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The problem of higher-order ¢ anisotropies is solved by exploiting the addition theorem for spherical
functions. A key advantage of the present approach is the orthonormal character of the expansion of the
magnetic energy that simplifies the formalism and makes possible the treatment of nonideal morphologies as
well. Explicit expressions for second-, fourth-, and sixth-order anisotropies are obtained for ideal bulk of fcc
and bce symmetry as well as f(901), (110, and(111) surfaces with nearest-neighb@®N) Neel interactions.

The systematic examination of the pair model involves partition by species of inequivalent sites, interaction
spheres, and orders in the multipole expansion. It enables us to to treat also next-nearest-(eiNb@air
interactions to the same high orders as the NN ones. The analysis sheds light onto the peculiar cases of
bcd100) and bc€l1l) surfaces where one finds no symmetry breakimg second-order contributionsith

NN interactions only. With the extension to NNN's, it is demonstrated thatlddy surfaces exhibit a
particularly high symmetry and acquire no second-order anisotropy contributions from NNN interactions,
whereas the latter induce a second-order symmetry breaking in tkE0Bccase [S0163-18208)05734-9

I. INTRODUCTION AND BASICS OF THE MODEL I=0 term is skipped since it is angle independent, while
uneven values off are ruled out by the assumption that the
Since Nel's pioneering work on surface anisotropthe  interaction is invariant under reversal of the macroscopic
expansion of magnetic anisotropy contributions into Leg-magnetization 1< —M). Consequently, the sums over
endre polynomials has become a widely used tool in surfacdyelow involve positive even values only. The coefficients
thin-film, and interface magnetisitsee, e.g., Refs. 238 a(r;;) parametrize the atomic origin of the anisotropy in
There are many successful applications oeNetheory to  Neel's model. The total interaction energy is
scientifically and technologically important problems such as
in-plane and out-of-plane anisotropies in low-symmetry sur- 1
faces, but most papers are based on lowest-ordesl Ne UZEZ Uij » @)
anisotropies. Higher-order econtributions have attracted

much less attentioh? which is largely due to their presum- where the prefactor takes care about avoiding double count-
baly very small magnitude. However, there can be no generghg, whilei andj run over all interacting sites. The system-
justification for the neglection of higher-order anisotropies,atic examination of the pair model of magnetic anisotropy

particularly since competing anisotropy contributions mayinvolves partition by species of inequivalent sites, interaction
give rise to small or zero lowest-order anisotropies. Further-

more, it is difficult to extend first-principles calculatidris \ M N M
to higher-order anisotropy contributions, so that higher-order
Neel considerations are a useful complementary tool in an-
isotropy theory.

The basic assumption of ks theory is that the mag-
netic anisotropy energy of a uniformly magnetized ferromag-
net depends on the angle between the uniform magnetization
direction and the coordination vectorg=r;—r; between
atomic moments located at andr;. The total anisotropy
results from summing over pair interactions that are cast in (@
the form of a cylindrically symmetric multipole expansion:

T

FIG. 1. (a) The vector connecting sitesandj makes an angle
aj; with the vector of macroscopic magnetizatibh The pair in-
U= Z a(rij)Pi(cos ajj). (1) teraction is assumed cylindrically symmetric abbut (b) The vec-
| tors from (a) when referred to a specified frame of referenég:
] ) and ¢;; are the polar and azimuthal angles for the pair vedsor,
Here, rj=|r;|, a;; is the angle between;; and M [Fig.  and® are the respective ones ft. The connection of these with
1(a)], while P|(x) are the Legendre polynomials of degtee the anglea;; between the two vectors is provided by the spherical
(see, e.g., Ref. 20The relevant facts about the special func- addition theorem that gives rise to the addition theorem for the
tions used in this paper are summarized in Appendix A. The egendre functiongcf. Eq. (8)].
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spheres, and orders in a multipole expansion. In particulaiSec. Ill), but this is certainly not a general property to be
one must always distinguish betwekatal and overall an-  expected to hold in other geometries or to further coordina-
isotropy coefficients when there are inequivalent magnetition spheres. With fdd10 surfaces, there are two inequiva-
sites!* For this reason we concentrate on the interaction enlent sites already with respect to the nearest shell.

1 1
U(i):—z uij:_z > a(rij)Pi(coseyj). (3
2 ] 2 j |

ergy per site i In Eqg. (6), in each ordel and in each coordination sphere
separated from the purelstructural part specified by the
sum over the coordination angles; . Here we are not inter-
If we assume that there apeinequivalent sites, then the total omenological parameters. There are, however, models such
magnetic energy per magnetic site can be written as as the point-charge mod@kand the screened-charge mddel
U(w) (4) variety of magnetic materialsee Sec. Ill C 2 As a rule, for
’ R,=2.5 A the parametesi,(R,) is of the order of 1023 J,
with U(.'“) given by Eq.(3). Here, N, is the number of an order of magnitude. Note that E&) is not restricted to
magnetic atoms of thath speciegcharacterized bYJ(1)]  igeal crystals but applies also to edges, steps or local vacan-
Changing the order of summation in E€), which is  ~ aApqther important problem of general character is the re-
mathematically harmless as long as one considers suffiziion petween Nel's model and phenomenological expan-
of the interaction energy for a given siténto contributions
from confocal coordination spheres: U=V(K, si? ©+K, sin ©+K; sin 0), 7)
Usually, only the first neighboring shell of radi& is con- ~ @Xis of symmeiry. Unfortunately, expansions of this type are
sidered. However, there are good reasons to keep the NNRgither orthogonal nor complete on the unit sphere of mag-
there is only a slight increase of about 15% as one goes ov&f!ves to orthonormal expansichsnto anisotropy coeffi-
cients. We shall use a number of low-indexed surfaces to
ally, in Sec. Il we find that there is no symmetry breaking atderive explicit results and to demonstrate the predictive
bco100) and bc€lll) surfaces in the sense that the first power of the method. The relation of the set of anisotropy
bulk, and are not uniaxial-like of ordér=2 as it turns out to Appendi>'< C. . . . .
be the case with the other surfaces we consider. In Sec. I, W€ wish to emphasize at this place that consideration of
account for NNN pair interactions as well. Accordingly, 2Nd magnetoelastic effects lies beyond the scope of this pa-
keeping the first two shells of a given site per. The inclusion of such effects into &lss model should

the microscopic interactiomepresented by tha,'s has been
ested in the atomic origin of thg’s but treat them as phe-
u P N, that may be used to estimate &le parameters for a limited
=2 (%
whereas higher-order NN parameters are smaller by at least
andN;+Ny+ - - - +N,=N is their total numbet? cies as well.
ciently short-ranged pair interactions, one obtains a partitiojyns such as the uniaxial expression
U@ =U,()+Uy )+ +Ug(i)+ - ) where® is the angle between the magnetizatidnand the
shell of radiusR, , t00. In bce crystalR, (R, =1:13/2, i.e., netization directiong®>1® In this work we shall restrict our-
from the first to the second coordination sphere. Addition-
nonvanishing contributions are of order 4, as in the cubic coefficients to the set of anisotropy constants is discussed in
we extend the calculation for these two peculiar cases to'€ Symmetry breaking due to the often non-negligible strain
follow the lines suggested in Refs. 7 and 8.

U()=U,(i)+Uy (i)
IIl. CALCULATION AND RESULTS

1 I shell
= EE a|(R,)[ > Pi(cosaj) In this section, we evaluate the contributions from the first
! J (NN) coordination shell onlythe first term in Eq(6)]. The
a(Rp" & extension to the secon®NN) shell is straightforward and is
> P(cosa;)}. (6)  presented in the next section for 80 and bc¢l1l) sur-
a(R) 7 : ] faces.

Obviously, the price to be paid for getting more detailed
information from Nel's pair model is the necessity to con-
sider more interaction parametdig} that have to be inde- To proceed with the expression from E@), one uses the
pendently determined by an atomistic theory and/or experiaddition theorem for Legendre functiotfs:
ments. A useful estimate is thdfr a given coordination
sphere the number of phenomenological parametexs is Pi(cosa;j) =P(cos®)P,(cos 6;;)
less than, or equal to, the product of the number of consid-

A. General aspects of the procedure

ered orders il times the number of types of inequivalent (I—=m)!

site, and it should be kept in mind that the latter number T2 (I1+m)! Pim(c0S @) Pin(C0S 6;)
itself depends on the coordination sphere consid€réhr

example, for both bdd00 and bc¢111) surfaces there is X(cosm® cosmeg;;+sin md sin mey; ),
only one type of site with respect to the fi(®N) shell and (8)

two types of site with respect to the secdiMNN) shell. The
contributions of these two types turn out to be identisgle ~ where the anglefFig. 1(b)] are specified by
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M=M(sin ® cos® e+sin® sind g +cosO e, P /N
Kim= 2, (W")Gf;)(m, (18)
and u=1
ry="ri;(sin 6;jcos ¢;; e +sin 6;; sin ¢;; g,+cosb; e,). (S)=§ & oo 10
, . . . Kim= N im (AL (19
The P,,'s are the associated Legendre functions of the first n=1

kind, wheread,,(x)=P,(x) are the usual Legendre polyno-
mials as introduced in Eql) (cf. Appendix A. Inserting
Eq. (8) into Eq.(6) yields, after a straightforward calculation,

In other words, the Na macroscopianisotropy coefficients
{k} are weighted averages of the site dependectl an-

isotropy coefficient{G(u)} (u=1,2,...p, p is the num-
ber of inequivalent types of sité!

U(i):EI G(i)P,(cos®)

B. Results for bce and fcc symmetries

The pair-model anisotropies for body-centered-cubic
(bco and face-centered-cubidcc) crystal symmetries fol-
low from Egs.(10)—(15) and (16)—(19). Here we consider
Sy ] ideal bulk crystals and the{i.00), (110, and(111) surfaces.

+§|: mz«l Gim(I)Pim(cos®)sinm®. (9 More precisely, we derive the anisotropy eneldyi) per
magnetic site up to sixth order in
The subscriptsd) and (s) stand for cosine and sine, respec-  To this end, it only remains to evaluate for2,4,6 the
tively. All microscopic details about structure and interactionstructure factor§S} and, hence, the local anisotropy coeffi-
are contained in the quantiti€,,(i): cients{G} in Egs.(10)—(15) for | =2,4,6. The frame of ref-
erence is shown in Fig. 2; the polaz)(axis is chosen out-

+E Z G{9(i)P,m(cos®)cosmd

1 : wards perpendicular to the surface. For comparison, the bulk
Gii)= §a|(R|)S,(|), (10 structure factors have been computed in the same frames,
i.e., thez axis is perpendicular to the plan€00), (110), or
_ (I—m)! . (111), respectively. This means that for the bulk neighbor-
G,(ﬁf(|)=a|(R|)(| e~y aa), (1) hood one must additionally consider the sites that are mirror
' reflections of the hollowbelow-the-surfaceneighbors with
(I— respect to the surface in Fig. 2. The required structural infor-
<5>(|) a|(R|)(| e 3(5 (i). (12 mation is presented in Appendix B; Tables | and Il record the

results for the surface and bulk cases, respectively.

In the above, to facilitate computation and tabulation, we At the surface(Table ), there aretwo distinct surface
have introduced the proper structural sufBg,} as contributions in the fcd 10 case that are labeledd andB in
the last two columns, i.e., a case per atom in the first and

I shell second layers, respectively. This can be recognized in Fig. 2
S(i)= 2 Pi(cos 6;;), (13) where each atom in the second layer misses a neighbor in the
i topmost layer. In the terminology of the introductory chap-
ter, there are two inequivalent sites for ftt0) surfaces al-

o) ' shell ready with respect to the NN shell.
Sm(i)= EJ: Pim(cos 6)cosmé;; , (14 In the bulk caséTable II), the prefactor of two in the first
two columns, concerning b€o00) and bc€lll), is used to
I shell stress the fact that there is a simple relation between the bulk
S(r?q)(i): E Pim(C0s 6;;)sin mg;; . (15) and surface coefficients in the chosen frame of reference,

namely, the anisotropy contribution of a bulk atom is twice
that of a surface atom. This proportionality correlates with
Now, since the magnetization degrees of freedém®)  the absence of geometrical symmetry breaking in these
have been factored out in E(P), the energy per magnetic cases, so that no second-ordés=@) uniaxial anisotropies
site from Eqgs.(4) and(9) is are generated at these surfaces. The quest for lowest-order
symmetry-breaking contributions in the peculiar cases of
bcd100) and bc€111) surfaces will be continued in the next
section by considering the NNN pair interactions. In all other
cases, considered in this section, the symmetry-breaking re-
sults in the emergence of uniaxial contributibhand in the
+2 X iy Pim(cos®)sin md, (160 impossibility to reduce the difference between surface and
bomet bulk to a simple proportionality.

—2 ki P(cos®) +2 2 k{SPm(c0s @) cos md

where
C. Analysis of the results

=3

n=1

_M) Gi(), (17) In Tables | and I, a nonzero azimuthal anisotropy contri-
N bution S;,, whose indexm is not zero indicates that the re-
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6 related problems have been discus¥bait the surface, how-
2 I 2 1 ever, with the exception of the no-symmetry-breaking cases
bcd100 and bc€lll) discussed above, one has to tackle
7 5 minimization problems that are considerably more compli-
3 4 cated than the corresponding bulk ones. For(#06 and
) 3 4 fcc(112), the difficulty enters with the uniaxial | €2,

m=0) term only, whereas the b@l0 and fc¢110) cases
involve a twofold azimuthal anisotropy contributioh=(2,
m=2) coupled to the uniaxial ond £ 2, m=0). Thus, the
effective symmetry of the magnetic anisotropy energy is
very low. This signals the existence of cases where the equi-

librium magnetization is neither perpendicular nor parallel to

the surface. Moreover, for such low-symmetry cases there

would arise nontrivial thickness- or temperature-driven spin
(bec (OO1) . fee (00D reorientation transitions in very thin ferromagnetic films

where the surface contributions dominafe?! In these tran-
sitions, the magnetization would proceed from its initial easy
axis to its final orientation without remaining in a fixed plane

all along.
2 3 2 The restriction to nearest neighbors brings about the spec-
tacular consequence that all possible ratios between the an-
| 4 | isotropy coeficients of given ordérare independent of the
4 microscopic energy parametdig}. Note that this is true for
both sets ofocal (G) andtotal («) anisotropy coefficients.
3 @ 45 @ For instance,
bee (111 foe (111 Gim(i) _(I—m)[S7(i)

G 2armi s | 20

6 yv1 with the sums in the brackets given in Tables | and Il. Such
4 3 {001} ratios have been used in experimental bulk magnetism to
analyze anisotropy contributioff$3and can be of interest in
I the context of thin-film and surface magnetism as well.
1 5 [(1TO0]> Since there are only even-order élecontributions [
5 x =2h), the maximal numben, ,, of total anisotropy coeffi-
cients{ky} is given by
bee (110) fee (110) X
FIG. 2. Atomic environment of surface atoms in cubic geom- Nmax= h+22 (2s)=h(2h+3). (21)
etry. Thex andy axes lie in the plane of the figure and are indicated s=1

by arrows. Thez axis is outwards perpendicular to the plane of the tv th ¢ t5 14 27 ffi
figure. Black circles denote sites at the surface, hollow circles stang:onsequen Yy, there are at most », » Or nonzero coetil-

for nearest neighbors below the surface. For the bulk calculation, iﬁ:ients forl=2,4, or 6, respectively. The same estimate holds

each case one has to consider also the mirror reflections of tHF €ach species of local coefficief®(u)}. In fact, there is
hollow circles with respect to the surface. some redundance in E{R1) and there exists a minimal set

of coefficientsn,;, that is determined by the symmetry of
the surroundings. Hence, what one finds in Table Il are just
spectivez axis is anm-fold symmetry axis for the overall two groups of anisotropy coefficient@nd not six as the
anisotropy energy (®,®) of Eq. (16). Going down a given Nnumber of columns might sugggsbne per bulk bcc and
column, in any particular case one can easily recogniz®ulk fcc, respectively. Within each group, along each row in
whether the azimuthal contribution is of the same omter the table one finds the same bulk anisotropy coefficient,
for all I. If this is the case, the eventual determination of thecOmputed in three different frames of referefit@he mini-
resultant easy axis of magnetizatio® ,®,) by minimiza- mal number of coefficients,,;, to orderl =6 equals four for
tion of U [Eq. (16)] or F, [Eq. (22)] is trivial, since the both bcc and fcc bulk magnets.
resulting trigonometric equations for the two magnetization
degrees of freedom®,®) are decoupled. By inspection, Ill. DISCUSSION AND CONCLUSIONS
this is the case only for b¢t00 and fc€100 where thez
axis is an axis of fourfold azimuthal symmet§*°In all the
other cases, there are differemts for different!l’s (m=<l), A question of particular interest is the atomic origin of
so that the minimization problem leads to untrivially coupledthe pair-potential interaction paramet¢ss}. Two examples
equations for the determination of the equilibrium valuesare the results fom, within the point-charge mod€l and
(0,,D,). In the bulk, this situation is not entirely new and the screened-charge modél.Both are based on the

A. Atomistic origin of Néel's parameters



PRB 58 HIGHER-ORDER AND NEXT-NEAREST-NEIGHBOR NEL ... 6309

TABLE I. Structure factorS} for bcc and fcc surfaces in the frame of reference defined in Fig. 2. Cf.
Egs.(13)—(15). Only nearest-neighbor contributions are listed here.

Sm bca100 bca111) bca110  fcc(100 fce(111) fcc(110-A fcc(110-B
S, 0 0 -1 -1 -3/2 -1/2 -1
S 0 0 2 0 0 3 0
S, —14/9 28/27 41/36  —1/8 41/24 19/32 -9/16
S 0 0 —85/3 0 0 —165/8 —105/4
S 0 —560y2/9 0 0 0 0 0
S 0 0 0 0 —35y2/2 0 0
S —560/3 0 -910/3  -315 0 105/4 -315/2
Ss 8/9 128/81  —149/72 —59/32 —149/48/2/2  427/256 379/128
) 0 0 —525/36 0 0 5775/128 4095/64
) 0 4480\2/27 0 0 0 0 0
) 0 0 0 0 —455\2/2 0 0
s 2240 0 2135 16 065/4 0 —76545/32 —61425/16
s 0 197 120/9 —36 190 0 61215 571725/16 405 405/8

assumptions of rigid spin-orbit coupling in rare-earth ionswhile q~2,3 A ! is the inverse Thomas-Fermi screening
and electrostatic crystal-field interactions. By comparinglength?® An extension of this approach tal3netals is given
the point-charge and screened-charge anisotropyy Ref. 26.

predictions with those of Na's approach, one obtains
the parametersa,(R)=—Q,(eQ4mey)(1/R%) or a,(R)
=—Q,(eQlimey) (e R (1+gR+30°R?), respec-
tively. HereR is the distance between the nearest neighbors, It is useful to compare Eq16) with the complete and

Q is the crystal-field charge of the neighboring atd@y, is  orthonormal expansion of the magnetic anisotropy energy
the electrostatic quadrupole moment of the rare-earth atonf;A(®,®) into spherical harmonics that can be writte’as

B. Relation to general anisotropy-energy expansions

TABLE II. Bulk structure factorgS} for bcc and fcc magnets computed in the same frame of reference
(Fig. 2. To emphasize the choice of tkeaxis, we use the Miller indexation. As in Table I, the coefficients
that are identically zero for all cases have been omitted. Compard Ejs(15). Only NN contributions are

listed here.

Sm bcec (100 bca111) bca110 fcc(100) fce(11)) fcc(110

S, —2X(14/9) 2% (28/27) 719 —7/4 716 7/16

s 0 0 —140/3 0 0 —105/4

s 0 —2X(560y2/9) 0 0 0 0

S 0 0 0 0 —70y2/2 0

SV —2x(560/3) 0 —280 -210 0 -315/2

Ss 2%(8/9) 2% (128/81) —26/9 -39/16 —13/3 507/128

s9 0 0 —140/3 0 0 4095/64
© 0 2X (4480y2/27) 0 0 0 0

sg) 0 0 0 0 — 4552 0

S —2X2240 0 2800 12 285/2 0 —61425/16

Sg%) 0 2X (197 120/9) —36190 0 60060 405 405/8
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TABLE Ill. Next-nearest-neighbor structure facto{s} for bcd001) and bc€111) surfaces, where the lowest-order NN
bca100 and bc€l1l) surfaces in the same frame of reference ascontribution is zero by symmetry. In this case, which is also
for the NN calculationgFig. 2). Compare Eq(23). Structure fac-  the bulk cubic case, the surface anisotropy constants encom-
tors that are zero in both cases have not been listed. Compare Wifj‘ags contributions from higher-order anisotropy coefficients
the NN contributions of Table I. (see Appendix € It becomes a question of particular impor-
tance whether and to what extent thext-nearest-neighbor

Sim bcd100 bca111) pair interactions would produce symmetry-breaking lowest-
3, -1 0 order contributions to the overall anisotropy. This is a prob-
lem of immediate practical impact, since the bcc NNN dis-
S, 5/2 —716 tance which we defined &, is larger by only about 15%
& 0 7042 than the NN distancdR,, so that despite the exponential
39 420 0 decay of the Slater-Koster hopping integfalthe atomistic
NNN interactions are about half as strong as the NN inter-
Ss —1/4 2/3 actions. On the other hand, in both cases of interest there are
39 0 70y2 twice as many sites from among the NNN interacting surface
30 —1890 0 sites than there are from among the NN interacting sites. In
30 0 9240 both cases, these are a topmost site plus a site from the first

underlayer(cf. Fig. 2.

The required geometrical information is given in Appen-
dix B. Note that in bcc geometry the next-nearest neighbor-
Fa(®,®) _E AP ) hood has the simple-cubics€) configuration. In the case

N S (cos®) bcq100), there are five NNN's; in the case Kid1), there

are three NNN's. In both cases, geometrical inspection indi-

[ cates that the additional NNN contribution from a first-

+2 2 AjmPm(cos ©)cos md underlayer atom is identical with the contribution of a top-

I m=1 most atom(a black atom in Fig. 2 Thus, not only are there
more contributions per unit surface, but they are of the same
' sign and magnitude; consequently, there is no way that they
+, D BimPim(cos®)sinmd. (220  would compensate each other, if different from zero; thus the
Pom=1 exponential decay of the interaction parameters mentioned
above could be counterbalandeste also Eq(24) below].
Now, in analogy to Eqg13)—(15), the proper NNN struc-

tural sums{S} are given by

Here the quantitied\, A, ,B|, are the usual phenomeno-
logical anisotropy coefficients. Equati¢®2) is more general
than Eq.(16), because it is not based on model assumptions. I shell

In other words, thé\,,,’'s and B|m’s may bt_e assum_ed to en- (i) = E P\(cos 6;) (23)
compass both N and non-Nel contributions. This recog- i

nition is of a general character and provides a possibility for

bridging the gap or interpolating between different theories o
of magnetic anisotropy. and similarly for them-dependent NNN sums.

Regardless of whether thanisotropy coefficientare in- In both cases, we work in the same frames of reference as
troduced purely phenomenologically as in Eg2) or are in Sec. Il. The results of the calculation for the NNN surface
derived starting from a microscopic model as in Ef6),  structural sum¢S} are presented in Table Ill and have to be
their connection with the traditionally more standamisot- compared with those for the NN surface suf in Table
ropy constantsleserves to be clarified. Indeed, the point hadl.
already been discussed in different contért€ but specific For the bc€100 surface, the symmetry breaking is purely
considerations of implemented theoretical approach, normaliniaxial with the normal to the surface as the axis of sym-
izing conventions, choice of notation, or the fact that themetry. The fourth-order, fourfold contribution£4, m=4)
usually assumed anisotropy-constant expansions are neithigrof the cosine type, whereas with NN interactions, it is of
orthogonal nor complete, almost invariably generate somene sine type &9 = 420 vsS{S) = —560/3). This is due to the

X L. i i . 44
confusion. This is why we discuss the issue on an example iRgherent rotation of the second neighborhoodri¥ around

Appendix C. the 7 axis.
For the bc€11]) surface, the most striking feature is the
, L absence of lowest-order symmetry-breaking terms even
C. Next-nearest-neighbor contributions at bcé100 when account is taken of the interactions with the second
and bed111) surfaces neighborhood. On top of that, there comes the observation
The consideration in the previous section was restricted tthat the NNN contributions to the leading fourth ordér (
NN Neel interactions that is a fair approximation in most =4) have theoppositesign to those of the NN contributions
cases. As we demonstrated above, notable exceptions amompare the second columns of Tables VII and), Xl
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whereby their magnitudes are comparable and therendce  contributions into nonequivalent species of site, interaction
as manyNNN contributions per unit surface as there are NNshell, and order in the multipole expansion reveals, among
ones. Thus, for the b¢t11) surface, the contributions to the other things, the constitution of theacroscopicanisotropy
overall anisotropy coefficients«} of Eq. (17) with account ~ coefficients{x} as weighted averages of thecal coeffi-
for both NN and NNN coordination shells will be propor- cients{G} [Egs.(17)—(19)]. On the other hand, the connec-
tional to the expression tion between thecoefficients{«} and the more usuaon-
stants {K} has been elucidated with emphasis on the
advantages offered by the complete orthonormal set of an-
ay(L1R,) |32 isotrqpy coe_fficients{.x}. _ _
a (R)SE| 1—22 M m—0,3).  (24) It is certainly an important and challenging experimental
as(R) |8 problem to find a suitable setting for the acquisition of suf-
ficient information that would allow one to determine the
higher-order Nel anisotropies reported here. Such informa-
[Form=0, the superscriptd) is to be skipped.The explicit  tion would shed light onto the nature and magnitude of
calculations combined with the argumentation about the exhigher-order anisotropy contributions. These are of special
ponential decay of N&'s parameter§a;} with R, very interest in magnetic systems undergoing spin reorientation
close toR, favor a conclusion that the factor in the bracketstransitions under variation of temperature or, in ultrathin
of Eq. (24) would possibly be close to zero. This means thatiilms, of thickness. They are precisely the higher-order
NNN Neel's contributions to bad11) surface anisotropies anisotropies that control and stabilize the behavior of the
suppress the overall surface anisotropy in two spectaculaespective systems, since the leading-order contributions
ways. First, they do not break the symmetry and, consecancel at such a transition point.
quently, the fourth-order term$=4) remain dominant. Sec-
ond, to this Ieadin_g order they systematically oppose the NN ACKNOWLEDGMENTS
contributions in sign; a more precise quantification of the
implied reduction could come from a reliable atomistic esti- The authors appreciate valuable discussions with H. P.
mate ofa,(R). Oepen.

APPENDIX A
D. Summary

In order to calculate the local anisotropy coefficients
{Gn} of Egs.(10)—(12), one needs two types of informa-
tion. The analytical information is given here, while Appen-

We have extended Ne#s model in two ways. First, we
have used NeI's assumptions to calculate contributions to
sixth order for low-index surfaces and for the bulk in cubic . . L .
geometry. On the basis of the results given in Tables | and Ifj'x i presenlts the requwedl sterepmetrlcill information.
for the surface and bulk contributions, respectively, it is pos- The usual Legendre polynomial3(x)=Piq(x) can be
sible to identify cases of very low angular symmetry. Thisfound In quite a numbgr of handbooksee, e.g., Ref. 30
low symmetry gives rise to complicated minimization prob- We need only those with=2,4,6. They read
lems for the determination of the equilibrium orientation of 1
magnetization with or without an applied magnetic field and Po(X)= = (3x2—1),
can lead to spin-reorientation transitions during which the 2
magnetization vector does not remain in a fixed plane. Ap-
plications to nonideal materials are straightforward, since the
approach is not restricted to ideal bulk materials and sur- Pa(x)
faces, but applies to vacancies, steps, and edges as well. Sec-
ond, the contributions to the surface anisotropy from the sec-
ond neighborhood have been examined for those cases Pe(x
[bca100) and bc€111)] where the NN interactions do not
suffice to break the symmetfffable Ill). We find that NNN
interactions do induce lowest-order contributions to(fh66)
surfaces and that, in contrast, the ddd) surface does not
generate anisotropy contributions of the lowest order even
with the second neighborhood taken into account. In this
latter case, we detect a characteristic alternation of signs be- FOr even values ofn, the Pi,'s themselves reduce to
tween NN and NNN leadingl€4) contributions to the polynomials. For any giverh, we need all functions with
same anisotropy coefficients. In view of the proximity of the m<l:
first- and second-shell radii in bcc geometry, this suggests a

1
= —(35x*—30x%+3),
8

)= 1—6(231x6—315x4+ 105¢>—5).
The associated Legendre functiofg,(x) are defined as

Pim(X)=(1—x%)™2d™P, (x)/dx™. (A1)

; _ 2172
well-pronounced compensation effect as a result of the com- Po1(X) =3x(1-x*)'?,
petition between NN and NNN pair interactions. ~

An important advantage of the present approach is the P2a(X)=3(1-x%);

systematic use of the anisotropy coefficients, arising natu-
rally in a multipole expansion of the anisotropy energy that

5
_ = 2_ _y2\1/2
is both complete and orthonormal. The careful partition of Pai(X) 2X(7X 3) (X=X
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P(X)= 175(1—x2)(7x2— 1),

P4a(X)=105x(1—x?)%7?,

3
PGl(X) = gX(231x4— 21062+ 35)(1— X2)1/2,

105
PeaAX) = ?(1_X2)(33X4— 18x%+1),

P44(x)=1051-x?)?;

315
Pey(X) = ——x(11x*=-3)(1-x*)*

4
Pea(X) = 975(11X2_1)(1—X2)2,

Pes(X)=10395(1—x?)5%2

Pes(X)=103951—x?)3.

APPENDIX B

Here we summarize the required information about the
morphology of the surroundings of a given site at the surface
in cubic geometrycf. also Fig. 2. The information about the
first (NN) shell is collected in Tables IV-IX. To avoid com-
plicated pictures, the NNN surface atoms are not given in
Fig. 2. Their locations are defined in Tables X and XI to-
gether with the additional information that the NNN coordi-
nation in bcc geometry is of the simple-cubid] type. For
an atom in the respective cubic bulk, one has to add the
missing neighbors as explained in the main text. The azi-
muthal coordinate$¢} of the added atoms are the same as
for the hollow atoms in Fig. 2, while the polar coordinates
{6} complement tor the #’s of the hollow atoms.

In the calculation of S} [Egs. (13—(15)], it is under-
stood that the origin is at thih atom. Hence, we drop the
index i and let the index run over the nearest neigbors.
Their number is denoted bgy. The same holds for the
calculation of{S;,} with the number of NNN denoted by
ZNNN-

The anglesp, in Table V and¢- in Table IX are labeled
as indeterminate. This is because the corresponding neighbor
lies on thez axis below the central atoitfrig. 2). This inde-
terminacy is, however, irrelevant, since the respective
#-dependent factors in the analytical expression vanish iden-
tically. The factors cosng; and sinm¢; encountered in the

TABLE V. The surface bc®01) (zyn=4).

i=1,...2Z\w 0;€[0,7] cosé, ¢;€[0,27] COS ¢, Sin ¢
1 arccos{-1/4/3) —1//3 w4 12 12
2 arccos(- 1/y/3) -143 3ml4 -112 12
3 arccos- 1/y/3) -1//3 5ml4 —112 -1/2
4 arccos{ 1/4/3) —1//3 77l4 12 —112
TABLE V. The surface bod1]) (zyn=4).
i=1,...2Z\w 0;€[0,7] COS 6 ¢;[0,27] Cos ¢ Sin ¢;
1 arccos( 1/3) -1/3 0 1 0
2 arccos{ 1/3) -1/3 273 —1/2 V312
3 arccos{ 1/3) —-1/3 4713 —1/2 —\32
4 T -1 Indeterminate
TABLE VI. The surface bc@10) (zyy=6).
i=1,...2Zw 0;[0,m] cosé, ¢;€[0,2m] COS ¢, sin ¢
1 wl2 0 b1=T+ b3 I -1/3
2 w2 0 Gr=27— b3 V213 —1//3
3 w2 0 $3=0.18591r J2/3 143
4 w2 0 da=7— b3 —\213 N3
5 arccos(- \/2/3) -\2/3 372 0 -1
6 arccos{- 2/3) —\2/3 2 0 1
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TABLE VII. The surface fc€001) (zyn=8).

i=1,...Zn 0;€[0,7] cos¥, ¢;€[0,2m] COS ¢ Sin ¢;
1 /2 0 wl4 12 12
2 wl2 0 3ml4 —1h2 12
3 7l2 0 5ml4 -1N2 -1/2
4 w2 0 7ml4 12 —12
5 3ml4 -112 0 1 0
6 3ml4 —112 w2 0 1
7 3ml4 —12 77 -1 0
8 3rl4 -112 372 0 -1
TABLE VIII. The surface fc€111) (zyn=9).
i=1, ...z 6;€[0,7] cosé, ¢je[0,2m] COS ¢, Sin ¢
1 2 0 0 1 0
2 /2 0 /3 1/2 V312
3 w2 0 2m/3 —1/2 NEY
4 w2 0 3m/3 -1 0
5 w2 0 473 —1/2 —3/2
6 w2 0 5m/3 1/2 —3/2
7 arccos(-\/2/3) —\213 w6 V312 1/2
8 arccos(-/2/3) —\213 5716 -\3r2 1/2
9 arccos(- \/2/3) -\2/3 97/6 0 -1
TABLE IX. The surface fc€110) (zyn=7).
j=1,... 2w 0;e[0,7] cos ¢, ¢;€[0,27] Cos ¢ Sin ¢;
1 w2 0 0 1 0
2 /2 0 T -1 0
3 23 -1/2 w3 1/2 V312
4 27/3 —-1/2 2713 -1/2 V312
5 23 -1/2 47/3 —1/2 —3/2
6 273 —-1/2 5713 1/2 —3/2
7 T -1 Indeterminate

TABLE X. Next-nearest neighbors for the surface i€®) (zyyy=5). The topmostblack atom and the
underlayerthollow) atoms in Fig. 2 have an identical second coordination and, hence, acquire identical NNN
Neel contributions. The NNN atoms are not given in Fig. 2; their spherical-coordinate angles are labeled with

a “l1” superscript.

i=1,... Zunn o' e[0,7] cosd" " e[0,27] cosg{" sin ¢"
1 /2 0 0 1 0

2 /2 0 72 0 1

3 /2 0 T -1 0

4 y 0 372 0 -1
5 T -1 Indeterminate
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TABLE XI. Next-nearest neighbors for the surface @) (zyyny=3). The topmostblack) atom and
the underlayefhollow) atoms in Fig. 2 have an identical second coordination and, hence, acquire identical
NNN Neel contributions. The NNN atoms are not given in Fig. 2; their spherical-coordinate angles are
labeled with a ‘11" superscript.

i=1 ... Zaw (" e[0,7] coso{" o' e[0,27] cosg{" sin "
1 arccos{- 1/y/3) -113 w3 1/2 J3/12
2 arccos{- 1/4/3) -1//3 a -1 0

3 arccos{- 1/y/3) —11/3 57/3 1/2 —\32

calculation may be found either by direct computation withthe structure of the crystal is assumed to be known, it should

the respective value ap; or by first reducing them to ca; present no difficulty to convert the anisotropy energy density

and sing; and using the last two columns in Tables IV-IX. §/V to anisotropy energy per magnetic site by inserting the
volume per magnetic siteq=V/N. In Eq. (C1), the azi-

APPENDIX C muthal dependence is dropped. Physically, this is equivalent

To stimulate the eventual application of our results to spe:[0 neglecting anisotropies in the plane perpendicular tecthe

cific cases, we comment on the simple recipe to establish thaes: Accordingly, only the sum witm=0 has to be consid-

guantitative connection betweeamisotropy coefficientand gr.e d n the_anlsotropy-coefflcent expansion of Fp) anq
anisotropy constants this isSU/N=X_, 4 ¢« P|(c0s®). Collecting in turn terms in

One starts with thenisotropy-coefficient expansi¢&g. this sum which are proportional to $i@,sirf* ®, and sift ©,

(16)] and terminates it to such a value Iof(l ax=20may one gets

that corresponds to the highest power of @iror cosO,

appearing in theanisotropy-constant expansiamith which DK = — §K B, — 2_1K (C2)

we would like to establish correspondence. This done and on1 272 4 276

with the explicit expressions fdP,(cos®) and P,,,(cos0)

given in Appendix A, one has to just collect all terms in Eq. 35 189

(16) which have the appearance of a given term in the U0K2:§K4+?

anisotropy-constant expansion. As an example, if the

anisotropy-constant energy density for uniaX@lindrical)

symmetry is employed, one has 231
UOK3:_EK6' (C4)

Kg, (CS)

U/V=K;, sif @ +K, sif* @ +K; si® ®, (Cl)

where® is the angle betweel! and the axis of symmetry The cases with nonzero in-plane contributions#0) are
(this implies that the axis coincides with the-axis). Since treated along the same lines.
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