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Phase transitions in the spin-halfJ1-J2 model
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The coupled cluster method~CCM! is a well-known method of quantum many-body theory, and in this
article we present an application of the CCM to the spin-halfJ1-J2 quantum spin model with nearest- and
next-nearest-neighbor interactions on the linear chain and the square lattice. We present results for ground-state
expectation values of such quantities as the energy and the sublattice magnetization. The presence of critical
points in the solution of the CCM equations, which are associated with phase transitions in the real system, is
investigated. Completely distinct from the investigation of the critical points, we also make a link between the
expansion coefficients of the ground-state wave function in terms of an Ising basis and the CCM ket-state
correlation coefficients. We are thus able to present evidence of the breakdown, at a given value ofJ2 /J1, of
the Marshall-Peierls sign rule which is known to be satisfied at the pure Heisenberg point (J250) on any
bipartite lattice. For the square lattice, our best estimates of the points at which the sign rule breaks down and
at which the phase transition from the antiferromagnetic phase to the frustrated phase occurs are, respectively,
given byJ2 /J1 '0.26 andJ2 /J1 '0.61. @S0163-1829~98!05333-8#
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I. INTRODUCTION

Antiferromagnetic materials have conveniently been m
eled, since the early work of Heitler and London, as a latt
of magnetic atoms upon which the active electrons are lo
ized. Furthermore, the exchange interactions between
electrons are conventionally described solely in terms of
spin degrees of freedom of the electrons. An archety
model of this class remains the Heisenberg model in wh
only nearest-neighbor exchange interactions are includ
and these are all taken to be equal. Although the Heisen
model on the one-dimensional~1D! chain has been exactl
solved many years ago by Bethe,1 it is still the case that
relatively few other exact solutions have been found in
intervening 65 years or so to comparable models in hig
dimensions or to models involving more complicated int
actions, especially those containing an element of frustrat

On the other hand, various approximate numerical te
niques have by now been applied to a large number of s
magnetic lattice Hamiltonians. For example, many var
tional calculations have been undertaken, employing a w
variety of trial wave functions. Although these often giv
accurate upper bounds for the ground-state energy, for
ample, one often finds that the differences between the
mated energies for trial states of widely differing kinds a
very small. Hence, predictions based on variational calc
tions for properties other than the energy, or to such qu
tions as whether the exact ground state is ordered or d
dered, are notoriously unreliable.

As a common alternative one may perform exact dia
PRB 580163-1829/98/58~10!/6394~9!/$15.00
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nalizations on small finite clusters of spins drawn from t
infinite lattice under consideration. However, even w
modern computers, one considers clusters ofN spins with
N<36. Extrapolation to the infinite lattice,N→`, then
needs to be performed. While exact results from finite-s
scaling theory are often of great help in this regard, the
trapolation does need to be handled with great care. Th
particularly true when using the results from finite clusters
make quantitative predictions for such quantities as the o
parameter. Many wrong claims have been made in the
from an improper treatment of the very subtle phenome
which need to be taken into account in the extrapolations
has been stressed and discussed with great care by Lhu
and her co-workers.2 Furthermore, one expects that su
finite-cluster calculations will become less accurate
closer one approaches a quantum phase transition betw
states of different quantum order, marked by a critical va
of some coupling parameter, at which a correlation len
characterizing the order typically diverges.

Results for much larger clusters are typically obtained
stochastic simulation of the many-body Schro¨dinger equa-
tion using various quantum Monte Carlo~QMC! algorithms.
Where the basic spin-lattice Hamiltonian can be mapp
onto an equivalent bosonic problem, as in the case of
Heisenberg model on a bipartite lattice, such QMC te
niques can readily be applied to clusters containing sev
hundred or more spins, and very accurate results ther
obtained. In these cases, such as the Heisenberg model o
two-dimensional~2D! square lattice,3,4 the QMC results can
usually be considered as ‘‘exact,’’ with the resulting erro
6394 © 1998 The American Physical Society
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arising only, or largely, from statistical errors which are op
to systematic reduction within the limits of the availab
computing power.

What ultimately underpins these bosonic mappings,
what therefore makes such QMC simulations so readily
tainable, is the knowledge that in some appropriate repre
tation the multispin cluster coefficients describing theN-
body wave function are all positive-definite. For example,
the case of the Heisenberg model on a bipartite lattice,
information is provided by the well-known Marshall-Peier
sign rule theorem.5

Conversely, where such prior knowledge of the no
structure of a many-body wave function is not exac
known, QMC calculations are beset by the notorio
‘‘minus-sign problem,’’ and are usually then much less re
able or much more difficult to implement with known alg
rithms. A typical way that such complications arise in sp
lattice problems is from the introduction of frustration. Th
can arise either from the geometry of the lattice under c
sideration or from the introduction into the Hamiltonian
competing exchange interactions. An example of the form
is the basic Heisenberg model on a 2D triangular latti
while an example of the latter arises from the introduction
a bipartite lattice of ~antiferromagnetic! next-nearest-
neighbor interactions in addition to the~antiferromagnetic!
nearest-neighbor interactions of the pure Heisenberg mo
resulting in the so-calledJ1-J2 model studied here.

Relatively few QMC calculations on such frustrated sp
lattice systems have been performed. As a starting point
typically require a good trial wave function, in terms
which the true wave function is well approximated, esp
cially for its nodal surface structure. In such calculatio
there can still be a considerable systematic uncertainty,
yond the unavoidable statistical errors, which arises fr
whether the simulations have eliminated the bias inheren
the starting function. A typical recent calculation of this ty
was the fixed-node Green function Monte Carlo meth6

simulation of the spin-half 2D triangular-lattice Heisenbe
antiferromagnet by Boninsegni.7 While undoubtedly repre-
senting a very ambitious calculation of its kind, the resulti
prediction for the sublattice magnetization, which is the si
plest measure of the antiferromagnetic Ne´el long-range order
in this system, seems to be clearly too high by compari
with the results from the best of the alternative techniqu
including exact diagonalizations of small clusters2 and the
coupled cluster method.8 Furthermore, even the resultin
QMC estimate for the ground-state energy of the triangu
Heisenberg antiferromagnet gives an upper bound whic
relatively easily bettered by the alternative techniques.

For such frustrated and similarly ‘‘difficult’’ systems, pre
dictions based on even very large-scale QMC simulati
share, at least to some extent, the uncertainties discu
above for variational calculations. In order to overcome th
uncertainties, therefore, there is a real need to apply alte
tive semianalytical approaches, especially those that have
demonstrated power to provide accurate predictions for
quantum order and for the positions and critical properties
any quantum phase transitions. One such method, namel
coupled cluster method~CCM!,9–19 stands to the fore in this
respect. It has long been acknowledged as providing on
the most powerful, most widely applicable, and numerica
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most accurate at attainable levels of computational imp
mentation, of all availableab initio formulations of micro-
scopic quantum many-body theory. Furthermore, in rec
years it has been widely applied to many spin-latt
Hamiltonians.8,20–33 For example, very successful applic
tions have by now been made to the solid phases of3He;20

the isotropic Heisenberg and anisotropicXXZ models in 1D
and on the 2D square lattice, both for spin-half systems20–28

and higher-spin systems29 and the spin-one Heisenberg
biquadratic model on the 1D chain,30 as well as to such frus
trated spin-half models as theJ1-J2 model in 1D~and 2D!
~Refs. 31–33! and the 2D triangular-lattice anisotrop
Heisenberg antiferromagnet.8,26,28

In the present paper we apply the CCM specifically
investigate phase transitions in the spin-halfJ1-J2 model on
~the 1D chain and, especially, on! the 2D square lattice. Ou
main aim is to use this model as an archetypal example
which no exact information is known for the nodal structu
of the exact ground-state wave function, apart from
Marshall-Peierls sign-rule results in the pure Heisenb
limit. There is particular interest in studying whether the si
rule is preserved when weak next-nearest-neighbor excha
interactions are included and, if so, whether there is a crit
coupling beyond which the sign rule breaks down. We b
lieve that the CCM is an excellentprima faciecandidate for
such studies, since in virtually all previous applications
models for which the Marshall-Peierls sign rule holds, t
theorem is exactly obeyed at virtually all levels of impleme
tation in different CCM approximation schemes.

Finally, we are also interested in examining the pha
transition points, as the strength of the next-nearest-neigh
interactions is varied, at which the Ne´el antiferromagnetic
long-range order present in the 2D square-lattice case a
Heisenberg point vanishes and in studying whether ther
any relationship between the phase boundaries and the p
at which the Marshall-Peierls sign rule breaks down. W
note that any reliable information gained on the pattern
the signs of the multispin cluster coefficients in the deco
position of the ground-state wave function should be v
useful for two distinct reasons, namely,~i! for use in devis-
ing improved trial starting wave functions for future QM
calculations and~ii ! for spotting possible patterns for th
signs of the cluster coefficients in different phases or diff
ent regimes of coupling constants. The latter could be us
inter alia, to suggest possible generalizations of t
Marshall-Peierls sign rule, and thereby to motivate the sea
for the proofs of suitably generalized theorems. Any su
generalizations would clearly have immediate impact fo
next generation of QMC calculations.

The rest of this paper is organized as follows. In Sec
we discuss the Marshall-Peierls sign rule and the CCM f
malism. The sign rule is first outlined for the Heisenbe
model on bipartite lattices, before we describe theJ1-J2
model and previous results. The CCM formalism is then
viewed in very general terms before describing one mean
applying it to theJ1-J2 model. Results for the ground-sta
energy and staggered magnetization are discussed in Se
together with results on the breakdown of the Marsha
Peierls sign rule for the model. Finally, we present our co
clusions in Sec. IV.
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II. THE MARSHALL-PEIERLS SIGN RULE
AND THE CCM FORMALISM

A. The sign rule for the spin-half Heisenberg antiferromagnet

In this section we consider the spin-half Heisenberg a
ferromagnet~HAF! on a bipartite lattice, where the Hami
tonian is given by

H5(
^ i , j &

N

si .sj , ~1!

and the indexi runs over all lattice points andj runs over the
nearest neighbors toi . The angular brackets indicate that w
count each nearest-neighbor bond only once. We note
for a bipartite lattice we can divide the lattice into two su
lattices such that ifi is on one particular sublattice thenj
must be on the other and vice versa.

For the one-dimensional linear chain, there is an ex
solution to this model via the Bethe ansatz technique.1 For
the two-dimensional square-lattice HAF, there is no ex
solution to this problem, though many approximate calcu
tions, including those using various quantum Monte Carl3,4

methods and exact series expansion34 techniques, have bee
performed.

Although no exact solution is known for the 2D ca
stated here we note that there is an exact sign rule first
rived by Marshall5 ~and which we shall refer to here as th
Marshall-Peierls sign rule!. The rule for the square lattic
HAF is in fact an illustration of the more general Marsha
Peierls sign rule for the HAF on any bipartite lattice. Th
sign rule provides exact information regarding the signs
the expansion coefficients of the ground-state wave func
in an Ising basis, which is denoted$uI &%. The exact ground-
state wave function for anN-body spin system may be writ
ten as

uC&5(
I

C I uI &, ~2!

where $C I% are the expansion coefficients. We now divi
the bipartite lattice into its two sublattices, denotedA andB,
such that each nearest-neighbor site to anA sublattice site is
on theB sublattice and vice versa. If the number of up sp
on theA sublattice is calledpI then it is possible to show5

that the coefficients$C I% satisfy

C I5~21!pIaI , ~3!

where the new coefficientsaI are all positive. This exac
information regarding the signs of the coefficients may
used to define the nodal surface of the wave function in
basis, and hence is of use in QMC calculations.3,4

B. The J1-J2 model

We shall now discuss the spin-halfJ1-J2 model on the 1D
linear chain and the 2D square lattice. The Hamiltonian
given by

H5J1(
^ i , j &

N

si•sj1J2 (
^^ i ,k&&

N

si•sk , ~4!
i-

at

ct

t
-
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f
n

s
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s

where the sum on̂i , j & runs over all nearest-neighbor pai
of sites, counting each pair~or bond! once and once only and
the sum on^^ i ,k&& similarly runs over all next-nearest
neighbor pairs of sites, again counting each pair~or bond!
once and once only. We note that in order to consider a w
range of the coupling parametersJ1 and J2, it is useful to
introduce the variablev such thatJ1[cosv andJ2[sinv.

In 1D, no exact solution has been found for general val
of the coupling constantsJ1 and J2, though there are som
exact solutions including the Heisenberg point (J250) and a
point at J2 /J150.5 at which the ground state is full
dimerized.35 Previous coupled cluster method~Refs. 31–33!
and density matrix renormalization group~DMRG! ~Ref. 9!
calculations have very successfully been carried out for
model. The phase diagram is complicated, with three dist
phases. These phases may be characterized for our purp
as ferromagnetic, antiferromagnetic, and frustrated. The
romagnetic phase is a highly degenerate phase in which
ground-state energy is equal to that of the classical fu
aligned state. There is a first-order phase transition atJ1
50 with negativeJ2 to an antiferromagnetic phase. The a
tiferromagnetic phase classically has its energy minimiz
by the Néel state, and the quantum-mechanical phase tra
tion point to the frustrated phase is at~or is very near to!
J2 /J150.5. The frustrated phase classically contains a s
‘‘spiral’’ state which has a periodicity which varies with th
ratio of the coupling constantsJ2 /J1. There is some evi-
dence that this changing periodicity withJ2 /J1 might also be
seen in the quantum-mechanical system.33,36

For the square lattice there are no exact results, tho
approximate spin-wave theory~SWT! ~Ref. 37! calculations,
exact diagonalizations of finite-sized lattices,38 and CCM
~Ref. 31! calculations have been performed. The ferroma
netic to antiferromagnetic phase transition point is, as for
1D case, atJ150 with negativeJ2, and the antiferromag-
netic to frustrated phase transition is believed to be nea
J2 /J150.5.

The Marshall-Peierls sign rule, as discussed in Sec. I
is true for the Heisenberg model on a bipartite lattice. It
simple to prove that it is also preserved for theJ1-J2 model
with negativeJ2 and positiveJ1. However, it is not in gen-
eral true for positiveJ2 and positiveJ1. In fact, the results
from 1D short-chain calculations36 suggest that the break
down occurs very near to the Heisenberg point,
J2 /J150.03260.003. By contrast, finite-size lattic
calculations38 on the square lattice indicate that the sign ru
at the Heisenberg point may well be preserved up to so
critical value ofJ2 /J1 in the 0.2<J2 /J1<0.3.

C. The CCM formalism

In this article we wish to perform CCM calculations fo
the J1-J2 model in the antiferromagnetic regime. We no
present a brief survey of the CCM formalism and note tha
much fuller account of the formalism as applied to quant
spin-lattice problems has been given in Ref. 8. A more
tensive overview of the method and its applications has a
been given in Ref. 17. The starting point for any CCM c
culation is the choice of a normalized model or referen
state, denoteduF&. We define a complete set of mutual
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commuting, multispin creation operators$CI
1% with respect

to uF& such that any Ising stateuI & may be obtained as

uI &[CI
1uF&, ~5!

for an N-body spin system. The ground-state wave funct
has previously been written in Eq.~2! as a linear combina
tion of the states$uI &%, and we now introduce the usual CCM
parametrizations of the ket and bra ground states which
given by

uC&5eSuF&, S5(
IÞ0
S ICI

1 , ~6!

^C̃u5^FuS̃e2S, S̃511(
IÞ0
S̃ICI

2 . ~7!

The ket-state correlation operator in Eq.~6! is, as we can see
formed from a linear combination of the creation operat
$CI

1% multiplied with the relevant ket-state correlation coe
ficients$SI%. The Hermitian adjoints of the multispin opera
tors $CI

1% are the multispin destruction operators$CI
2%, and

the bra state in Eq.~7! is formed by the linear combination o
these destruction operators multiplied with the correspond
bra-state correlation coefficients$S̃I%. The bra and ket states
defined by Eqs.~6! and ~7!, are not manifestly Hermitian
adjoints of each other and so the variational property of
upper bound on the ground-state energy is not preser
However, we note that the Hellmann-Feynman theorem
preserved. We also note that since^FuCI

1505CI
2uF& by

definition, we have the explicit normalization relation

^FuC&5^C̃uC&5^FuF&51.
The ground-state expectation value of the energy m

now simply be written using the Schro¨dinger equation
HuC&5EguC&, as

Eg5^Fue2SHeSuF&. ~8!

Equation~8! shows an example of the well-known similari
transform which plays a crucial role in the CCM formalism
We further note that the similarity transform of an
quantum-mechanical operator may be written in terms o
series of nested commutators, so that for the HamiltoniaH
we have

e2SHeS5H1@H,S#1
1

2!
@@H,S#,S#1••• . ~9!

The infinite series of Eq.~9! terminates at finite order if the
HamiltonianH contains sums of products of only finite num
bers of single-body operators, as is almost always the c
and is, indeed, true for the model considered here. We
note that each time we perform a commutation operation
Eq. ~9! we produce a link or contraction, so that every sing
operator in eachS within the nested commutator expansio
is directly linked to an operator in the original Hamiltonia
In this way the Goldstone linked cluster theorem is satisfi
and the expectation value of the energy, as well as all o
expectation values, are size extensive~i.e., they are well de-
fined in the asymptotic thermodynamic limitN→` at all
levels of approximation for the operatorS). Indeed, the
CCM works from the outset in the thermodynamic limit.
n
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We now wish to find values for the ket-state and bra-st
correlation coefficients. We do this by defining the expec

tion valueH̄[^C̃uHuC& and by requiring that this quantity
is a minimum with respect to the ket-state and bra-state
relation coefficients. Hence, we have

dH̄/dS̃I50⇒^FuCI
2e2SHeSuF&50, ;IÞ0, ~10!

dH̄/dSI50⇒^FuS̃e2S@H,CI
1#eSuF&50, ;IÞ0.

~11!

This formalism is exact in the limit that we include a

possible multispin cluster correlations withinS and S̃,
though in any real application this is usually impossible. W
therefore need to consider approximation schemes whe

the expansions ofS and S̃ in Eqs. ~6! and ~7! may be trun-
cated to some finite or infinite subset of the full set of ind
pendent~fundamental! multispin configurations. The thre
most commonly employed schemes have been~1! the
SUBn scheme, in which all correlations involving onlyn or
fewer spins are retained, but no further restriction is ma
concerning their spatial separation on the lattice,~2! the
SUBn-m subapproximation, in which all SUBn correlations
spanning a range of no more thanm adjacent lattice sites ar
retained, and~3! the localized LSUBm scheme, which re-
tains all multi-spin correlations over distinct locales on t
lattice defined bym or fewer contiguous sites. In the nex
subsection we consider the application of the CCM to theJ1-
J2 model in the antiferromagnetic regime.

D. The CCM applied to the J1-J2 model

As stated in the previous section, the starting point for a
CCM calculation is the choice of the model~or reference!
state. Here, we choose the classical Ne´el state to be our
model state, in accordance with previous CC
calculations,8,31 in order to study the antiferromagnetic re
gime of theJ1-J2 model. We visualize the Ne´el state by
again dividing the lattice into two sublatticesA and B on
which each of the nearest-neighbors sites to a given sub
tice site are on the other sublattice. We populate theA sub-
lattice with ‘‘up’’ spins ~i.e., eigenvectors of thesz operator
with eigenvalue1 1

2 ) and theB sublattice with ‘‘down’’
spins~i.e., eigenvectors of thesz operator with eigenvalue
2 1

2 ).
In order to perform a CCM calculation we would like t

treat each site on an equal footing. We do this by perform
a rotation8,31,33 of the local axes of the spins on theA sub-
lattice ~up spins! by 180° about they axis such that all spins
on each sublattice appear mathematically to point dow
wards ~i.e., in these new local axes!. Since this rotational
transformation is a canonical one, it has no effect on
commutation relations. It does however, have a numbe
consequences. First, the Hamiltonian is rewritten in local
ordinates as
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H52J1(
^ i , j &

Fsi
zsj

z1
1

2
si

1sj
11

1

2
si

2sj
2G

1J2 (
^^ i ,k&&

Fsi
zsk

z1
1

2
si

2sk
11

1

2
si

1sk
2G .

~12!

We also note that the set of creation operators$CI
1% may

now be formed purely from products of spin raising ope
tors with respect to the rotated, ‘‘ferromagnetic’’ mod
state. We write this expression for anl -spin cluster asCI

1

[si 1
1si 2

1•••si l
1 . Conversely, the destruction operators are n

formed purely from the spin lowering operators in an ana
gous manner, whereCI

2[si 1
2si 2

2•••si l
2 .

The Marshall-Peierls sign rule for the Heisenberg mo
is also modified. We obtain a new and exact rule for
Hamiltonian of Eq.~12! in an expansion of the ground-sta
wave function in terms of an Ising basis$uI &% in the local,
rotated spin coordinates. The corresponding expansion c
ficients $C I% must now be positive for all of the states l
beled byI . ~A proof of this statement is not given here, but
is made in exactly the same manner as that of Marsha5!
The $C I% coefficients are henceforth explicitly stated in r
lation to the Ising basis in the local, rotated spin coordina

We now wish to provide a link between the$C I% coeffi-
cients, in terms of the local axes, and the CCM ground-s
parametrization of the ket state of Eq.~6!. This is done by
applying the destruction operatorCI

2 , for a particular cluster
defined by the indexI , to the expressions for the ket-sta
wave function of Eqs.~2! and~6!. Note we choose only one
ordering out of the indices$ i 1 ,i 2 , . . . ,i l% of the total of
N( l !)n possible equivalent orderings forCI

2 on the lattice,
wheren is a symmetry factor dependent on the lattice. W
therefore write the$C I% coefficients as

C I5^FuCI
2eSuF&[^Fusi 1

2si 2
2•••si l

2eSuF&. ~13!

Note that Eq.~13! contains the implicit assumption that th
spin raising operators inCI

1 of Eq. ~5!, which are used to
defineuI & with respect touF&, have only one ordering with
respect to permutations of the indices$ i 1 ,i 2 , . . . ,i l%.

Again, it should be noted that in practice one restricts
choice of the clusters contained withinS to some well-
defined approximation scheme. To keep the calculation
self-consistent as possible, we restrict the choice of the$C I%
coefficients to be for only those Ising states defined in
~5! which correspond to the clusters used inS.

In the next section we describe our results for the grou
state expectation values for high-order, approximate C
calculations which are determined computationally.8 We also
detect critical points in the CCM equations which are tak
to be signatures of phases transitions in the real system. O
the ket-state correlation coefficients are found it is then p
sible to obtain approximate results for the$C I% coefficients,
again via a computational approach, and we discuss C
results concerning the breakdown of the Marshall-Pei
sign rule as a function ofJ2 /J1.
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III. RESULTS

A. Ground-state expectation values

The ground-state energy of Eq.~8! is approximately ob-
tained once the CCM equations are first derived and t
solved for a particular approximation scheme and appro
mation level. Descriptions of the method are given in Re
31–33. Details of how one may obtain a computational
lution for high-order LSUBm approximations is given in
Ref. 8.~It should be noted that the calculation of Ref. 31 w
mostly concerned with SUB2 calculations for the spin-h
J1-J2 model. However, a calculation for the square latti
system in which only nearest-neighbor correlations and fo
body correlations between four spins on the unit square w
retained was also performed. This calculation was referre
as an ‘‘LSUB4’’ calculation within the text in this referenc
to denote the addition of the extra, single type of four-bo
correlation. However, this ‘‘LSUB4’’ calculation was not th
same as the LSUB4 calculation which we perform he
which now containsall two-body and four-body correlation
in a locale defined bym54.! We simply quote the results
here for this model using the Ne´el model state and the inter
ested reader is referred to these articles.

The LSUBm results for the ground-state energy of the 1
J1-J2 model converge very well over the range2p/2<v
<tan21(0.5). We note that the LSUB10 results agree
within 1% of those obtained by extrapolating the resu
from exact diagonalizations for short chains31 over this
range, though we do not provide a plot of this here. In 2
we see in Fig. 1 that our results are again extremely w
converged over the range2p/2<v<tan21(0.5). In Table I
results are given for the ground-state energy of the squ
lattice system as a function ofJ2 /J1 [tanv for 20.5
< J2 /J1 <0.5 for the LSUB6 and LSUB8 levels of approx
mation.

We note that in 2D the CCM results for the ground-sta
energy display characteristic terminating points at cert
critical values ofv. At these points the second derivative
the ground-state energy with respect tov may also be deter-
mined, and we note that at thesecritical values ofv this
quantity diverges. This type of behavior has been obser
previously8 and is associated with a phase transition in

FIG. 1. Results for the CCM ground-state energy of the sp
half J1-J2 model on the 2D square lattice, using the LSUBm ap-
proximation based on the Ne´el model state, withm52,4,6,8.
LSUBm critical pointsvF andvA are indicated by the boxes. Not
that J1[cosv andJ2[sin v.
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real system. The critical value in 2D near to the ferroma
netic phase transition, denotedvF , is given in Table II. We
see that the LSUBm results are clearly converging to th
exact value ofvF52p/2. It is known31 that the SUB2 ap-
proximation predicts this point exactly in both 1D and 2D

As is seen from the entries in Table II, the antiferroma
netic point, denotedvA , is detected in 2D with the LSUB6
LSUB8, and SUB2 approximations. It is not observed with
the LSUB4 approximation. We can see that the LSUBm
critical value ofv decreases with increasing truncation ind
m, and a simple extrapolation8 in the limit m→` gives a
value for the phase transition point ofJ2 /J1 '0.61.

We now introduce the sublattice magnetization, wh
characterizes the degree of quantum order inherent in
CCM wave functions. By inserting the CCM parametriz
tions of Eqs.~6! and ~7! we find

M[2
2

N (
k51

N

^C̃usk
zuC&52

2

N (
k51

N

^FuS̃e2Ssk
zeSuF&,

~14!

wheresk
z is in the local coordinates of each sublattice. Eva

ation of the sublattice magnetization requires both the k

TABLE I. Results for the CCM ground-state energy of the sp
half J1-J2 model on the 2D square lattice as a function
J2 /J15tan v, using the LSUBm approximation based on the Ne´el
model state, withm56,8.

J2 /J15tan(v) Eg /N (m56) Eg /N (m58)

20.50 20.88237 20.88353
20.40 20.83785 20.83902
20.30 20.79393 20.79510
20.20 20.75071 20.75188
20.10 20.70833 20.70951
0.00 20.66700 20.66817
0.10 20.62699 20.62816
0.20 20.58868 20.58988
0.30 20.55271 20.55397
0.40 20.52012 20.52164
0.50 20.49311 20.49551

TABLE II. Results for the CCM critical points of the spin-ha
J1-J2 model on the 2D square lattice. The ferromagnetic and a
ferromagnetic critical points are denotedvF andvA , respectively.
The point (v.0) at which the CCM predicts that the Marsha
Peierls sign rule breaks down for the square lattice is denotedvM .
Corresponding results for (J2 /J1)uA and (J2 /J1)uM are also shown,
whereJ2 /J15tan v.

vF vA (J2 /J1)uA vM (J2 /J1)uM

SUB2 2p/2 0.6416 0.7470 0.255 0.2607
LSUB4 21.702 – – 0.331 0.344
LSUB6 21.628 0.583 0.660 0.290 0.298
LSUB8 21.603 0.566 0.636 0.275 0.282
LSUB` 21.572 0.544 0.605 0.255 0.261
-

-

he
-

-
t-

and bra-state cluster correlation coefficients. The actual p
cedure to do this is straightforward and is also described
more detail elsewhere.8

The sublattice magnetization in 1D is nonzero in t
range2p/2<v<tan21(0.5), though we note~see Ref. 31!
that it is greater than zero but monotonically decreases w
increasing LSUBm approximation level for allv in this
range. The sublattice magnetization is zero in the true s
tion of this model in 1D, and although the CCM LSUBm
@and SUB2~Ref. 31!# results are nonzero we expect that wi
increasing level of LSUBm approximation this would be bet
ter reflected in the CCM solution.

Figure 2 illustrates that the situation is much clearer
2D. We can see that the sublattice magnetization in Fig.
converging to a nonzero value over essentially all of
range2p/2<v<tan21(0.5). We note that there are dive
gences in the sublattice magnetization which are observe
precisely the same points as the critical pointsvF andvA of
the energy in 2D. This reinforces our conjecture that th
critical points are reflections of phase transitions in the r
system.

B. The breakdown of the Marshall-Peierls sign rule

We now consider the Marshall-Peierls sign rule for t
spin-half J1-J2 model on the linear chain and the squa
lattice. We need to obtain the$C I% coefficients, either ana
lytically or computationally, in terms of the ket-state coef
cients. We then solve the SUB2 or LSUBm equations in
order to obtain the ket-state correlation coefficients a
hence to obtain approximate values for the$C I% coefficients.
Note that these calculations are approximate in the sense
we only retain certain correlations inS with a well-defined
approximation scheme, though we arealready working in
the infinite lattice orN→` limit.

We note that at each order of LSUBm approximation it is
possible to perform this process of matching the terms ineS

in Eq. ~13! to the configurationCI
2 analytically. In the Ap-

pendix we present the exact form of the$C I% coefficients in
terms of the ket-state coefficients within the LSUB4 appro
mation scheme for the 1D linear chain. Furthermore, we
that each of the$C I% coefficients corresponding to two-bod

-

i-

FIG. 2. Results for the CCM sublattice magnetization of t
spin-halfJ1-J2 model on the 2D square lattice, using the LSUBm
approximation based on the Ne´el model state, withm52,4,6,8.
Note thatJ1[cosv andJ2[sin v.
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correlations with respect touF& via Eq. ~5!, is exactly equal
to the corresponding CCM two-body ket-state correlation
erator $SI% for any approximation scheme used inS. This
may be proven by noting that there are no one-body s
correlations allowed inS ~in order to preserve the conserve
quantity sT

z5( i
Nsi

z) and then by considering the series e
pansion of the exponential in Eq.~13!.

To obtain higher-order$C I% coefficients using Eq.~13!
we may conveniently use a computational approach. T
amounts to partitioning the configuration inCI

2

[si 1
2si 2

2•••si l
2 into the multiples ofS in the series expansio

of eS of Eq. ~13!. It is then possible to identify by simple
computer algebra the configurations of the partitioned pie
~each referring to anS in the series expansion of the exp
nential!, and find a numerical value for the$C I% coefficients
once the CCM ket-state equations have been solved at
cific values ofv.

In both 1D and 2D, we find that~at all levels of approxi-
mation! the Marshall-Peierls sign rule is preserved forv5
2p/2u1 ~i.e., in the antiferromagnetic regime!. That is, all of
the $C I% coefficients are found to be positive. The sign
broken forv52p/2u2 ~i.e., in the ferromagnetic regime! at
which point at least one of the coefficients becomes nega
Note that the crossover occurs exactly at the phase boun
v52p/2, and that this is one case where the breakdown
the Marshall-Peierls sign rule occurs at exactly the sa
place as the phase boundary. We note that there is a
order phase transition at this point.

In 1D, we find that all the$C I% coefficients are positive a
the Heisenberg point for the SUB2 scheme and for LSUBm
schemes withm<8. Above this LSUBm level of approxi-
mation~i.e., form.8) a few of the$C I% coefficients~which
are very small in magnitude! become negative. However, fo
example, at the LSUB12 level we find that these same c
ficients, which are negative at the LSUB10 level, again
come positive, though we find that other new coefficie
~which are similarly small in magnitude! then become nega
tive. These would in turn presumably become positive a
still higher level of approximation. Thus, the CCM is com
pletely consistent with the sign rule for the Heisenbe
model in 1D. This is encouraging as this model is quite ch
lenging for the CCM with this model state, as our results
the sublattice magnetization have shown. We may also c
pare the ratios of the magnitudes of the$C I% coefficients to
those obtained via short-chain calculations, as shown
Table III. ~Note that we examine the ratios to elimina
short-chain normalization factors.! We can see that the cor
respondence between CCM and short-chain calculation
good, though it appears that the CCM results are better c
verged at the LSUB10 and LSUB12 levels of approximat
than those from the 12-spin and 16-spin chains. Short-ch
calculations36 indicate the breakdown of the Marshall-Peie
sign rule atJ2 /J150.03260.003, though our CCM result
cannot give an accurate value for this breakdown point.

For the square lattice, the situation is found to be mu
clearer. The signs of the$C I% coefficients are found to be
positive at the Heisenberg point at all orders of LSUBm
approximation and also from the SUB2 approximation.
clear transition from all of the coefficients being positive
one of them becoming negative is seen, and we believe
-
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this clearly indicates the onset of the breakdown of
Marshall-Peierls sign rule. The points at which the LSUBm
approximation predicts a breakdown, denotedvM , are
shown in Table II. We can see that a simple extrapolation
these points gives a value for the breakdown of the sign
to be atJ2 /J1'0.26 which is in good agreement with th
SUB2 result ofJ2 /J150.2607 and exact diagonalizations
finite-sized lattice calculations38 which give a corresponding
value ofJ2 /J1 in the range of 0.2–0.3. At SUB2 and LSUB
levels of approximation it is the$C I% coefficients for the
two-spin cluster with separationx̂12ŷ that becomes nega
tive first, wherex̂ and ŷ are the unit vectors along the pe
pendicular axes of the square lattice. Higher-order CC
LSUBm calculations predict, however, that the coefficien
for other higher-order, highly disconnected configuratio
first become negative at a slightly lower value ofv than the
coefficient for this two-body configuration. This therefo
indicates that higher-order multispin configurations might
as important as this two-body configuration in the brea
down of the sign rule for this model.

We note that the square-lattice results predict that
breakdown of the sign rule (vM) occurs at a smaller value o
v, at a particular approximation level, than the antiferroma
netic critical point (vA) predicted by the CCM. In othe
words, the CCM results predict that there is a region of
antiferromagnetic regime in which the Marshall-Peierls s
rule is not being obeyed.

IV. CONCLUSIONS

The CCM applied to the 1D spin-halfJ1-J2 model gives
encouraging results for the ground-state energy, the crit
points, and the sublattice magnetization. In this paper
have shown how the recent advances in the computati
implementation of the method enable us to obtain useful
sults for the 2D model as well. We find that the 2D case is
many ways simpler than the 1D case, with more clearly
fined critical points and a nonzero sublattice magnetizati

We have also investigated the relation between the C
and the Marshall-Peierls sign rule. In 1D we find the CC

TABLE III. Results for the ratios of the magnitudes of the CC
LSUBm C I coefficients, for the spin-half, 1D Heisenberg mod
compared to ratios of the magnitudes of the equivalent Ising exp
sion coefficients determined by finite-size, exact diagonalizatio
The C1 coefficient is associated with the nearest-neighbor, tw
body correlation with respect to the model stateuF&; andC2, C3,
andC4 are, respectively, the corresponding coefficients associ
with the third-nearest-neighbor, two-body configuration, the fo
contiguous-spin configuration, and the six-contiguous-spin confi
ration.

Ratio 12 Spins 16 Spins LSUB10 LSUB12

uC3u
uC1u

0.7436 0.7163 0.6720 0.6758

uC2u
uC1u

0.1674 0.1552 0.1413 0.1381

uC4u
uC1u

0.4850 0.6155 0.5157 0.5248
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results are consistent with the exact results in the reg
where these apply. In 2D we are able to obtain results wh
are better than the finite-size extrapolations and we can
dict the point at which the sign rule fails. Our results indica
that this occurs at a different point than the phase transi
from the simple antiferromagnet to the more complica
frustrated phase. We believe that the use of the ex
Marshall-Peierls sign rules, extended by the CCM meth
into regions where it is not exact, can shed new light on
behavior of this type of quantum spin system. Furthermore
may provide information about the nodal surface that can
used for accurate QMC calculations in a much wider ran
of quantum spin systems than previously.
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APPENDIX: ANALYTIC EVALUATION
OF THE C I COEFFICIENTS

We now present analytical expressions for the$C I% coef-
ficients in terms of the ket-state correlation coefficients inS
for the LSUB4 approximation in 1D. The ket-state corre
e,
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tion operator for the LSUB4 approximation in 1D is given b

S5b1(
i

N

si
1si 11

1 1b3(
i

N

si
1si 13

1 1g4(
i

N

si
1si 11

1 si 12
1 si 13

1 ,

~A1!

where the indexi runs over all points on the linear chain. T
obtain the$C I% coefficients we now must choose theCI

2

configurations in Eq.~13!: for the nearest-neighbor two-bod
coefficient, which we shall denote asC1, we use C1

2

5sj
2sj 11

2 , for the third-nearest-neighbor two-body coef
cient, which we shall denote asC2, we useC2

25sj
2sj 13

2 ,
and for the four-contiguous spin configuration coefficie
which we shall denoteC3, we useC3

25sj
2sj 11

2 sj 12
2 sj 13

2 .
The result is therefore

C15b1 , ~A2!

C25b3 , ~A3!

C35b1
21b1b31g4 . ~A4!

The values of theC I coefficients are independent ofj , due to
the translational symmetry of the lattice, and so the indexj is
chosen arbitrarily from any of itsN possible values in orde
to obtain Eqs.~A2!–~A4!. Higher-order LSUBm approxima-
tions can be handled analogously by making use
computer-algebraic techniques.
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