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Quantum rotors in the presence of a random field
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We have studied theM -component quantum rotor Hamiltonian in the presence of a static random field
~uncorrelated and Gaussian distributed! on each site of the lattice. This model is essentially anM-component
generalization of the transverse Ising model in a random longitudinal field. We find that even the zero-
temperature transition in the model from a ferromagnetic to the paramagnetic phase, is dominated by the
random-field fixed point, which essentially determines the finite-temperature transition in the above model and
the transition in the classicalM -vector model in the presence of a random field. With the assumption that the
transition is of continuous nature, we employ a standard renormalization-group method to study the effective
classical action of the model and extract the exponents associated with the transition. We do also extend these
renormalization-group calculations to the spherical (M→`) limit. Finally, we develop a scaling argument that
describes the zero-temperature transition and clearly indicates the occurrence of the dynamical exponents in the
different scaling relations. We also qualitatively discuss the dynamic scaling scenario in the quantum model.
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I. INTRODUCTION

Quantum phase transitions have been attracting a g
deal of attention in recent years. Especially the ze
temperature transitions in the transverse Ising models1 and
its M -component generalization, the rotors,2 are being ex-
plored extensively. Studies have been carried out with
interaction between the rotors taken to be random and
elucidation of properties of quantum spin glasses.2 The
random-field systems@especially the random field Isin
model ~RFIM!#3,4 have been investigated over the last tw
decades but the nature of the transition is yet to be fu
understood. Whether the transition is first order or sec
order is still questioned4 and the possibility of an intermedi
ate glassy phase5 has also been reported.

Here, we consider theM -component quantum rotors i
the presence of a random external field. This is essentiall
M -component generalization of the tranverse Ising system
the presence of a random longitudinal field.6 The aforemen-
tioned problem (M51) was previously studied by Aharony
Gefen, and Shapir.7 A Langevin equation approach to th
problem was adopted by Boyanovski and Cardy,8 who could
as well introduce a dynamical exponentz, which was taken
to be unity by Aharonyet al.7 A recent paper by Senthil,9

discusses with some generality theM51 case of the prob-
lem and shows that the exponents associated with z
temperature transition are similar to that in classical RFI
Our calculations are completely in agreement with Ref. 9
this regard.

We here assume the transition of the model to be of c
tinuous nature. In Sec. II, we start with quantum rotor Ham
tonian in the presence of random field, and write down
zero-temperature ‘‘partition function’’~with soft-spin con-
sideration! in a general form within the static framework. T
take account for the quenched randomness, we emplo
PRB 580163-1829/98/58~10!/6378~8!/$15.00
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replica trick and the Fourier-transformed replicated Ham
tonian clearly shows that the random field couples to
static (v50) part of the order parameter. Introducing th
connected and disconnected correlator in the replica
guage, we find the replica-symmetric Gaussian propaga
and it is readily shown that the disconnected correlator d
not depend upon the frequencyv. The critical dimensionali-
ties in the quantum problem are shown to remain the sam
in the classical case. Further, we carry out a systematic
turbation renormalization treatment, namely thee expansion
around the upper critical dimension10 ~within a replica-
symmetric framework! and write down the flow equations
As shown in Ref. 8, the exponents come out to be the sa
as in the classical case. For example, for the correla
length exponentn, we find to theO(e562D)

n51/2S 11
~M12!e

2~M18! D ,

which shows the dependence of the exponents on com
nentsM and matches perfectly with the exponentn in the
classical case.10 The zero-temperature transition is found
be governed by the random-field fixed point which also d
termines the transition in the classical random-field syst
and the finite-temperature transition in the present model.
to O(e2), it has been shown using the self-energy diagra
that the dynamical exponentz ~which determines growth o
temporal correlationjt;jz near the quantum critical point!
is given by z511h, which is in agreement with Ref. 8
where supersymmetric methods were used. We will ar
that the dimensional reduction in the hyperscaling relatio11

will be by a factor of 2 but will be a combination of two
effects, a change ofd→d1z in the hyperscaling relation an
a change of the transmutation exponent fromu522 to u
52(21z), up to the first order ine expansion. It is in this
6378 © 1998 The American Physical Society
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changedu that the quantum effect shows up. Our calculati
will support the traditionally held view~coming from the
Harris criteria12! that random-field fluctuations mask th
quantum fluctuations but we will be able to point out certa
features of the various characteristic quantities—mainly
connected correlation function where the quantum fluct
tions play a role.

In Sec. III we extend our calculations to the spheric
(M→`) ~Ref. 13! limit and derive exponents associate
with the zero-temperature transition.

In Sec. IV, we present scaling relations associated w
the corresponding zero-temperature transitions using
‘‘dangerous irrelevance’’ of the quantum fluctuations. It
shown that the quantum effects manifest in the connec
correlation function which isv dependent and thus has
crossover at finite temperature and its scaling function is
ferent from the classical case. In a recent work,9 strong ar-
guments have been provided to conjecture that like the c
sical random-field Ising system, quantum random-field Is
(M51) systems also exhibit ‘‘activated dynamic
scaling.’’14 In our work, we qualitatively argue that for roto
systems withM.1, the dynamical scaling is expected to
conventional rather than ‘‘activated.’’

II. RENORMALIZATION GROUP CALCULATIONS

The Hamiltonian for the quantum rotors can be written2

H5
g

2(i
L̂ i

22(
i j

Ji j x̂i x̂ j , x̂i
251,

where x̂i is a unit length rotor sitting at the sitei with M
componentsxim , N is the number of sites,Limn (n,m
51,2 . . . ,M ) are theM (M21)/2 components of the angula
momentum generatorLi in the rotor space. We now switc
on an external fieldf i ~random in space! which couples to
the components of the rotorsxi , producing a term2 fW i• x̂i in
the Hamiltonian, so that

H~ f !5
g

2(i
L̂ i

22(
i j

Ji j x̂i x̂ j2(
i

fW i• x̂i . ~1!

The field f i is random and has the Gaussian probabi
distribution

P~ f i !5
1

~pD!1/2
e2~ f i2 f̄ !2/2D. ~2!

We shall here consider the case where the mean of the
dom field at each site vanishes, i.e.,f̄ 50. Adopting a clas-
sical statistical mechanical point of view, we shall work wi
the action

A5E
0

b

dtSL02(
i j

Ji j xi~t!xj~t!2(
i

f ixi~t! D , ~3!

where

L0~t!5
1

2g(i
~]txi !

21
r

2(i
xi

21
u

4(i
~xi

2!2.
e
-

l

h
e

d

f-

s-
g

n-

In passage from Eqs.~1!, ~2! to Eq. ~3!, we have relaxed the
rigid-spin constraint and cast the action with the soft-s
consideration in a form suitable for working around the u
per critical dimension. We will also assume short-ranged
teractions among the rotors and the interaction te
2(Ji j xixj will contribute *(¹xm)•(¹xm)dDr . We shall
henceforth drop the coefficient 1/2g. The action is conse-
quently

A5E
0

bE dDr F r

2
xmxm1

1

2
@]txm~t!#21

1

2
~¹xm!•~¹xm!

1
u

4
~xmxm!22 f mxmG . ~4!

As usual, the aim here is to calculate the quenched a
aged partition function

Z5E FD@xm~t!#exp~2A!)
i

d f i P~ f i !G , ~5!

where because of the quenched disorder, the quantum
tuations are to be handled first under the field frozen and t
an averaging has to be done over the field distribution gi
asP( f i). This calls for the replica trick,15 whereby we intro-
duce then replicas and write the density of the action
~with replica indicesa andb)

r

2
xm

axm
a1

1

2
@]txm

a~t!#21
1

2
~¹xm

a !•~¹xm
a !

1
u

4
~xm

axm
a !22 f m (

a51

n

xm
a . ~6!

Performing the average over the magnetic fieldf m(rW) at
this stage leads to the replicated Hamiltonian

A ~n!5E
0

bE dDr F r

2
xm

axm
a1

1

2
„]xm

a~t!…2

1
1

2
~¹xm

a !•~¹xm
a !1

u

4
~xm

axm
a !2G

2D/2E
0

b

dt1E
0

b

dt2F(
a

xm
a~t1!GF(

b
xm

b~t2!G .
~7!

One is required to take the limit ofn→0 at the end of the
calculation. It is convenient to rewrite the above action
terms of Fourier componentsfm

a(kW ,v) of the xm
a(rW,t) fields

so that the action now becomes

A ~n!5E dv

2p

dDk

2p
@~r /21v2/21k2/2!fm

a~kW ,v!

3fm
a~2kW ,2v!#2D/2(

a
E dv

2p

dDk

~2p!D
fm

a~k,v!

3(
b

fm
b~2k,2v!d~v! . ~8!
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Clearly, one finds that the random-field fluctuations couple
the static (v50) part of the order parameter.

The Gaussian propagator in the replica space can be
ten as

Gab~k,v!5
1

~k21v21r !
dab

1
Dd~v!

~k21v21r !~k21v21r 2nD!,
~9!

where n→0 limit gives the replica-symmetric Gaussia
propagator. We now define the connected and disconne
correlation functions16 ~it is to be noted that the static (v
50) part of the connected correlation function decays
k221h while the disconnected correlator decays ask241h̄, at
the critical point! given as

Gcon~k,v!dmn5^fk
m~v!f2k

n ~2v!&2^fk
m~0!&^f2k

n ~0!&,
~10!

Gdisd
mn5^fk

m~0!&^f2k
n ~0!& ~11!

where the overhead bar, as usual denotes the configurat
average over the random field. These two types of corr
tions are related to the replica correlation functions as5

Gdis~k!5 lim
n→0

1

n~n21! (aÞb
Gab~k!,

Gcon5 lim
n→0

1

n(a Gaa~k,v!2Gdis.

In the Gaussian case, we can readily find the explicit for
of the above correlations in then→0 limit

Gdis~k!5
Dd~v!

~k21r !2
,

Gcon~k,v!5
1

k21v21r
.

As mentioned previously, the static random field couples
the static part of the order parameter, the disconnected
relation function is always independent of the Matsubara
quency v. On the other hand the connected part of t
propagator incorporates the netv-dependent part of the
propagator thus showing a crossover to the classical valu
finite temperature when the Matsubara frequencies renor
ize to zero.17 Using this above form of the Gaussian prop
gator, we evaluate the Feynman diagram shown in Fig. 1~b!,
given as

E dDk

~2p!DE dv

2p

Dd~v!

~k21v21r !~k21r !2

5E dDk

~2p!D

D

~k21r !~k21r !2
.
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This shows that the infrared divergence occurs above
dimensionalityD56. Hence,D56 which comes out to be
the upper critical dimension in the quantum-mechanical c
for all M showing that the upper critical dimensionality r
mains the same as that in the classical case. We shall s
shortly using the renormalization-group flow equations.

Let us now address the question of lower critical dime
sion of the zero-temperature transition in the quant
random-field system. For bothM51 and M>2 quantum
systems, one can look at the equivalent (D11)-dimensional
classical system18 with randomness correlated in the (D
11)-th ~Trotter! direction. To extend the Imry-Ma argmen3

to the present case, we imagine that the equiva
(D11)-dimensional classical model is deep in the orde
phase. The stability to a weak random field is determined
balancing the typical energy gain because of the rand
field. Deep in the ordered phase, the typical energy cost f
domain of the linear dimensionL;L (D11)21 for M51 and
;L (D11)22 for systems withM>2, while the typical energy
gain due to random field;LD/2 @not L (D11)/2, since the ran-
domness is correlated in (D11)th direction#. Thus for D
.2 for Ising systems andD.4 for systems forM>2, large
domain formation is not favorable. Thus, as in the class
case, here as well the lower dimensionality is 2~for M51)
and 4~for M>2), which are marginally stable to the rando
field.

With u50, a standard renormalization-group treatme
yields for the Gaussian fixed point

z~field rescaling factors!5b~D1z12!/2,

r 85rb2,

D85Db21z,

z51.

The termsr and D are both relevant and have to be co
trolled to observe the critical behavior. The quartic perturb
tion u to the Gaussian fixed point shows the scaling

u85ub42D2z,

which shows that the variable is certainly irrelevant~more
strictly speaking the quantum fluctuations are ‘‘dangerou
irrelevant’’! for D.4. Under a change of length scale by
factor b, the parameteru scales asb2u, this is how we
define the exponentu in the present case. However, the com
binationw5uD has the scaling

w85wb62D,

FIG. 1. ~a! Diagram which renormalizesr andD, ~b! diagram
which renormalizesu. The thin line corresponds to the propagat
with D50 and the circled straight line stands for theD-dependent
part of the propagator.
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and is a relevant perturbation forD,6. Consequently, the
possible deviation from the Gaussian fixed point will
brought about by the combinationw5uD.

Using the above Gaussian propagator, we can now c
out a perturbative renormalization-group analysis for 4,D
,6 ~the restriction 4,D ensures that there is no divergen
in D-free part!. Correct toO(e), wheree562D, our flow
equations~diagrams as shown in Fig. 1! with scaling vari-
ablesr , u andw5uD, are constructed.

Keeping the replicas at a finite value ofn and taking the
limit n→0, we obtain the flow equations given as

]r

] l
5F22~M12!

S6

~2p!6
~uD!G r 1~M12!L2~uD!,

~12!

]u

] l
5@22z#u2uD2~M18!

S6

~2p!6
, ~13!

]~uD!

] l
5e~uD!2~M18!

S6

~2p!6
~uD!2. ~14!

Clearly for e.0 ~i.e., D,6), the fixed pointw5uD5w*
50 ~Gaussian! is unstable, and flows to the random-fie
fixed point

w* 5
e

K6~m18!
, ~15!

K65S6 /(2p)6. At this fixed point,

du

dl
52~21z!u ~16!

leading to

u85b2~21z!u,

showing the irrelevence ofu and the exponentu as

u521z, ~17!

which is independent ofM . All other exponents, as alread
discussed in the Introduction, depend onM and are found to
be the same as the classical exponents.10

At this order, we have not picked up any correction to t
k2fkf2k part of the Hamiltonian and henceh501O(e2).
The first contribution toh comes from the diagram shown i
Fig. 2, and we can readily establish from the analysis of
corresponding integral of the self-energy thatz511h. The
self-energy corresponding to Fig. 2 can be written as

FIG. 2. The self-energy diagram up to the second order ie
with two cirles (D) and twou’s.
ry

e

e

S~k,v!5E dDp

~2p!D

dDq

~2p!D

1

p4

1

q4

1

~k2p2q!21v2
.

~18!

For v→0, the behavior ofS(k,v) is expected to be
2hk2lnb, while for k→0, S(0,v)2S(0,0) is expected to
scale asv2htlnb. By studying the two differences, we ca
conclude that

ht52
D

42D
h52@31O~e!#h523h. ~19!

To keep the coefficient ofv2f(k,v)f(2k,2v) ~i.e.,
1/2g) unaltered in the action we need to set the dynam
exponentz511h1O(e3) ~see the Appendix!. This result
was also derived for the transverse Ising case in Ref. 8 u
supersymmetric techniques.

III. SPHERICAL LIMIT

In this section, we shall extend the above renormalizat
group calculation in theM→` ~Ref. 19! with u5O(1/M )
and derive the exponents for the zero-temperature trans
in the quantum random-field model below the upper criti
dimension 6, which come out the same as the class
exponents.13 To evaluateg, one considers the scaling of th
mass renormalization term~we need not consider the integr
over the Matsubara frequencies since we consider
random-field part of the Gaussian propagator which conta
a d function in the frequency!

E dDp

~2p!DS 1

~r 1p2!2
2

1

p4D ;r ~d24!/2,

which yieldsg52/(d24) and withh50, n51/(d24) as
in the classical case.13 To calculatea, we use19

x~0!5M) ~r ,0!F11Mu) ~r ,0!G21

;u212Cr32d/2.

As r;(r 02r 0c)
(32d/2)g, we find the specific-heat exponen

a5(d26)/(42d). ~In a zero-temperature quantum pha
transition the exponenta denotes the scaling of the singula
part of the ground-state energy density as the quantum c
cal point is approachedEsing;d22a, whered is the distance
from the quantum critical point.!

To evaluate the exponentb we consider the disconnecte
correlation function and using the argument that the disc
nected correlation scales as the square of the configura
averaged magnetization20

2b5n~d24!51.

We thus derive the exponents in the spherical limit using
form of Gaussian propagator. Clearly, above the upper c
cal dimension, the exponents are the usual mean-field e
nents.

IV. THE ZERO-TEMPERATURE SCALING RELATIONS

In this section we shall derive the scaling relations, as
ciated with the quantum phase transition in the random-fi
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systems, involving the exponentsn, h, h̄, and the dynami-
cal exponentz. This scaling relation is quite general and
expected to hold for allM . Eventually we shall need follow
ing assumptions:

~1! The fluctuations induced by the random-field dom
nates over the quantum fluctuations arising due to the p
ence of noncommuting terms in the Hamiltonian.

~2! In the renormalization-group sense, we need to c
sider the flow of three parametersr , u, and w5Du. As
shown earlierr and w are relevant parameters. The para
eteru is ‘‘dangerously irrelevant’’10 as will be shown below.
It decays asb2u under a change of length scale by a factor
b, which as mentioned earlier, defines the exponentu.

To study the zero-temperature transition, we shall c
sider the renormalization of the singular part of the disord
averaged ground-state energy density~not the free-energy
density as in Ref. 10! under a change of length scale by
factor of b,

E~u0 ,dr 0 ,dw0!5b2~d1z!E~u0blu,dw0blw,dr 0bl!,
~20!

whereu0 ~infinitesimally small!, dr 0, and dw0 @deviations
from the nontrivial fixed pointr * andu* given in Eq.~19!#
are the scaling fields of the linearized renormalization-gro
equations. If we setdw050, i.e., we work at the random
field fixed point, we have under a renormalization-gro
transformation by a factor of length scaleb

E~u0 ,dr 0!5b2~d1z!E~u0blu,dr 0bl!. ~21!

Here, dr 0 denotes the deviation from the nontrivial zer
temperature fixed point which we denote ast and the eigen-
valuel is the inverse of the exponentn associated with the
zero-temperature transition. Hence, we have

E~u0 ,t !5b2~d1z!E~u0blu,tbl!. ~22!

Identifying, b5t2n, we have

E~u0 ,t !5tn~d1z!E~u0blu!. ~23!

If f (x) tends to a constant value~as in the quantum phas
transition in the pure system! we obtain the usual hypersca
ing relation21

22a5n~d1z! . ~24!

From the Hamiltonian~1!, if we expand in power series o
D, the term contributed by the diagram shown in Fig. 3 is
the orderu0D2 ~one vertexu0 and two dots indicating two
disorder averaging yieldingD25w2/u0 ~written in terms of
scaling variables!. Thus as the system is driven towards t
nontrivial fixed point~with u050), this term goes asuo

21 ,
hencef (x);1/x and clearly diverges asx→0 indicating that

FIG. 3. Typical graph for the ensemble-averaged ground-s
energy with twoD ’s and oneu.
s-

-

-

f

-
r-

p

f

we find the parameteru is not only irrelevant, but is clearly
‘‘dangerously irrelevant.’’ We thus find

E;tn~d1z2u!, ~25!

so that we obtain the hyperscaling relation

22a5n~d1z2u!. ~26!

Up to the first order ine expansionu521z ~with z being
unity up to the first loop order!, we haveu53,8 yielding

22a5n~d22!, ~27!

which is the same dimensional reduction as obtained in
classical case in the replica-symmetric framework. But
stead ofu being 2 in the present caseu521z, as has been
shown previously. It should be noted that in the classi
RFIM ~Ref. 4! uÞ2 in general.

We have already defined the exponentsh and h̄ through
the connected and disconnected correlation functions.
mentioned previously, as the random field couples to
static part of the order parameter, the disconnected part
function q only. We propose a scaling form for the con
nected correlation function

Gcon~q,v!;j22h f ~qj,vjz!, ~28!

where j and jt(;jz) are spatial and temporal correlatio
lengths, respectively. At the criticality, bothj andjt diverge
and we find a simpler scaling form

Gcon~q,v!;q221h f̃ S v

qzD for v, q→0. ~29!

Using the fluctuation-dissipation theorem for the quant
systems,21 we find the relation between the wave-vecto
dependent susceptibilityx(q) andGcon given as

x~q!5E dv

2p

Gcon~q,v!

v
. ~30!

Defining,x(q50);t2g and using the scaling form ofGcon,
we obtain

g5~22h!n. ~31!

For the disconnected correlation function, we have at
criticality

Gdis~x!5^f~x,t1!&^f~0,t2!&;x2(d242h̄), ~32!

so that the Fourier transform goes asq241h̄ and the cor-
relator is independent oft1 andt2.2 Clearly the scaling di-
mension off(x,t) is (d241h̄)/2. Again the disconnected
correlation function scales as the square of the configu
tion-averaged magnetization20 and thus scales asj2b, where
j is the correlation length, yielding

2b5n~d241h̄ !. ~33!

Again, under renormalization-group transformation the co
nected correlation functionGcon(q,v) should scale as

u3 scaling dimension ofGdis;x2~d241h̄1u!,

te
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so that we get

u521z1h2h̄, ~34!

in contrast to the classical case, whereu521h2h̄. The
hyperscaling relation thus becomes

22a5n~d222h1h̄ !.

We thus obtain the scaling relationa12b1g52 satisfied.
The scaling relation thus obtained does not depend u

the dimensionality of the order parameter. We have ess
tially used the ‘‘dangerous irrelevence’’ of the quantum flu
tuations at the zero-temperature transition. The Schwa
Soffer inequality16 holds betweenh and h̄ even when the
disorder is static in time2 ~see also the Appendix! so one
expectsh̄>2h. It should be noted that recent extensive s
ries studies for the classical model have shown that this
equality is satisfied as an equality withh̄52h.22

This is also to be noted here in the present case, that s
the disorder is static, the quantum effect does not manifes
the disconnected correlation functions. It really shows up
the connected correlation function which has a weaker div
gence in comparison to the connected part and the sca
functions f and f̃ are different from the corresponding cla
sical scaling functions. In the finite-temperature classi
case, the disconnected correlation function does not sho
crossover whereas the connected part changes to the cla
value because at the finite temperature the Matsubara
quencyv renormalizes to zero.17

We shall now briefly discuss the dynamical scaling asp
of a quantum random-field system. Strong arguments
provided in Ref. 9 to establish that the dynamical scaling
the quantum Ising system in the random field is activa
like other random quantum Ising transitions.23 For M.1,
the argument will be modified in the following way. As a
gued in Ref. 9, the contribution to the dynamics will esse
tially come from the effect of quantum fluctuations on ‘‘larg
rare’’ blocks which are locally ordered. Neglecting the co
pling to the environment, the fluctuations of this block sp
can be described by a one-dimensional~corresponding Trot-
ter dimension! classical,M -component spin chain with fer
romagnetic couplingKt;LD. This chain has a finite corre
lation length~time! jt which scales for largeKt(;LD) for
M.1 as2

jt;Kt;LD, ~35!

whereas in the Ising case (M51) we havejt;exp(cLD),
where c is constant. This shorter correlation time for co
tinuous spins shows that quantum dynamics is not activa
rather Eq.~35! suggests that the dynamical scaling is e
pected to be conventional~power law!.

V. CONCLUSION

We have studied the quantum rotor Hamiltonian in t
presence of quenched Gaussian random field. The z
temperature transition is governed by the random-field fi
point and the critical dimensionalities are found to be
same as in the corresponding classical case. The exponu
and the connected correlation function incorporates the qu
n
n-
-
z-

-
-

ce
in
n
r-
ng

l
a

ical
e-

ct
re
n
d

-

-

d,
-

ro-
d
e
t
n-

tum effects whereas the disconnected part is independe
the Matsubara frequenciesv. A standard renormalization
technique within the static framework provides us the ren
malization group flow equations showing the irrelevence
the parameteru. We extract the exponents associated w
the zero-temperature phase transitions in the model up to
first order ine. Exploiting the nature of the self-energy dia
gram we have shown that up to the second order ine, the
dynamical exponents of the quantum Hamiltonian are rela
to the exponenth given asz511h. We have also derived
the exponents in the spherical limit.

In the concluding section, we derive the scaling relatio
associated with the zero-temperature transition in the mo
indicating clearly the ‘‘dangerous irrelevence’’ of the param
eteru. These scaling relations are quite general and are
pected to hold for anyM . We also argue that forM.1,
dynamical scaling is expected to be conventional.

We must mention here that we have assumed the tra
tion to be second order and have employed a repl
symmetric theory. But, the possibility of replica symmet
breaking will be considered later to see whether an interm
tent glassy phase occurs.

We just note in conclusion that there is the strong pos
bility of the occupance of ‘‘Griffiths-McCoy’’-type
singularities24 associated with the quantum phase transit
in the present model, which is being currently explored.
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APPENDIX

1. In this section, we shall establish the relationship
tween the exponentsz andh up to the second order ine. As
pointed out in Ref. 8, this correspondence is really an o
come of the symmetry of the propagators up to this ord
We here consider Fig. 2, which is the only relevant diagr
up to this order ofe expansion. The corresponding contrib
tion to the free energy can be written as

S~pW ,v!5E dDp1

~2p!DE dDp2

~2p!D

1

p1
4

1

p2
4

1

~pW 2p1
W2p2

W !21v2
.

~A1!

In the v→0 limit, the vortex function scales asG2(p)
;p22h'p2(12h lnp). We find in thev→0 limit,

S~p,0!2S~0,0!5E
L/b

L dD

~2p!DEL/b

L dD

~2p!D

3F 1

p1
4

1

p2
4 S 1

~pW 2p1
W2p2

W !2
2

1

~p11p2!2D G
52hp2lnb. ~A2!

Once again, in thep→0 limit,
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S~v,0!2S~0,0!5v2htlnb ~A3!

5E dD

~2p!D

dD

~2p!D

~2v2!

p1
4p2

4~p1
W1p2

W !2
.

~A4!

From Eq.~A2!, we find

S~p,0!2S~0,0!

5E
L/b

L dDp1

~2p!Dp2
E

L/b

L dD

~2p!D

1

p1
4

1

p2
4

1

~p1
W1p2

W !2

3F12
pW •~p1

W1p2
W !

~p1
W1p2

W !2
1

p2

~p1
W1p2

W !2G . ~A5!

A few lines of algebra yield

S~p,0!2S~0,0!5E E 1

p1
4

1

p2
4

p2~4cos2u21!

~p1
W1p2

W !4
. ~A6!
te
-

Inserting the angular average of cos2u51/d, we find from
Eq. ~6!,

E 1

p1
4

1

p2

4p2~4/d21!

~p1
W1p2

W !4
. ~A7!

Comparing Eqs.~A4! and ~A7!, we find

ht52S d

42dDh. ~A8!

With d56, we findht523h. Hence, we find the scaling o
(1/2g)v2 under renormalization group transformation
(1/2g)v2b222z2h13h. For the fixed-point behavior of the
coefficientg, we findz511h1O(e3).

2. In this section we shall indicate how the Schwar
Soffer inequality can be extended to the case where the
order is static. The average of themth component offk can
be set in the form
to

lead us to

es
^fk
m~v50!&5

trK fk
m~0!expF2E

k,v
L0~k,v!2E

k
(

m51

M

f k
mfk

m~v50!G L
tr expF2E

k,v
L0~k,v!G , ~A9!

where by tr, we represent the functional integral over the fieldsfk(v) and the effective classical actionL0 is defined
previously from Eqs.~3! and ~8!. We here consider the static part of the average offk

m because the random-field couples
the static part. Thev50 part of the connected correlation function is obtained as

]^fk~0!&
]h2k

52^fk~0!f2k~0!&2^fk~0!&^f2k~0!&. ~A10!

Now, identical steps in Ref. 16, essentially based on the assumption of the Gaussian nature of the randomness,
the inequality

^fk~0!f2k~0!&2^fk~0!&^f2k~0!& <D21~^fk~0!&^f2k~0!&!1/2. ~A11!

As mentioned previously, thev50 part of the connected correlator diverges ask221h whereas the disconnected part diverg
ask241h̄ at the criticality. Hence, Eq.~A11! readily shows that the Schwartz-Soffer inequality, i.e.,h̄>2h is valid even in the
present case.
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