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Magnetization plateaux in N-leg spin ladders

D. C. Cabra
Departamento de Fı´sica, Universidad Nacional de la Plata, C.C. 67, (1900) La Plata, Argentina

and Facultad de Ingenierı´a, Universidad Nacional de Lomas de Zamora, Cno. de Cintura y Juan XXIII, (1832),
Lomas de Zamora, Argentina

A. Honecker and P. Pujol
International School for Advanced Studies, Via Beirut 2-4, 34014 Trieste, Italy

~Received 6 February 1998; revised manuscript received 8 April 1998!

In this paper we continue and extend a systematic study of plateaux in magnetization curves of antiferro-
magnetic Heisenberg spin-1/2 ladders. We first review a bosonic field-theoretical formulation of a singleXXZ
chain in the presence of a magnetic field, which is then used for an Abelian bosonization analysis ofN weakly
coupled chains. Predictions for the universality classes of the phase transitions at the plateaux boundaries are
obtained in addition to a quantization condition for the value of the magnetization on a plateau. These results
are complemented by and checked against strong-coupling expansions. Finally, we analyze the strong-coupling
effective Hamiltonian for an odd numberN of cylindrically coupled chains numerically. ForN53 we explic-
itly observe a spin gap with a massive spinon-type fundamental excitation and obtain indications that this gap
probably survives the limitN→`. @S0163-1829~98!07633-4#
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I. INTRODUCTION

So-called ‘‘spin ladders’’ have recently attracted a cons
erable amount of attention~for reviews see, e.g., Ref. 1!.
They consist of coupled one-dimensional chains and may
regarded as interpolating truly one- and two-dimensio
systems. Such an intermediate situation may be us
~among others! for the understanding of high-Tc supercon-
ductors. In fact, modifications of the high-Tc materials~see,
e.g., Ref. 2! give rise to experimental realizations of sp
ladders. However, the field was motivated by an observa
that mainly concerns the magnetic spin degrees of freed
namely the appearance of a spin gap inN52 coupled gap-
less chains~see, e.g., Ref. 3!.

One-dimensional quantum magnets have been studie
great detail over the past decades. One remarkable obs
tion in this area is the so-called ‘‘Haldane conjecture4

which states that isotropic half-integer spin Heisenb
chains are gapless while those with integer spin are gap
Although this statement has not been proven rigorously
a wealth of evidence supporting this conjecture has accu
lated in the meantime5 ~see also6 for a recent field-theoretica
treatment!.

Spin ladders are more general quasi-one-dimensio
quantum magnets. Again, one of the attractions is a nat
generalization of Haldane’s conjecture4 to suchN coupled
spin-S chains: IfSN is an integer, one expects a gap in ze
field, otherwise not. This conjecture is suggested among
ers by the large-S limit ~see Ref. 7 for a recent review an
references therein!, strong-coupling considerations,3,8 nu-
merical computations,9–11 and even experiments~see, e.g.,
Ref. 2!.12 If one includes a strong magnetic field, the
Haldane gaps become just a special case of plateaux in m
netization curves. In the presence of a magnetic field, on
the central issues is the quantization condition on the m
netization^M & for the appearance of such plateaux, whi
PRB 580163-1829/98/58~10!/6241~17!/$15.00
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for the purposes of the present paper will be some spe
form of

lSN~12^M &!PZ. ~1.1!

Here^M & is normalized to a saturation value^M &561 and
l is the number of lattice sites to which translational symm
try is either spontaneously or explicitly broken. Haldane
original conjecture4 is related tol 5N51, ^M &50. More
general cases forN51 were treated in Refs. 13–15. In a
earlier paper,16 we have studied realizations of the conditio
~1.1! for N.1 but with the specializationsl 51 andS51/2.

So far, spin ladders in strong magnetic fields have
tracted surprisingly little attention: To our knowledge, on
the case of anN52-leg ladder had been investigated prior
Ref. 16. The experimental measurement of the magnetiza
curve of the organic two-leg ladder materi
Cu2(C5H12N2)2Cl4 ~Ref. 17! gave rise to theoretical studie
using numerical diagonalization,18 series expansions,19 and a
bosonic field-theory approach.20 In this case~i.e., N52 and
S51/2), there is a spin gap which gives rise to an^M &50
plateau in the magnetization curve. The transition betw
this zero magnetization plateau and saturation is smooth
no nontrivial effects~in particular no symmetry breaking!
were observed.

For N.2 one can expect plateaux at nontrivi
N-dependent fractions of the saturation magnetizatio16

Though this was a new observation for spin ladders, the p
nomenon itself is not completely new. For example, the p
sibility of magnetization plateaux for the case of single sp
S Heisenberg chains has been discussed systematical
Ref. 13 which also motivated some of our work. The attra
tion of this phenomenon in spin ladders is that they prov
clear and natural realizations of such plateaux. For examp
numerical analysis of the caseN53 explicitly exhibits a
6241 © 1998 The American Physical Society
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robust plateau witĥM &51/3 ~Ref. 16! which should also be
observable experimentally, e.g., in a suitable organic s
ladder material.

It is the purpose of the present paper to continue a s
tematic study of Eq.~1.1! for genericN>1 by using differ-
ent complementary techniques, such as Abelian boson
tion, strong-coupling expansions, and numeri
computations~the reader may find, e.g., Ref. 16 helpful
the understanding of the present work!. Here, we will among
others provide evidence that forS51/2 spontaneous break
ing of the translational symmetry tol 52 can be induced by
strong frustration or an Ising-like anisotropy, whilel>3 pre-
sumably needs explicit symmetry breaking.~In Ref. 15 a
slightly different example of spontaneous symmetry bre
ing with l 52 was studied.!

The prefactorlSN in Eq. ~1.1! may seem quite cumber
some, but it just counts the possibleSz values in a unit cell of
a one-dimensional translationally invariant ground state
should also be noted that Eq.~1.1! is just a necessary cond
tion; whether a plateau actually appears or not depend
the parameters and the details of the model under cons
ation. For example, plateaux with nonzero^M &Þ0 have not
been observed in the SU~2! symmetric higher spin-S Heisen-
berg chains~see, e.g., Ref. 21!, unless translational invari
ance is explicitly broken~cf. Ref. 14 forS51).

Conditions of the type~1.1! occur also in generalization
of the Lieb-Schultz-Mattis theorem.22–24,13 This theorem
constructs anonmagneticexcitation which in the thermody
namic limit is degenerate with the ground state for a giv
magnetization̂ M & and orthogonal to it unlesŝM & satisfies
Eq. ~1.1!. In this manner one proves the existence of eit
gapless excitations or spontaneous breaking of translati
symmetry. Unfortunately it is at present not clear that t
theorem applies to plateaux in magnetization curves s
they require a gap tomagneticexcitations.

Here we concentrate mainly on the caseS51/2 and all
couplings in the antiferromagnetic regimes, but try to keepN
as general as possible. Other situations can be analyze
well, but may lead to somewhat different physics~compare,
e.g., Ref. 25 for the example ofN53 antiferromagnetically
coupled ferromagnetic chains!.

This paper is organized as follows: In Sec. II we fir
review some aspects of the formulation of a singleXXZ
chain as a bosonicc51 conformal field theory. This serve
as a basis of later investigations and illustrates some gen
features also present inN-leg spin ladders. In Sec. III we firs
introduce the precise lattice model and its field-theore
counterpart which we then analyze in the weak-coupling
gime. Section IV starts from the other extreme—the stro
coupling limit—and proceeds with series expansions aro
this limit. In Sec. V we discuss an effective Hamiltonian f
the strong-coupling limit of an odd numberN of cylindri-
cally coupled chains which we then analyze numerically
Sec. VI. We summarize our results by presenting ‘‘magne
phase diagrams’’ in Sec. VII before we conclude with so
comments and open problems~Sec. VIII!.

II. A SINGLE XXZ CHAIN

First, we recall some results for theXXZ chain on a ring
of L sites in the presence of a magnetic fieldh applied along
the z axis:
-
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HXXZ5J(
x51

L H DSx
zSx11

z 1
1

2
~Sx

1Sx11
2 1Sx

2Sx11
1 !J

2h(
x51

L

Sx
z . ~2.1!

Apart from being the basis for the investigation in later se
tions, this also serves as an illustration of some general
tures. It should be noted that in Eq.~2.1! the magnetic field is
coupled to a conserved quantity which is related to the m
netization ^M & via ^M &5^(2/L)(x51

L Sx
z&. For this reason,

properties of Eq.~2.1! in the presence of a magnetic fieldh
Þ0 can be related to those ath50 and the magnetic fieldh
can be considered as a chemical potential.

The Hamiltonian~2.1! is exactly solvable by Bethe ansa
also forhÞ0. In this way it can be rigorously shown that i
low-energy properties are described by ac51 conformal
field theory of a free bosonic field compactified at radiusR in
the thermodynamic limit forD.21 and any given magneti
zation^M & ~see, e.g., Ref. 26 and compare also Ref. 27 fo
detailed discussion of the caseuDu,1!. More precisely, upon
insertion of the bosonized representation of the spin op
tors into the Hamiltonian~2.1! ~see, e.g., Ref. 28! one ob-
tains the following low-energy effective Hamiltonian for th
XXZ chain:

H̄XXZ5E dx
p

2
$P2~x!1R2~^M &,D!„]xf~x!…2% ~2.2!

with P5(1/p)]xf̃, andf5fL1fR , f̃5fL2fR . In Eq.
~2.2! we have suppressed a~for our purposes! irrelevant pro-
portionality constant that includes the velocity of sound.
this formulation, the effect of both the magnetic fieldh and
XXZ anisotropyD turns up only via the radius of compact
fication R(^M &,D). This radius governs the conformal d
mensions, in particular the conformal dimension of a ver
operatoreibf is given by (b/4pR)2. We now describe how
R can be computed.

We parametrize theXXZ anisotropy byD5cosu with
0,u,p for 21,D,1 and byD5coshg with g.0 for D.1.
Now for given magnetization̂M &>0 andXXZ anisotropy
D, the associated radius of compactificationR and magnetic
field h/J can be obtained by solving integral equations~see,
e.g., Refs. 27,29–31! in the following way: First, introduce a
function s~h! for the density of particles satisfying the inte
gral equation

s~h!5
1

2pH g~h!2E
2L

L

K~h2h8!s~h8!dh8J , ~2.3!

where the kernelK(h) and the right-hand sideg(h) are
presented in Table I.

The real parameterL>0 in Eq. ~2.3! describes the spec
tral parameter value at the Fermi surface and is determ
by the magnetization̂M & via the filling condition

E
2L

L

s~h!dh5
1

2
~12^M &!. ~2.4!

In general, one has to adjustL iteratively by first numerically
solving Eq.~2.3! and then checking for Eq.~2.4!. Only some
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TABLE I. Functions appearing in the integral equations.

D K(h) g(h) e0(h)

cosu5D,1 tanu
tan2u cosh2(h/2)1sinh2(h/2)

cot(u/2)
cosh2(h/2)1cot2(u/2)sinh2(h/2)

h

J
2

sin2u

coshh2cosu

D51 4
h214

2
h211

h

J
2

2
h211

coshg5D.1 tanhg
tanh2g cos2(h/2)1sin2(h/2)

coth(g/2)
cos2(h/2)1coth2(g/2)sin2(h/2)

h

J
2

sinh2g

cosh2coshg
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special cases can be solved explicitly. This includes the
^M &50 andD<1 whereL5` is the correct choice. Onc
the desired value ofL is determined, one introduces
dressed charge functionj~h! ~see, e.g., Refs. 29,30! as a
solution of the integral equation

j~h!512
1

2pE2L

L

K~h2h8!j~h8!dh8 ~2.5!

giving directly rise to the radius of compactification

R~^M &,D!5
1

A4pj~L!
. ~2.6!

If one further wants to determine the associated magn
field h, one has to introduce another functioned(h), the
dressed energy, satisfying the integral equation

ed~h!5e0~h!2
1

2pE2L

L

K~h2h8!ed~h8!dh8 ~2.7!

with the bare energye0(h) listed in Table I. Then the mag
netic fieldh/J is determined by the condition that the ener
of the dressed excitations vanishes at the Fermi surface

ed~L!50. ~2.8!

Using Eq. ~2.5! one can see thate(h)5e(h)uh50
1(h/J)j(h) solves Eq.~2.7! if e(h)uh50 solves Eq.~2.7!
with formally h50 ~but for the given̂ M &). From this and
Eq. ~2.8! one can easily obtainh onceL is known viah/J
52e(L)uh50 /j(L).

In general, these integral equations have to be solved
merically andL has to be determined by some iterati
method. Although this is readily done by standard method
generally accessible implementation seems to be still
available. We have therefore decided to tentatively prov
access to such solutions on the World Wide Web.32 This
implementation works in the way described above. Ty
cally, it gives results with an absolute accuracy of 1026 or
better. Of course, one can change the order of the proce
For example, one could also prescribeh/J, then determineL
from Eqs.~2.7! and~2.8!, next the radius of compactificatio
R from Eqs.~2.5! and~2.6! and finally~optionally! the mag-
netization^M & from Eqs.~2.3! and ~2.4!.

Some remarks are in order concerning the caseD.1: In
this region the identification with ac51 conformal field
theory has been established directly only by a numer
analysis of the Bethe-ansatz equations~for a summary see
e.g., Sec. II of Ref. 33!. However, the six-vertex model i
external fields has been shown34 to yield a c51 conformal
se
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u-

, a
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e
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re:
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field theory, and since theXXZ chain arises as the Hami
tonian limit of the six-vertex model, this indirectly esta
lishes the identification. Still, explicit formulas, e.g., forR
are not available in the literature and therefore we have
tained the integral equations presented for the caseD.1
above by an analytical continuation of those forD,1, as is
suggested, e.g., by Ref. 35~see, also, Ref. 36—apparent
such a continuation was also used in the recent work14!. We
have performed some checks that this yields indeed co
results. For example, some radiiR associated to certain mag
netic fieldsh and anisotropiesD obtained numerically for
chains of length up toL5234 ~Ref. 37! are reproduced in
this way.

As a further check, one can compare the critical magn
field for the boundary of thêM &50 plateau atD.1 ob-
tained by numerical solution of the above integral equati
with the exact solution of the Bethe-ansatz equations38

hc

J
5

2p sinhg

g (
n50

`
1

cosh@~2n11!p2/2g#
, ~2.9!

where as beforeD5coshg. In this case~i.e., for ^M &50) one
has L5p and the above integral equations can be sol
using Fourier series.35,36,38 If one solves the above integra
equations numerically, the deviation from the exact res
~2.9! is of the order of the numerical accuracy~in our
implementation32 always less than 1026).

In passing we make a comment which will turn out to
useful later. The result~2.9! is the gap toSz51 excitations.
However, the fundamental excitation of theXXZ chain is
known to be a so-called ‘‘spinon’’ which carrie
Sz51/2.39–41 This spinon can be regarded as a domain w
between the two antiferromagnetic ground states forD.1.
Since a single spin-flip creates two domain walls, the low
Sz51 excitation is a scattering state of two spinons. T
picture can be useful, e.g., in numerical computations.
example, a single spinon can be observed for oddL with
periodic boundary conditions.

After this digression let us now return to the above in
gral equations. The results obtained from them are sum
rized in the magnetic phase diagram for theXXZ chain Fig.
1 ~see, also, Refs. 42,33 for similar pictures!. There are two
gapped phases: A ferromagnetic one at sufficiently str
fields ~which is actually the only one forD,21! and an
antiferromagnetic phase forD.1 at small fields. In between
is the massless phase where the bosonized form~2.2! is
valid. An elementary computation of the spin-wave disp
sion above the ferromagnetic ground state shows that
transition between the ferromagnetic phase and the mas
phase is located ath/J511D. This transition is a very clea
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example of the Dzhaparidze-Nersesyan–Pokrovsky-Tala
~DN–PT! universality class,43–45 i.e., for ^M &→1 the mag-
netization behaves as~compare also Ref. 46!

~^M &2Mc!
2;h22hc

2 , ~2.10!

here Mc51 andhc /J511D. At this transition the radius
takes the universal valueR(1,D)51/(2Ap).

The other transition line starts at the SU~2! symmetric
point ^M &50, D51 with a radiusR(0,1)51/A2p. Actually,
at ^M &50 the additional operator

cos~4Apf! ~2.11!

appears in the continuum limit, which we have suppresse
Eq. ~2.2! since it is irrelevant inside the massless phase.
D51 it is marginal and becomes relevant forD.1, opening
the gap that gives the boundary of the antiferromagn
phase in Fig. 1. The associated phase transition i
Kosterlitz-Thouless~K-T! transition47 ~see, e.g., Refs. 48–
50!. The almost marginal nature of the operator respons
for the gap leads to a stretched exponential decay foD
slightly bigger than one which is characteristic for a K
transition.51 The exact asymptotic form for the gap~or criti-
cal magnetic field! of theXXZ chain is easily obtained from
the Bethe-ansatz solution~2.9! upon noting that g
'A2(D21) and that in the limitD→1 only the termn50
contributes to the sum. One then finds38

hc

J
;4pe2p2/~2A2~D21!! ~ for D slightly bigger than 1!.

~2.12!

For this reason the phase boundary is indistinguishable f
theh50 line for XXZ anisotropies up toD'1.2 on the scale
of Fig. 1. In this region, the numerical determination of t
radius R is difficult for ^M &→0. Nevertheless, using tha
L5p for ^M &50 andD.1, one can readily check that th
constant functionj(h)5 1

2 solves the integral equation~2.5!.
Then one obtains from Eq.~2.6! that R(0,D.1)51/Ap.

For ^M &50 anduDu<1 one hasL5` ~see above! and one
can use the Wiener-Hopf method to solve the above inte
equations in closed form. This yields in particularR(0,D)
5A1/2p@12(1/p)cos21D#.28 In general, the radiusR in-
creases with increasingD. For D.0, it decreases with in-
creasing magnetization̂M &, while for D,0 this is reversed

FIG. 1. Magnetic phase diagram of theXXZ chain ~2.1!. For
explanations compare the text.
ov
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to an increase inR with increasinĝ M &. Clearly, the radius
must be constant on theXY line which separates these tw
regions:R(^M &,0)51/2Ap ~though the magnetic field asso
ciated to a given̂ M & is still a nontrivial function which
should be computed from the above integral equations!.

Including the operator~2.11! in the bosonized languag
~2.2!, one recovers a Hamiltonian treated in Ref. 52 as
model for commensurate-incommensurate transitions. T
means that the transition̂M &→0 for D.1 is predicted to be
in the DN–PT universality class,43,44 too. The same
bosonization argument also leads to the already mentio
result R(0,D.1)51/Ap ~see, also, Ref. 26!. The inset in
Fig. 2 illustrates forD52 that for sufficiently small magne
tizations one can indeed observe a behavior that is com
ible with the universal square root~2.10!. It should be noted
though that the window for the universal DN–PT behavior
too small to permit verification within our numerical acc
racy for smaller values ofD ~e.g., D<1.2! where neither a
reliable numerical check of the resultR51/Ap is possible.
An analytic check of the asymptotic behavior of the magn
tization from the Bethe-ansatz solution would be interesti
but is beyond the scope of the present paper.

It should be noted that the height of the entire inset in F
2 corresponds to the first step in the magnetization curve
chain of the finite sizeL5112. Therefore, the exact solutio
is crucial in verifying the exponent~2.10!—a numerical or
experimental verification of this behavior restricted to suc
small region would be extremely difficult. Similar difficultie
will be faced in an experimental or numerical verification
R(0,D)51/Ap or the equivalent statement for the correl
tion function exponents in the region ofD slightly larger than
1.

III. LADDERS: WEAK COUPLING AND ABELIAN
BOSONIZATION

In this section we apply Abelian bosonization to th
weak-coupling regionJ8!J of N-leg spin ladders. In par-
ticular, we will show how the necessary condition~1.1!

FIG. 2. Magnetization curve of theXXZ chain atD52 obtained
from the integral equations~2.3!, ~2.4!, ~2.7!, and ~2.8!. The inset
shows the region of small magnetization and illustrates that also
transition^M &→0 is compatible with the DN–PT universality clas
for D.1 @the dashed line is a fit to the universal form~2.10!#.
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arises in this formulation and discuss under which circu
stances an allowed plateau does indeed open as a functi
the parametersJ8 and D. The lattice Hamiltonian for this
system is given by

H ~N!5J8(
i , j

(
x51

L

SW i ,xSW j ,x1J(
i 51

N

(
x51

L H DSi ,x
z Si ,x11

z

1
1

2
~Si ,x

1 Si ,x11
2 1Si ,x

2 Si ,x11
1 !J 2h(

i ,x
Si ,x

z , ~3.1!

where J8 and J are, respectively, the interchain and intr
chain couplings,h is the external magnetic field and the i
dices i and j label the different chains~legs! in the ladder.
The sum in the first term is over all possible couplings b
tween chains. The case of periodic boundary conditi
~PBC! and open boundary conditions~OBC! will be dis-
cussed later. Here we have explicitly included anXXZ an-
isotropyD in the intrachain coupling. We have kept the i
terchain couplingJ8 SU~2! symmetric for simplicity in later
sections although this is not substantial in the weak-coup
region which we will discuss in the remainder of this sectio

The corresponding effective field-theoretic Hamiltonian
obtained using standard methods53,28 ~see, also, Refs. 13–1
for the case of nonzero magnetization!. One essentially use
e
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on

n

d

n
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Eq. ~2.2! as the effective Hamiltonian for each chain and t
bosonized expressions for the spin operators which read

Si ,x
z '

1

A2p

]f i

]x
1const:cos~2kF

i x1A4pf i !:1
^Mi&

2
,

~3.2!

and

Si ,x
6 ':e6 iApf̃ i@11const cos~2kF

i x1A4pf i !#:. ~3.3!

Here we have set a lattice constant to unity which appear
passing to the continuum limit. The colons denote norm
ordering which we take with respect to the ground state o
given mean magnetization̂Mi& in the i th chain which is a
natural choice. This leads to the constant term in Eq.~3.2!
which will play an important role in the discussion of th
terms that can be generated radiatively. The prefactor
arises from our normalization of the magnetization to sa
ration valueŝ M &561. The Fermi momentakF

i are given
by kF

i 5p(12^Mi&)/2.
In the weak-coupling limit along the rungs,J8!J, we

obtain the following bosonized low-energy effective Ham
tonian for theN-leg ladder keeping only the most releva
perturbation terms:
H̄ ~N!5E dxFp

2(
i 51

N

$P i
2~x!1R2~^M &,D!„]xf i~x!…2%1

l1

2p(
i , j

„]xf i~x!…„]xf j~x!…

1(
i , j

$l2 :cos@2x~kF
i 1kF

j !1A4p~f i1f j !#:1l3 :cos@2x~kF
i 2kF

j !1A4p~f i2f j !#:1l4 :cos@Ap~f̃ i2f̃ j !#:%G .

~3.4!
g

ian

-

n-
en
The four coupling constantsl i essentially correspond to th
couplingJ8 between the chains:l i;J8/J. In arriving at the
Hamiltonian ~3.4! we have discarded a constant term a
absorbed a term linear in the derivatives of the free bos
into a redefinition of the applied magnetic field.

The Hamiltonian~3.4! has been also used to represe
spin-N/2 chains~see, e.g., Refs. 53,54!, since they can be
obtained in the limit ofN strongly ferromagnetically couple
chains (J8→2`). However, here we will analyze Eq.~3.4!
mainly in the case of small antiferromagneticJ8 and discuss
various boundary conditions.

Note that thel2 and l3 perturbation terms contain a
explicit dependence on the position~in the latter case thisx
dependence disappears for symmetric configurations
equalkF

i ). Such operators survive in passing from the latt
to the continuum model, assuming that the fields v
slowly, only when they are commensurate. In particular,
l2 term appears in the continuum limit only if the oscillatin
factor exp„i2x(kF

i 1kF
j )… equals unity. If the configuration is

symmetric, this in turn happens only for zero magnetizat
~apart from the trivial case of saturation!.

For simplicity let us first analyze the case withN53 and
PBC. We first have to diagonalize the Gaussian~derivative!
s

t

th
e
y
e

n

part of the Hamiltonian. This is achieved by the followin
change of variables in the fields:

c15
1

A2
~f12f3!, c25

1

A6
~f11f322f2!,

cD5
1

A3
~f11f21f3!. ~3.5!

In terms of these fields the derivative part of the Hamilton
can be written as

H̄der5E dx
p

2
$R2~^M &,D!†~11a!„]xcD~x!…21~12b!

3@„]xc1~x!…21„]xc2~x!…2#‡%, ~3.6!

wherea52J8/(Jp2R2)52b. We can now study the large
scale behavior of the effective Hamiltonian~3.4! where we
assume allkF

i equal due to the symmetry of the chosen co
figuration of couplings. Let us first consider the case wh
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the magnetization̂M & is nonzero. In this case only thel3
and l4 terms are present. The one-loop renormalizat
group ~RG! equations are

db

d lnL
54pS 2

3l3
2

2R2
112p2R2l4

2D ,

dl3

d lnL
5S 22

1

2pR2~12b!
D l32pl3

2 , ~3.7!

dl4

d lnL
5@222pR2~12b!#l42pl4

2 .

It is important to notice that only the fieldsc1 andc2 enter
in these RG equations, since the perturbing operators do
contain the fieldcD . The behavior of these RG equation
depends on the value ofR. The main point is that always on
of the twol perturbation terms will dominate and the corr
sponding cosine operator tends to order the associated fi
This gives a finite correlation length in correlation functio
containing the fieldsc1 andc2 ~or their duals!. For example,
for D<1 we have thatR2,(2p)21 since ^M &Þ0. Then,
from Eq.~3.7! one can easily see that the dominant term w
be thel4 one. This term orders the dual fields associa
with c1 and c2. Then, the correlation functions involvin
these last fields decay exponentially to zero. In either c
the fieldcD remains massless. A more careful analysis of
original Hamiltonian shows that this diagonal field will b
coupled to the massive ones only through very irrelev
operators giving rise to a renormalization of its compact
cation radius. However, due to the strong irrelevance of s
coupling terms these corrections to the radius are expecte
be small, implying that the value of the large-scale effect
radius keeps close to the zero-loop resultRA12a. It is
straightforward to generalize this toN chains when all pos-
sible coupling are present and have the same valueJ8. One
can find a change of variables on the fields to

cD ; c i i 51, . . . ,N21,

wherecD51/AN( i 51
N f i . Again, for nonzero magnetization

all but the diagonal fieldcD will be present in the perturbing
termsl3 andl4. The RG equations are essentially the sa
as Eq.~3.7! and the result is that only the fieldcD will be
massless.

We are then left in principle with a free Gaussian acti
for the diagonal field. However some operators can be ra
tively generated. We see from Eqs.~3.2!,~3.3! that when we
turn on the interchain coupling, the ‘‘N-Umklapp’’ term

J8N cosS 2x(
i 51

N

kF
i 1A4p(

i 51

N

f i D
5J8N cosS 2x(

i 51

N

kF
i 1A4pNcDD ~3.8!

appears in the operator product expansion~OPE!.
Again, this operator survives in passing from the lattice

the continuum model, assuming that the fields vary slow
n

ot

ds.

l
d

e,
e

t
-
h
to

e

e

a-

o
,

only when the oscillating factor exp(i2x(j51
N kF

j ) equals one.
This in turn will happen when the following specialized ve
sion of the condition~1.1!

N

2
~12^M &!PZ ~3.9!

is satisfied. At such values of the magnetization, the fieldcD
can then undergo a K-T transition to a massive phase, i
cating the presence of a plateau in the magnetization cu
An estimate of the value ofJ8 at which this operator be
comes relevant can be obtained from its scaling dimens
which in zero-loop approximation is given by

dim„cos~A4pNcD!…5
N

4@pR21~N21!/p~J8/J!#
.

~3.10!

At D51 one then obtainsJc8'0.09J for the ^M &51/3 pla-
teau atN53 andJc8'0.7J for ^M &51/2 at N54 and also
for ^M &51/5 atN55. At the opening of such plateaux, th
effective radius of compactification is fixed to be

Reff
2 5

N

8p
~3.11!

and the large-scale effective spin operators are~cf. Ref. 53!:

Seff
z ~x!'A N

2p

]cD

]x

1const:cos~2kFx1A4pNcD!:1
^M &

2
,

~3.12!

and

Seff
6 ~x!':e6 iAp/Nc̃D@11const cos~2kFx1A4pNcD!#:.

~3.13!

Then, Eq.~3.11! fixes the values of the correlation exponen
at this point to be

hz54; hxy5
1

4
. ~3.14!

On the other hand, commensurate-incommensurate trans
results52,20,14imply that the values of these exponents sho
be

hz52; hxy5
1

2
~3.15!

along the upper and lower boundary of a plateau. This s
ation is similar to theXXZ chain atD51 andD.1 for the
boundary of thê M &50 plateau. However, the values of th
exponents are different since the perturbing operators are
ferent.

Note that the ‘‘N-Umklapp’’ process which allows the
appearance of Eq.~3.8! produces a complete family of op
erators given by
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cosS 2xl(
i 51

N

kF
i 1 lA4p(

i 51

N

f i D
5cosS 2xl(

i 51

N

kF
i 1 lA4pNcDD ~3.16!

with l an arbitrary integer. The values of the magnetizat
for which one of these operators is allowed are subject
generalization of Eq.~3.9!, namely Eq.~1.1! in the Introduc-
tion ~with S51/2). However, the dimensions of these ope
tors increase withl 2. So, these operators cannot be relev
unless we consider regimes with an anisotropy parametD
bigger than one or very big values of the interchain coupl
J8 far from the perturbative regime of the present analy
Therefore, higher values ofl are realized only under specia
conditions. While l 52 can be obtained by either stron
Ising-like anisotropyD or frustration at strong coupling~see
Sec. VI below!, it is possible thatl>3 can be realized only if
suitable symmetry-breaking terms are explicitly introduc
into the Hamiltonian~3.1!.

Note that formally, the preceding analysis can also
carried out using the fermionic Jordan-Wigner formulatio
For example, in this formulation theN-Umklapp operator
~3.8! is given by

S )
a51

N

Ra
†~x!La~x!exp~2ikF

ax!D
1S )

a51

N

La
†~x!Ra~x!exp~22ikF

ax!D ,

whereRa andLa are the right- and left-moving componen
of the fermions. We have chosen to use the bosonized
guage because it is more appropriate for general values o
anisotropyD.

The analysis above was for the case where all the ch
were coupled together with the same coupling value. M
precisely, the estimates for the appearance of plateaux w
for positive ~frustrating! interchain coupling. To generaliz
this to PBC~which is different from the preceding case f
N>4), we first notice, using the bosonized expression of
effective Hamiltonian, that this configuration of couplings
not stable under RG transformation. E.g., the OPE betw
terms like cos(f12f2) and cos(f22f3) generates an effec
tive coupling between the fieldsf1 andf3, etc. The under-
lying intuitive picture is that antiferromagnetic couplings b
tween the chain 2 with the chains 1 and 3 generates
effective ferromagnetic coupling between the chains 1 an
For example, forN54 and PBC, ferromagnetic coupling
are generated along the diagonals between originally
coupled chains. This case is part of the family of configu
tions with antiferromagnetic nearest-neighbor and ferrom
netic next-nearest-neighbor couplings. For this gene
situation atN54, the coupling matrix in the derivative pa
is given by

S 1 a 2b a

a 1 a 2b

2b a 1 a

a 2b a 1

D , ~3.17!
n
a

-
t

g
.

d

e
.

n-
he

ns
e
re

e

n

an
3.

n-
-
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wherea andb are positive. As in the preceding analysis, o
can change variables to

cD5
1

A4
~f11f21f31f4!;

c15
1

A4
~f12f21f32f4!;

c25
1

A2
~f12f3!; c35

1

A2
~f22f4!. ~3.18!

For generic values of the magnetization, it is easy to see
the diagonal fieldcD is again the only field that does no
acquire a mass under the perturbation. Then, the analys
the appearance of theN-Umklapp term for particular values
of the magnetization is identical to the one performed befo
The generalization to genericN with PBC is straightforward,
one first builds the radiatively generated couplings by ke
ing only the lowest order inJ8. Once this step is performed
the only difference with respect to the case of equal int
chain couplings is the zero-loop value of the dimension
the N-Umklapp operator~which enters via the initial condi-
tions for the RG flow!. This has the effect of changing th
value of the couplingJ8 at which a plateau opens with
given value of the magnetization, but the qualitative behav
of the system is similar. This conclusion is not so straig
forward for ^M &50, where as we will see, the differenc
between frustrating and nonfrustrating configurations can
come crucial.

Concerning finally the case of OBC, let us first consid
again the caseN53 with antiferromagnetic coupling be
tween the first and second chain and the second and the
chain. Again, this coupling is not stable under RG transf
mation. Under RG transformations the OBC configurati
will flow towards a nonfrustrating cyclically coupled con
figuration. The main point is that for weak coupling an
nonzero magnetization, the most relevant perturbing te
will be again the one containing differences of fields or th
duals. Then they will produce a mass gap for all the relat
degrees of freedom and one recovers a scenario similar to
symmetric case, where only one massless field is left. On
other hand, the appearance ofN-Umklapp operators and thei
commensurability is unchanged, since these criteria dep
on the value of the magnetization and not on the particu
couplings between the chains.

Let us study now the more complicated case of zero m
netization. For̂ M &50 thel2 term in Eq.~3.4! is commen-
surate and must be included in the perturbation terms.
situation is now much more complicated because this
evant operator couples the diagonal fieldcD with the mas-
sive ones. For equal coupling betweenN53 chains, the RG
equations are now

da

d lnL
5

16pl2
2

R2
,

db

d lnL
54pS 2

l2
2

2R2
2

3l3
2

2R2
112p2R2l4

2D ,
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TABLE II. Values of h at which the magnetization jumps for Eq.~2.1! with coupling constantJ8, D51,
N sites and different boundary conditions.

h/J8
N OBC PBC

2 61

3
6

3
2

, 0 6
3
2

, 0

4
6S11

1

A2
D , 6

11A32A2

2

62, 61

5
6

51A5

4
561.80902,61.11887, 0 6

51A5
4

, 6
31A5

4
, 0

6 61.86603,61.38597,60.49158
62, 6

11A5
2

, 6
A132A5

2
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-

.

-
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n in
dl2

d lnL
5F22

2

3

1

4pR2S 2

11a
1

1

12bD Gl22pl2l3 ,

dl3

d lnL
5S 22

1

2pR2~12b!
D l32pl3

22pl2
2 ,

dl4

d lnL
5@222pR2~12b!#l42pl4

2 ~3.19!

with the RG initial conditions

a~0!52b~0!5
2J8

Jp2R2
, ~3.20!

and

l2~0!5l3~0!51/2~const!2J8/J; l4~0!5J8/J,
~3.21!

where we kept the notation of Eqs.~3.4!,~3.6!. We see that
the radius of compactification of the diagonal field is no
strongly affected by the presence of thel2 term. Note also
that theN-Umklapp process generates the operator

J8N cos~A4pNcD! ~3.22!

for N even, and

J8N cos~2A4pNcD! ~3.23!

for N odd. For nonfrustrating interchain coupling~a negative
J8 coupling between all the chains for example!, all relative
fields are massive according to Ref. 54. We can then i
grate out these massive degrees of freedom. The crucial p
is that now the radius of the diagonal field gets a nontriv
correction due to the strong interaction with the mass
fields. Since this field is the only one expected to descr
the large-scale behavior of the system, forD51 and ^M &
50, the SU~2! symmetry of the model would fix the radiu
of this field to be54

Reff5A N

2p
. ~3.24!
e-
int
l
e
e

For such a value of the renormalized radius, theN-Umklapp
term becomes strongly relevant forN even, and marginally
irrelevant forN odd. These arguments are based on the
sumption that the~uncontrolled! RG flow will drive our sys-
tem to the@SU~2! symmetric# strong-coupling regime. The
situation is even more subtle for positiveJ8 ~or l i), because
in this case, from Eq.~3.19! one sees that the quadratic term
could now prevent the RG flow to reach the same stro
coupling regime as forJ8,0. A numerical analysis of the
RG flow for a frustrated three-leg Hubbard ladder at h
filling provides evidence for the opening of a gap.55 On the
other hand, a non-Abelian bosonization analysis56 leads to
the conclusion that the weak-coupling region is gapless. T
case deserves further investigation and series expansion
one way to approach this issue.

IV. STRONG-COUPLING EXPANSIONS
FOR N-LEG LADDERS

In this section we diagonalize the interaction along t
rungs exactly forJ50 and then expand quantities of intere
in powers ofJ/J8 around this limit. In order to be able to
cover a variety of cases, we used a quite general metho
perform the series expansions which is summarized, e.g
Sec. III of Ref. 57~actually, the program used in the prese
paper is a modified version of the one usedloc.cit.!.

As was already pointed out in Ref. 16, one can sim
count the number of chainsN in the limit J/J8→0 in order
to determine the allowed values of the magnetization^M &.
This is presumably the simplest way to obtain the quanti
tion condition~3.9!. A less trivial fact is that all these value
of the magnetization are in fact realized. For example,
ferromagnetic couplingJ8,0, the magnetization jumps im
mediately from one saturated value^M &521 to the other
one (̂ M &511) as the magnetic fieldh passes through zero
Nevertheless, for not too largeN one can readily compute
the magnetization curve of Eq.~2.1! and check for antiferro-
magnetic couplingJ8.0 that all possible values of the mag
netization are indeed successively realized as the field is
creased. The critical magnetic fieldsh at which one value of
the magnetization jumps to the next largest one are give
Table II.

As a next step, one can take the intrachain couplingJ
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perturbatively into account. First, we look at a two-leg ladd
(N52). The rung HamiltonianHr5J8SW 1SW 2 has two eigen-
values whose difference corresponds to the critical fields
sented in Table II. The lower eigenvalue equals23J8/4 and
belongs to the spinS50 eigenstate, while the other threefo
degenerate one equalsJ8/4 and corresponds to the spin trip
let (S51). For convenience, we concentrate on an isotro
interaction for the rungs, but it is straightforward to inclu
anXXZ anisotropyD in the interaction along the chains. On
motivation for doing so is that this permits further compa
son with the weak-coupling analysis (J8!J) of the previous
section. AtJ50 the ground state is obtained by putting s
glets on each rung. A basic excitation atJ50 is given by one
r

e-

ic

triplet in a sea of singlets. Since the SU~2! symmetry is bro-
ken down to U~1! by the perturbation, different series a
obtained for theSz561 andSz50 components of the trip-
let.

Here we concentrate just on the series for the gap, but
previous results for the ground-state energy and the dis
sion relations are readily extended to higher orders,8 or to
analytical expressions inD for longer series58 at D51 with
numerical coefficients.

The gap is obtained by the value of the excitation ene
of a single flipped spin at momentumk5p with Sz561.
We find
Ref. 8,
.
sion

ake place
ccurate,

order

t

r

E2

J8
512S J

J8D1
11D2

4 S J

J8D
2

1
~11D!2

16 S J

J8D
3

1
2216D29D21D4

32 S J

J8D
4

1
21284D139D2248D312D4

256 S J

J8D
5

2
82298D1155D2250D3180D4212D6

1024 S J

J8D
6

1OS S J

J8D
7D . ~4.1!

At the isotropic pointD51 we recover well-known results: For this special case, the first three orders can be found in
a fourth order was given in Ref. 16 and numerical values of the coefficients until 13th order are contained in Ref. 58

The series~4.1! contains a singularity atJ850 which has no physical meaning but is simply due to the choice of expan
parameter. We therefore analyze it by removing this singularity via the substitutions

x5
J8

J1J8
; x̃5tan21S J

J8D . ~4.2!

From the raw transformed series one can then find some indication of an extended massless phase at smallJ8 if D,Dc with
Dc'0.25–0.5. The opening of this massless phase is predicted by the zero-loop analysis of the previous section to t
at Dc50. Since the information obtained in the weak-coupling regime from a strong-coupling series is not extremely a
this agreement can be considered reasonable.

Now we turn toN53 and OBC. In a way similar to the previously discussed series one finds the following fourth-
series for the lower and upper boundary of the^M &51/3 plateau:

hc1

J8
5~D11!

J

J8
2

~D11!~8D25!

27 S J

J8D
2

1
~D11!~142D22307D223!

972 S J

J8D
3

1
~D11!~40 572D3283 025D2176 961D273 295!

367 416 S J

J8D
4

1OS S J

J8D
5D , ~4.3!

hc2

J8
5

3

2
2

J

J8
1

10117D2

36 S J

J8D
2

1
2196D12522554D31171D2

3888 S J

J8D
3

1
30 172138 988D228 387D217028D328886D4

326 592 S J

J8D
4

1OS S J

J8D
5D . ~4.4!

A third-order version of these series was already presented in Ref. 16 for the special caseD51. We employ again the
transformations~4.2! to analyze these series. The raw transformed series indicate forD51 that thê M &51/3 plateau does no
extend down untilJ850 but ends at a critical valueJc8 . The numerical value is found to beJc8'1.0–1.4J atD51. This number
should however not be taken too seriously as is also indicated by the large uncertainty of the critical anisotropyDc above
which this plateau extends over all nonzeroJ8: Dc'1.0–1.6. At least, this rough estimate forDc is compatible withDc
'1.19 as obtained from the zero-loop weak-coupling analysis.

The next case we consider isN54 and PBC. In the strong-coupling limit we find plateaux at^M &50 and at̂ M &51/2.
Series can be computed readily for the gap~which determines the boundary of the^M &50 plateau! and the lower and uppe
boundary of thê M &51/2 plateau. In this order, they read
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E4
~p!

J8
512

4

3S J

J8D1
33D2212D120

108 S J

J8D
2

1
241194D21131D

1296 S J

J8D
3

1
3 524 213217 599 776D219 014 208D11 923 768D317 733 988D4

39 191 040 S J

J8D
4

1OS S J

J8D
5D , ~4.5!

hc1

~p!

J8
511

3D18

6 S J

J8D1
9D2196D2308

864 S J

J8D
2

1
369D1972D321314D229464

31 104 S J

J8D
3

2
885 195D4269 076 728D2261 318 8852545 832D31117 897 360D

156 764 160 S J

J8D
4

1OS S J

J8D
5D , ~4.6!

hc2

~p!

J8
521

D22

2 S J

J8D1
5D2122

32 S J

J8D
2

2
8D3242D29D2251

256 S J

J8D
3

1
38D421981D2256D311634D2403

4096 S J

J8D
4

1OS S J

J8D
5D . ~4.7!

The superscript (p) means that these series are for PBC.
Again, we analyze these series using the transformations~4.2!. We apply this first to the gap~4.5! and find that the gap

closes for someJ8.0 if D,Dc where the estimates for the critical value span an intervalDc'0.8–1.2. This interval is
centered around the valueDc51 predicted by power counting in the context of Abelian bosonization.

Concerning the opening of thêM &51/2 plateau, we can first locate its ending point in the same way as beforeJc8
'0.8–1.6J at D51. What is more interesting is the conclusion that this ending point cannot be pushed down toJc850 by
increasingD. This is in agreement with the zero-loop weak-coupling analysis which implies that an^M &51/2 plateau does no
exist for J8!J andN54 regardless of the choice ofD.

Finally we present second-order versions of analogous series forN54 and OBC~denoted by a superscripto):

E4
~o!

J8
5

1

2
~11A32A2!2S 1

A6
1

2

3D J

J8
2H A6

1104
~764D221288D1947!2

A3

1656
~1682D222760D11847!

1
A2

3312
~4176D227176D14063!2

1

414
~862D221242D1869!J S J

J8D
2

1OS S J

J8D
3D , ~4.8!

hc1

~o!

J8
5

1

2
~11A32A2!1

2A619D18

12 S J

J8D1H A6

1656
~1146D221932D2155!1

A3

1656
~21406D212691D1637!

1
A2

26 496
~27 819D2257 408D297 216!1

1

828
~21425D212553D13920!J S J

J8D
2

1OS S J

J8D
3D , ~4.9!

hc2

~o!

J8
511

1

A2
1

D24

4 S J

J8D1
27A2D21416A22528

128 S J

J8D
2

1OS S J

J8D
3D . ~4.10!
f

th

q.

m
ym
is

y in-

ple
on-
e

A second-order expansion of the dispersion relation atD51
has already been presented before,8 though with floating-
point coefficients. Equation~4.8! agrees with the result o
Ref. 8 for the gapv2(k5p) up to first order, but there is a
minor difference in the second order: We believe that
coefficient of cos2k in Eq. ~23! of Ref. 8 should read
20.527 81 . . . ~not 20.469). We have also checked E
~24! loc.cit. and in this case found perfect agreement.

Given the low order of the series~4.8!–~4.10! we do not
try to draw conclusions for the weak-coupling region fro
them. We have restricted to only second order since a s
bolic computation of higher orders is very difficult. This
e

-

due to the many square roots encountered, as is alread
dicated by the results presented here.

V. THE STRONG-COUPLING EFFECTIVE HAMILTONIAN
OF A FRUSTRATED LADDER

Here we look at strong coupling (J8@J) for PBC and odd
N. In this case additional degeneracies preclude a sim
analysis as in the preceding section. From a first-order c
sideration in J one infers that the low-energy effectiv
Hamiltonian for Eq.~3.1! with D51 andh50 is then given
by ~see Refs. 56,54 forN53 and Ref. 59 for largerN):
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Heff
~N,p!5

J

N(
x51

L

@11aN~sx
1sx11

2 1sx
2sx11

1 !#SW xSW x11 ,

~5.1!

where theSW x are su~2! operators acting in the spin space a
sx

6 act on another two-dimensional space which comes fr
a degeneracy due to the permutational symmetry of
chains.

We have checked the validity of Eq.~5.1! for N53, 5, 7,
and 9 in the following way: First one has to determine t
ground-state space at each rung forJ50 which is nothing
but the ground-state space of anN-site Heisenberg chain. Fo
N odd, the lowest energy states haveSz561/2. In the case
of OBC, this would be the only degeneracy. SU~2! symmetry
is then sufficient to conclude that the effective Hamiltoni
is a simple Heisenberg chain which is gapless in accorda
with the generalized Haldane conjecture.

For PBC there is another twofold degeneracy in addit
to this twofold degeneracy in spin space: ForN odd and PBC
the ground states of a Heisenberg chain carry momenk
562p b(N11)/4c/N where parity symmetry is reflected i
the freedom of choice of sign. So, the ground-state spac
each rungx is four dimensional: The operatorsSW x act in the
two-dimensional spin space and thesx

6 act in the two-
dimensional space spanned by the ground-state momen

This degeneracy makes perturbation expansions iJ
highly nontrivial: At first order inJ one has to diagonalize
the matrix~5.1! which is determined by the matrix elemen
of the interaction along the legs in Eq.~3.1!. That the only
nonzero matrix elements are those given in Eq.~5.1! can be
inferred just from the following symmetries of the fu
Hamiltonian: Global SU~2! symmetry @actually one needs
only the U~1! Cartan subalgebra of su~2!# and invariance
under simultaneous translations or reflections along all
rungs. These symmetries also imply some identities betw
the nonzero matrix elements, but at the end one still ha
explicitly compute some matrix elements—at least in or
to determine the constantsaN . We have performed suc
direct computations of matrix elements forN53, 5, 7, and 9
and found the associated values ofaN to be

a351, a55
16

9
, a752.620 685 9 . . . ,

a953.501 208 3 . . . . ~5.2!

In contrast, e.g., to theXXZ chain ~2.1!, already forN53
the Hamiltonian~5.1! does not satisfy the Reshetikhin crit
rion @Eq. ~3.20! on p. 101 of Ref. 60#. Therefore, it is in
general not integrable~in the sense that it would be th
Hamiltonian of a one-parameter family of transfer matric
which commute among themselves and with this Ham
tonian!. So, one has to treat it by other approximate or n
merical methods; e.g., a density matrix renormalizatio
group study was carried out forN53 in Ref. 59 providing
evidence for a gap toS51 excitations.

In the present paper we are interested in genericXXZ
anisotropiesDÞ1 in the interaction along the chains in E
~3.1! and thus we should generalize Eq.~5.1!. This generali-
zation is obvious from the way theXXZ anisotropy appears
in Eq. ~3.1! and our derivation of Eq.~5.1!: D just multiplies
m
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-

the matrix elements of theSz-Sz interaction. Therefore, the
effective Hamiltonian for genericD is given by

HD
~N,p!5

J

N(
x51

L

@11aN~sx
1sx11

2 1sx
2sx11

1 !#

3S DSx
zSx11

z 1
1

2
~Sx

1Sx11
2 1Sx

2Sx11
1 ! D , ~5.3!

where the parametersaN remain those given in Eq.~5.2!.
The generalization~5.3! includes in particular the caseD50,
corresponding to two coupledXY models. Then~i.e., for
D50! one can apply a Jordan-Wigner transformation to E
~5.3!. However, even in this case one obtains a four-ferm
interaction with the effect that the problem does not simpl
~in contrast to the familiar case of fermion bilinears!. In par-
ticular, the determination of the ground state of Eq.~5.3! for
D50 is far from being straightforward.

As was pointed out in Ref. 16, the effective Hamiltonia
~5.3! describes the response of Eq.~3.1! to a magnetic field
for u^M &u<1/N at strong coupling. ForN53 ~i.e., a351)
andD51 we find by exact diagonalization of Eq.~5.1! that
the transition tô M &51/3 ~full magnetization for the effec-
tive Hamiltonian! takes place at 3h/J54.3146, 4.3121,
4.3108, 4.3100, 4.3096 forL58, 10, 12, 14, 16, respectively
This is in reasonable agreement with numerical values
the lower boundary of thêM &51/3 plateau of~3.1! at J8
@J ~compare Fig. 4 of Ref. 16!.

VI. NUMERICAL ANALYSIS OF THE
STRONG-COUPLING EFFECTIVE HAMILTONIAN

To learn more about the spectrum of Eq.~5.3!, we have
performed numerical diagonalizations mainly forN53 on
finite systems, as was already done in Ref. 59 forD51. The
Hamiltonian has two conserved quantities:Sz ~for D51 ac-
tually the total spinS) and a second similar quantity relate
to the first factor in Eq.~5.3! which we denote bySz. The
lowest eigenvalues are located in theSz50 sector. First we
look at the gap to the excitations in theSz51 sector. It turns
out that one can fit the system-size dependence of this
nicely by61

ESz50,Sz51~L !5ESz50,Sz51~`!1
a

L
. ~6.1!

Estimates for these parameters based on data for length
to L514 are presented in Table III for some values ofD and
N53. The numbers in brackets indicate the 1s-confidence
interval of the fit for the last given digit. Since this ignore
possible other error sources, the true error may be a l
larger. Our result forD51 @ESz50,Sz51(`)50.208(1)J#
agrees within error bounds with that of Ref. 5
@ESz50,Sz51(`)50.27(7)J#. From Table III we conclude
that theSz51 excitation of Eq.~5.3! is gapped for allD>0
and that there is nothing special about the caseD51 from
this point of view.

One comment is in place regarding the form~6.1! since in
a gapped situation the convergence should ultimately be
ponential~or at least of orderL22—see, e.g., Ref. 57, an
references therein!. Here we seem to observe a typical cros
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TABLE III. Parameters for the fit Eq.~6.1! to theSz51 gap of Eq.~5.3!. The first six columns are for
N53, but various values ofD. The rightmost column is for ‘‘N5` ’’ with aN /N→1.

D 0 0.2 0.4 0.8 1.0 1.2 1.0

ESz50,Sz51(`)/J 0.139~5! 0.134~8! 0.166~5! 0.200~1! 0.208~1! 0.214~2! 0.390~6!

a/J 2.78~4! 3.35~6! 3.19~4! 3.079~7! 3.088~7! 3.13~2! 5.72~4!
ly
b

em
re
co

t
ith
ch
we

e
m

.

ro

n

t

y-

ge

n

n in
in

s

the

he
ted
is

.

b-

icle

epa-

.g.,

26
51
55
76
82
36
over phenomenon, i.e., the small values of the gap imp
large correlation length such that our system sizes may
well below the correlation length. In such a range of syst
sizes one would indeed expect to observe finite-size cor
tions which are typical for massless situations. Since the
rections should ultimately become smaller, this would lead
obtaining systematically too small values of the gap. W
the fit ~6.1! we thus obtain a lower bound for the gap whi
is presumably not far from the true value. In particular,
can safely infer the presence of a gap.

Concerning the case ofN.3, one observes from Eq.~5.2!
and a further value fora11 ~Ref. 59! that aN is roughly
proportional toN, i.e., aN'0.44N for large N. Using this
information, we have extrapolated Eq.~5.1! to infinite N set-
ting limN→`aN /N51 in order to avoid the uncertainty in th
true proportionality constant. This limit eliminates the ter
13SW xSW x11 in Eq. ~5.1!. The rightmost column in Table III
shows the value for theS51 gap that we obtain in this case
It should be noted that the properly rescaled value forN
→` is slightly lower than that forN53 atD51 ~the former
is about 80% of the latter!. However, even forN5` our
estimate for the gap is still remarkably distinct from ze
This suggests a gap in the strong-coupling limit~5.1! for all
N which slightly decreases asN→`, but does not close eve
in this limit.

Now we turn to the ‘‘gap’’ in theSz50 sector forN53.
The data in Table IV can be interpreted as evidence tha
asymptotically decreases roughly as

ESz50,Sz50;
1

L2 ; ~6.2!

at least this ‘‘gap’’ clearly tends to zero in the thermod
namic limit @in particular close toD50 the finite-size expo-
nent could be different from that given in Eq.~6.2!#. This
energy level corresponds to the state constructed in the
eralized Lieb-Schultz-Mattis theorem.22–24,13 According to
Ref. 59 this energy level should be interpreted as a dege

TABLE IV. RescaledSz50 ‘‘gaps’’ of Eq. ~5.3! with N53 for
various values ofD.

D 0 0.2 0.4 0.8 1.0 1.2

L L2ESz50,Sz50 /J

4 11.04294 12.16715 13.29556 15.54226 16.65656 17.76
6 14.71647 15.34371 16.29211 18.64172 19.94276 21.29
8 17.68885 17.48479 18.05673 20.22660 21.6 23.09
10 20.18126 18.90011 19.00079 20.85874 22.23517 23.80
12 22.28842 19.75430 19.34576 20.83216 22.17023 23.76
14 24.06309 20.15994 19.24047 20.33604 21.60791 23.19
a
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ate ground state arising due to spontaneous dimerizatio
the thermodynamic limit. The fact that the energy levels
Table IV have momentump relative to the ground state i
compatible with this interpretation and yieldsl 52 for the
condition ~1.1!.

Next, we investigate the momentum dependence of
gaps to the lowest excited states of Eq.~5.1! with N53. The
data forSz50 and total spinS50 is shown in Fig. 3 and
that for total spinS51 ~alsoSz50) in Fig. 4~compare also
Fig. 4 of Ref. 59!. Here, we measure the momentum of t
excitations relative to the ground state. It should be no
that due to parity conservation only half of the spectrum
shown ~the parts fork.p or k,0 are mirror-symmetric
extensions of this figure!. The two figures look quite similar
Both can be interpreted as the lower boundary of a~two-
particle! scattering continuum. In particular, we do not o
serve one-particle states.

To extrapolate the lower boundaries of these two-part
scattering states, we have Fourier transformedE2.62 Then we
have extrapolated each coefficient of the Fourier series s
rately using a Shanks transform~which is thea50 special
case of the vanden Broeck-Schwartz algorithm—see, e
Ref. 63!. This leads to

ESz50,S50
2

~k!/J50.654~478!20.014~191!cosk

20.411~108!cos2k10.040~136!cos3k

20.044cos4k, ~6.3!

2
5

3
2
7

FIG. 3. Lowest gaps of Eq.~5.1! with N53 in the sector with
Sz50 and total spinS50 as a function of momentumk relative to
the ground state. The symbols are forL56 ~rhombi!, L58 (1),
L510 ~squares!, L512 ~3!, and L514 ~triangles!, respectively.
The line is the extrapolation~6.3! of the lower boundaryL→`.
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ESz50,S51
2

~k!/J50.671~43!10.023~24!cosk20.492cos2k

20.025cos3k20.058~11!cos4k

20.013~50!cos5k. ~6.4!

The numbers in brackets indicate estimates for the erro
the last given digits. Here we have suppressed the hig
harmonics, since they cannot be reasonably extrapolated
are expected to be small anyway.

In this way we obtain a rather inaccurate estimate for
gap E'0.3J with a large uncertainty which is due to th
large errors in particular in Eq.~6.3! and the uncertainty in
the higher harmonics. Nevertheless, this estimate is still q
close to the one in Table III. A more interesting observat
is that Eqs.~6.3! and ~6.4! are equal within error bounds
This suggests that these two thresholds can be interprete
terms of two-particle scattering states of a single fundam
tal particle. Such a fundamental excitation would have to
similar to the spinon in theXXZ chain; in particular it would
have to carryS51/2 ~andSz561/2).

Let us now try to exhibit this fundamental excitation e
plicitly. For even L and periodic boundary conditions w
have only found two-particle scattering states in the lo
lying excitation spectrum. Therefore, it is natural to look f
a spinon-type excitation at oddL ~still periodic boundary
conditions! in the same way as one can exhibit the spinon
the XXZ chain.39–41We have computed the spectrum of E
~5.1! for N53 and oddL from 5 to 13 in the sector with
Sz51/2 and total spinS51/2. The main difference betwee
the present situation and theXXZ chain is that here we ex
pect a charge conjugate pair of spinons (Sz561/2), while
for the XXZ chain there was only one.

FIG. 4. Same as Fig. 3, but for total spinS51. The line shows
the extrapolation~6.4!.
of
st
ut

e

te
n

in
n-
e

-

r
.

Making single-particle states visible is traded for the a
sence of a ground state at oddL. In order to permit interpre-
tation of the results as gaps we have therefore interpola
the ground-state energy using the values atL61. The result-
ing dispersion relation for the spinon is shown in Fig. 5.
was already the case for the spectra at evenL, it turns out
that k should be defined such that translationally invaria
states on the lattice appear alternately atk50 and
k5p—the actual convention can be read off from Fig.
noting that only eitherk50 or k5p can be realized for odd
L.

To interpret the data, we have again Fourier transform
E2. First, this gives an interpolation ofESz51/2,S51/2 at k
5p/2. Analogously to Eq.~6.1! we fit the data forL
55,9,13 to the form~the values forL57 and 11 should be
omitted to obtain a monotonic sequence!

ESz51/2,S51/2~L !5ESz51/2,S51/2~`!1
ā

L
, ~6.5!

and obtain an estimate for the gap of the spin
ESz51/2,S51/2(`)50.131(8)J with ā50.51(6)J. This is
roughly consistent with half the value in Table III or th
given in Ref. 59, as it should be if our interpretation
single-, respectively, two-spinon scattering states is corre

An alternate way to analyze the data is to extrapolate e
coefficient of the Fourier series separately using a Sha
transform. Using now all availableL, we find

FIG. 5. The spinon of Eq.~5.1! with N53, i.e., lowest gaps in
the sector withSz51/2 and total spinS51/2. The symbols are for
L55 ~rhombi!, L57 ~1!, L59 ~squares!, L511 ~3!, andL513
~triangles!, respectively. The line is the extrapolation~6.6! of the
dispersion curve to the thermodynamic limit.
ESz51/2,S51/2
2

~k!/J50.6331~155!10.0592~184!cosk10.5387~122!cos2k10.0121~63!cos3k20.0633~160!cos4k

20.0127cos5k10.0177cos6k. ~6.6!
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FIG. 6. Schematic magnetic phase diagram atD51 for ~a! N52, ~b! N53 and OBC,~c! N53 and PBC,~d! N54 and OBC,~e! N
54 and PBC. White regions in theh-J8/J plane indicate gapped regions with a plateau in the magnetization curve, while the shade
are massless and the magnetization^M & changes continuously if the applied fieldh is varied.
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As before, the numbers in brackets indicate estimates for
error of the last given digits. For the two highest harmon
there is not sufficient data for an extrapolation, so we j
take theL513 estimate without being able to estimate
error. The extrapolation~6.6! is shown by the line in Fig. 5
Obviously, finite-size effects are more important fork
,p/2 than for k.p/2. Equation~6.6! yields another esti-
mate for the gap of the spinonESz51/2,S51/2(`)'0.116J.
The error estimate obtained from Eq.~6.6! is not sensible,
but the value for the gap itself is very close to our previo
extrapolation or half the value given in Table III.

Finally, we have checked that within error bounds t
dispersion relation~6.4! can be written in terms of Eq.~6.6!
as ESz50,S51(k)5ESz51/2,S51/2(k2k8)1ESz51/2,S51/2(k8)
with somek8. Such a decomposition must be possible if o
particle interpretation is correct.
he
s
t

s

r

Methods similar to the ones used in the present sec
may be useful also in other cases beyond the present one
the study of Ref. 41. One natural such candidate is a di
observation of a spinon-type excitation inN53 cylindrically
coupled chains at intermediate or small couplingsJ8.

VII. SUMMARY OF RESULTS

Our results are best summarized in~schematic! magnetic
phase diagrams. For definiteness we consider the SU~2! sym-
metric situationD51, though similar pictures can be draw
for other values ofD as well.

For completeness, let us start with the caseN52, where
the corresponding picture is given by Fig. 6~a!. The bound-
ary of the^M &50 plateau is determined by the spin gap
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zero field which for anN52-leg ladder has been studied
great detail. ForJ8/J<1.5 we use the quantum Monte Car
results of Ref. 11 in Fig. 6~a!; for J8/J>1.5 the raw 13th
order strong-coupling series of Ref. 58 is used instead~note
the excellent matching atJ8/J51.5).

Both the numerical data11 and the series expansions58 sup-
port a linear opening of the gap for smallJ8, as was pre-
dicted by a dimensional analysis of the perturbing operato
the field-theoretic formulation.64–66

Figure 6~b! shows a more interesting case, i.e.,N53 with
OBC. The boundaries of thêM &51/3 plateau have bee
determined from the fourth-order strong-coupling series~4.3!
and ~4.4! for J8/J>2. For 1<J8/J<2 we obtained them
from a Shanks extrapolation of the finite-size data in o
earlier paper.16 The remaining weak-coupling region is th
most speculative part of the figure. We located the end
point of the ^M &51/3 plateau in the vicinity of the corre
sponding point on the magnetization curves of decoup
Heisenberg chains, as is suggested by the Abelian boso
tion analysis if one assumes a similar behavior for OBC a
PBC ~the bosonization analysis predicts for PBC that
^M &51/3 plateau disappears for small but nonzeroJ8/J).

The analogous case with changed boundary condit
~i.e., N53 and PBC! is shown in Fig. 6~c!. Here, no series
expansions are possible due to extra degeneracies at s
coupling. The boundaries of the plateaux have therefore b
determined in this case mainly on the basis of older num
cal data.16 We have used a Shanks extrapolation forL54, 6,
and 8 for J8/J>2.75 at the lower boundary of thêM &
51/3 plateau and forJ8/J52.5 at its upper boundary to
estimate their location. For smaller couplings, the finite-s
data is nonmonotonic. The best we can do in the rang
<J8/J<2.5 is to fit theL54 and 8 data to a form with 1/L
corrections like Eqs.~6.1!,~6.5!. The ending point of the pla
teau is again placed on the basis of the weak-coupling an
sis. It should be noted that the nature of the transition at
upper boundary of thêM &51/3 plateau changes qualita
tively for J8/J*2.75.16 This strongly frustrated region is in
dicated by the bold line in Fig. 6~c!. It is possible that the
transition becomes first order along this line. Note that
region in question is far outside the weak-coupling regi
where we expect all transitions to be continuous.

Another interesting difference between Figs. 6~b! and 6~c!
is that in the latter a tinŷM &50 plateau~i.e., a gap! opens.
Its boundary has been estimated at intermediate coupling
fitting theL54, 6, and 8 data16 to the form~6.1!. This yields
slightly smaller values than those given in Ref. 59 in t
cases where we overlap. However, we agree with Ref. 5
the most important point, namely the existence of suc
plateau. A numerical determination of its ending point
difficult, and the field-theoretical weak-coupling analysis
not yet conclusive either55,56—the ending point may well be
anywhere in the weak-coupling region 0<J8<J.

Finally, the magnetic phase diagrams forN54 are given
by Figs. 6~d! and 6~e! for OBC and PBC, respectively. T
obtain them, we have performed further numerical compu
tions. For the upper boundary of the^M &51/2 plateau we
have numerical data forL54, 6, and 8 such that we ca
apply a Shanks transform to it. For its lower boundary
have onlyL54 and 6 data and therefore we have to make
assumption on the finite-size corrections to extrapolate it~we
in
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assumed 1/L corrections, though this is not entirely satisfa
tory!. In the strong-coupling region we used our series
stead of numerical data. The series and numerical data
matched atJ8/J53.5 orJ8/J52.5 for the series correspond
ing to the upper boundary for OBC Eq.~4.10! or PBC Eq.
~4.7!, respectively. At the lower boundary of the^M &51/2
plateau we matched the series~4.9! and~4.6! to the numeri-
cal data atJ8/J52.25 andJ8/J51.75, respectively. Neithe
of the methods accessible to us is very accurate in the re
where this plateau closes, but all three methods~numerical,
series and Abelian bosonization! point to a location of the
ending point in the region whereJ8 and J are of the same
order.

The gaps forN54 are taken from our series~4.8! for
J8/J>2 for OBC and Eq.~4.5! for J8/J>1.5 for PBC. For
OBC the accurate numerical data for the gap of Ref. 11
used in the weak-coupling region. The corresponding line
Fig. 6~e! is in comparison rather an educated guess whic
inspired though byL54 andL56 numerical data. Regard
ing the series both for the gap and the boundaries of
^M &51/2 plateau, we observe a trend that those for PBC
be used for somewhat smaller values ofJ8/J than those for
OBC. This is expected since the former are fourth order
the latter only second order.

Although Fig. 6 is for the particular choiceD51 there is
nothing particular about this case~at least for nonzero mag
netizations!, and one would obtain similar figures for othe
values ofD as well. Further plateaux may open forD.1. In
particular, there should always be an^M &50 plateau in
N coupledXXZ chains withD.1, since each such chain i
massive and this should be preserved at least for sufficie
weak coupling. In the Ising limitD→` and for nonfrustrat-
ing boundary conditions it is easy to see that this is acco
panied by breaking of translational symmetry to a periol
52 in the ground state. In the general caseD.1, such a
periodl 52 reconciles the appearance of a gap for both e
and oddN with Eq. ~1.1!.

The Abelian bosonization analysis predicts all the ma
less shaded regions in Fig. 6 to bec51 theories~with the
exceptionJ850 where one trivially has ac5N theory!. In
these regions the exponents governing the asymptotics o
correlation functions depend continuously on the paramet
Predictions can be made, however, for the transitions at
boundaries between such massless phases and platea
gions. The opening of a plateau when varyingJ8 is a transi-
tion of the K-T type.47 Like in the case of the transition a
D51 in the XXZ chain, this implies a very narrow platea
after the transition@cf. Eq. ~2.12!# which makes it difficult to
observe numerically.16 At the transition point the asymptot
ics of the correlation functions is governed by the expone
~3.14!, while along the boundaries of the plateaux one h
the universal exponents~3.15!. It should be noted that an
attempt to verify the latter exponents numerically or expe
mentally is likely to rather lead to the exponents charac
istic for the transition point if one is sufficiently close to it

The field-theoretical analysis also predicts the asympt
behavior of the magnetization in a massless phase but c
to a plateau boundary to be given by the universal DN–
behavior43,44Eq. ~2.10!. We have in fact numerically verified
such a square-root behavior close to saturation (^M &→1) at
some values ofJ8/J for N52, 3, and 4 with both OBC and
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PBC. However, the example of theXXZ chain shows~cf.
Fig. 2! that close to other plateau boundaries this unive
behavior may be restricted to a tiny region and its obser
tion could be very difficult. In experimental situations, it w
be further obscured by thermal fluctuations and other effe
such as disorder~see, e.g., Ref. 18!. This explains why rather
accurate experiments onN52-leg spin-ladder materials17,67

show no evidence of a square-root behavior for^M &→0.
Quite surprisingly, massless excitations~though nonmag-

netic ones! also arise in plateau regions. This can be se
from Eq. ~5.3! which for ^M &51/N is just anXY chain and
therefore massless. This yields massless excitations in
limit J8→` in Fig. 6~c!, or more generally in the strong
coupling limit on thê M &51/N plateau forN odd and PBC.
WhetherJ/J850 is just a critical point or if massless non
magnetic excitations also arise at finiteJ8 remains to be in-
vestigated.

VIII. DISCUSSION AND CONCLUSION

In this paper we have investigated the conditions un
which plateaux appear inN-leg spin ladders as well as th
universality classes of the transitions at the boundaries
such plateaux. Certain small plateaux may have slipped
attention. For example, there could be a narrow^M &52/3
plateau forN53 and PBC at intermediate or strong coupli
J8 which would be accompanied by spontaneous breakin
translational symmetry to a periodl 52. If this should turn
out to be the case, it would have to be added to Fig. 6~c!.
However, our main point is the presence of such platea
not the absence of particular ones.

We also confirmed the conclusion of Ref. 59 that in t
caseN53 frustration induces a zero-field gap at least
sufficiently strong coupling. It may be even more intriguin
that, according to our strong-coupling data, this gap seem
survive theN→` limit for an odd numberN of cylindrically
coupled chains. This shows that it is necessary to specif
least boundary conditions along the rungs in the genera
tion of the Haldane conjecture to spin ladders. The pecu
behavior of a cylindrical configuration may be interpreted
follows: Strongly frustrating boundary conditions force
one-dimensional domain wall into the two-dimensional s
tem corresponding toN5`. The N→` limit of the one-
dimensional Hamiltonian~5.3! is just the effective Hamil-
tonian for the low-energy excitations of this domain wall. A
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a consequence, there cannot be any long-range order w
is typical for the two-dimensional Heisenberg model, a
there is no reason why the low-energy spectrum should
be gapped as it apparently is.

Similar surprises cannot be completely ruled out in t
weak-coupling region forN even and^M &50. The zero-
field case is difficult to control since there is an addition
relevant interaction between the massive degrees of free
and the possibly massless ones@the coefficient ofl2 in Eq.
~3.4!#. In general, this gives rise to nonperturbative renorm
ization. In the isotropic caseD51 one can use the SU~2!
symmetry54 to infer the renormalized radius of compactific
tion of the remaining massless field. This then leads to
generalized Haldane conjecture in the framework of Abel
bosonization. ForD.1 a gap is always expected in the wea
coupling regime since already the decoupled chains are m
sive. The situation is far less clear for anisotropiesD,1
since then it is not known how to control th
renormalization-group flow. An investigation of this regio
by other nonperturbative methods would be interesting
may also be desirable to perform further checks of the
sence of an extended massless phase in the SU~2! symmetric
situation for evenN>6.

Beyond a more detailed understanding of theN-leg spin-
ladder model~3.1! treated here, a similar investigation o
other models could be interesting. One natural step would
to include charge degrees of freedom, and see if interes
effects arise from the interplay of a magnetic field with tran
port properties.

Last but not least, it would be desirable to have an exp
mental verification of our predictions. We are confident th
this is possible, in principle, and hope that it will in fact b
carried out.
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