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Quantum rotors in the presence of a random field
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We have studied th&1-component quantum rotor Hamiltonian in the presence of a static random field
(uncorrelated and Gaussian distribyted each site of the lattice. This model is essentiallyVaaomponent
generalization of the transverse Ising model in a random longitudinal field. We find that even the zero-
temperature transition in the model from a ferromagnetic to the paramagnetic phase, is dominated by the
random-field fixed point, which essentially determines the finite-temperature transition in the above model and
the transition in the classicé -vector model in the presence of a random field. With the assumption that the
transition is of continuous nature, we employ a standard renormalization-group method to study the effective
classical action of the model and extract the exponents associated with the transition. We do also extend these
renormalization-group calculations to the spheridd¢ ) limit. Finally, we develop a scaling argument that
describes the zero-temperature transition and clearly indicates the occurrence of the dynamical exponents in the
different scaling relations. We also qualitatively discuss the dynamic scaling scenario in the quantum model.
[S0163-18298)03033-1

I. INTRODUCTION replica trick and the Fourier-transformed replicated Hamil-
tonian clearly shows that the random field couples to the

Quantum phase transitions have been attracting a greatatic (w=0) part of the order parameter. Introducing the
deal of attention in recent years. Especially the zeroconnected and disconnected correlator in the replica lan-
temperature transitions in the transverse Ising modmisl  guage, we find the replica-symmetric Gaussian propagators
its M-component generalization, the rotrare being ex- and it is readily shown that the disconnected correlator does
plored extensively. Studies have been carried out with th&@ot depend upon the frequeney The critical dimensionali-
interaction between the rotors taken to be random and thuées in the quantum problem are shown to remain the same as
elucidation of properties of quantum spin glasseBhe in the classical case. Further, we carry out a systematic per-
random-field systemgespecially the random field Ising turbation renormalization treatment, namely thexpansion
model (RFIM)** have been investigated over the last twoaround the upper critical dimensith (within a replica-
decades but the nature of the transition is yet to be fullysymmetric frameworkand write down the flow equations.
understood. Whether the transition is first order or second\s shown in Ref. 8, the exponents come out to be the same
order is still questionétand the possibility of an intermedi- as in the classical case. For example, for the correlation
ate glassy phasdas also been reported. length exponent, we find to theO(e=6—D)

Here, we consider thi-component quantum rotors in
the presence of a random external field. This is essentially an
M-component generalization of the tranverse Ising system in
the presence of a random longitudinal fiél@he aforemen-
tioned problem 1 =1) was previously studied by Aharony, Which shows the dependence of the exponents on compo-
Gefen, and Shapir.A Langevin equation approach to the nentsM and matches perfectly with the exponenin the
problem was adopted by Boyanovski and Cdtayho could ~ classical cas& The zero-temperature transition is found to
as well introduce a dynamical exponemtwhich was taken be governed by the random-field fixed point which also de-
to be unity by Aharonyet al.” A recent paper by Senthll, termines the transition in the classical random-field system
discusses with some generality the=1 case of the prob- and the finite-temperature transition in the present model. Up
lem and shows that the exponents associated with zerdo O(e€?), it has been shown using the self-energy diagram,
temperature transition are similar to that in classical RFIM that the dynamical exponeat(which determines growth of
Our calculations are completely in agreement with Ref. 9 intemporal correlatiorg ~ ¢* near the quantum critical point
this regard. is given byz=1+ »n, which is in agreement with Ref. 8

We here assume the transition of the model to be of conwhere supersymmetric methods were used. We will argue
tinuous nature. In Sec. I, we start with quantum rotor Hamil-that the dimensional reduction in the hyperscaling relation
tonian in the presence of random field, and write down thewill be by a factor of 2 but will be a combination of two
zero-temperature “partition function’{with soft-spin con- effects, a change af—d+ z in the hyperscaling relation and
sideration in a general form within the static framework. To a change of the transmutation exponent frém —2 to 6
take account for the quenched randomness, we employ & —(2+2), up to the first order ire expansion. It is in this

~ ( (M+2)e
V—1/21+m
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changed that the quantum effect shows up. Our calculationin passage from Eq¢l), (2) to Eq.(3), we have relaxed the
will support the traditionally held viewicoming from the rigid-spin constraint and cast the action with the soft-spin
Harris criterid® that random-field fluctuations mask the consideration in a form suitable for working around the up-
qguantum fluctuations but we will be able to point out certainper critical dimension. We will also assume short-ranged in-
features of the various characteristic quantities—mainly thderactions among the rotors and the interaction term
connected correlation function where the quantum fluctua—XJ;;x;x; will contribute f(VxM)~(VxM)dDr. We shall
tions play a role. henceforth drop the coefficient 2 The action is conse-
In Sec. lll we extend our calculations to the sphericalquently
(M—x) (Ref. 13 limit and derive exponents associated
with the zero-temperature transition. A= J B J 4P
In Sec. IV, we present scaling relations associated with " |, '
the corresponding zero-temperature transitions using the
“dangerous irrelevance” of the quantum fluctuations. It is
shown that the quantum effects manifest in the connected
correlation function which isw dependent and thus has a
crossover at finite temperature and its scaling function is dif- As usual, the aim here is to calculate the quenched aver-
ferent from the classical case. In a recent wbgtrong ar-  aged partition function
guments have been provided to conjecture that like the clas-
sical random-field Ising system, quantum random-field Ising Z_f
(M=1) systems also exhibit “activated dynamical
scaling.”** In our work, we qualitatively argue that for rotor

systems withV > 1, the dynamical scaling is expected to be Where because of the quenched disorder, the quantum fluc-
conventional rather than “activated.” tuations are to be handled first under the field frozen and then

an averaging has to be done over the field distribution given
asP(f;). This calls for the replica trick® whereby we intro-
duce then replicas and write the density of the action as
The Hamiltonian for the quantum rotors can be writteh as (with replica indicesa and )

1 ,, 1
X, + E[&TXM(T)] + E(VX“) -(Vx,)

r
2%

4

u 2
+ Z(X“X“) —fuXu

Dx,(n]exp(— AL dfiP(f)], (5)

II. RENORMALIZATION GROUP CALCULATIONS

n ~n ~ r a,,a 1 a 1 a a
H=32 L3 9y%%, %=1, FXEXE+ S[X(T) P+ 5 (VX0 (V)
~ n
wherex; is a unit length rotor sitting at the sitewith M n u XAx®)2_ f NG 6
componentsx;,, N is the number of sites.;,, (v,u 4( wXu) ";1 me ©

=1,2...M) are theM(M —1)/2 components of the angular )
momentum generatdy; in the rotor space. We now switch Performing the average over the magnetic figldr) at
on an external field; (random in spagewhich couples to this stage leads to the replicated Hamiltonian

the components of the rotoxs, producing a term-f;-X; in

itoni B r 1
the Hamiltonian, so that AM= JO J d°r 5XZXZ£+ z(ﬂxi( )2
H(f)ng LF=20 3ipxix— 2 fi-x. D 1_ L P
[ i] i +§(Vxﬂ)-(VxM)+ Z(X/‘X”
The field f; is random and has the Gaussian probability B B
distribution —A2 J dry J dry| 2 Xa(m) || 2 XE(72)].
0 0 @ B
N ~(fi—)222 (7)
P(f)= e . )

One is required to take the limit of— 0 at the end of the

We shall here consider the case where the mean of the raﬁalculation. It is convenient to rewrite the above action in
dom field at each site vanishes, i.6=0. Adopting a clas- terms of Fourier components; (k,») of the x;(r,7) fields
sical statistical mechanical point of view, we shall work with SO that the action now becomes
the action b

dw d”k

A= 5- L2+ w22+ K?2) 2 (K, 0)

B
A= Jo d7<£0_§j: Jini(T)Xj(T)_Z fixi(n) ], 3
' : do dPk
27 (277)D

$2(k,w)

where

X ¢%(—K,—w)]- A2 J

1
Lo)= 553 (0024 53+ 53 ()2 <3, ¢k w)do). ®
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the static w=0) part of the order parameter.
The Gaussian propagator in the replica space can be writ-
ten as

Clearly, one finds that the random-field fluctuations couple to . <.>

(@ ®)

m5aﬁ FIG. 1. (a) Diagram WhiCh r(_enormalizes andA, (b) diagram
which renormalizesi. The thin line corresponds to the propagator
Ad(w) with A=0 and the circled straight line stands for thedependent
9 part of the propagator.

Gaﬁ(k!w) =

+

(K%>+ w?+1)(K*+ w?+r—nA),
Lo . . . This shows that the infrared divergence occurs above the
where n—0 limit gives the replica-symmetric Gaussian dimensionalityD=6. Hence, D=6 which comes out to be
propagator. We now define the connected and d|sconnect§ e upper critical dimension in the quantum-mechanical case

c_orrelatlon ];UﬂthIOHJSB (it is to be r}otgd tfhat t_he staticu( for all M showing that the upper critical dimensionality re-
__02)+ part_ of the _connected correlation unc’uorl d+e_cays 3%ains the same as that in the classical case. We shall see it
k™%*7 while the disconnected correlator decayka$””, at  shortly using the renormalization-group flow equations.
the critical poin given as Let us now address the question of lower critical dimen-
sion of the zero-temperature transition in the quantum
Geod K, ) 8*"=(dl (@) pY ((— w)) = (DL (0) )Y (0)), random-field system. For botM=1 and M=2 quantum
(100 systems, one can look at the equivaleBti 1)-dimensional
classical systefi with randomness correlated in th® (
Gisd""=( ¢ (0)){(¢”(0)) (1)  +1)-th(Trotten direction. To extend the Imry-Ma argmént
to, the present case, we imagine that the equivalent
r\(%Jrl)-dimensional classical model is deep in the ordered
FPhase. The stability to a weak random field is determined by
balancing the typical energy gain because of the random
1 field. Deep in the ordered phase, the typical energy cost for a
Gag(K) = lim ——— > G, 4(k), domain of the linear d|m¢n3|oln~L(D_“) L for M=1 and
nooN(N—1)izp ~LP*1=2 for systems withM =2, while the typical energy
gain due to random fiele- LP"2 [not L(° V)2 since the ran-
o1 domness is correlated irD(+1)th directior]. Thus for D
Geon= lim 52 Gau(k,0) = Gyis. >2 for Ising systems anB >4 for systems foM =2, large
n—0nn e domain formation is not favorable. Thus, as in the classical

In the Gaussian case, we can readily find the explicit form&ase, here as well the lower dimensionality i@ M =1)

where the overhead bar, as usual denotes the configuratio
average over the random field. These two types of correl
tions are related to the replica correlation functions as

of the above correlations in the—0 limit ?n%4(for M=2), which are marginally stable to the random
ield.
Ad(w) With u=0, a standard renormalization-group treatment
Gyi(K)= ———, yields for the Gaussian fixed point
T (K+r)?
{(field rescaling factons= b(P 2722,
Gcon(k:w):m- r’'=rb?,
r_ 2

As mentioned previously, the static random field couples to A'=Ab*",
the static part of the order parameter, the disconnected cor-
relation function is always independent of the Matsubara fre- z=1.

quency ». On the other hand the connected part of theThe termsr and A are both relevant and have to be con-

propagator incorporates the net-dependent part of the a4 tg observe the critical behavior. The quartic perturba-
propagator thus showing a crossover to the classical value bn u to the Gaussian fixed point shows the scaling
finite temperature when the Matsubara frequencies renormal-

ize to zera'’ Using this above form of the Gaussian propa- U’ = ub*-D-2
gator, we evaluate the Feynman diagram shown in Kig), 1 ’
given as which shows that the variable is certainly irrelevdmtore
strictly speaking the quantum fluctuations are “dangerously
f d°k [ dw AS(w) irrelevant”) for D>4. Under a changeeof length scale by a
5= factor b, the parameteu scales ash™ % this is how we
(2m)PJ 27 (i + 0+ 1)(K+1)? define the exponertt in the present case. However, the com-
j dPk A binationw=uA has the scaling

(2m)P (K+1)(K2+1)? w' =wh®P,
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For w—0, the behavior of%(k,w) is expected to be
— nk?Inb, while for k—0, 2(0,0)—2(0,0) is expected to
scale asw?#.Inb. By studying the two differences, we can
conclude that

FIG. 2. The self-energy diagram up to the second ordet in
with two cirles (A) and twou’'s.

and is a relevant perturbation f@r<6. Consequently, the D
possible deviation from the Gaussian fixed point will be n,=—7—x 7=—"[3+0(e)]n=—37. (19)
brought about by the combinatiom=UuA. 4-D

Using the above Gaussian propagator, we can now carry
out a perturbative renormalization-group analysis fer 3
<6 (the restriction 4D ensures that there is no divergence
in A-free par}. Correct toO(e€), wheree=6—D, our flow
equations(diagrams as shown in Fig) With scaling vari-
ablesr, u andw=uA, are constructed.

Keeping the replicas at a finite value wfand taking the
limit n—0, we obtain the flow equations given as

To keep the coefficient ofv?p(k,w)d(—k,—w) (i.e.,
1/2g) unaltered in the action we need to set the dynamical
exponentz=1+ 5+ 0(€°) (see the Appendix This result
was also derived for the transverse Ising case in Ref. 8 using
supersymmetric techniques.

Ill. SPHERICAL LIMIT

In this section, we shall extend the above renormalization
group calculation in thévl -« (Ref. 19 with u=0(1/M)

ar
—=[2—(M+2) (UA) [r+(M+2)A%(ul),

ol (277)® and derive the exponents for the zero-temperature transition
(12) in the quantum random-field model below the upper critical
dimension 6, which come out the same as the classical
au S5 exponent$? To evaluatey, one considers the scaling of the
— =[2—2z]u—UuA%(M+8) ' (13) ~ Mass renormalization terfve need not consider the integral
al (2m)® over the Matsubara frequencies since we consider the
random-field part of the Gaussian propagator which contains
A(UA) Ss a ¢ function in the frequency
o =e(UA)—(M+8) . S(uA)?. (14 .
(2m) f d p( 1 _i)~r<d4>/z
Clearly for e>0 (i.e., D<6), the fixed pointw=uA =w* (2m)P\ (r+p?»? p* ’
ﬁXCéd((Sg\itﬁsm)] is unstable, and flows to the random-field which yields y=2/(d—4) and with =0, v=1/(d—4) as
in the classical cas€.To calculateax, we usé®
* € -1
W = (mT8)’ a5 o=M]] (r,O){lJrMuH (10| ~ul-cr3-o2
Ke=Se/(27)°. At this fixed point, As r~(ro—ro) G927 we find the specific-heat exponent
a=(d—6)/(4—d). (In a zero-temperature quantum phase
ﬂ: —(2+2)u (16) transition the exponent denotes the scaling of the singular
dl part of the ground-state energy density as the quantum criti-
) cal point is approacheBg;,q~ 5%~ %, wheresé is the distance
leading to from the quantum critical point.
To evaluate the exponegtwe consider the disconnected
u'=b"*7y, correlation function and using the argument that the discon-

nected correlation scales as the square of the configuration-

showing the irrelevence af and the exponenf as averaged magnetizatigh

9=2+z2, 17 2B=v(d—4)=1.

which is independent of1. All other exponents, as already \We thus derive the exponents in the spherical limit using the
discussed in the Introduction, dependMnand are found to  form of Gaussian propagator. Clearly, above the upper criti-

be the same as the classical exponéhts. cal dimension, the exponents are the usual mean-field expo-
At this order, we have not picked up any correction to thenents.

k?¢d_ part of the Hamiltonian and henog=0+ O(€?).

The first contribution to;ylcomes fr_om the diagram shqwn N |/ THE ZERO-TEMPERATURE SCALING RELATIONS

Fig. 2, and we can readily establish from the analysis of the

corresponding integral of the self-energy that1+ 5. The In this section we shall derive the scaling relations, asso-
self-energy corresponding to Fig. 2 can be written as ciated with the quantum phase transition in the random-field
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we find the parametar is not only irrelevant, but is clearly
“dangerously irrelevant.” We thus find

Q E~tv(d+zfﬂ), (25)

so that we obtain the hyperscaling relation

FIG. 3. Typical graph for the ensemble-averaged ground-state 2—a=v(d+z—-0). (26)

energy with twoA’s and oneu. Up to the first order ine expansiong=2+z (with z being

. , — _unity up to the first loop order we haved= 3,2 yielding
systems, involving the exponenis 7, 7, and the dynami-

cal exponent. This scaling relation is quite general and is 2—a=vp(d—2), (27
expected to hold for aM. Eventually we shall need follow-
ing assumptions:

(1) The fluctuations induced by the random-field domi-
nates over the quantum fluctuations arising due to the pre ; _ i
ence of noncommuting terms in the Hamiltonian. shown previously. I.t should be noted that in the classical

(2) In the renormalization-group sense, we need to conRFIM (Ref. 4 6+2 in general. _
sider the flow of three parameters u, and w=Au. As We have already defined the exponentand  through
shown earlier andw are relevant parameters. The param-the connected and disconnected correlation functions. As
eteru is “dangerously irrelevant®® as will be shown below. mentioned previously, as the random field couples to the
It decays ad®~? under a change of length scale by a factor ofstatic part of the order parameter, the disconnected part is a
b, which as mentioned earlier, defines the exporgent function g only. We propose a scaling form for the con-

To study the zero-temperature transition, we shall connected correlation function
sider the renormalization of the singular part of the disorder-

which is the same dimensional reduction as obtained in the
classical case in the replica-symmetric framework. But in-
Stead of6 being 2 in the present cage=2+z, as has been

averaged ground-state energy densitpt the free-energy Geor( 0, )~ £27 (€, wé?), (28)
density as in Ref. J0under a change of length scale by awhere ¢ and ¢,(~¢?) are spatial and temporal correlation
factor of b, lengths, respectively. At the criticality, bothand &, diverge
E(Ug, 8 g, SWo) = b~ @+ DE(UgbMy, Swob™, 5t ob™), and we find a simpler scaling form
(20 o
whereug (infinitesimally smal), &ry, and éwg [deviations Gcon(q"")”qzm‘((&) for ®, q—0. (29)

from the nontrivial fixed point* andu* given in Eq.(19)]
are the scaling fields of the linearized renormalization-grougJsing the fluctuation-dissipation theorem for the quantum
equations. If we sebw,=0, i.e., we work at the random- systemg! we find the relation between the wave-vector-
field fixed point, we have under a renormalization-groupdependent susceptibility(q) and G, given as
transformation by a factor of length scdle
dw Geo(d, )
E(Ug, o) =b~ @ DE(ugh*s, 8 gb*). (21) x(q)=f5—- (30

w

Here, éro denotes the deviation from the nontrivial zero- pefining, y(q=0)~t~” and using the scaling form &
temperature fixed point which we denotetaand the eigen- e optain

value\ is the inverse of the exponentassociated with the

zero-temperature transition. Hence, we have y=(2—7n)v. (31

cony

E(ug,t)=b~@*2E(ugbry,tb"). (22 For the disconnected correlation function, we have at the

o _ criticality
Identifying, b=t"", we have

E(uoyt):tv(dJrZ)E(uob)\u)' (23) GdiS(X):<¢(XaTl)><¢(017-2)>wxi(d747;)1 (32)

If f(x) tends to a constant valu@s in the quantum phase SO that the Fourier transform goes @s*"” and the cor-
transition in the pure systeémve obtain the usual hyperscal- relator is independent of; and 7,.? Clearly the scaling di-
ing relatiorf! mension of(x,7) is (d—4+ 5)/2. Again the disconnected
correlation function scales as the square of the configura-
2—a=v(d+2). (24) tion-averaged magnetizatithand thus scales &, where

From the Hamiltoniarl), if we expand in power series of ¢ Is the correlation length, yielding

A, the term contributed by the diagram shown in Fig. 3 is of _ —
the orderuyA? (one verte):(uo and ?WO dots indicatir?g two 2B=v(d=4+n). 33
disorder averaging yielding?=w?/u, (written in terms of  Again, under renormalization-group transformation the con-
scaling variables Thus as the system is driven towards thenected correlation functio®.,{d,») should scale as
nontrivial fixed point(with uy=0), this term goes as;l, _
hencef (x) ~ 1/x and clearly diverges as— 0 indicating that ux scaling dimension 0By~ x4+ 7+ 0,
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so that we get tum effects whereas the disconnected part is independent of
_ the Matsubara frequencies. A standard renormalization
0=2+z+n—n, (34)  technique within the static framework provides us the renor-
malization group flow equations showing the irrelevence of
the parameteu. We extract the exponents associated with
the zero-temperature phase transitions in the model up to the
— first order ine. Exploiting the nature of the self-energy dia-
2-a=v(d=2=7+ 7). gram we have shown that up to the second orde, ithe
We thus obtain the scaling relatiant 23+ y=2 satisfied.  dynamical exponents of the quantum Hamiltonian are related
The scaling relation thus obtained does not depend upot® the exponent; given asz=1+ 5. We have also derived
the dimensionality of the order parameter. We have esserthe exponents in the spherical limit.
tially used the “dangerous irrelevence” of the quantum fluc-  In the concluding section, we derive the scaling relations
tuations at the zero-temperature transition. The Schwartzassociated with the zero-temperature transition in the model
Soffer inequality® holds betweeny and 7 even when the indicating clearly the “dangerous irrelevence” of the param-
disorder is static in tinfe(see also the Appendixso one eteru. These scaling relations are quite general and are ex-

expects?zzn. It should be noted that recent extensive Se_pected to hold for any. We also argue that foi1>1,

ries studies for the classical model have shown that this ingynamlcal scallng. is expected to be conventional. .
Lo o L= 22 We must mention here that we have assumed the transi-
equality is satisfied as an equality witj=27.

e ) . tion to be second order and have employed a replica-
This is also to be noted here in the present case, that SiNmmetric theory. But, the possibility of replica symmetry

the disorder is static, the quantum effect does not manifest ieaking will be considered later to see whether an intermit-
the disconnected correlation functions. It really shows up ingq¢ glassy phase occurs.

the connected correlation function which has a weaker diver- o just note in conclusion that there is the strong possi-
gence in comparison to the connected part and the scalir[g“ty of the occupance of “Griffiths-McCoy"-type

functionsf andT are different from the corresponding clas- singularitie€* associated with the quantum phase transition

sical scaling functions. In the finite-temperature classicaln the present model, which is being currently explored.
case, the disconnected correlation function does not show a

in contrast to the classical case, whete 2+ 7;—;. The
hyperscaling relation thus becomes

crossover whereas the (_:o.nnected part changes to the classical ACKNOWLEDGMENTS
value because at the finite temperature the Matsubara fre-
quencyw renormalizes to zerty. A.D. acknowledges helpful discussions with Bikas K.
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like other random quantum Ising transitiofisfor M>1,
the argument will be modified in the following way. As ar- APPENDIX
gued in Ref. 9, the contribution to the dynamics will essen- _ . ) ) )
tially come from the effect of quantum fluctuations on “large 1+ In this section, we shall establish the relationship be-
rare” blocks which are locally ordered. Neglecting the cou-fWeen the exponenisand 7 up to the second order i As
pling to the environment, the fluctuations of this block spinPointed out in Ref. 8, this correspondence is really an out-
can be described by a one-dimensiofwrresponding Trot- come of the symmetry of the propagators up to this order.
ter dimensioh classical,M-component spin chain with fer- We here consider Fig. 2, which is the only relevant diagram

romagnetic coupling(.~LP. This chain has a finite corre- UP to this order ok expansion. Th_e corresponding contribu-
lation length(time) £, which scales for larg& (~LP) for ~ fion to the free energy can be written as
M>1 ag
. S(5.0) dipldipz 11 1
s W)= — = —= .

- K~Lo @9 P (2m®J (2mP° p1 P (P—p1—p2)?*+ 0’
whereas in the Ising caseM(=1) we haveé ~expLP), (A1)
wherec is constant. This shorter correlation time for con-

. . . 2
tinuous spins shows that quantum dynamics is not activated, Ig_t;e ‘*’2_’0 limit, the vortex function scales ds“(p)
rather Eq.(35) suggests that the dynamical scaling is ex-~ P~ "=pP“(1—#Inp). We find in thew—0 limit,

pected to be conventiongbower law. AP P
3(.0-3(00= | |

Arb (2ar)PJ A (277)P

V. CONCLUSION

We have studied the quantum rotor Hamiltonian in the « 11 1 1
presence of quenched Gaussian random field. The zero- A Al s = = +D.)2
temperature transition is governed by the random-field fixed P1 P2\ (P=P1=P2)"  (PitP2)
point and the critical dimensionalities are found to be the = — 7p?Inb. (A2)
same as in the corresponding classical case. The expénent
and the connected correlation function incorporates the quan- Once again, in th¢—0 limit,
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3 (,00—2(0,00=w?7,Inb (A3) Inserting the angular average of éés1/d, we find from
Edq. (6),

J dD dD (_w2)
(2m)° (2m)° plpd(pr+p2)? 11 “p*(4d-1)

- = = 5 = A7
(A4) pi P2 (py+py)* (A7

From Eq.(A2), we find
2(p,0)—2(0,0

D D d
B L r=|aa)n e

Comparing Egs(A4) and (A7), we find

a1 (27)°po ) am(27m)P pi p3 (p1+pa)?
5 (i Pa) 2 With d=6, we find,.= —3%. Hence, we find the scaling of
x|1- P _)pl _)pz +— P . (A5)  (1/29)w® under renormalization group transformation as
(p1+P2)?  (P1+P2)? (1/29) w?b?~22-7*37_ For the fixed-point behavior of the
- : coefficientg, we findz=1+ 5+ O(€®).
A few lines of algebra yield 2. In this section we shall indicate how the Schwartz-
1 1 p%(4co6—1) Soffer inequality can be extended to the case where the dis-
E(p,O)—E(0,0):f f <= =g (AB) order is static. The average of th#gh component ofp, can
P: Pz (P17t P2) be set in the form

M
tr< ¢z‘<o>exp[— | o] 3 om0

trexr{ - fk Lo(k,w)

where by tr, we represent the functional integral over the fiedd6w) and the effective classical actiofy, is defined
previously from Eqgs(3) and(8). We here consider the static part of the averageypfbecause the random-field couples to
the static part. The=0 part of the connected correlation function is obtained as

(Pr(w=0))= , (A9)

d 0
<jf;((_k)>= —(k(0)d_(0)) —(Px(0)){(P_K(0)). (AL0)

Now, identical steps in Ref. 16, essentially based on the assumption of the Gaussian nature of the randomness, lead us to
the inequality

(K(0)_(0)) = (D(0) ) d_k(0)) <A™ py(0)){ p_K(0))) 2 (A11)

As mentioned previously, the =0 part of the connected correlator divergekad*” whereas the disconnected part diverges

ask™**7 at the criticality. Hence, EqA11) readily shows that the Schwartz-Soffer inequality, ?%27; is valid even in the
present case.
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