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We study the dynamics of a ferromagnetic domain wall driven by an external magnetic field through a
disordered medium. The avalanchelike motion of the domain walls between pinned configurations produces a
noise known as the Barkhausen effect. We discuss experimental results on soft ferromagnetic materials, with
reference to the domain structure and the sample geometry, and report Barkhausen noise measurements on
Fe,,Cas4B15 amorphous alloy. We construct an equation of motion for a flexible domain wall, which displays
a depinning transition as the field is increased. The long-range dipolar interactions are shown to set the upper
critical dimension tal,= 3, which implies that mean-field exponeffigth possible logarithmic correctigrare
expected to describe the Barkhausen effect. We introduce a mean-field infinite-range model and show that it is
equivalent to a previously introduced single-degree-of-freedom model, known to reproduce several experimen-
tal results. We numerically simulate the equatiomia3, confirming the theoretical predictions. We compute
the avalanche distributions as a function of the field driving rate and the intensity of the demagnetizing field.
The scaling exponents change linearly with the driving rate, while the cutoff of the distribution is determined
by the demagnetizing field, in remarkable agreement with experim&12463-182608)08833-X

[. INTRODUCTION noise is mainly due to the domain wall motion; therefore it is
customary to study soft magnetic materials where a well-
The Barkhausen effetivas first observed in 1919 record- defined domain structure is present and coherent spin rota-
ing the noise produced by the sudden reversal of Weiss ddion does not take place: in this case, once the structure is
mains in a ferromagnet. Since then, the Barkhausen effedbrmed, the magnetization process takes place by motion of
has been widely used as a nondestructive method to tedbmain walls, rather than nucleation of new domains, which
magnetic materials and a detailed statistical analysis of thhas a higher energetic cost due to magnetostatic interactions.
noise properties has been perforniédin addition to its The classical theoretical approach to the problem focuses
practical and technological applications, the Barkhausen efen the motion of the domain walls and their interaction with
fect has recently attracted a growing interest as an exampkbe disorder present in the medium. The simple schematiza-
of a complex dynamical system displaying scaling behaviortion of the domain wall as a point moving in a random pin-
It has been experimentally observed that a histogram ofing field? has been successfully used in the past to explain
Barkhausen jump sizes follows a power 14w, a result several properties of ferromagnetic materials, such as the
which has analogies with other driven disordered systemsRayleigh law*® A theoretical analysis of the Barkhausen ef-
ranging from flux lines in type-Il superconductdrso  fect has been carried out in the same spftifMost of the
microfractured and earthquake,where the dynamics takes measured properties can be reproduced by the model pro-
place in avalanches. While the ambitious goal to build aposed by Alessandro, Beatrice, Bertotti, and Montorsi
common theoretical framework for all these phenomena i$ABBM).™® The crucial hypothesis of this model is that the
still far from being reached, theoretical analysis of each syspinning field is a random walk in space. This assumption is
tem might shed light on the entire issue. consistent with experimerftut its microscopic justification
In the case of the Barkhausen effect, the task is to explaiis still unclear. In fact, an estimafeof the correlation length
the statistical properties of the noise, such as jump size dissf the impurities typically present in the material gives a
tributions and power spectra, in terms of the microscopiovalue much smaller than the one employed in Ref. 15, im-
details of the magnetization process. In general, three differplying that a Brownian pinning field can only be considered
ent mechanisms are involved during the procéssomain  to be aneffectivepicture.
nucleation and coalescence, coherent spin rotation, and do- Recently, Urbachet al'” and Narayatf have proposed
main wall motion. Their different relevance along the hys-relating the properties of the Barkhausen effect to the depin-
teresis loop is in general very complicated and not easilyning transition of an elastic surface in a random medium, a
predictable, as it depends on material properties, annealingpic that has been studied extensively in recent y¥aFhe
conditions, and the geometry of the sample. The Barkhausetomparison between the values of the exponents predicted
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for the depinning transition and most experimental data waghe interaction range is infinite. Since the upper critical di-
however, unsatisfactory. mension isd,=3, we expect that its critical properties
A completely different approach has been undertaken bghould agree with the three-dimensional model. Interest-
Sethna and co-workef8;?2 who study field-driven nucle- ingly, we find the infinite-range model to be equivalent to the
ation in a nonequilibrium random-field Ising mod&FIM).  ABBM model. This observation explains why the ABBM
In this model domain nucleation and growth are treated irmodel works so well in describing the experimental data: it
the same way. When the external field is increased fronprovides aneffectiveone-degree-of-freedom description of
negative saturation, the spins flip to align with the local mag{he complex motion of a flexible interface. The elastic inter-
netization, eventually causing avalanches of neighboringctions along the wall moving in anncorrelatedmedium

spins. A thorough investigation of this model shows thatdive rise to an effectiveorrelatedpinning field experienced

there is a second-order critical point controlled by the ampli-PY the center of mass of the wall. In other words, the long-

tude of the disordet* The power law distributions of the 'ange correlations in the effective pinning field are not due to

Barkhausen noise would then be related to the proximity ofN€ correlation in the impurities present in the material. We
this critical point? This model neglects dipolar interactions NOt€ that a similar idea underlies the variational replica ap-

and demagnetizing effects which are known to play a cruciaProach forequilibrium elastic interfaces in random media,

role in the formation of domains, and so its applicability to where one describes the compl_icated interacti(_)ns betwgen
most experimental situations seems questionable. many degrees of freedom of the interface as a single particle

Here we approach the problem studying the motion of d" @n effective potential. , , _
flexible domain wall driven through a disordered medium. Finally, we simulate the full three-dimensional interface
One of our aims is to bridge the gap between “classical” Model and confirm the value of the upper critical dimension.
approaches to ferromagneti&m® and modern theories of We find that the results on the three-dimensional model do

surface growth in disordered medfaln this way, we are NOt fully agree with the mean-field predictions. In particular,
able to clarify several assumptions present in phenomendl® correct scaling of the cutoff cannot be predicted by the
logical models of domain wall dynamics and to understandnfinite-range and ABBM models. The results of the simula-
their limitations. tions, however, agree remarkably well with experiments.
We consider the case of an anisotropic material magne- The paper is organized as follows: In Sec. Il we discuss

tized along the easy axis, with 180° domain walls separatin@”e_ experiments on the Barkhausen effect, introducing the
regions of opposite magnetizatidiig. 1). The disorder, V&rious scaling exponents. We briefly report experiments on

due, for example, to nonmagnetic inclusions or residuaf" @S-cast FgC0s,B15 amorphous alloy. In Sec. Ill we con-

stresses, pins the domain wall motion which is driven by the?t'UCt the equation of motion for the dynamics of the domain
external magnetic field. We assume that the disorder is lo@ll- In Sec. IV we derive the upper critical dimension and
calized and is either uncorrelated in space or is only shortth® mean-field exponents. In Sec. V we derive scaling rela-

range correlated. The domain wall is assumed to be flexibldiOnS between the critical exponents. In Sec. VI we study the

the stiffness being due to ferromagnetic and magnetostat@mamiCS of the infinite-range model as a function of the

interactionst22324and can therefore deform because of thedriving rate and the demagnetizing field. In Sec. VII we

local configurations of the disorder. The resulting equation ofPrésent the result of numerical simulations. Section VIil is
motion is different from the one proposed by Urbattal,’ devoted to conclusions and discussion of open problems. A

who treated incompletely dipolar interactions. Nard§jdras brief report of a subset of these results appears in Ref. 28.

also considered dipolar interactions in this context, but his
approximate analysis does not applyde 3—the physical Il. EXPERIMENTAL RESULTS
dimension for most of the experiments.

We shall find that the scaling properties of the The experimental results on the Barkhausen effect form
Barkhausen noise arise from the critical behavior expectedn enormous body of literature that spans almost the entire
close to a depinning transition. The dipolar interactions geneentury!~ but precise experimental results for the statistics
erate a long-range term in the equation of motion whichof Barkhausen jumps have been reported only recénfly.
reduces the upper critical dimension fralp=5, obtained The distribution of Barkhausen jump sizes, measured at low
for elastic interface$>*°to d.=3. Indeed, we shall see that driving rates, shows typically a power law behavior, but the
mean-field critical exponents describe quite well a largescaling exponents reported in the literature span a wide range
amount of experimental data. of values? For this reason, it is important to carefully dis-

The geometry of the sample has an important effect on theuss the various experimental conditions, material properties,
experimental results. A true depinning transition can only beand statistical uncertainties before direct comparison with a
observed when demagnetizing effects, opposing the motiotheory could be made.
of the wall, are absent or very small. Otherwise, when the Under well-defined experimental conditions the results
external field is increased at a constant rate, the wall is driveehow a remarkable degree whiversality the scaling expo-
to a stationary motion around the depinning transition. Thenents do not depend on the particular sample aSea?°-3?
scaling is controlled by the external field driving rate and byThe measurements are taken only in the central part of the
the intensity of the demagnetizing field, which in generalhysteresis loop around the coercive field, where domain wall
depends on the shape of the sample. In particular, the drivinmotion is dominant while domain nucleation and coherent
field determines the exponents of the jump distributionsspin rotations are negligibfe. The typical domain structure
while the cutoff is controlled by the demagnetizing field. = observed in these conditions is reported in Fig. 1. Experi-

We first introduce a mean-field interface model, in whichments were performed using a triangular wave form for the
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FIG. 1. The domain structure of F€0s,B15 amorphous alloy FIG. 2. Distributions of Barkhausen jump sizé® and dura-

observed by scanning electron microscope, using type-Il magnetigons (b) measured in an as-castf€0s,B;5 amorphous alloy for
contrast. The domains are separated by walls parallel to the magneifferent driving rates. The lines are the fit with=3/2—c/2 and
tization. This is the typical structure observed in soft ferromagnetica=2—c. The distributions have been obtained recordirg16°

materials. avalanches.

external field and different driving rates were employed.  cutoff of distributions scales ag~ 1/k and T,~ 1/k*? (Fig.
The signal amplitude distribution, directly related to the 3), wherek is proportional to the intensity of the demagne-

domain wall velocity, decays as a power fefn>> tizing field (see Sec. I). We obtain the same results control-
—1-9 ling k by changing the air gap between the sample and a
P(v)~v expl —v/vo), @ magnetic yoke. A complete account of these experiments

wherec is proportional to the field driving rate ang is the ~ Will be deferred to a forthcoming publication.

value of the cutoff. The avalanche sigéthe area under the | "€ Power spectrun$(f) of the noise does not show in
jump) and duratiorT distributions also decay as power laws general suph a marked robustness and is not described by a
and are very well fitted Byf2° frequency-independent exponent: at low frequehcy

P(s)~s "f(slsp), 7=3/2-c/2, 2)
Sox,

P(T)~T “g(T/Ty), a=2-c. (3

W IPPTI I I |

These laws have been tested for a variety of materials, such
as amorphougCo-base and Fe-ba$&® and polycrystal
(Fe-basgalloys®® In Fig. 2, we report the size and duration
distributions measured in an as-cas}{E®,4B.5 amorphous
alloy for different field driving rates. The experiments have
been performed using the setup described in Ref. 6. The
exponents agree perfectly with Eq8) and(3).

The dependence of the exponents on the field driving
rate” can explain the variability in the experimental values
reported in literature, since many experiments were per-
formed using a single linear driving rafeor a sinusoidal
one. Moreover, one should also be aware that the properties
of the noise and thus the scaling exponents and the cutoff can
change considerably through the hysteresis 1odpwhen
domain nucleation and coherent spin rotations become rel-
evant.

To test the effect of the demagnetizing field, we perform
experiments on strips with different lengths of an as-cast FIG. 3. (a) Distribution of Barkhausen jump durations measured
Fe,,Co54B15 amorphous alloy. The intensity of the demagne-in Fe,;Cas,B;5 amorphous alloy for different sample lengtlib)
tizing field decreases for longer samples. We find that therhe data collapse shows tHB§~k 5.
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~f¥
S(H)~f, ) h »

where ¢ varies betweeny=0.6 in Fe-Si, togy=1 in amor-

phous alloys>3132 After a crossover frequency, which de- «
pends onc, it decays with an exponent varying between

—1.6 and—2.57293132\When only a single domain wall is ”
present the power spectrum was found to decayf &s?

Moreover, it has been observed that the power spectrum am- ¥ —
plitude scales linearly wittc. From the point of view of M
applications, it is important to distinguish universal proper-
ties from material-dependent properties that could be rel-
evant to characterize the sample. FIG. 4. A domain wall separating two regions of opposite mag-
In toroidal or frame geometries the demagnetizing field isnetization. The discontinuities of the normal component of the mag-
practically absent and the magnetization process is quite difaetization across the domain wall produce magnetic charges.
ferent from the previous case. The hysteresis loop, instead of
showing an extended linear part with a stationaryfunctionh(r,t) of space and timésee Fig. 4 The equation
Barkhausen signal, displays a square form with a hugef motion for the wall is given by
Barkhausen jump: the domain walls undergo a depinning

X

transition as a function of the field. When the external field ah(r,t) SE{h(r,H)})

H exceeds the coercive field., the domain walls start to r K Sh(r.0) (6)
move with a velocityy that typically scales linearly with the '

field: WhereE({h(F,t)}) is the total energy functional for a given

H—H 5 configuration of the surface arld is an effective viscosity.
v~(H=Ho). 5 The motion of the domain wall is overdamped, since eddy

This law was observed about 50 years ago by WiIIiams(_:“.”e”tS cancel inertial effects, and thermal effects are neg-
Shockley, and Kittéf in a single-crystal Fe-Si frame, and ligible. _ _ _ _
later confirmed for a variety of other soft ferromagnetic W€ can split the energy into the sum of different contri-
materials®’ Before the onset of collective domain wall mo- Putions due to magnetostatic and dipolar fields, ferromag-
tion, one observes a series of Barkhausen jumps of increaf€tic and magnetocrystalline interactions, and disorder. In
ing amplitude? but to our knowledge a quantitative analysis the following, we will express the energy in IS units.

in terms of scaling exponents has never been reported.
A. Magnetostatic fields

lll. DOMAIN WALL DYNAMICS In the presence of an external figflalong the easy axis
The thermodynamic theory of ferromagnetic domains i of magnetization the magnetostatic energy of the system is
given by

due to Landau and Lifshit® who explained the presence of
domains by energetic considerations. In a uniformly magne-

tized specimen, the discontinuity of the normal component of Em=—2uoH Msj d2rh(F,t), ©)
magnetization across the boundary of the sample creates a

field that raises the total energy of the system. The creatioyhere M is the saturation magnetization per unit volume.
of domains decreases this energetic contribution at the price Another contribution to the magnetostatic energy comes
of a higher cost in wall energy. One can obtain a roughfrom the discontinuity of the normal component of the mag-
estimate of the number of domains by simply balancing thes@etization across the boundary of the sample. This generates
two terms. an effective magnetic field, the so-called demagnetizing
In order to describe accurately the magnetization processie|d, that is opposed to the direction of the total magnetiza-
it is necessary to analyze in detail the interactions present. lfion. In some particular geometrigs.g., a uniformly mag-
most soft ferromagnetic materials, due to the magnetocrysyetized ellipsoidi this field is constant along the sample. For
talline anisotropy or to the shape of the sample, the magney generic domain structure, an explicit expression for the
tization has preferred directions. In the Simplest Situationdemagnetizing field is often not avai|ab|e, but we expect ina
there is a single easy axis of magnetization and the domaingst approximation that the intensity of the demagnetizing
are separated by surfaces parallel to the magnetization, spafie|d will be proportional to the total magnetization. Consid-

ning the sample from end to erfdee Fig. 1. The domain  ering the field constant through the sample, its energy can be
walls are in general flexible, since local inhomogeneities cafyritten as

impose distortions of the surface, which would be flat in a
perfectly ordered system. In some particular geometry in ZMONMg(f inii )2
rh(r,t)| ,

which demagnetizing effects are minimized, it is even pos- Edam= v
sible to obtain a single domain wall.

We study the dynamics of a single 180° domain wallwhere the demagnetizing factdy” takes into account the
separating two regions with opposite saturation magnetizageometry of the domain structure and the shape of the
tions, directed along thg axis. If the surface has no over- sample andV is the sample volume. This term was also
hangs, we can describe the position of the domain wall by @onsidered by Urbackt al!’ The demagnetizing effect can

®
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be ayoided li)n s.ui'FabIe geometries, as in frame or t.oroidalI B 1 p2
specimens, but it is present in many common experimenta K(p,q)~—= ——,
siFt)uations. P g P (p.d) JO Vp?+Q?
where Q is a material-dependent constant, whose value
B. Dipolar interactions ranges from 5 to 10. This calculation shows that the qualita-
An effect similar to the one discussed above takes placBVe features of the interaction do not change if a finite mag-
inside the sample, where the local curvature of the surfacBetocrystalline anisotropy is taken into account.
can in general give rise to discontinuities in the normal com- For the analysis we will perform later, it is important to
ponent of the magnetization. We treat this effect introducingge”era“ze the kernel in any dlmensmn. It is straightforward
a “magnetic charge” density, which for a domain wall sepa- t0 show that the kernel id dimensions scales as
rating two regions of magnetizationd,; and M, is given
by K(@)

o=(M;—My)-n, (9)

(16)

af
—, (17)
Vaj+a;

whereq and ﬁl are the components @f parallel and per-
wheren is normal to the surface. This charge is zero onlypendicular to the magnetizatiéf.

when the magnetization is parallel to the wall. For small

bending of the surface, we can express the chargeses C. Surface tension and disorder

Fig. 4 The magnetocrystalline and exchange interactions are re-

SRt sponsible for the microscopic energy associated with the do-
(r, , (10) main wall. While a very sharp change of the spin orientation
2 has a high cost in exchange energy, a very smooth rotation of

where 8 is the local angle between the vector normal to thethe spins between two domains is prevented by the magne-

surface and the magnetization. The energy associated With:?}g%s;i!m dee?enrlrici);rgsmt/herhviigtilagcfhgeévgr?gi]nthvs;ﬁ 2’;’13 etosn—
distribution of charges is given by

surface energy. The total energy due to these contributions is
proportional to the area of the domain wall:

Edw=yof d2r V1+|Vh(r 1), (18)
Inserting the expression far in Eqg. (11) and integrating

twice by parts, we obtain where v is the surface tension. Expanding this term for
small gradients we obtain

o(r)=2M4C0s §=2M

o o(ro(r’)
E :_j dzrdzl”?. 11
d 87T |r_r,| ( )

E =f d2rd?r’h(r,t)K(r—r’)h(r’,t), (12) v .
‘ Eqgu= voSawt 3(’[ d?r|Vh(F b2, (19)
where the nonlocal kernel has the féfm
whereS,,, is the domain wall area. This is the typical term

o PYE ( 3(x—x')? associated with elastic interfaces.
K(r—r")= = fl 3 = (13 The disorder present in the material in the form of non-
2m|r—r’| \ Ir—r’| magnetic impurities, lattice dislocations, or residual stresses

é’ﬁ the reason for the jumps in the magnetization curve and for
its hysteretic behavior. All these forms of quenched disorder
are difficult to treat in full detail. In general, they can be

The interaction is long range and anisotropic, as can be se
by considering the Fourier transform

Momg p2 modeled by introducing a random potentwf,h), whose
K(p,q)= 1.2 \/ﬁ (14 derivative gives the local pinning fielg(r,h) acting on the
™ P=Tq surface. In the particular case of pointlike defects, the ran-

wherep andq are the two components of the Fourier vector.dom force is given by

In the preceding derivation we have implicitly assumed
that the medium is infinitely anisotropic, so that the magne- p(r,h)=—-U> 84r—r,)s(h—h)), (20)
tization never deviates from the easy axis. In practice, how- i
ever, the magnetization will rotate slightly from the easy axis
because of the field created by the surface charges. A Ioc%]
change in the magnetization produces additional volumeh
charges whose density is given by

here ;,h;) are the coordinates of the pinning centers and
is their strengttf>*1 After coarse graining at a scale larger
an the typical distance between the pinning centers, this
disorder becomes a Gaussian uncorrelated random noise.
In the case of the depinning transition it has been shown

that the particular form of\/(ﬁh) (i.e., random-bond- or
Neel'? has explicitly treated this effect obtaining an expres-random-field-type disordgiis not essentigl® On the other
sion for the energy in the form of Eq12) with a modified hand, long-range correlations in the pinning field are ex-
kernel pected to change the critical behavior of the system. Here we

p(r)=V-M. (15)
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choose the random potential so that the pinning field ionventional depinning transition. We will discuss in Sec. VI
Gaussian distributed and short range correlated: the cas&>0, Het. Here, we proceed as in Refs. 26 and 49,
. . .. considering an infinite-ranged interaction kernel in the equa-
(n(r,M)n(r',h"))=8(r—r")R(h—h"), (21)  tion of motion. To this end, it is convenient to first discretize

whereR(x) decays very rapidly for large values of the argu- Eq. (23):
ment. ) ] &h|(t)
In Eqg. (6) we neglected thermal effects. In principle one —:H+E_ Jij[hi() —hi(t) ]+ 5i(h), (24
should add an additional noise term to the equatfdmyt it o J
has been observed experimentally that temperature does NghereJ.. in Fourier space has the form
affect Barkhausen noise measureméfits. !

We can understand that thermal fluctuations are negligible Ap?

by a simple argument. We can roughly estimate the signal J(p,q)= ?+v0(p2+ q?), (25
induced by a magnetization reversal of a small part of a VP tQ

domain wall due to thermal effects as whereA= uoM2/472. The infinite-range model is the same

Hp( 1oAM)V~KT, 22) as in the elastic interface problem
whereH, is a local coercive fieldAM is the magnetization ah;(t) —
P 7 —h _
variation, andV is the volume involved. Assumingd, ot H+J[h=hi() ]+ 7i(h), (26)

~10"% A/m, which is about 1/100Qor less$ of the coercive _
field in a typical soft magnetic material, ant)AM~1 T, ~ whereh=X;h;/N, J=A+v,, andN is the system size. The
we getV~10 ' m3. If we consider a cubic portion of the mean-field behavior depends on the shape of the random
domain wall of sideL~10"% m, we obtain an induced flux Potential: for cusped potentials one obtains that the velocity
of the order of 10'° V, assuming an average domain wall Of the interface grows linearly fad>H,:
velocity of the order of 10Q.m/s. Even if we assume that
there are 19of such cubes in a cross secti@versing at the v~(H=Ho). (27)
same time and in the same directione would obtain a A complete mean-field analysis, including the form of re-
signal which is lower than the background instrumentalsponse and correlation function, can be found in Refs. 47 and
noise. 49.
To go beyond mean-field theory, Narayan and Fi&fer

D. Equation of motion have devised a functional renormalization group scheme that

allows one to obtain the value of the upper critical dimension

equation of motion for the domain w&f.In order to avoid a and an estimate of the scaling exponents. Their method is

cumbersome notation, we will absorb all the unnecessarfased.on an expa_nsion ar_ound mean-field theory, using the
factors in the definitions of the parameters. The equatio ormalism of Martin, Siggia, and Rose. They construct a

then becomes generating functional for the response and correlation func-
tions, introducing an auxiliary fielti(x,t):

Collecting all the energetic contributions, we obtain the

h(r.H =H—kh+ rV2h(r t
a voVoh(r,b) Z=j(dh)(dﬁ)exp{ij dd—lxdthF(h,n)], (28)
+fdzr'K<F—F'>[h<F'>—h(F)]+n(rih), where
ah(x,t
(23 F(h, )= ;t )—VOVZh(x,t)—fdd—lx'K(x—x’)
where the kerneK is given by Eq(13), k=4u,AMM2 % and
h=[d?'h(r’,t)/V. Apart from the nonlocal kernel, this X[h(x",t) =h(x,t)]= n(x,h) —H. (29

equation is similar to the equation proposed by Urbac
et al,}” which in its turn reduces whek=0 to an elastic
interface driven in quenched disorder. When the field is

slowly increased, the demagnetizing field provides a restor- ¢i=2 Jijhy, (30
ing force that keeps the motion around the depinning transi- )

tion. As we will show later, the nonlocal kernel changes thewhich represents the coarse-grained versioh,adnd a cor-

upper critical dimension, and hence the exponents, from thgasponding auxiliary fields. After averaging over the disor-
case of elastic interface. der one obtains an effective generating functional

r‘Following Ref. 26, we introduce a new field

AL T e = wocpensein o

The mean-field theory provides a good qualitative de-whose saddle point value corresponds with mean-field
scription of the depinning transitidfi=*® We will consider  theory. Narayan and Fisher carried out an expansion around
first the cas&k=0 andH constant, which corresponds to a the saddle point to obtain a correction to mean-field theory.
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difference being in the form of the interaction kerfé(q)
«qg? in Ref. 26. The effective action is in our cade
d-1

¢
drado,
2md 1 | |

In our problem everything works like in Ref. 26, the only / S

~S=j dd‘lxdtHfﬁ(x,t)JrJ

| d-1
AQ? !
X —ia)—i-&-i—voqz ¢(q,w) . . ) .
\/qﬁ-y qi FIG. 5. The interface moves between two pinned configuration
in an avalanche of size~[971"¢,

1 -
_ d-1 ’
2f d™ xdtdt g(x,1) the external field is increased monotonically and adiabati-

A cally the interface moves in avalanches of increasing size.
X Clvt—vt’'+ d(X,1)— d(X,1")]d(X,1), (32) The exponents describing avalanche distributions can be
compared with experiments on the Barkhausen effect. We
have to keep in mind that most experiments are performed
saddle point can be seen to be irrelevant ?Nith a nonzero applied field rate in the presence Qf a _demag-
To obtain the upper critical dimension-we rescale spac netizing field. We expegt, however, that the distributions at
_ bt b T A bl e+l ?|=HC should scale as in the case~0 andk—0.
and time,x=bx’, t=b"t", ¢=b°¢’, ¢=b ¢', and The avalanche size distribution close to the depinning
H=b Y"H’, requiring that the Gaussian part of the actionyansition scales as
remain invariant. Simple power counting gives

where the functiorC(x) is the mean-field correlation func-

3-d d—3 > P(s)~s "f(s/sp), (34
z=1, {=—— O=——, v=47 (33 where the cutoff scales a5~ (H—H.) Y and is related to
) . the correlation lengtls by
For d>3 all nonlinearities decay to zero at a large length
scale and the theory is Gaussian, while der 3 an infinite so~ 471 E (35)

set of nonlinear terms becomes relevant. The upper critical
dimension for this problem is therefod,=3. This result Wwhere( is the roughness exponeffig. 5. The correlation
differs from the one obtained for elastic interfaces, for whichlength diverges at the depinning transition as
d.=5, but agrees with the result for contact line depinrihg. -
The similarity between the two problems lies in the nonlocal §~(H—H¢) ™", (36)
I;igr;:sl that scales linearly with the momentum at long length, .-, implies

In order to apply these results to the experiments we have 1
to make sure that the linear part of the kernel dominates in —=p(d—-1+2). (37)
the length scales of interest. Long-range effects become rel- 7
evant for length scales larger thar-27vo/uoM32. Intypi-  The average avalanche size also diverges at the transition
cal ferromagnetsyu oM ~1 andvg~10"2 (in IS unity (see
p. 713 of Ref. 11 This impliesL~ 10 °-10"8 m, which is (s)~(H—H) 7, (38
of the order of the domain wall thickness. From this calcu- .
lation we conclude that the effect of the surface tension cai'here is related tor and o by
be neglected with respect to the long-range kernel.

Above the upper critical dimension mean-field results are y= (2—7) . (39)
valid, while ford=d_ we expect logarithmic corrections. To o

obtain the value of the exponents below the upper critical

dimension one should perform a functional renormalizatio n addition'al. §caling rglation can be obtained considering
group along the lines of Refs. 25, 26, and 49. This has beel{'® susceptibilits® which is proportional tqs) and scales as

done in Ref. 51 in the case of a kernel scaling linearly in d(h)
momentum space. However, in many experimental situations L~ (H—Hg) 1+, (40)
the dipolar interactions are effectively three-dimensithar dH

the magnetization is perpendicular to the plane of the filml.
and this analysis does not apply. The issues of the
Barkhausen effect and domain growth in thin films deserve 1+
further investigations that are beyond the scope of this paper. =

his relation together with Eq39) implies

2T d-1+ 0" 4

V. CRITICAL EXPONENTS FOR CONSTANT
APPLIED FIELD The other gxpongnt relevant for the Barkhausen effect de-
scribes the distribution of avalanche durations:
In this section we derive scaling relations between the
exponents that characterize the depinning transition. When P(T)~T “g(T/Ty), (42
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where the cutoff diverges at the transition ag~(H spectrum, while for high frequencies we observe & 1/

- HC)*U}_ From Eq.(36) and the relatiorT o~ £ we obtain deca_y‘?3 For low frequencies experiments find exponents
ranging from 0.5 to 1. This range of value lies between the

o=1/zv and 'ng ” _ e
predictions forys and . We considered the possibility of a
v(d—1)-1 crossover effect, since in the typical experiment the pickup
a=1+ Zv ' (43 coil is much smaller than the system size. Depending on the

) . domain structure and the coil size the experimental expo-
We note that all relationg35)—(43) are valid also for other nents could lie anywhere between the averaged and nonav-
interface problems provided<d. . eraged results. We tested experimentally this hypothesis,
For our case ind=3, which corresponds to the upper yarying the size of the pickup coil, but we noticed no
critical dimension, we havg=0, z=1, andv=1, which  changes in the low-frequency part of the spectrum. To obtain
inserted in the previous expressions give3/2 anda=2. 3 complete explanation of the power spectrum, we should
These exponents agree very well with experimental results igrobably take into account the presence of many interacting
the limit of adiabaticdriving (c—0). Moreover, we obtain  domain walls and magnetic aftereffect. In particular, the do-
that the average avalanche size scales with the duration asnain walls interact through demagnetizing fields that are
(S(T))~T? (44) long ranged and oppose the growth of the doma_ins. Th_e in-
' terplay betwen domain growth and long-range interactions
which has been recorded experimentally in Ref. 6. It is in-may give rise to the observed “anticorrelated” low-
teresting to compare these results with the exponents olirequency power spectrum.
tained for three-dimensional elastic interfaces. In that case
the e expansion giveg =2/3, z=14/9, andv=3/4 which
imply 7=1.25 anda = 1.43252652Sjmulations give slightly
different valuesy=1.3 anda=1.52In any case, the values In this section we study the effect of the driving rate and
are significantly lower than the experimental results. the demagnetizing field on the dynamics of the model. We
When the experiment is performed in absence of demagstudy here the infinite-range model, which di=3 should
netizing fields, as, for example, in frame geometries, it ishave the same critical behavior as the long-range model, but
possible in principle to measure the exponent close to thé is much simpler to analyze.
depinning transition. In this regard, several experiments, dis- As discussed in Ref. 17 the demagnetizing field has the
cussed in Sec. Il, support the mean-field prediction(H effect of keeping the interface close to the depinning transi-
—H,). Vergneet al? have observed the growth of the size tion. We will show that the intensity of the demagnetizing
of the Barkhausen jumps as the field is increased. From field is a relevant parameter controlling the avalanche char-
measurement of this kind it should be possible to obtain amcteristic length. Criticality is reached only when this param-
estimate of the exponent. We believe that similar experi- eter is vanishingly small. A finite driving rate changes con-
ments are crucial to confirm the presence of a depinninginuously the critical exponents, as in the ABBM modfl.
transition. We will numerically show that the infinite-range model re-
Finally, we discuss the properties of the power spectrunproduces the results of the ABBM model and we will present
of the velocity signal. A similar analysis, in the context of an argument explaining the reason for this behavior. This
flux line depinning, is reported by Taref al>® The height observation explains the success of the ABBM model in fit-
autocorrelation function scales as ting experimental data.
. . R The dynamics of the infinite-range model is described by
(h(r,Hh(r )~ t=t' |22 (Jr=r'|/|t—t'|*?). (45)  the following equation:

The scaling of the velocity autocorrelation function is ob-

VI. DRIVING RATE AND DEMAGNETIZING FIELD

tained deriving Eq(45) with respect to time, which gives a ahi(t) L e

power law decay with exponent 2(z—1). The power spec- gt H(t) —kh+J[h=hi(t)]+ 7i(h), (48)
trum of the velocity signal at some fixed space location

scales therefore like where the external fieléf(t) is increased at a constant rate

and the demagnetizing field ;= —kh has been included.
~ o —1_
Si(w)~w” y=1-2{z. (46) To show the equivalence with the ABBM model, we sum

When the velocity is averaged over the whole system weVveri both sides of Eq(48) and obtain an equation for the

expect instead total magnetizatiomm:
S(w)~w’, P=1—(2¢+1)lz (47) dm N
- — =Cct—km+ >, 7;(h) (49)
In mean-field theory' =0, which impliesy=1 andy=0. It at °© =

is interesting to compare these results with three-dimensional

elastic interfaces for whicky=0.1 andy=—0.65* The di-  where the time dependence of the field is now explicit. This
rect comparison of these values with experimental results igquation has the same form as the ABBM model provided
not straightforward due to the complexity of the measuredve can interpre; »; as an effective pinningv(m), with
spectra. We expect the exponents derived from the depinningrownian correlations. When the interface moves between
transition to describe the low-frequency part of the powertwo pinned configuratioWV changes as
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n Using scaling relations, it has been sh8whthat the ava-
W(m’')—W(m)= Z Az, (50 lanche exponents scale as a functiorc s
i=1
7=3/2—cl2 a=2-c, (57

where the sum is restricted to thesites that have effectively
moved(i.e., their disorder is Chang)éd'l'he total number of in agreement with experimenta| results.

such sites scales as-19"* and in mean-field theory is pro-  The scaling of the cutoff of the avalanche distributions
portional to the avalanche size=|m'—m| (since S  can be obtained as follows. F&e=0, the cutoff in the size
~1971"¢ and {=0). Assuming that the\ 7 are uncorre- istribution scales wittH as sy~(H—H.) ¥, and simi-
lated and have random signs, we obtain a Brownian effectivgyrly for the distribution of durations. Whek>0, the inter-

pinning field~® face experiences an effective figt—kh which keeps it on
N n_ , average below the depinning transition. We assume that the

{IW(m’) =W(m)|%)=D[m’—m, (52) distance from the critical poirttl. is of the order of

whereD quantifies the fluctuation ikV. The Brownian pin- o

ning field, observed experimentally in SiFe alloys and used AH=H—-H ~kAh, (58

in the ABBM model to describe the motion of the domain —

wall, is not due to a long-range correlated disorder present ivhereAh is the average variation of the height correspond-

the material. It is instead the result of the collective motioning to a variationAH in the field. SinceAh~(s)AH, the

of the interface and therefore represents onlyedfiective  average avalanche size scales & ®hich implies

descriptionof the disorder.

The main predictions of the ABBM model can be ob- So~k 2. (59
tained as follows. We derive E@49) with respect to time : e
and definey =dnvdt: Using similar arguments we can also show that the cutoff of
avalanche durations scales Bg~k ! in mean-field theory.
dv . These results do not agree with the experiments presented in
E=c—kv+vf(m), (52 Sec. Il. We will show in the next section that they are a

peculiarity of mean-field theory and are not obeyed by the
where f(m)=dW/dm is an uncorrelated random field. Ex- €quation ind=3.

pressing Eq(52) as a function ok andm only, Finally, we note that avalanches are observed only for
small driving rates¢<<1). Forc>1 the motion is smoother

dv ¢ with fluctuations that decrease asncreases, in agreement
gm= 7 ~k*f(m), (53 with experiments®
we obtain a Langevin equation for a random walk in a con- VII. SIMULATIONS

fining potential, given byE(v) =kv —¢ In(v). In the limit of

largem, v is given by the Boltzmann distribution A. Infinite-range model

We simulate the infinite-range model in order to confirm

P(v,m—x)~exd —E(v)/D]=v exp —kv/D), (54 its equivalence with the ABBM model. We first integrate

- numerically Eq.(48), using the Runge-Kutta method and a
wherec=c/D. random potential composed of parabolas with cusp
The distribution in the time domain is obtained by a singularities*®?® We study the velocity signal as a function

simple transformation and it is given by of the driving ratec, and find that on increasing, the dy-
c o1 namics crosses over from avalanche-dominated motion at
B _ k'v® "exp(—kv/D) low & . ~ .
P(v)=P(v,t—ow)= ) (55) ow ¢ to a smoother motion at larger(see Fig. . We are
D°T'(c) able to integrate the model only for relatively small values of
. : . N; therefore it is not possible to observe the scaling of ava-
Equation(55) predicts that the domain wall moves at con-|anehe distributions, which appear to be dominated by finite-
stant average velocityy ) =c/k. The relative fluctuations of sjze effects.

the velocity diverge in the adiabatic limit—0: We then introduce an automaton version of the infinite-

range model, which can be simulated for much larger system
V(v?)—(v)? _ \/E sizes, and study it for different values ofandk. From the
(v) c’

results of the ABBM model, we expect that the velocity dis-
tribution is described by Eq55). In the limit c—0, the

This divergence is due to the singularitylatv velocities  cutoff in the exponential iso=k/D. We extract from the

of Eq. (55 and reflects the presence of a depinning transivelocity distribution[see Fig. 7a)] and we plot it for differ-

tion. Forc<1 the velocity distribution is a power law with ent values ok in Fig. 7(b). As expected, we observe a linear

an upper cutoff that diverges a&k—0. In this regime, the decay and we find a valuell~1.3=0.1. We then compute

domain wall moves in avalanches whose size and duratiornthe avalanche size and duration distribution in¢heO limit

are also distributed as power laws. The avalanche size distras a function ofk. The data collapse perfectlgee Figs. 8

bution is directly related to the distribution of first return and 9 using the scaling forms predicted in the previous sec-

times of a random walk in the confining potentia(v). tion:

(56)
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FIG. 6. The velocity of the interface as a function of time, for .u"%%
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Next, we simulate the model as a functionatnd find 10" . . - . L ) ,
scaling exponents that depend linearly on the driving rate. e e e e o

The avalanche size distribution shows a power law for more S o o
than four decades. Therefore, it provides a reliable estimate FIG. 8. (a) The distribution of avalanche sizes in the infinite-
of ¢, using the relatiomr= 3/2—c/2. We computer from the

distribution as a function of and observe a linear behavior
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FIG. 7. (a) The distribution of velocities in the infinite-range
automaton model as a function kffor N=32696,c=0. (b) The
scaling of the W, cutoff with k. The line is a fit with slope D

=1.3.

range automaton model as a functionkofor N=32696,c=0. A

line corresponding tor=3/2 is plotted for comparison(b) The
corresponding plot, using scaled variables, showing excellent data
collapse.

r=3/2—¢c/(2D), with 1/D=1.2, which is consistent with
the scaling of the cutoff of the velocity distributidrrig.
7(b)]. The value ofc obtained above can then used to fit the
velocity and avalanche duration distributions and the results
are consistent with the theofgee Figs. 10 and 11

Finally, we compute the power spectrum for different val-
ues ofc. We observe a 1f decay at large frequency and a
constant part at low frequencies. The peak amplitude scales
linearly with ¢ as in experiment>

B. Long-range model

A numerical integration of Eq23) poses serious numeri-
cal problems due to the presence of a long-range nonlocal
kernel. Therefore, we study an automaton version of the
model, which should belong to the same universality class.
In the automaton model the height is discretized and the
local velocity can assume only the values 0,1. For each
configuration of the system, we compute the local force ac-
cording to Eq.(23). Periodic boundary conditions are im-
posed on the lattice and therefore we must sum the nonlocal
kernel over the images as discussed in Ref. 56. To model the
disorder, we associate with each site on the interface a ran-
dom number chosen from a Gaussian distribution.

When the local force on a site is larger than zero, the
corresponding height is increased by one unit and we choose
a new value for the disorder. Care must be taken in choosing
the values of the parameters, in order to avoid instabilities
present in the discretization of the kerrél.
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FIG. 9. (@ The distribution of avalanche durations in the which yields as~? decay in mean-field theory. Similarly, for
infinite-range automaton model as a functionkofor N=32696,  the integrated duration distribution we findra® decay. The
¢=0. A line corresponding ter=2 is plotted for comparisor(b) simulation results confirm the predictions of the the(sge
The corresponding plot, using scaled variables, showing excellerftig. 12).
data collapse. Next, we study the model in the adiabatic limit-¢0) as
a function ofk. We compute the distribution of velocities
(Fig. 13 and avalanches sizéBig. 14 and durationgFig.

][5) as a function of the demagnetizing fiekd The scaling

a.lbOUt the upper critical d|r_nen3|on. We increase t_he ?Xtemaexponents are in agreement with the results of the depinning
filed adiabatically up td.. (i.e., when the interface is pinned transition in the mean fieldr—=3/2 anda= 2

we increase the external field until the most unstable site However, the scaling of the cutoff of the distributions
reaches the threshold for movemerdnd we compute the  y,eq not agree with the predictions of the ABBM model. We
integrated avalanche size distribution. This distributionsq insteads,~k~* andTo~k~ 2. This behavior persists in
scales as simulations performed at>0, where the exponentand «
still scale withc as in the ABBM model. To obtain a good
data collapse, the scaling functions in E¢80) and (61)

We consider first the cade=0 to confirm the predictions

HC
Pint(s):J dHP(s,H)~s~ (7", (62)  have to be replaced by
0
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FIG. 10. The distribution of velocities in the infinite-range au-  FIG. 12. The integrated avalanche size distribution in the long-
tomaton model as a function af for N=32696,k=0.0075. The range automaton model fdr=0 andL=61. A line with slope
lines are the theoretical predictions-t. —2 is plotted for reference.
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model forc=0 andL=61. A line with slope—1 is reported for

reference. In the inset we show the linear-logarithmic plot of the

same distribution in order to show the exponential cutoff.
P(s,k)~s™%7gy(sk), (63)

P(T,k)~T 2g,(Tk?), (64)

which are the scaling forms obtained experimentdfge
Sec. I).

. . . 10
The precise reason for these results is still not completely °
clear. Recent simulations of a model similar to ours, studied .
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FIG. 14. (a) The avalanche size distribution for=0 as a func-
tion of k for the long-range automaton model with=61. A line
with slope —3/2 is reported for referencéb) The corresponding
plot, using scaled variables, showing excellent data collapse.
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FIG. 15. (a) The avalanche duration distribution as a function of
k in the long-range automaton model for=0 andL=61. A line
with slope— 2 is reported for referencéb) The corresponding plot,
using scaled variables, showing excellent data collapse.

in the context of dry friction, suggest that the effective pin-
ning field for thelong-rangemodel is not Brownian?® In

Ref. 59 the cutoff of the distributions was related to the
shape of the force distribution, but it is not clear if a similar
analysis can be applied directly to our case, due to the dif-
ferent driving mechanism employed in Ref. 59. A similar
discrepancy between mean-field results and the behavior at
the upper critical dimension could be relevant also in other
situations?®

VIIl. DISCUSSION

In this paper we have studied the dynamics of a flexible
domain wall as it moves through a disordered medium. We
have derived an equation of motion, taking into account the
effect of different energetic contributions. A crucial role is
played by dipolar interactions that give rise to a demagnetiz-
ing field and to a long-range interaction kernel. In absence of
a demagnetizing field, the domain wall shows a depinning
transition as a function of the field. The long-range interac-
tion kernel set the upper critical dimensiondg= 3, so that
mean-field scaling should describe the experiments on the
Barkhausen effect.

The predictions of the present theory compare well with
the distribution of Barkhausen jump durations and sizes and
with the velocity distribution. In particular, we discuss the
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linear dependence of the exponents on the field driving The recent theoretical revival of the study of the
rate®3132and the scaling of the cutoff with the demagnetiz- Barkhausen effect is mostly due to the claim of Ref. 4 that
ing field. The agreement between theory and experiments ihis phenomenon is an example of self-organized criticality
in both cases quantitative. In toroidal geometries, when th¢SOQ.5 This claim was challanged in Ref. 22 which, based
demagnetizing field is zero, we predict a linear dependencen the results obtained for the RFIM, concluded that scaling
of the domain wall velocity on the applied field, in agree-in the Barkhausen effect is due to the presence of a “plain
ment with several experiments on soft ferromagneticold” critical point. The question concerns the origin of the
materials’’ cutoff in the power law distributions. According to the analy-
We show that the phenomenological model introduced bysis of Refs. 20—22, the cutoff would be determined by the
ABBM (Ref. 15 is equivalent to the infinite-range domain variance of the random-field distribution. As far as we know,
wall. The Brownian correlated random pinning field used inno experimental evidence of a critical point of this kind has
Ref. 15 and experimentally observed in Ref. 2 is shown tdeen reported in the literature.
arise in the effective description of the motion of the center We have experimentally observed that the cutoff of the
of mass of the domain wall. This result clarifies the origin ofdistributions is determined by the demagnetizing field, in
the correlated disorder which could not be explained as agreement with our theoretical analysis. In our model, the
simple result of the correlations between the impuritfes. critical point is reached by fine-tuning to zero the driving
While the infinite-range model—and therefore the ABBM rate and the demagnetizing field, performing the lindts
model—quantitatively explains many features of the—0 andk—0 in the given order. It is interesting to remark
Barkhausen effect, it does not give the correct dependence ahat the picture revealed by our approach is similar to the
the demagnetizing field, which is instead provided by thebehavior observed in sandpile mod®isyhich are the pro-
complete three-dimensional description. totypical SOC models. As was pointed out in Ref. 62, criti-
The power spectrunof the Barkhausen noise does not cality in sandpile models arises by the fine-tuning to zero of

show a marked universality and therefore cannot be come driving rateh (i.e., the number of grains added to the
pletely explained by our approach. In particular, we obtain &ystem per unit timeand the dissipatior (the fraction of
1/f? decay at large frequencies, which has only been obyrain lost in a “toppling” event, which also determines the
served in experiments with a single domain vfaBther ex-  cytoff of the avalanche distributions. The analogy between

perimental results seem to suggest that tgéeé%ponent chang@g Barkhausen effect and sandpile model is evident if we
when the number of domain walls increaSes>Moreover, identify ¢ with T andk with e.

the magnetic aftereffect, aqd flux propag'ation could also The present approach to the Barkhausen effect, based on
affect the results. To obtain a quantitative explanation Ofthe depinning of a ferromagnetic domain wall, applies to

these results, one should analyze the dynamics of MaY ree-dimensional soft ferromagnetic materials, which are

Coﬁ_ﬂed domain waflls. d . s should affect th frequently used in experimental studies of the Barkhausen
€ presence of many domain walls should altect Meect For hard ferromagnet and rare earth materials, where
power spectrum, but not the avalanche distributions. When

q : I starts t the d tizing field gtrong local anisotropies prevent the formation of straight

omain wall starts to move, the demagnetizing field in-y. ;. walls, a different approach is needed. Disordered
greases, creating a larger pinning force on the other Wa"Ss in models like those presented in Refs. 20—22 seem more
Therefore, on short time scales the interactions between t

I el hi h lanche distrib propriate. We did not discuss here the issue of domain
rivoan s}oa;rg I;irr? elgagct)'m';?; t\,vgnrgafggé tvvﬁha;i a(:ricmznt!SStr'erL_'ﬁucleation and growth in thin film&wo-dimensional ferro-
formed with r%any domain Wallsg P P magnets Depending on the material pfopertles and the

) . sample geometry, the domain walls are either fractal or self-

SFine as in our case. In the second case, we expect that the
raised in the literature about the Barkhausen effect. The Pk mework of the depinning transition cou'ld be reﬁevant
tial reproducibility of the Barkhausen signal observed in re- '

cent experiment§*+®9is explained by the quenched nature
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