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In this paper we continue and extend a systematic study of plateaux in magnetization curves of antiferro-
magnetic Heisenberg spin-1/2 ladders. We first review a bosonic field-theoretical formulation of axsit#yle
chain in the presence of a magnetic field, which is then used for an Abelian bosonization ana\/sieakly
coupled chains. Predictions for the universality classes of the phase transitions at the plateaux boundaries are
obtained in addition to a quantization condition for the value of the magnetization on a plateau. These results
are complemented by and checked against strong-coupling expansions. Finally, we analyze the strong-coupling
effective Hamiltonian for an odd numbat of cylindrically coupled chains numerically. Fbf=3 we explic-
itly observe a spin gap with a massive spinon-type fundamental excitation and obtain indications that this gap
probably survives the limiN— . [S0163-18208)07633-4

[. INTRODUCTION for the purposes of the present paper will be some special
form of
So-called “spin ladders” have recently attracted a consid-
erable amount of attentioffor reviews see, e.g., Ref.).1
They consist of coupled one-dimensional chains and may be
regarded as interpolating truly one- and two-dimensional
systems. Such an intermediate situation may be useflflere(M) is normalized to a saturation vall)=*1 and
(among othernsfor the understanding of higli; supercon- | is the number of lattice sites to which translational symme-
ductors. In fact, modifications of the high- materials(see, try is either spontaneously or explicitly broken. Haldane’s
e.g., Ref. 2 give rise to experimental realizations of spin original conjecturé is related tol=N=1, (M)=0. More
ladders. However, the field was motivated by an observatiogeneral cases fol=1 were treated in Refs. 13-15. In an
that mainly concerns the magnetic spin degrees of freedongarlier papel® we have studied realizations of the condition
namely the appearance of a spin gagNisr 2 coupled gap- (1.1) for N>1 but with the specializations=1 andS=1/2.
less chaingsee, e.g., Ref.)3 So far, spin ladders in strong magnetic fields have at-
One-dimensional quantum magnets have been studied fiiacted surprisingly little attention: To our knowledge, only
great detail over the past decades. One remarkable obserihe case of alN=2-leg ladder had been investigated prior to
tion in this area is the so-called “Haldane conjectute” Ref. 16. The experimental measurement of the magnetization
which states that isotropic half-integer spin Heisenbergcurve of the organic two-leg ladder material
chains are gapless while those with integer spin are gappe€i,(CsH1,N,),Cly (Ref. 17 gave rise to theoretical studies
Although this statement has not been proven rigorously yetJsing numerical diagonalizatidfi series expansiong,and a
a wealth of evidence supporting this conjecture has accumubosonic field-theory approaéfi.n this casei.e., N=2 and
lated in the meantimesee alsbfor a recent field-theoretical S=1/2), there is a spin gap which gives rise to{@n)=0
treatmenk plateau in the magnetization curve. The transition between
Spin ladders are more general quasi-one-dimensiondhis zero magnetization plateau and saturation is smooth and
guantum magnets. Again, one of the attractions is a naturalo nontrivial effects(in particular no symmetry breaking
generalization of Haldane’s conjectfi® suchN coupled  were observed.
spinS chains: IfSNis an integer, one expects a gap in zero For N>2 one can expect plateaux at nontrivial
field, otherwise not. This conjecture is suggested among otHN-dependent fractions of the saturation magnetizaffon.
ers by the larges limit (see Ref. 7 for a recent review and Though this was a new observation for spin ladders, the phe-
references therein strong-coupling consideratiofd, nu-  nomenon itself is not completely new. For example, the pos-
merical computation;*! and even experimentsee, e.g., sibility of magnetization plateaux for the case of single spin-
Ref. 2.22 If one includes a strong magnetic field, theseS Heisenberg chains has been discussed systematically in
Haldane gaps become just a special case of plateaux in maBef. 13 which also motivated some of our work. The attrac-
netization curves. In the presence of a magnetic field, one dfon of this phenomenon in spin ladders is that they provide
the central issues is the quantization condition on the magglear and natural realizations of such plateaux. For example a
netization{M) for the appearance of such plateaux, whichnumerical analysis of the cadé=3 explicitly exhibits a

ISN(1—(M)) e Z. (1.2
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robust plateau witliM ) =1/3 (Ref. 16 which should also be L 1
observable experimentally, e.g., in a suitable organic spin-  Hyy;=J>, {ASISZ,  +=(S/ S, 1+S. S/, 1)
ladder material. x=1 2

It is the purpose of the present paper to continue a sys- L
tematic study of Eq(1.1) for genericN=1 by using differ- -h> . 2.1)
ent complementary techniques, such as Abelian bosoniza- x=1
tion, strong-coupling expansions, and numerical ] ) ) o
computationsthe reader may find, e.g., Ref. 16 helpful in Apart frqm being the basis fo_r the investigation in later sec-
the understanding of the present workere, we will among tions, this also serves as an _|Ilustrat|on of some _ge_nera_l fea-
others provide evidence that f&=1/2 spontaneous break- tures. It should be noted that in E@.1) the magnetic field is
ing of the translational symmetry fo=2 can be induced by Ccoupled to a conserved quantity which is related to the mag-
strong frustration or an Ising-like anisotropy, white 3 pre-  Netization(M) via (M)=((21L)2,_,S]). For this reason,
sumably needs explicit symmetry breakirgn Ref. 15 a  Properties of Eq(2.1) in the presence of a magnetic fied
slightly different example of spontaneous symmetry break# 0 can be related to those fat=0 and the magnetic field
ing with | =2 was studied. can be considered as a chemical potential.

The prefactoﬂSN in Eq (11) may seem quite cumber- The Ham|lt0n|ar(21) is eXaCtly solvable by Bethe ansatz
some, but it just counts the possitS&values in a unit cell of ~ also forh#0. In this way it can be rigorously shown that its
a one-dimensional translationally invariant ground state. {OW-energy properties are described byca1 conformal
should also be noted that E@_]_) is just a necessary condi- field theory of a free bosonic field Compactified at radiuis
tion; whether a plateau actually appears or not depends dfie thermodynamic limit foA>—1 and any given magneti-
the parameters and the details of the model under considefation(M) (see, e.g., Ref. 26 and compare also Ref. 27 for a
ation. For example, plateaux with nonzeid)#0 have not ~ detailed discussion of the cagg<1). More precisely, upon
been observed in the $2) symmetric higher spits Heisen-  insertion of the bosonized representation of the spin opera-
berg chains(see, e.g., Ref. 21 unless translational invari- tors into the Hamiltonian(2.1) (see, e.g., Ref. 38ne ob-
ance is explicitly brokerfcf. Ref. 14 forS=1). tains the following low-energy effective Hamiltonian for the

Conditions of the typé1.1) occur also in generalizations XXZ chain:
of the Lieb-Schultz-Mattis theorefd=2**® This theorem
constructs amonmagnetiexcitation which in the thermody- [ o2 2 2
namic limit is degenerate with the ground state for a given Hxxz f dX2 IFC0+RE(M), 8) (9,4 00)T (2.2
magnetizatiof M) and orthogonal to it unlesdVl) satisfies _ ~ ~
Eq. (1.1). In this manner one proves the existence of eitheMith I1=(1/m)dy¢, and ¢= ¢ + dr, ¢=¢ — ¢r. In Eq.
gapless excitations or spontaneous breaking of translation&f-2 We have suppressed(r our purposekirrelevant pro-
symmetry. Unfortunately it is at present not clear that thispo_rtlonallty c_onstant that includes the veIOC|ty_ of_sound. In
theorem applies to plateaux in magnetization curves sincBS formulation, the effect of both the magnetic figlcand
they require a gap tmagneticexcitations. XXZ anisotropyA turns up o_nly via the radius of compacti-

Here we concentrate mainly on the ca®e 1/2 and all flcat|qn R(<.M>'A).' This radius governs the c;onformal di-
couplings in the antiferromagnetic regimes, but try to klep Mensions, |n_par_t|cular the confozrmal dimension (_)f a vertex
as general as possible. Other situations can be analyzed greratore'”? is given by (8/4mR)%. We now describe how
well, but may lead to somewhat different physicempare, R can be computed. _ _

e.g., Ref. 25 for the example &f=3 antiferromagnetically ~ We parametrize th&XXZ anisotropy byA=cos with
coupled ferromagnetic chains o< 0<7Tfor —1<A<1 a'nd pyA=coshy with y>0 fqrA>1.

This paper is organized as follows: In Sec. Il we first Now for given magnetizatiofM)=0 and XXZ anisotropy
chain as a bosonic=1 conformal field theory. This serves field h/J can be obtained by solving integral equatidsee,
as a basis of later investigations and illustrates some generfed-» Refs. 27,29-31n the following way: First, introduce a
features also present Mrleg spin ladders. In Sec. Ill we first function a(#) for the density of particles satisfying the inte-
introduce the precise lattice model and its field-theoreticral equation
counterpart which we then analyze in the weak-coupling re- 1 N
gime. Seqthn IV starts from thg other. extreme—_the strong- o(n)= _[g(n)_f K(n—7")o(n))dy'}, (2.3
coupling limit—and proceeds with series expansions around 2
this limit. In Sec. V we discuss an effective Hamiltonian for
the strong-coupling limit of an odd numbét of cylindri- .
cally coupled chains which we then analyze numerically inPresented in Table I. . .

Sec. VI. We summarize our results by presenting “magnetic The real parametek =0 in Eq. (2.3 describes the spec-

phase diagrams” in Sec. VIl before we conclude with sometral parameter value at the Fermi surface and is determined

comments and open problert8ec. VIII). by the magnetizatioM ) via the filling condition

IIl. A SINGLE XXZ CHAIN fAA"( ndn= %(1—(M)). (2.9

First, we recall some results for the&XZ chain on a ring -
of L sites in the presence of a magnetic fibldpplied along In general, one has to adjustiteratively by first numerically
the z axis: solving Eq.(2.3) and then checking for Eq2.4). Only some

where the kerneK(#) and the right-hand sidg(») are
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TABLE |. Functions appearing in the integral equations.

A K(7) 9(n) €o(7)
cosg=A<1 tang cot(6/2) h sirtg
tar?6 cosR(7/2) + sintf(7/2) cost(7/2) + coB(a2) sintf(7/2) J coshy—cos
A=1 4 2 h 2
4 7+l J P+l
coshy=A>1 tanhy coth(y/2) h sintfy
tanify co(/2) + sir(7/2) coH(7/2) + cotii(1/2) sirk(7/2) J cosp—coshy

special cases can be solved explicitly. This includes the cadeeld theory, and since th&XZ chain arises as the Hamil-
(M)=0 andA<1 whereA=x is the correct choice. Once tonian limit of the six-vertex model, this indirectly estab-
the desired value ofA is determined, one introduces a lishes the identification. Still, explicit formulas, e.g., fBr

dressed charge functio&(7) (see, e.g., Refs. 29,8@s a
solution of the integral equation

1 (A
§(77)=1—5J7AK(77— n')é(n")dy’ (2.5

giving directly rise to the radius of compactification

1
R(<M>,A)=m. (2.6)

are not available in the literature and therefore we have ob-
tained the integral equations presented for the adasd
above by an analytical continuation of those for1, as is
suggested, e.g., by Ref. 3See, also, Ref. 36—apparently
such a continuation was also used in the recent tforivve
have performed some checks that this yields indeed correct
results. For example, some raBiiassociated to certain mag-
netic fieldsh and anisotropies\ obtained numerically for
chains of length up td. =234 (Ref. 37 are reproduced in
this way.

As a further check, one can compare the critical magnetic

If one further wants to determine the associated magnetiga|q for the boundary of théM)=0 plateau atA\>1 ob-

field h, one has to introduce another functieg(z), the
dressed energy, satisfying the integral equation

1 (A
€q(m)=€o(n)— ﬁﬁAK(W— n')eg(n')dn" (2.7)

with the bare energy,(») listed in Table I. Then the mag-
netic fieldh/J is determined by the condition that the energy

of the dressed excitations vanishes at the Fermi surface

€q(A)=0. (2.9

Using Eg. (2.5 one can see thate(n)=e(n)|n=0
+(h/J)&(n) solves EQ.(2.7) if €(7)|n=o Solves EQ.(2.7)
with formally h=0 (but for the giver{M)). From this and
Eq. (2.8) one can easily obtaih once A is known viah/J

=—€(A)|n-o/&(A).

tained by numerical solution of the above integral equations
with the exact solution of the Bethe-ansatz equaffons

h. 2 sinhy < 1

C
J vy &pcoshi(2n+1)m2y]’

(2.9

where as beford =coshy. In this casdi.e., for(M)=0) one
has A= and the above integral equations can be solved
using Fourier serie®*538|f one solves the above integral
equations numerically, the deviation from the exact result
(2.9 is of the order of the numerical accuragin our
implementatioff always less than 16).

In passing we make a comment which will turn out to be
useful later. The resul2.9) is the gap toS?=1 excitations.
However, the fundamental excitation of ti&XZ chain is
known to be a so-called “spinon” which carries

In general, these integral equations have to be solved ni&?=1/23°-*! This spinon can be regarded as a domain wall

merically and A has to be determined by some iterative between the two antiferromagnetic ground statesAforl.
method. Although this is readily done by standard methods, &ince a single spin-flip creates two domain walls, the lowest
generally accessible implementation seems to be still unS*=1 excitation is a scattering state of two spinons. This
available. We have therefore decided to tentatively providepicture can be useful, e.g., in numerical computations. For
access to such solutions on the World Wide Welhis  example, a single spinon can be observed for bddith
implementation works in the way described above. Typi-periodic boundary conditions.

cally, it gives results with an absolute accuracy of 1®r

After this digression let us now return to the above inte-

better. Of course, one can change the order of the procedurgral equations. The results obtained from them are summa-

For example, one could also prescrivd, then determine\

rized in the magnetic phase diagram for ¥ Z chain Fig.

from Egs.(2.7) and(2.8), next the radius of compactification 1 (see, also, Refs. 42,33 for similar pictureShere are two

R from Egs.(2.5) and(2.6) and finally (optionally) the mag-
netization(M) from Egs.(2.3) and(2.4).

Some remarks are in order concerning the casd.: In
this region the identification with @=1 conformal field

gapped phases: A ferromagnetic one at sufficiently strong
fields (which is actually the only one foA<—1) and an
antiferromagnetic phase fa>1 at small fields. In between

is the massless phase where the bosonized f@m is

theory has been established directly only by a numericavalid. An elementary computation of the spin-wave disper-
analysis of the Bethe-ansatz equatig¢f@ a summary see, sion above the ferromagnetic ground state shows that the
e.g., Sec. Il of Ref. 38 However, the six-vertex model in transition between the ferromagnetic phase and the massless
external fields has been shotfrio yield ac=1 conformal phase is located &/J=1+ A. This transition is a very clear
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FIG. 1. Magnetic phase diagram of theXZ chain (2.1). For 0 ! . L . .
explanations compare the text. 0 03 ! s 2 23 3

example of the Dzhaparidze-Nersesyan—Pokrovsky-Talapov FIG. 2. Magnetization curve of théXZ chain atA=2 obtained
(DN—PT) universality clasé§>*i.e., for (M)—1 the mag- from the integral equation&.3), (2.4), (2.7), and(2.8). The inset

netization behaves asompare also Ref. 46 shows the region of small magnetization and illustrates that also the
transition(M)— 0 is compatible with the DN—PT universality class
((M)—M¢)2~h2- hg , (2.10  for A>1[the dashed line is a fit to the universal fof@10)].

hereM:=1 andh./J=1+A. At this transition the radius to an increase iR with increasing(M). Clearly, the radius

takes the universal valug(1,A)=1/(2\m). must be constant on thé¢Y line which separates these two
The other transition line starts at the @YJ symmetric regions:R((M),0)=1/2\/7 (though the magnetic field asso-

point(M)=0, A=1 with a radiusR(0,1)=1/y27. Actually,  ciated to a givenM) is still a nontrivial function which

at(M)=0 the additional operator should be computed from the above integral equaions
Including the operato(2.11) in the bosonized language
cog 4/ ¢) (211 (2.2), one recovers a Hamiltonian treated in Ref. 52 as a

appears in the continuum limit, which we have suppressed imodel for commens.u.rate—incommensur'ate transitions. This
Eq. (2.2) since it is irrelevant inside the massless phase. Afnéans that the transitiaiM)—0 foré%i} is predicted to be
A=1 it is marginal and becomes relevant b1, opening " the DN-PT universality class™ too. The same
the gap that gives the boundary of the antiferromagneti?oson'zat'on argument also leads to the already men_tloned
phase in Fig. 1. The associated phase transition is ESUltR(0A>1)=1//m (see, also, Ref. 26 The inset in
Kosterlitz-ThoulesgK-T) transitiorf” (see, e.g., Refs. 48— Fig. 2 illustrates forA=2 that for sufficiently small magne-
50). The almost marginal nature of the operator responsibl@Zations one can indeed observe a behavior that is compat-

for the gap leads to a stretched exponential decayAfor ible with the universal square ro@.10. It should be noted
slightly bigger than one which is characteristic for a K-T though that the window for the universal DN—PT behavior is

transition® The exact asymptotic form for the gaer criti- too small to permit verification within our numerical accu-
cal magnetic fiellof the XX Z chain is easily obtained from racy for smaller values oA (e.g., A<1.2) where neither a
the Bethe-ansatz solution2.9 upon noting that y  reliable numerical check of the resit=1/\ is possible.

~\2(A—1) and that in the limiA—1 only the termn=0 An analytic check of the asymptotic behavior of the magne-
contributes to the sum. One then fidls tization from the Bethe-ansatz solution would be interesting,

but is beyond the scope of the present paper.
It should be noted that the height of the entire inset in Fig.
(for A slightly bigger than 1. 2 corresponds to the first step in the magnetization curve of a
(2.12 chain of the finite sizé =112. Therefore, the exact solution
is crucial in verifying the exponen2.10—a numerical or
For this reason the phase boundary is indistinguishable frorsxperimental verification of this behavior restricted to such a
theh=0 line for XXZ anisotropies up tad~1.2 on the scale small region would be extremely difficult. Similar difficulties
of Fig. 1. In this region, the numerical determination of thewill be faced in an experimental or numerical verification of
radius R is difficult for (M)—0. Nevertheless, using that R(0,A)=1/\/7 or the equivalent statement for the correla-
A= for (M)=0 andA>1, one can readily check that the tjon function exponents in the region Afslightly larger than
constant functioré(7) =3 solves the integral equatiq@.5). 1.
Then one obtains from Eq2.6) that R(0,A>1)=1/\/7.
For(M)=0 and|A|<1 one has\=x (see aboveand one
can use the Wiener-Hopf method to solve the above integral
equations in closed form. This yields in particulR¢0,A)
= /1/27[1— (1/7)cos 'A].?% In general, the radiuR in- In this section we apply Abelian bosonization to the
creases with increasing. For A>0, it decreases with in- weak-coupling region)’ <J of N-leg spin ladders. In par-
creasing magnetizatiofM ), while for A<O this is reversed ticular, we will show how the necessary conditi¢h.1)

h

—C _Ame w2I(2V2(A—1))
J

Ill. LADDERS: WEAK COUPLING AND ABELIAN
BOSONIZATION
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arises in this formulation and discuss under which circum-Eg. (2.2) as the effective Hamiltonian for each chain and the
stances an allowed plateau does indeed open as a functionloésonized expressions for the spin operators which read
the parametergd’ and A. The lattice Hamiltonian for this

system is given by ] 1 ad | | ey
L NOL Sﬁ,XNEW+const.co(;2kFx+\/4w¢i)_+T,
HN=3> > S, Sx+3> > {ASZXSFXH a2
i,j x=1 i=1 x=1 , )
and
S8 H S| NS &, G . i .
T 2SSkt SiuSrd) [ Thes Sk 3. S’ =6 1+ const cog2kpx+ V4w )], (3.3

whereJ’ andJ are, respectively, the interchain and intra- Here we have set a lattice constant to unity which appears in
chain couplingsh is the external magnetic field and the in- Passing to the continuum limit. The colons denote normal
dicesi andj label the different chaingegs in the ladder. ordering which we take with respect to the ground state of a
The sum in the first term is over all possible couplings be-given mean magnetizatiofM;) in theith chain which is a
tween chains. The case of periodic boundary conditiongatural choice. This leads to the constant term in B
(PBO) and open boundary condition®©BC) will be dis- which will play an important role in the discussion of the
cussed later. Here we have explicitly included Xz an-  terms that can be generated radiatively. The prefactor 1/2
isotropy A in the intrachain coupling. We have kept the in- arises from our normalization of the magnetization to satu-
terchain coupling)’ SU(2) symmetric for simplicity in later ~ ration valueM)=*1. The Fermi momenté; are given
sections although this is not substantial in the weak-couplin@y kr=7(1—(M;))/2.
region which we will discuss in the remainder of this section. In the weak-coupling limit along the rungd, <J, we
The corresponding effective field-theoretic Hamiltonian isobtain the following bosonized low-energy effective Hamil-
obtained using standard methdtf® (see, also, Refs. 13—15 tonian for theN-leg ladder keeping only the most relevant
for the case of nonzero magnetizatio®ne essentially uses perturbation terms:

N
— T A
HN = f dx 52 {700 +RE((M),A) @xi(0)2+ 52 (0xhi(X0) Gy ()
=1 T,

+i2,- {N2:c0g 2x(Kg+KE) + VA7 (i + ¢))]: + Ng:cod 2x(Ke— kb) + VAm( i — #)) 1+ N g:co V(i — )1}

(3.9

The four coupling constants; essentially correspond to the part of the Hamiltonian. This is achieved by the following
couplingJ’ between the chain;~J'/J. In arriving at the  change of variables in the fields:

Hamiltonian (3.4 we have discarded a constant term and

absorbed a term linear in the derivatives of the free bosons 1 1

into a redefinition of the applied magnetic field. _ _

The Hamiltonian(3.4) has been also used to represent l/ll_ﬁ(d’l_%)’ ‘!’2_%(¢1+¢3_2¢Z)'
spinN/2 chains(see, e.g., Refs. 53,h4since they can be
obtained in the limit olN strongly ferromagnetically coupled
chains (' — — ). However, here we will analyze E@3.4)
mainly in the case of small antiferromagnedicand discuss
various boundary conditions.

Note that thex, and A5 perturbation terms contain an
explicit dependence on the positigin the latter case thig
dependence disappears for symmetric configurations with
equalky). Such operators survive in passing from the lattice
to the continuum model, assuming that the fields vary
slowly, only when they are commensurate. In particular, the ) )
\, term appears in the continuum limit only if the oscillating X[ (Ixtp1 (X)) "+ (Ixtp2( X)) 711}, (3.6
factor exyi 2x(kg+ kk)) equals unity. If the configuration is
symmetric, this in turn happens only for zero magnetizationwherea=2J'/(Jmw*R?) =2b. We can now study the large-
(apart from the trivial case of saturatjon scale behavior of the effective Hamiltoni&B.4) where we

For simplicity let us first analyze the case wkh=3 and  assume alki equal due to the symmetry of the chosen con-
PBC. We first have to diagonalize the Gausdiderivative  figuration of couplings. Let us first consider the case when

1
¢D=ﬁ(¢1+¢2+¢3)- (3.5

In terms of these fields the derivative part of the Hamiltonian
can be written as

— T
Hder:f dXE{R2(<M>,A)[(1+a)(<9xde(X))2+(1—b)
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the magnetizatiofM) is nonzero. In this case only the;  only when the oscillating factor ex@S}';kk) equals one.
and \, terms are present. The one-loop renormalizationThis in turn will happen when the following specialized ver-

group (RG) equations are sion of the conditior(1.1)
db 3)‘5 202y 2 N
- _ s —(1—-(M))eZ 3.9
Tl 477( 2R2+127TR)\4 , 5 (1=(M)) e (3.9

is satisfied. At such values of the magnetization, the figid
d\s 1 ) can then undergo a K-T transition to a massive phase, indi-
dinL <7 m A= A3, (3.7 cating _the presence of a plateau in t_he magnetization curve.
An estimate of the value a3’ at which this operator be-
comes relevant can be obtained from its scaling dimension

dAs 2 2 which in zero-loo imation is gi
—To_ _ _ -loop approximation is given by
il [2—27R4(1—Db)INs— 7\].
i . i N
!t is important to notice that only the flelqsl and i, enter dim(cos V47N yrp))= 5 , )
in these RG equations, since the perturbing operators do not 4 7R+ (N—1)/w(J3'/J)]
contain the fieldyp . The behavior of these RG equations (3.10

depends on the value 8. The main point is that always one _ . B
of the two\ perturbation terms will dominate and the corre- At A=1 one then ,obta|nsc~0.09] for the (M) =1/3 pla-
sponding cosine operator tends to order the associated field§2U atN=3 andJ.~0.7J for (M)=1/2 atN=4 and also
This gives a finite correlation length in correlation functionsor (M)=1/5 atN=5. At the opening of such plateaux, the
containing the fieldss, andy, (or their duals. For example, €fective radius of compactification is fixed to be

for A<1 we have thaR?<(2m) ! since(M)#0. Then,
from Eq.(3.7) one can easily see that the dominant term will R2ﬁ=£
be the\, one. This term orders the dual fields associated & 8w

with ¢, anq . Then, the corre[atlon functions mvolvmg and the large-scale effective spin operators(afeRef. 53:
these last fields decay exponentially to zero. In either case,

(3.11

the field¢p remains massless. A more careful analysis of the N

original Hamiltonian shows that this diagonal field will be SZa(X)~ [~ ~7D

coupled to the massive ones only through very irrelevant 2m 9X

operators giving rise to a renormalization of its compactifi- (M)
cation radius. However, due to the strong irrelevance of such +const:co62kex+ VA4mNyp): + ——,
coupling terms these corrections to the radius are expected to 2

be small, implying that the value of the large-scale effective (3.12

radius keeps close to the zero-loop resHN1—a. It is

straightforward to generalize this t chains when all pos- and
sible coupling are present and have the same valu®ne . p—
can find a change of variables on the fields to Sei(x)~:e"TN/O[ 1+ const co62kex+ V47TN¢D)(]1- 3
3.1

Yoi: @i 1=1,...N-L Then, Eq.(3.1)) fixes the values of the correlation exponents
wheregp=1/VNEN_, &, . Again, for nonzero magnetization, 2t this point to be
all but the diagonal fieldsp will be present in the perturbing 1
termsh; and\,4. The RG equations are essentially the same =4 Mey=7 (3.14
as Eq.(3.7) and the result is that only the fielgly will be 4
massless.

L . . .__On the other hand, commensurate-incommensurate transition
We are then left in principle with a free Gaussian action 220 14;

. ) . result$??%14imply that the values of these exponents should
for the diagonal field. However some operators can be radia-

tively generated. We see from Ed8.2),(3.3) that when we
turn on the interchain coupling, theN-Umklapp” term

1
7,=2; 7]xy:§ (3.15

along the upper and lower boundary of a plateau. This situ-
N ation is similar to theXXZ chain atA=1 andA>1 for the
i boundary of thé M) =0 plateau. However, the values of the
— 1/N i [
=J COS( 2X§1 Ke + 4”N¢D) (38 exponents are different since the perturbing operators are dif-
ferent.
appears in the operator product expangiorp). Note that the ‘N-Umklapp” process which allows the
Again, this operator survives in passing from the lattice toappearance of Eq3.8) produces a complete family of op-
the continuum model, assuming that the fields vary slowlygerators given by

N N
N 005(2x21 KL+ \/EZl ¢i>
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N N wherea andb are positive. As in the preceding analysis, one
cos( 2x1>, K+ 14w, ¢, can change variables to
i=1 i=1
N _ 1 _
:COS( oIS kL+IMwD) 316 Jo="s (bat da bt )
=1
with | an arbitrary integer. The values of the magnetization
for which one of these operators is allowed are subject to a 'rlflzﬁ(d)l_ b2t d3— Pa);

generalization of Eq(3.9), namely Eq(1.2) in the Introduc-

tion (with S=1/2). However, the dimensions of these opera-

tors increase with?. So, these operators cannot be relevant " =i(¢ — ) =i(¢ —é2) (3.18
unless we consider regimes with an anisotropy parameter 2o T TR e Tk '
bigger than one or very big values of the interchain couplingF ) o o

J’ far from the perturbative regime of the present analysisFOr 9eneric values of the magnetization, it is easy to see that

Therefore, higher values dfare realized only under special the diagonal fieldyp is again the only field that does not
conditions. Whilel=2 can be obtained by either strong 2Cduireé & mass under the perturbation. Then, the analysis of

Ising-like anisotropyA or frustration at strong couplingsee  the appearance of tfe-Umklapp term for particular values
Sec. VI below, it is possible that=3 can be realized only if of the magnetization is identical to the one performed before.
suitable symmetry-breaking terms are explicitly introduced! N generalization to generf¢ with PBC is straightforward,
into the Hamiltonian(3.1). one first builds the radlatlyely generat.ed cou!ollngs by keep-
Note that formally, the preceding analysis can also bdnd only the lowest order id’. Once this step is performed,
carried out using the fermionic Jordan-Wigner formulation.the only difference with respect to the case of equal inter-

For example, in this formulation thal-Umklapp operator chain couplings is the zero-loop value of the dimension of
(3.9) is given by the N-Umklapp operatofwhich enters via the initial condi-

tions for the RG flow. This has the effect of changing the
N value of the couplingl’ at which a plateau opens with a
IT RIOLa(x)exp( 2ik§X)) given value of the magnetization, but the qualitative behavior
a=1 of the system is similar. This conclusion is not so straight-
N forward for (M)=0, where as we will see, the difference
H Lg(x)Ra(x)exp(—Zikﬁx)) , between frustrating and nonfrustrating configurations can be-
a=1 come crucial.

whereR, andL, are the right- and left-moving components Concerning finally the case of OBC, let us first consider
of the fermions. We have chosen to use the bosonized largain the cas&=3 with antiferromagnetic coupling be-
guage because it is more appropriate for general values of tf@een the first and second chain and the second and the third
anisotropyA. cha!n. Again, this coupling is not stable under RG _transf_or—
The analysis above was for the case where all the chaif@ation. Under RG transformations the OBC configuration
were coupled together with the same coupling value. Mordvill flow towards a nonfrustrating cyclically coupled con-

precisely, the estimates for the appearance of plateaux wef@uration. The main point is that for weak coupling and
for positive (frustrating interchain coupling. To generalize NONZ€ro magnetization, the most relevant perturbing term

this to PBC(which is different from the preceding case for will be again the one containing differences of fields or thgir
N=4), we first notice, using the bosonized expression of th&luals. Then they will produce a mass gap for all the relative
effective Hamiltonian, that this configuration of couplings is dégrees of freedom and one recovers a scenario similar to the
not stable under RG transformation. E.g., the OPE betweefyMMetric case, where only one massless field is left. On the
terms like cosg,—,) and cosé,— bs) generates an effec- other hand, thg'appearancel\bl)mklapp operators and their
tive coupling between the fields, and ¢, etc. The under- commensurability is unchar?gec.i, since these criteria d_epend
lying intuitive picture is that antiferromagnetic couplings be-©n the value of the magnetization and not on the particular
tween the chain 2 with the chains 1 and 3 generates afPuPlings between the chains. _

effective ferromagnetic coupling between the chains 1 and 3. L€t us study now the more complicated case of zero mag-
For example, foN=4 and PBC, ferromagnetic couplings Netization. ForM)=0 the\, term in Eq.(3.4) is commen-

are generated along the diagonals between originally yrgurate an_d must be included in the_ perturbation terms. The
coupled chains. This case is part of the family of configura-Situation is now much more complicated because this rel-
tions with antiferromagnetic nearest-neighbor and ferromag€vant operator couples the diagonal figlg with the mas-
netic next-nearest-neighbor couplings. For this genera$Ve ones. For equal coupling betwelir 3 chains, the RG

situation atN=4, the coupling matrix in the derivative part €duations are now

+

is given by da 16m\2
2
1 a -b a dinL Rz
a 1 a -—-b (317
, A 2 2
“boa 1o ® s —ﬁ—%ﬂzﬁmi
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TABLE II. Values ofh at which the magnetization jumps for EQ.1) with coupling constand’, A=1,
N sites and different boundary conditions.

h/J’
N OBC PBC
*1
30 30
2 2
4 ( 1 1+3-2 +2,*1
1+ =], +—————
J2 2
5 5+./5 5+ \/g 3+ \/g
+ \/—:il.80902,t1.11887, 0 g 250
4
6 +1.86603,%1.38597,=0.49158 Ly LAT V5 V13-\5
- 2 - 2
d\, 2 1 / 2 1 For such a value of the renormalized radius, N}Umklfipp
dmC 1273 2\ 1+ + 1°D No— 7N\ 3, term becomes strongly relevant fbir even, and marginally
n 4mR a irrelevant forN odd. These arguments are based on the as-

sumption that théuncontrolled RG flow will drive our sys-
d\s 1 ) ) tem to the[SU(2) symmetrid strong-coupling regime. The
il 12~ 27R¥(1—b) A3 A= 73, situation is even more subtle for positive (or \;), because

in this case, from Eq3.19 one sees that the quadratic terms

dx could now prevent the RG flow to reach the same strong-
4 =[2—27R?*(1—b)I\,—m\3 (3.19  coupling regime as fod’<0. A numerical analysis of the
d InL RG flow for a frustrated three-leg Hubbard ladder at half
filling provides evidence for the opening of a ga&gon the
other hand, a non-Abelian bosonization anaffsisads to
3 the conclusion that the weak-coupling region is gapless. This
a(0)=2b(0)= ——, (3.20  case deserves further in_ve_stigation and series expansions are
J one way to approach this issue.

with the RG initial conditions

and

24, , IV. STRONG-COUPLING EXPANSIONS
3.2

where we kept the notation of Eg&.4),(3.6). We see that
the radius of compactification of the diagonal field is now
strongly affected by the presence of the term. Note also
that theN-Umklapp process generates the operator

In this section we diagonalize the interaction along the
rungs exactly fod=0 and then expand quantities of interest
in powers ofJ/J’ around this limit. In order to be able to
cover a variety of cases, we used a quite general method to
perform the series expansions which is summarized, e.g., in
Sec. lll of Ref. 57(actually, the program used in the present

'N /
J7 cogyamNyp) (3.22 paper is a modified version of the one uded.cit.).
for N even, and As was already pointed out in Ref. 16, one can simply
count the number of chaird in the limit J/3’—0 in order
J'N cog2\4mNyp) (3.23  to determine the allowed values of the magnetizatibh).

This is presumably the simplest way to obtain the quantiza-
for N odd. For nonfrustrating interchain couplit@negative  tion condition(3.9). A less trivial fact is that all these values
J" coupling between all the chains for examplell relative  of the magnetization are in fact realized. For example, for
fields are massive aCCOfding to Ref. 54. We can then inteferromagnetic Coup|ing'|'<0, the magnetization jumps im-
grate out these massive degrees of freedom. The crucial poifiediately from one saturated valgsl)=—1 to the other
is that now the radius of the diagonal field getS a nontriVialone (<M>: + 1) as the magnetic field passes through zZero.
correction due to the strong interaction with the massiveNevertheless, for not too largs one can readily compute
fields. Since this field _is the only one expected to describgne magnetization curve of E.1) and check for antiferro-
the large-scale behavior of the system, for1 and(M)  magnetic coupling’ >0 that all possible values of the mag-
=0, the SU2) symmetry of the model would fix the radius  netization are indeed successively realized as the field is in-
of this field to bé creased. The critical magnetic fielsat which one value of

the magnetization jumps to the next largest one are given in

R — /N (324 TADElL
eff 27 ' As a next step, one can take the intrachain couplng
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perturbatively into account. First, we look at a two-leg laddertriplet in a sea of singlets. Since the @Jsymmetry is bro-
(N=2). The rung Hamiltoniari-ler’éléz has two eigen- ken down to U1) by the perturbation, different series are
values whose difference corresponds to the critical fields preabtained for thes’= =1 andS’=0 components of the trip-
sented in Table Il. The lower eigenvalue equal3l)’/4 and  let.

belongs to the spiB=0 eigenstate, while the other threefold = Here we concentrate just on the series for the gap, but also
degenerate one equal¥4 and corresponds to the spin trip- previous results for the ground-state energy and the disper-
let (S=1). For convenience, we concentrate on an isotropision relations are readily extended to higher ordeos, to
interaction for the rungs, but it is straightforward to include analytical expressions ia for longer serie¥ at A=1 with

an X XZ anisotropyA in the interaction along the chains. One numerical coefficients.

motivation for doing so is that this permits further compari-  The gap is obtained by the value of the excitation energy

son with the weak-coupling analysid'(<J) of the previous  of a single flipped spin at momentuk= 7 with §*=+1.
section. AtJ=0 the ground state is obtained by putting sin-\we find
glets on each rung. A basic excitationJat O is given by one

E, - J 1+A2 J 2+ (1+A)%( 3 3+ —2+6A—9A2+A4/ J 4+ 21—84A+39A2—48A3+2A4( J\°
I\ 4 \J 16 \J 32 13" 256 3"
82— 98A +155A2—50A 3+ 80A%— 12A ( J\’
1024 \J' J
At the isotropic pointA=1 we recover well-known results: For this special case, the first three orders can be found in Ref. 8,
a fourth order was given in Ref. 16 and numerical values of the coefficients until 13th order are contained in Ref. 58.

The serie44.1) contains a singularity at’ =0 which has no physical meaning but is simply due to the choice of expansion
parameter. We therefore analyze it by removing this singularity via the substitutions

4.9

J’ ~
=——; X=tan
J+J

1

1
37/ 4.2

From the raw transformed series one can then find some indication of an extended massless phasé’af sxsall . with
A.~0.25-0.5. The opening of this massless phase is predicted by the zero-loop analysis of the previous section to take place
atA.=0. Since the information obtained in the weak-coupling regime from a strong-coupling series is not extremely accurate,
this agreement can be considered reasonable.

Now we turn toN=3 and OBC. In a way similar to the previously discussed series one finds the following fourth-order
series for the lower and upper boundary of {i\)=1/3 plateau:

JI

h J (A+1)(8A-5 A+1)(142A%2—307A—23)( J
_3:(A+1%7_( )( ) ’)+( ) )L_
J J 27 J 972 \J
(A+1x4057m3 83 025\%+ 76 961A — 73295/ J + J 43
367 416 \J” “.3
he, 3 J 10+17A%( J\? 2196\ +252-554A°+171A%( J |3
37277 e )T 3888 \37
30 172+ 38 988\ — 28 387A%+ 7028\ 3— 8886\ *( J ) ((J)5) 44

326 592 |3

A third-order version of these series was already presented in Ref. 16 for the speciadl=cas&Ve employ again the
transformationg4.2) to analyze these series. The raw transformed series indicate=fbrthat the(M )= 1/3 plateau does not
extend down until’ =0 but ends at a critical valu¥, . The numerical value is found to B¢~1.0—-1.4 atA=1. This number
should however not be taken too seriously as is also indicated by the large uncertainty of the critical anisgtatpoye
which this plateau extends over all nonzera A,~1.0-1.6. At least, this rough estimate fAg is compatible withA,
~1.19 as obtained from the zero-loop weak-coupling analysis.

The next case we considerié=4 and PBC. In the strong-coupling limit we find plateaux &)=0 and at{M)=1/2.
Series can be computed readily for the geyhich determines the boundary of thkl)=0 plateal and the lower and upper
boundary of thg M)=1/2 plateau. In this order, they read
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ng_l 4/ J +33A2—1m+2o J\? 24+194A%+131A( J)\°
T 3l 108 J 1296 13"
3524213—175997762+9014208\+1923768\3+7 733988/ J +<9 (J ° A
39191 040 3" ) “.9
h(c’j)_l 3A+8(J|  9A’+96A—308 J|? 369A+972A°—13140°-9464 J |
3 T )T Ty T 31104 \37
885 195\*— 69 076 72&°— 61 318 885-545 832A°+ 117 897 360 J 4+ J\® P
156 764 160 13 J) ) (4.6
hEZ)_2+A—2/J +5A2+22/J 2 8A°-42A-9A?-51() 3+ 38A“—1981A*—56A°+ 1634 —403 J |*
N 2 \J 32 \J) 256 |3 4096 |3
J 5

The superscriptf) means that these series are for PBC.

Again, we analyze these series using the transformatid2s. We apply this first to the gapt.5 and find that the gap
closes for some)’ >0 if A<A. where the estimates for the critical value span an intetyat0.8—1.2. This interval is
centered around the value,=1 predicted by power counting in the context of Abelian bosonization.

Concerning the opening of thgM )= 1/2 plateau, we can first locate its ending point in the same way as befdg as
~0.8-1.6 at A=1. What is more interesting is the conclusion that this ending point cannot be pushed ddjwaGady
increasingA. This is in agreement with the zero-loop weak-coupling analysis which implies tHa g= 1/2 plateau does not
exist forJ’<J andN=4 regardless of the choice af.

Finally we present second-order versions of analogous serid$=fg¥ and OBC(denoted by a superscrip):

(
EY 2\ J N - 2
J———(1+\/ —/2) (J‘ 3>J—,—(1104764A 1288\ + 94 —1656(1682A — 2760\ +1847)
—(4176A%2— 7176\ + 406 862A2— 1242\ + 869 J i O J i 4.8
3312( +4063 414( +869 1| 37] O |77 | (4.8
h“’) 2.6 +9A+8 /6 NE
- 2__ 2
5 1+\/ —\2)+ (J) (165&1146“ 19324 — 155)+165é 1406\ %+ 2691A + 637)

2

J 3
+0O 7) ), (49)

3
—,) ) (4.10

2 1
é27 81N?—57 408\ —97 216 +

J
2 =
26 79 828( 14237 +255%+392()](J,

he 1 A—4/J) 27202+ 4162 528{3) O((

JoT 2 4\ 128

A second-order expansion of the dispersion relatiohafl  due to the many square roots encountered, as is already in-

has already been presented befotbpugh with floating-  dicated by the results presented here.

point coefficients. Equatior4.8) agrees with the result of

Ref. 8 for the gapo~ (k=) up to first order, but there is a \/ THE STRONG-COUPLING EFFECTIVE HAMILTONIAN

minor _dlfference in t_he second order: We believe that the OF A FRUSTRATED LADDER

coefficient of cosk in Eq. (23) of Ref. 8 should read

—0.5278 ... (not —0.469). We have also checked Eg. Here we look at strong coupling (> J) for PBC and odd

(24) loc.cit. and in this case found perfect agreement. N. In this case additional degeneracies preclude a simple
Given the low order of the seridd4.8)—(4.10 we do not analysis as in the preceding section. From a first-order con-

try to draw conclusions for the weak-coupling region from sideration inJ one infers that the low-energy effective

them. We have restricted to only second order since a synHamiltonian for Eq.(3.2) with A=1 andh=0 is then given

bolic computation of higher orders is very difficult. This is by (see Refs. 56,54 fak=3 and Ref. 59 for largeN):
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L

J . the matrix elements of th&*-S? interaction. Therefore, the
(N,p) + - - _+ . . . Ca s .
Herr :NEl [+ an(oy 01T 0y 03 1) 1SSx1, effective Hamiltonian for generid is given by
=
(5.7 L
2 N _ (Np) + - -+
where theS, are s2) operators acting in the spin space and Hy = le [+ an(oy 0yp 1t 0y 0y11)]

o, act on another two-dimensional space which comes from

a degeneracy due to the permutational symmetry of the 1

Chaings' Y P Y Y X ASiS>Z<+1+§(S;S;+l+S;Sx++1) , (5.3
We have checked the validity of E¢p.1) for N=3, 5, 7,

and 9 in the following way: First one has to determine thewhere the parametergy remain those given in Eq5.2).

ground-state space at each rung Je¢0 which is nothing The generalizatio5.3) includes in particular the case=0,

but the ground-state space of lrsite Heisenberg chain. For corresponding to two coupledY models. Then(i.e., for

N odd, the lowest energy states hafe= =1/2. In the case A=0) one can apply a Jordan-Wigner transformation to Eq.

of OBC, this would be the only degeneracy. @Usymmetry  (5.3). However, even in this case one obtains a four-fermion

is then sufficient to conclude that the effective Hamiltonianinteraction with the effect that the problem does not simplify

is a simple Heisenberg chain which is gapless in accordancén contrast to the familiar case of fermion bilinears par-

with the generalized Haldane conjecture. ticular, the determination of the ground state of Ef3) for
For PBC there is another twofold degeneracy in additionA=0 is far from being straightforward. _ -
to this twofold degeneracy in spin space: Fbodd and PBC As was pointed out in Ref. 16, the effective Hamiltonian

the ground states of a Heisenberg chain carry momknta (5.3) describes the response of Hg.1) to a magnetic field

=+ 27 (N+1)/4)/N where parity symmetry is reflected in for [(M)[<1/N at strong coupling. FON=3 (i.e., @3=1)

the freedom of choice of sign. So, the ground-state space &dA=1 we find by exact diagonalization of E¢p.1) that
each rung is four dimensional: The operato act in the  the transition to(M)=1/3 (full magnetization for the effec-
two-dimensional spin space and the act in the two- tive Hamiltonian takes place at [%J=4.3146, 4.3121,
dimensional space spanned by the ground-state momenta.4‘3.10.8‘ .4'3100’ 4.3096 fér=38, 10, 12.‘ 14, 16, rlespect|vely.

This degeneracy makes perturbation expansions] in This is in reasonable agreement with numerical valut,as for

highly nontrivial: At first order inJ one has to diagonalize the lower boundary of theM)=1/3 plateau of(3.1) at J

the matrix(5.1) which is determined by the matrix elements >J (compare Fig. 4 of Ref. 16

of the interaction along the legs in E€B.1). That the only

nonzero matrix elements are those given in &gl) can be VI. NUMERICAL ANALYSIS OF THE
inferred just from the following symmetries of the full STRONG-COUPLING EFFECTIVE HAMILTONIAN
Hamiltonian: Global S(2) symmetry[actually one needs
only the U1) Cartan subalgebra of &f)] and invariance erformed numerical diagonalizations mainly fde=3 on
under simultaneous translations or reflections along all th 9 y

; . ) - inite systems, as was already done in Ref. 59Xerl. The
rungs. These symmetries also imply some identities betweelqamiltonian has two conserved quantiti€: (for A=1 ac-
the nonzero matrix elements, but at the end one still has t '

explicitly compute some matrix elements—at least in orderfgatlrllyetgfsﬁfgtzflf )Ear(lg :?) ?ﬁigﬂd;énggagoﬁga;gg EI('arlztGd
to determine the constanisy. We have performed such lowest eigenvalues arg Idcated in thé=0 sector Fi.rst we
direct computations of matrix elements fd=3, 5, 7, and 9 look tthg o th itati in t8A=1 ¢ ' It t
and found the associated valuesagf to be ook at the gap 1o the excitations In sector. 1t Iurns

out that one can fit the system-size dependence of this gap

To learn more about the spectrum of E§.3), we have

16 nicely by?!
w=1, as=3, a;=2620689.. .,
a
Eszeogo1(L)=Esz_gge1(0)+ —. 6.1)
2g=3.5012@3. ... (5.2 Hose Mmos=T L

In contrast, e.g., to th&XXZ chain (2.1), already forN=3 Estimates for these parameters based on data for lengths up
the Hamiltonian(5.1) does not satisfy the Reshetikhin crite- to L =14 are presented in Table Il for some values\aind
rion [Eqg. (3.20 on p. 101 of Ref. 6P Therefore, it is in N=3. The numbers in brackets indicate the-tonfidence
general not integrabléin the sense that it would be the interval of the fit for the last given digit. Since this ignores
Hamiltonian of a one-parameter family of transfer matricespossible other error sources, the true error may be a little
which commute among themselves and with this Hamillarger. Our result forA=1 [Esz_gg—1()=0.208(1)]
tonian. So, one has to treat it by other approximate or nu-agrees within error bounds with that of Ref. 59
merical methods; e.g., a density matrix renormalization{Esz_gsz—1(%)=0.27(70]. From Table 1l we conclude
group study was carried out fdt=3 in Ref. 59 providing that theS*=1 excitation of Eq.(5.3) is gapped for alA=0
evidence for a gap t&=1 excitations. and that there is nothing special about the casel from

In the present paper we are interested in gen¥icZ  this point of view.
anisotropiesA#1 in the interaction along the chains in Eq.  One comment is in place regarding the fo{®nl) since in
(3.1 and thus we should generalize E§.1). This generali- a gapped situation the convergence should ultimately be ex-
zation is obvious from the way tHéXZ anisotropy appears ponential(or at least of ordet. “2—see, e.g., Ref. 57, and
in Eq. (3.2) and our derivation of Eq5.1): A just multiplies  references thereinHere we seem to observe a typical cross-
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TABLE Ill. Parameters for the fit Eq6.1) to the S*’=1 gap of Eq.(5.3). The first six columns are for
N=23, but various values ah. The rightmost column is for N=o" with ay/N—1.

A 0 0.2 0.4 0.8 1.0 1.2 1.0

Eszoog—1(*)/d 01395 0.1348) 0.1685 0.2001) 0.2081) 0.2142)  0.3906)

ald 2.784) 3.356) 3.194) 3.0797) 3.0887) 3.132) 5.724)

over phenomenon, i.e., the small values of the gap imply ate ground state arising due to spontaneous dimerization in

large correlation length such that our system sizes may bthe thermodynamic limit. The fact that the energy levels in

well below the correlation length. In such a range of systenTable IV have momentumr relative to the ground state is

sizes one would indeed expect to observe finite-size correcompatible with this interpretation and yieldls-2 for the

tions which are typical for massless situations. Since the coreondition (1.1).

rections should ultimately become smaller, this would lead to Next, we investigate the momentum dependence of the

obtaining systematically too small values of the gap. Withgaps to the lowest excited states of Eg1) with N=3. The

the fit (6.1 we thus obtain a lower bound for the gap which data forX?=0 and total spinS=0 is shown in Fig. 3 and

is presumably not far from the true value. In particular, wethat for total spinS=1 (alsoX?=0) in Fig. 4 (compare also

can safely infer the presence of a gap. Fig. 4 of Ref. 59. Here, we measure the momentum of the
Concerning the case &f> 3, one observes from E¢p.2) excitations relative to the ground state. It should be noted

and a further value forxq; (Ref. 59 that ay is roughly that due to parity conservation only half of the spectrum is

proportional toN, i.e., ay~0.44N for large N. Using this  shown (the parts fork>7 or k<O are mirror-symmetric

information, we have extrapolated E§.1) to infinite N set-  extensions of this figuje The two figures look quite similar.

ting limy_,..an/N=1 in order to avoid the uncertainty in the Both can be interpreted as the lower boundary dtveo-

true proportionality constant. This limit eliminates the term particle scattering continuum. In particular, we do not ob-

1xS,S.41 in Eq. (5.1). The rightmost column in Table Ill Serve one-particle states.

shows the value for th8=1 gap that we obtain in this case. ~ T0 extrapolate the lower boundaries of these two-particle
It should be noted that the proper'y rescaled value Nor Scattel’lng StateS, we have Fourier transforrﬁéﬁz Then we

— = s slightly lower than that foN=3 atA=1 (the former ~ have extrapolated each coefficient of the Fourier series sepa-
is about 80% of the latter However, even foN=o our rately using a Shanks transforfwhich is thea=0 special
estimate for the gap is still remarkably distinct from zero.case of the vanden Broeck-Schwartz algorithm—see, e.g.,
This suggests a gap in the strong-coupling litaitl) for all ~ Ref. 63. This leads to

N which slightly decreases &— <, but does not close even

in this limit.
Now we turn to the “gap” in theS’=0 sector forN=3. ES:_os-o(K)/J=0.654478)—0.014 191)cosk
The data in Table IV can be interpreted as evidence that it
asymptotically decreases roughly as —0.41%108 cosxk+0.04Qq136)cosk
1 —0.044cos4, 6.3
Esz-og-0™ 2 (6.2 ©3

at least this “gap” clearly tends to zero in the thermody-

namic limit[in particular close ta\ =0 the finite-size expo-

nent could be different from that given in E(.2)]. This

energy level corresponds to the state constructed in the gen:

eralized Lieb-Schultz-Mattis theoreffi->#12 According to

Ref. 59 this energy level should be interpreted as a degener-

E/J

TABLE IV. RescaledS*=0 “gaps” of Eq. (5.3) with N=3 for

various values of\.

A 0 0.2 0.4 0.8 1.0 1.2

L L%Esz—og2—0/J

4 11.04294 12.16715 13.29556 15.54226 16.65656 17.76262  ° —a - T .

6 14.71647 1534371 16.29211 18.64172 19.94276 21.29515 k

8 17.68885 17.48479 18.05673 20.22660 21.6  23.0955 FIG. 3. Lowest gaps of Eq5.1) with N=3 in the sector with

10 20.18126 18.90011 19.00079 20.85874 22.23517 23.80763%=0 and total spirS5=0 as a function of momentukrelative to
12 22.28842 19.75430 19.34576 20.83216 22.17023 23.7682fthe ground state. The symbols are for6 (rhombj, L=8 (+),

14 24.06309 20.15994 19.24047 20.33604 21.60791 23.1936%=10 (squarel L=12 (X), and L= 14 (triangles, respectively.
The line is the extrapolatio(6.3) of the lower boundary. —oco.
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FIG. 5. The spinon of Eq5.1) with N=3, i.e., lowest gaps in
the sector with®,?=1/2 and total spir6=1/2. The symbols are for
L=5 (rhombi, L=7 (+), L=9 (squares L=11 (X), andL=13
) (triangles, respectively. The line is the extrapolati¢.6) of the
ESz_ps-1(K)/J=0.67143) +0.023 24)cok— 0.492cosk dispersion curve to the thermodynamic limit.

—0.025c0s8—0.058 11)cos&k

FIG. 4. Same as Fig. 3, but for total sg8¥ 1. The line shows
the extrapolation(6.4).

Making single-particle states visible is traded for the ab-
—0.01350)coskk. (6.9 sence of a ground state at oddIn order to permit interpre-

tation of the results as gaps we have therefore interpolated

The numbers in brackets indicate estimates for the error qf,o ground-state energy using the valuek atl. The result-
the last given digits. Here we have suppressed the highegly gispersion relation for the spinon is shown in Fig. 5. As

harmonics, since they cannot be reasonably extrapolated byt . already the case for the spectra at elveit turns out

are expected to be small anyway. _ that k should be defined such that translationally invariant
In this way we obtain a rather inaccurate estimate for the,..oc on the lattice appear alternately lket0 and

gap E~0.3) with a large uncertainty which is due to the \ _ . e acrual convention can be read off from Fig. 5

large errors in particular in Eq6.3) and the uncertainty in noting that only eithek=0 or k= can be realized for odd
the higher harmonics. Nevertheless, this estimate is still quit

plotsr1e ttoEthe cgn; n Lagli ll. A morel mt_::‘r:gastlng obbservznon To interpret the data, we have again Fourier transformed
is that Egs.(6.3 and (6.4) are equal within error bounds. E2. First, this gives an interpolation QEsz_gps—1p At K

i sugests et hese Lo sl ca be Merbreled Pz, Anlogously to 463 we f th. data foL
tal particle. Such a fundamental excitation would have to be_ 5_,t?,%j3tto ttf)wte _forn(the vtalu_es fol.= 7 and 11 should be
similar to the spinon in th&XZ chain; in particular it would omitted to obtain a monotonic sequence
have to carnS=1/2 (andX*= +1/2).

Let us now try to exhibit this fundamental excitation ex- a
plicitly. For evenL and periodic boundary conditions we Esz-1zs-1(L) =EBsz-1p5-0A*) + T (6.9
have only found two-particle scattering states in the low-
lying excitation spectrum. Therefore, it is natural to look for
a spinon-type excitation at odd (still periodic boundary and obtain an estimate for the gap of the spinon
conditions in the same way as one can exhibit the spinon forEsz_ 1,5 1/5(*) =0.131(8) with a=0.51(6)JJ. This is
the XXZ chain®*~*1We have computed the spectrum of Eq. roughly consistent with half the value in Table Il or that
(5.1 for N=3 and oddL from 5 to 13 in the sector with given in Ref. 59, as it should be if our interpretation as
2?=1/2 and total spir6=1/2. The main difference between single-, respectively, two-spinon scattering states is correct.

the present situation and th€XZ chain is that here we ex- An alternate way to analyze the data is to extrapolate each
pect a charge conjugate pair of spinos™£ +1/2), while  coefficient of the Fourier series separately using a Shanks
for the XXZ chain there was only one. transform. Using now all available, we find

E2:_ 1051 K)/3=0.6331 155+ 0.0592 184)cosk + 0.5387 122) cosk -+ 0.012163) cosk — 0.0633 160) cosk

—0.0127cos&+0.0177cosB. (6.6)
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h/J

<M>=1/3

I

I

FIG. 6. Schematic magnetic phase diagramatl for (a) N=2, (b) N=3 and OBC,(c) N=3 and PBC,d) N=4 and OBC,(e) N

=4 and PBC. White regions in theJ’/J plane indicate gapped regions with a plateau in the magnetization curve, while the shaded areas

are massless and the magnetizafith) changes continuously if the applied fididis varied.

As before, the numbers in brackets indicate estimates for the Methods similar to the ones used in the present section
error of the last given digits. For the two highest harmonicsmay be useful also in other cases beyond the present one and
there is not sufficient data for an extrapolation, so we justhe study of Ref. 41. One natural such candidate is a direct
take theL =13 estimate without being able to estimate anobservation of a spinon-type excitationi= 3 cylindrically

error. The extrapolatiof6.6) is shown by the line in Fig. 5. coupled chains at intermediate or small couplidgs
Obviously, finite-size effects are more important fir

<m/2 than fork> /2. Equation(6.6) yields another esti-
mate for the gap of the spinoByz_;/;,s-1/(*)~0.116).
The error estimate obtained from E@.6) is not sensible,
but the value for the gap itself is very close to our previous Our results are best summarized(gthematit magnetic
extrapolation or half the value given in Table IlI. phase diagrams. For definiteness we consider tH@)Sym-
Finally, we have checked that within error bounds themetric situationA=1, though similar pictures can be drawn
dispersion relatiori6.4) can be written in terms of Ed6.6) for other values ofA as well.
as Eyz_gs-1(K)=Esz_1ps-1/2(K—K') + Esz_125-1/2(K") For completeness, let us start with the chke2, where
with somek’. Such a decomposition must be possible if ourthe corresponding picture is given by Figag The bound-
particle interpretation is correct. ary of the(M)=0 plateau is determined by the spin gap in

VIl. SUMMARY OF RESULTS
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zero field which for arN=2-leg ladder has been studied in assumed 1/ corrections, though this is not entirely satisfac-
great detail. Fod'/J=<1.5 we use the quantum Monte Carlo tory). In the strong-coupling region we used our series in-
results of Ref. 11 in Fig. @); for J'/J=1.5 the raw 13th stead of numerical data. The series and numerical data are
order strong-coupling series of Ref. 58 is used inst@ade  matched a’/J=3.5 orJ’'/J=2.5 for the series correspond-
the excellent matching a'/J=1.5). ing to the upper boundary for OBC E(.10 or PBC Eq.
Both the numerical dathand the series expansidfsup-  (4.7), respectively. At the lower boundary of t&1)=1/2
port a linear opening of the gap for smdll, as was pre- plateau we matched the serigs9 and(4.6) to the numeri-
dicted by a dimensional analysis of the perturbing operator ircal data atl’/J=2.25 andJ’'/J=1.75, respectively. Neither
the field-theoretic formulatioff=®® of the methods accessible to us is very accurate in the region
Figure 6b) shows a more interesting case, ild53 with  where this plateau closes, but all three meth@dsnerical,
OBC. The boundaries of théM)=1/3 plateau have been series and Abelian bosonizatjopoint to a location of the
determined from the fourth-order strong-coupling sef#3) ending point in the region wherg andJ are of the same
and (4.4) for J'/J=2. For 1=J'/J<2 we obtained them order.
from a Shanks extrapolation of the finite-size data in our The gaps forN=4 are taken from our serie@.8) for
earlier papet® The remaining weak-coupling region is the J’/J=2 for OBC and Eq(4.5) for J’/J=1.5 for PBC. For
most speculative part of the figure. We located the endin@BC the accurate numerical data for the gap of Ref. 11 is
point of the(M)=1/3 plateau in the vicinity of the corre- used in the weak-coupling region. The corresponding line in
sponding point on the magnetization curves of decoupledrig. 6(e) is in comparison rather an educated guess which is
Heisenberg chains, as is suggested by the Abelian bosonizespired though by =4 andL =6 numerical data. Regard-
tion analysis if one assumes a similar behavior for OBC andng the series both for the gap and the boundaries of the
PBC (the bosonization analysis predicts for PBC that the{M)=1/2 plateau, we observe a trend that those for PBC can
(M)=1/3 plateau disappears for small but nonz&thJ). be used for somewhat smaller valuesJofd than those for
The analogous case with changed boundary condition®BC. This is expected since the former are fourth order but
(i.e., N=3 and PBQ is shown in Fig. €c). Here, no series the latter only second order.
expansions are possible due to extra degeneracies at strongAlthough Fig. 6 is for the particular choice=1 there is
coupling. The boundaries of the plateaux have therefore beemothing particular about this casat least for nonzero mag-
determined in this case mainly on the basis of older numerinetization$, and one would obtain similar figures for other
cal datat® We have used a Shanks extrapolationlfer4, 6,  values ofA as well. Further plateaux may open f#r1. In
and 8 forJ'/J=2.75 at the lower boundary of théM) particular, there should always be &W)=0 plateau in
=1/3 plateau and fod’/J=2.5 at its upper boundary to N coupledXXZ chains withA>1, since each such chain is
estimate their location. For smaller couplings, the finite-sizemassive and this should be preserved at least for sufficiently
data is nonmonotonic. The best we can do in the range Weak coupling. In the Ising limi—o and for nonfrustrat-
<J'/J<2.5is to fit theL=4 and 8 data to a form with I/  ing boundary conditions it is easy to see that this is accom-
corrections like Eqs(6.1),(6.5). The ending point of the pla- panied by breaking of translational symmetry to a petiod
teau is again placed on the basis of the weak-coupling analy=2 in the ground state. In the general casel, such a
sis. It should be noted that the nature of the transition at theeriodl =2 reconciles the appearance of a gap for both even
upper boundary of théM)=1/3 plateau changes qualita- and oddN with Eq. (1.1).
tively for J'/J=2.7526 This strongly frustrated region is in- The Abelian bosonization analysis predicts all the mass-
dicated by the bold line in Fig.(6). It is possible that the less shaded regions in Fig. 6 to be=1 theories(with the
transition becomes first order along this line. Note that theexceptiond’ =0 where one trivially has a=N theory. In
region in question is far outside the weak-coupling regionthese regions the exponents governing the asymptotics of the
where we expect all transitions to be continuous. correlation functions depend continuously on the parameters.
Another interesting difference between Figé)énd Gc) Predictions can be made, however, for the transitions at the
is that in the latter a tingM)=0 plateaui.e., a gapopens. boundaries between such massless phases and plateau re-
Its boundary has been estimated at intermediate couplings gions. The opening of a plateau when varyiHgis a transi-
fitting theL=4, 6, and 8 daf& to the form(6.1). This yields  tion of the K-T type?’ Like in the case of the transition at
slightly smaller values than those given in Ref. 59 in theA=1 in the XXZ chain, this implies a very narrow plateau
cases where we overlap. However, we agree with Ref. 59 iafter the transitioficf. Eq. (2.12] which makes it difficult to
the most important point, namely the existence of such abserve numericall}® At the transition point the asymptot-
plateau. A numerical determination of its ending point isics of the correlation functions is governed by the exponents
difficult, and the field-theoretical weak-coupling analysis is(3.14), while along the boundaries of the plateaux one has
not yet conclusive eithét>®—the ending point may well be the universal exponent8.15. It should be noted that an
anywhere in the weak-coupling region<@’'<J. attempt to verify the latter exponents numerically or experi-
Finally, the magnetic phase diagrams fb+=4 are given mentally is likely to rather lead to the exponents character-
by Figs. &d) and Ge) for OBC and PBC, respectively. To istic for the transition point if one is sufficiently close to it.
obtain them, we have performed further numerical computa- The field-theoretical analysis also predicts the asymptotic
tions. For the upper boundary of t§é&)=1/2 plateau we behavior of the magnetization in a massless phase but close
have numerical data for =4, 6, and 8 such that we can to a plateau boundary to be given by the universal DN-PT
apply a Shanks transform to it. For its lower boundary webehaviof***Eq.(2.10. We have in fact numerically verified
have onlyL =4 and 6 data and therefore we have to make arsuch a square-root behavior close to saturatidn)—1) at
assumption on the finite-size corrections to extrapolai@ét  some values of’/J for N=2, 3, and 4 with both OBC and
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PBC. However, the example of theXZ chain shows(cf. a consequence, there cannot be any long-range order which
Fig. 2 that close to other plateau boundaries this universails typical for the two-dimensional Heisenberg model, and
behavior may be restricted to a tiny region and its observathere is no reason why the low-energy spectrum should not
tion could be very difficult. In experimental situations, it will be gapped as it apparently is.
be further obscured by thermal fluctuations and other effects Similar surprises cannot be completely ruled out in the
such as disordesee, e.g., Ref. 18This explains why rather weak-coupling region foN even and(M)=0. The zero-
accurate experiments di=2-leg spin-ladder materidis®’  field case is difficult to control since there is an additional
show no evidence of a square-root behavior(figr)—0. relevant interaction between the massive degrees of freedom
Quite surprisingly, massless excitatiofisough nonmag- and the possibly massless onése coefficient ofn, in Eq.
netic oney also arise in plateau regions. This can be seeri3.4)]. In general, this gives rise to nonperturbative renormal-
from Eq. (5.3 which for(M)=1/N is just anXY chain and ization. In the isotropic casda=1 one can use the SP)
therefore massless. This yields massless excitations in thymmetry” to infer the renormalized radius of compactifica-
limit J’—o in Fig. 6(c), or more generally in the strong- tion of the remaining massless field. This then leads to the
coupling limit on the(M)=1/N plateau folN odd and PBC. generalized Haldane conjecture in the framework of Abelian
WhetherJ/J' =0 is just a critical point or if massless non- bosonization. FoA>1 a gap is always expected in the weak-
magnetic excitations also arise at finité remains to be in- coupling regime since already the decoupled chains are mas-

vestigated. sive. The situation is far less clear for anisotropikes1
since then it is not known how to control the
VIIl. DISCUSSION AND CONCLUSION renormalization-group flow. An investigation of this region

) . ) N by other nonperturbative methods would be interesting. It

In this paper we have investigated the conditions undepay also be desirable to perform further checks of the ab-
which plateaux appear iN-leg spin ladders as well as the gence of an extended massless phase in th&)3ymmetric
universality classes of the transitions at the boundaries fjiyation for everN=6.
such plateaux. Certain small plateaux may have slipped our Beyond a more detailed understanding of Nieg spin-
attention. For example, there could be a narfdW)=2/3  |adder model(3.1) treated here, a similar investigation of
plateau foN=3 and PBC at intermediate or strong coupling other models could be interesting. One natural step would be
J" which would be accompanied by spontaneous breaking o include charge degrees of freedom, and see if interesting
translational symmetry to a peride=2. If this should turn  effects arise from the interplay of a magnetic field with trans-
out to be the case, it would have to be added to Fig).6 port properties.
However, our main point is the presence of such plateaux, | ast but not least, it would be desirable to have an experi-

not the absence of particular ones. _ mental verification of our predictions. We are confident that
We also confirmed the conclusion of Ref. 59 that in thethis is possible, in principle, and hope that it will in fact be

caseN=3 frustration induces a zero-field gap at least forcarried out.

sufficiently strong coupling. It may be even more intriguing

that, according to our strong-coupling data, this gap seems to

survive theN_—mo Iimit for an odd n_ur_nbeN of cylindrically_ ACKNOWLEDGMENTS
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