB4 calculation which we perform here
W, =(®|C; eSd)=(d|s s, -5, €5 D). (13  which now containgll two-body and four-body correlations
12 ! in a locale defined byn=4.) We simply quote the results

here for this model using the emodel state and the inter-
Note that Eq.(13) contains the implicit assumption that the ested reader is referred to these articles.

spin raising operators i€," of Eq. (5), which are used to The LSUBM results for the ground-state energy of the 1D
define|l) with respect td®), have only one ordering with J;-J, model converge very well over the rangen/2<w
respect to permutations of the indicgs,i,, .. . i} <tan 1(0.5). We note that the LSUB10 results agree to
Again, it should be noted that in practice one restricts thewithin 1% of those obtained by extrapolating the results
choice of the clusters contained withf® to some well- from exact diagonalizations for short chathsover this
defined approximation scheme. To keep the calculations asnge, though we do not provide a plot of this here. In 2D,
self-consistent as possible, we restrict the choice ofthg  we see in Fig. 1 that our results are again extremely well
coefficients to be for only those Ising states defined in Eqconverged over the range w/2<w<tan 1(0.5). In Table |
(5) which correspond to the clusters usedSn results are given for the ground-state energy of the square
In the next section we describe our results for the groundlattice system as a function od,/J; =tanw for —0.5
state expectation values for high-order, approximate CCMs< J,/J; <0.5 for the LSUB6 and LSUBS levels of approxi-
calculations which are determined computationdM/e also  mation.
detect critical points in the CCM equations which are taken We note that in 2D the CCM results for the ground-state
to be signatures of phases transitions in the real system. Onemergy display characteristic terminating points at certain
the ket-state correlation coefficients are found it is then poseritical values ofw. At these points the second derivative of
sible to obtain approximate results for tfi#,} coefficients, the ground-state energy with respecitanay also be deter-
again via a computational approach, and we discuss CClvhined, and we note that at thessdtical values ofw this
results concerning the breakdown of the Marshall-Peierlguantity diverges. This type of behavior has been observed
sign rule as a function af,/J;. previously and is associated with a phase transition in the
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TABLE I. Results for the CCM ground-state energy of the spin- 1.00
half J;-J, model on the 2D square lattice as a function of
J,/J;=tan w, using the LSUBN approximation based on the  dle 0.75 |
model state, withm=6,8. ’
J,1J;=tan(w) Eg/N (m=6) Ey/N (m=8) 0.50 ¢
-0.50 —0.88237 —0.88353 M 05 |
-0.40 —0.83785 —0.83902 ’
—-0.30 —0.79393 —0.79510
-0.20 —0.75071 ~0.75188 0.00 ¢
—0.10 —0.70833 —0.70951
0.00 —0.66700 —0.66817 -0.25 : ‘
0.10 —0.62699 —0.62816 w2oom4 0 T
0.20 —0.58868 —0.58988 ©
0.30 —0.55271 —0.55397 FIG. 2. Results for the CCM sublattice magnetization of the
0.40 —0.52012 —0.52164 spin-halfJ;-J, model on the 2D square lattice, using the LStB
0.50 —0.49311 —0.49551 approximation based on the Blemodel state, withm=2,4,6,8.

Note thatJ,;=cosw andJ,=sin w.

and bra-state cluster correlation coefficients. The actual pro-
cedure to do this is straightforward and is also described in
more detail elsewhere.

The sublattice magnetization in 1D is nonzero in the
range — m/2< w<tan 1(0.5), though we noté¢see Ref. 31
that it is greater than zero but monotonically decreases with
increasing LSUBn approximation level for allw in this
range. The sublattice magnetization is zero in the true solu-
tion of this model in 1D, and although the CCM LSbB
[and SUB2(Ref. 31)] results are nonzero we expect that with
increasing level of LSUB approximation this would be bet-
ter reflected in the CCM solution.

real system. The critical value in 2D near to the ferromag-
netic phase transition, denoteg , is given in Table Il. We
see that the LSUB results are clearly converging to the
exact value ofwg=— /2. It is knowr?* that the SUB2 ap-
proximation predicts this point exactly in both 1D and 2D.
As is seen from the entries in Table Il, the antiferromag-.
netic point, denoted, , is detected in 2D W|th the LSUBS,
LSUBS, and SUB2 approximations. It is not observed within
the LSUB4 approximation. We can see that the LSUB
critical value ofw decreases with increasing truncation index:
m, and a simple extrapolatidrin the limit m— gives a

value for the phase transition point &§/J, ~0.61. Figure 2 illustrates that the situation is much clearer in

We now introduce the sublattice magnetl_zatlon, W.h'ChZD We can see that the sublattice magnetization in Fig. 2 is
characterizes the degree of quantum order inherent in the

. . : .__ converging to a nonzero value over essentially all of the
CCM wave functions. By inserting the CCM parametriza- 1
tions of Eqs.(6) and (7) we find range— m/2<w<tan -(0.5). We note that there are diver-

gences in the sublattice magnetization which are observed at
precisely the same points as the critical pokatsandw, of
o N 2 N ~ the energy in 2D. This reinforces our conjecture that these
N ¢ E (V|sE{ W)=~ N ¢ 2 (P|SeSsied|®), critical points are reflections of phase transitions in the real
k= k= system.
(14

B. The breakdown of the Marshall-Peierls sign rule
wheres; is in the local coordinates of each sublattice. Evalu-

We now consider the Marshall-Peierls sign rule for the
ation of the sublattice magnetization requires both the ket:

Spin-half J;-J, model on the linear chain and the square
lattice. We need to obtain thigl|} coefficients, either ana-
TABLE II. Results for the CCM critical points of the spin-half lytically or computationally, in terms of the ket-state coeffi-
J1-J, model on the 2D square lattice. The ferromagnetic and anticients. We then solve the SUB2 or LSuBequations in
ferromagnetic critical points are denotegt andw, , respectively.  order to obtain the ket-state correlation coefficients and
The point (>0) at which the CCM predicts that the Marshall- hence to obtain approximate values for {e} coefficients.
Peierls sign rule breaks down for the square lattice is denofed  Note that these calculations are approximate in the sense that
Corresponding results fod§/J)|s and J2/J1)|m are also shown, \ve only retain certain correlations B with a well-defined

whereJ,/J;=tan w. approximation scheme, though we akeady working in
the infinite lattice oN— oo limit.

“F on  Nla em  G2/3)]u We note that at each order of LSBapproximation it is
SUB2 —7/2  0.6416 0.7470 0.255 0.2607 possible to perform this process of matching the terms®in
LSuB4  —1.702 - - 0.331 0.344 in Eq. (13) to the configuratiorC, analytically. In the Ap-
LSUB6 —1.628 0.583 0.660 0.290 0.298 pendix we present the exact form of tfi,} coefficients in
LSuUB8 —1.603 0.566 0.636 0.275 0.282 terms of the ket-state coefficients within the LSUB4 approxi-
LSUB® —1572 0544 0.605 0.255 0.261 mation scheme for the 1D linear chain. Furthermore, we see

that each of th¢ ¥} coefficients corresponding to two-body
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correlations with respect @) via Eq. (5), is exactly equal TABLE IIl. Results for the ratios of the magnitudes of the CCM
to the corresponding CCM two-body ket-state correlation opLSUBm ¥, coefficients, for the spin-half, 1D Heisenberg model,
erator{S,} for any approximation scheme used $n This compared to ratios of the magnitudes of the equivalent Ising expan-
may be proven by noting that there are no one-body Spiﬁion coefficients determined by finite-size, exact diagonalizations.

correlations allowed ifS (in order to preserve the conserved The W, coefficient is associated with the nearest-neighbor, two-

. . ) body correlation with respect to the model stple; and¥',, ¥,
z_ 5 NazZ 3
quantity sy=Z=,7sj) and then by considering the series ex- andV, are, respectively, the corresponding coefficients associated

pansion of the exponential in E¢L3). with the third-nearest-neighbor, two-body configuration, the four-
To obtain higher-orde{¥,} coefficients using EQ(13)  contiguous-spin configuration, and the six-contiguous-spin configu-

we may conveniently use a computational approach. Thigation.

amounts to partitioning the configuration inC,

=s;.s,-+s; into the multiples ofS in the series expansion Ratio 12 Spins 16 Spins ~ LSUB10  LSUBI2

of €5 of Eq. (13). It is then possible to identify by simple Wy
computer algebra the configurations of the partitioned piece| N
(each referring to a® in the series expansion of the expo- v,
nentia), and find a numerical value for tH&,} coefficients ﬁ 0.1674 0.1552 0.1413 0.1381
once the CCM ket-state equations have been solved at spLe—l
cific values ofw. M
In both 1D and 2D, we find thaat all levels of approxi- [Vl
mation the Marshall-Peierls sign rule is preserved fo+
—m/2|, (i.e., in the antiferromagnetic regimé hat is, all of
the {¥,} coefficients are found to be positive. The sign is

broken forow=—#/2|_ (i.e., in the ferromagnetic regimat e : K
which point at least one of the coefficients becomes negativéPProximation predicts a breakdown, denoteq,, are
hown in Table Il. We can see that a simple extrapolation of

Note that the crossover occurs exactly at the phase bounda : ; .
w=— /2, and that this is one case where the breakdown of '€S€ POINts gives a value for the breakdown of the sign rule
the Marshall-Peierls sign rule occurs at exactly the sam&? P€ atJ>/J,~0.26 which is in good agreement with the

place as the phase boundary. We note that there is a firspUB2 result ofJ,/J;=0.2607 and exact diagonalizations of
order phase transition at this point. finite-sized lattice calculatioASwhich give a corresponding

In 1D, we find that all th§¥,} coefficients are positive at value ofJ,/J; in the range of 0.2-0.3. At SUB2 and LSUB4

the Heisenberg point for the SUB2 scheme and for L8UB levels of approximation it is tfleé\IQA} coefficients for the
schemes wittm=8. Above this LSUBn level of approxi- two-spin cluster with separatiox+2y that becomes nega-
mation(i.e., form>8) a few of the{ W} coefficients(which tive first, wherex andy are the unit vectors along the per-
are very small in magnituddecome negative. However, for pendicular axes of the square lattice. Higher-order CCM
example, at the LSUB12 level we find that these same coeft SUBm calculations predict, however, that the coefficients
ficients, which are negative at the LSUB10 level, again befor other higher-order, highly disconnected configurations
come positive, though we find that other new coefficientsfirst become negative at a slightly lower valuewthan the
(which are similarly small in magnitugi¢hen become nega- coefficient for this two-body configuration. This therefore
tive. These would in turn presumably become positive at andicates that higher-order multispin configurations might be
still higher level of approximation. Thus, the CCM is com- as important as this two-body configuration in the break-
pletely consistent with the sign rule for the Heisenbergdown of the sign rule for this model.
model in 1D. This is encouraging as this model is quite chal- We note that the square-lattice results predict that the
lenging for the CCM with this model state, as our results forbreakdown of the sign ruleufy,) occurs at a smaller value of
the sublattice magnetization have shown. We may also comy, at a particular approximation level, than the antiferromag-
pare the ratios of the magnitudes of ¥} coefficients to  netic critical point @,) predicted by the CCM. In other
those obtained via short-chain calculations, as shown igvords, the CCM results predict that there is a region of the
Table llIl. (Note that we examine the ratios to eliminate antiferromagnetic regime in which the Marshall-Peierls sign
short-chain normalization factoysVe can see that the cor- rule is not being obeyed.
respondence between CCM and short-chain calculations is
good, though it appears that the CCM results are better con-
verged at the LSUB10 and LSUB12 levels of approximation
than those from the 12-spin and 16-spin chains. Short-chain The CCM applied to the 1D spin-half;-J, model gives
calculationg® indicate the breakdown of the Marshall-Peierls encouraging results for the ground-state energy, the critical
sign rule atJ,/J;=0.032+0.003, though our CCM results points, and the sublattice magnetization. In this paper we
cannot give an accurate value for this breakdown point.  have shown how the recent advances in the computational
For the square lattice, the situation is found to be muchmplementation of the method enable us to obtain useful re-
clearer. The signs of thE¥,} coefficients are found to be sults for the 2D model as well. We find that the 2D case is in
positive at the Heisenberg point at all orders of LSWB many ways simpler than the 1D case, with more clearly de-
approximation and also from the SUB2 approximation. Afined critical points and a nonzero sublattice magnetization.
clear transition from all of the coefficients being positive to  We have also investigated the relation between the CCM
one of them becoming negative is seen, and we believe thand the Marshall-Peierls sign rule. In 1D we find the CCM

0.7436 0.7163 0.6720 0.6758

0.4850 0.6155 0.5157 0.5248

this clearly indicates the onset of the breakdown of the
Marshall-Peierls sign rule. The points at which the LSB

IV. CONCLUSIONS
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results are consistent with the exact results in the regiotion operator for the LSUB4 approximation in 1D is given by
where these apply. In 2D we are able to obtain results which
are better than the finite-size extrapolations and we can pre-
dict the point at which the sign rule fails. Our results indicate S= b s'si+bsD s st 0. s7s S8,
that this occurs at a different point than the phase transition ' ' ' (A1)
from the simple antiferromagnet to the more complicated

frustrated phase. We believe that the use of the exaawhere the index runs over all points on the linear chain. To
Marshall-Peierls sign rules, extended by the CCM methodbtain the{¥,} coefficients we now must choose ti@;
into regions where it is not exact, can shed new light on thesonfigurations in Eq(13): for the nearest-neighbor two-body
behavior of this type of quantum spin system. Furthermore, itoefficient, which we shall denote a¥,, we use C;
may provide information about the nodal surface that can b&s 5.1, for the third-nearest-neighbor two-body coeffi-
used for accurate QMC calculations in a much wider rang%Ient which we shall denote ak,, we useC; =s.s; 3,

N N

of quantum spin systems than previously. and for the four-contiguous spin configuration coefficient,
which we shall denoteV;, we useCj =s; S;,1Sj,,Sj+3-
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The values of thel, coefficients are independent pfdue to

the translational symmetry of the lattice, and so the indisx

chosen arbitrarily from any of itl possible values in order
We now present analytical expressions for {ig} coef-  to obtain Eqs(A2)—(A4). Higher-order LSUBn approxima-

ficients in terms of the ket-state correlation coefficient§in tions can be handled analogously by making use of

for the LSUB4 approximation in 1D. The ket-state correla-computer-algebraic techniques.

APPENDIX: ANALYTIC EVALUATION
OF THE W, COEFFICIENTS

1H. A. Bethe, Z. Phys71, 205 (1931); L. Hulthen, Ark. Mat., (World Scientific, Singapore, 1984p. 46.
Astron. Fys.26, No. 11(1938. 15R. F. Bishop and H. Kmmel, Phys. Todayl0 (3), 52 (1987.
2B. Bernu, C. Lhuillier, and L. Pierre, Phys. Rev. L, 2590 183. Arponen, R. F. Bishop, and E. Pajanne, Phys. Re36/42519
(1992; B. Bernu, P. Lecheminant, C. Lhuillier, and L. Pierre, 1 (1987); 36, 2539(1987).

, . .
Phys. Rev. BS0, 10 048(1994; P. Lecheminant, B. Bernu, C. g~ © S_'SL‘OF" _Tg'?cl’(][- Cr}gg- A0 95 (1999 Homor of 1. Dirk
Lhuillier, and L. Pierrejbid. 52, 9162(1995. - F. Bishop, InDirkfest 92 = A Symposium in Honor of J. Dir

33. Carlson, Phys. Rev. B0, 846 (1989: N. Trivedi and D. M. :\’X:Lenc"aai dsgt'ﬁthsfﬁmﬁdéffiin%cws'inwa i‘:gk'lgg'ag"'
Ceperley,ibid. 41, 4552 (1990). 9 -0 » Singapore, :

21.
4 .
SK' 3. Ru?]gﬁ, Phys. Rev. B5, 12 292(1992; 45, 7229(1992. 19R. F. Bishop, inMany-Body Physigsedited by C. Fiolhais, M.
W. Marshall, Proc. R. Soc. London, Ser.282, 48 (1955. Fiolhais, C. Sousa, and J. N. Urbaf@/orld Scientific, Sin-

5D. M. Ceperley and B. J. Alder, Phys. Rev. Let§, 566(1980; gapore, 1994 p. 3.

Science23], 555(1986; H. J. M. van Bemmel, D. F. B. ten 200 Roger and J. H. Hetherington, Phys. Rev4B 200 (1990.
Haaf, W. van Saarloos, J. M. J. van Leeuwen, and G. An, Physip, Roger and J. H. Hetherington, Europhys. Lét, 255(1990.

Rev. L.ett.72,_2442(1995. 22R. F. Bishop, J. B. Parkinson, and Y. Xian, Phys. Rev4®
M. Boninsegni, Phys. Rev. B2, 15 304(1995. 13 782(1991); Theor. Chim. ActaB0, 181(1991); Phys. Rev. B
8C. Zeng, D. J. J. Farnell, and R. F. Bishop, J. Stat. P89s327 44, 9425 (199)); in Recent Progress in Many-Body Theories

(1998. edited by T. L. Ainsworth, C. E. Campbell, B. E. Clements, and
9F. Coester, Nucl. Phyd, 421(1958; F. Coester and H. Kkumel, E. Krotscheck(Plenum, New York, 1992 Vol. 3, p. 117; J.

ibid. 17, 477 (1960. Phys.: Condens. Mattel, 5783(1992.

103, azek, J. Chem. Physl5, 4256(1966); Adv. Chem. Phys14,  2F. E. Harris, Phys. Rev. B7, 7903(1993.

35(1969. 24E_Cornu, Th. Jolicoeur, and J. C. Le Guillou, Phys. Revi®
114, Kimmel, K. H. Lthrmann, and J. G. Zabolitzky, Phys. Rep.,  9548(1994.

Phys. Lett.36C, 1 (1978. 25R. F. Bishop, R. G. Hale, and Y. Xian, Phys. Rev. L&8, 3157
12R. F. Bishop and K. H. Larmann, Phys. Rev. B7, 3757(1978); (1994; Int. J. Quantum Chenb7, 919(1996.

26, 5523(1982. 26C. Zeng, |. Staples, and R. F. Bishop, Phys. Rev53 9168
133, s, Arponen, Ann. PhygN.Y.) 151, 311(1983. (1996.

1“4, G. Kummel, in Nucleon-Nucleon Interaction and Nuclear 2’R. F. Bishop, D. J. J. Farnell, and J. B. Parkinson, J. Phys.: Con-
Many-body Problemsedited by S. S. Wu and T. T. S. Kuo dens. Mattei8, 11153(1996.



6402 BISHOP, FARNELL, AND PARKINSON PRB 58

2R F. Bishop, Y. Xian, and C. Zeng, i@ondensed Matter Theo- Xiang, and C. Zeng, J. Phys.: Condens. Maite8605(1995.
ries, edited by E. V. Ludéa, P. Vashishta, and R. F. Bishop **R. R. P. Singh, Phys. Rev. B9, 9760 (1989; W. Zheng, J.

(Nova Science, Commack, New York, 199%0l. 11, p. 91. Oitmaa, and C. J. Hameihid. 44, 11 869(199J).
2%R. F. Bishop, J. B. Parkinson, and Y. Xian, Phys. Reu@880  °°C. K. Majumdar and D. K. Ghosh, J. Math. Phyk), 1388
(1992. (1969; 10, 1399(1969.
30R. F. Bishop, J. B. Parkinson, and Y. Xian, J. Phys.: Condens®®Chen Zheng and J. B. Parkinson, Phys. Re61B11 609(1995.
Matter 5, 9169 (1993. 873. H. Xu and C. S. Ting, Phys. Rev. &, 6861(1990; A. V.
31D, J. J. Farnell and J. B. Parkinson, J. Phys.: Condens. Matter ~ Chubukov and Th. Jolicoeuibid. 44, 12 050(1991).
5521(1994). 383, Richter, N. B. lvanov, and K. Retzlaff, Europhys. L&, 545
32y, Xian, J. Phys.: Condens. Mattér 5965(1994). (1994); A. Voigt, J. Richter, and N. B. Ivanov, Physica 245,

33R. Bursill, G. A. Gehring, D. J. J. Farnell, J. B. Parkinson, T.  269(1997.



