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Self-trapping problem of electrons or excitons in one dimension

G. Wellein and H. Fehske
Physikalisches Institut, Universita¨t Bayreuth, D-95440 Bayreuth, Germany

~Received 19 December 1997; revised manuscript received 10 March 1998!

We present a detailed numerical study of the one-dimensional Holstein model with a view to understanding
the self-trapping process of electrons or excitons in crystals with short-range particle-lattice interactions.
Applying a very efficient variational Lanczos method, we are able to analyze the ground-state properties of the
system in the weak- and strong-coupling, adiabatic and nonadiabatic regimes on lattices large enough to
eliminate finite-size effects. In particular, we obtain the complete phase diagram and comment on the existence
of a critical length for self-trapping in finite~closed! one-dimensional systems. In order to characterize large
and small polaron states we calculate self-consistently the lattice distortions and the particle-phonon correlation
functions. In the strong-coupling case, two distinct types of small polaron states are shown to be possible
according to the relative importance of static displacement field and dynamic polaron effects. Special emphasis
is on the intermediate-coupling regime, which we also study by means of direct diagonalization, preserving the
full dynamics and quantum nature of phonons. The crossover from large to small polarons shows up in a strong
decrease of the kinetic energy accompanied by a substantial change in the optical absorption spectra. We show
that our numerical results in all important limiting cases reveal excellent agreement with both analytical
perturbation theory predictions and very recent density matrix renormalization group data.
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I. INTRODUCTION

Electrons, holes, or excitons delocalized in a perfect ri
lattice can be ‘‘trapped’’ within a potential well produced b
displacements of atoms from their carrier-free equilibriu
positions, provided the particle-lattice interaction is su
ciently strong.1–4 Trapping of a carrier in this manner i
more advantageous energetically as compared to wideb
Bloch states, if the lowering of the carrier’s energy due to
binding exceeds the strain energy required to produce
trap. Since the potential that binds the carrier depends on
carrier’s state itself—i.e., the local distortion of the lattice
self-induced by the particle—this process is called ‘‘se
trapping’’ or ‘‘autolocalization.’’ Obviously, self-trapping
~ST! is a highly nonlinear phenomenon. A self-trapped st
is referred to as ‘‘large’’ if it extends over multiple lattic
sites. Alternatively, if the quasiparticle is practically confin
to a single site, the ST state is designated as ‘‘small.’’ No
theless, ST does not imply a breaking of translational inv
ance. ST eigenstates in a crystal are Bloch-like. Thus co
ent transport of ST particles can, in principle, occur but
width of the corresponding band is extremely small~cf. the
discussion in Ref. 5!.

Introducing the concept of polarons into physics, the p
sibility of electron immobilization or ST was pointed out b
Landau as early as 1933.6 Shortly after, the ST of excitons
was also suggested and studied theoretically.7,8 ST polarons
and excitons can be found in a wide variety of alkali me
halides, alkaline earth halides, II-IV and group IV semico
ductors, condensed rare gases, organic molecular crys
electrochromics, and other systems.3,9 With the observation
of polaronic effects in new materials exhibiting exception
properties such as the high-Tc cuprates10 or the colossal
magnetoresistance manganates,11 research on polarons ha
attracted renewed attention.
PRB 580163-1829/98/58~10!/6208~11!/$15.00
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Although the problems of exciton and electron ST ha
much in common, there are fundamental differences. M
notably excitons are short-living nonequilibrium quasipar
cles being immediately, after the optical excitation, in a fr
state and can reach the ST state only by tunneling thro
the potential barrier at low temperatures. Moreover, if t
electron and hole, forming the exciton, have very differe
effective masses, the internal coordinates of this large-ra
~Wannier-Mott! exciton will be of importance.

It is clear that the microscopic structure of the ST state
very diverse in various groups of materials. The stability
different types of ST states depends on the nature of
electron- or exciton-phonon~EP! coupling~e.g., deformation
potential12 against Fro¨hlich13 coupling!, the vibrational fre-
quencies~e.g., acoustic vs optic!, the dimensionality (D) of
the lattice, and other parameters. A detailed classification
ST states and ST criteria is presented, e.g., in the exce
review of Rashba.2 In particular, from a scaling treatment o
a continuum lattice model in the adiabatic limit, it has be
shown that inmultidimensionalsystems (D.1) with only a
short-range nonpolarEP interaction a ST carrier alway
forms a small polaron.14,15,4If there is an energy barrier tha
separates delocalized and spatial confined states, the free
ST states can coexist,16,17as evidenced, e.g., for solid xeno
by the coexistence of two exciton luminescence bands~one
narrow and the other broad!.3 On the other hand, the pres
ence of along-range polarEP coupling ensures that at lea
the formation of large polaron states with moderate latt
deformation becomes possible. The picture is qualitativ
changed when turning tolow-dimensionalsystems. Recently
it was shown that, unlike the continuum limit, the formatio
of a ST state in the two-dimensional~2D! case within a
model of local EP coupling is always accompanied by
formation of an energy barrier attributed to the latti
discreteness.18 The 1D case is essentially different from th
6208 © 1998 The American Physical Society
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2D and 3D ones. In 1D ST proceeds without overcomin
barrier. To be more precise, the ST state is the ground s
of the infinite system at any value of the EP coupling. In t
weak-EP-coupling regime its radius exceeds several ti
the lattice spacing; i.e., a large polaron is formed even un
the nonpolar interaction condition.2

Although the basic concepts underlying the ST transit
are long standing and the gross features of ‘‘large’’ a
‘‘small’’ polarons and excitons have been extensively stu
ied, our understanding of the ST problem is still incomple
In particular the physically most important crossover regim
characterized byintermediate-EP-coupling strengths an
phonon frequencies, is difficult to handle theoretically due
the failure of the standard phase transition concept.19,20 As
yet, there exist no well-controlled analytical techniques
describe the transition region. Other problems, for exam
concern the existence of a critical length for ST in spatia
restricted 1D systems,21 the behavior of the polaron kineti
energy,22 or the spectrum of light excitons under S
conditions.2

With these motivations, in this paper we want to discu
the ST problem using numerical methods. The focus is
the Holstein model in one dimension. By exact diagonali
tion of finite systems we analyze various ground-state
spectral properties of the model. Since for the Holst
model exact results are very rare20,23,24and previous numeri-
cal studies have been limited either to small systems or
particular parameter regime,25–29this is a challenge by itself
Besides, we hope to gain more insight into the physics
small and large polarons and into the nature of
localization-delocalization transition.

The paper is organized as follows: In the next section
briefly introduce the Holstein model and outline our var
tional Lanczos approach that allows us to study the grou
state properties for all regimes of parameters on large latt
in a very efficient way. The numerical results will be pr
sented in Sec. III. More precisely, the phase diagram of
Holstein model~Sec. III A!, the electron lattice correlation
~Sec. III B!, the optical response~Sec. III C!, and the kinetic
energy~Sec. III D! will be discussed. The principal resul
are summarized in Sec. IV.

II. MODEL AND METHODS

With our focus on the self-trapping phenomenon in s
tems with only short-range nonpolar electron- or excito
lattice interaction, it is appropriate to consider a model wh
a single excess carrier is placed in a one-dimensional p
odic array of identical molecular units, each having an int
nal vibrational degree of freedom. Introducing electron~ex-
citon! ai

@†# and phononbi
@†# destruction@creation# operators

we can write Holsteins’s molecular crystal model12 in lattice
site representation as

H5\v0(
i

S bi
†bi1

1

2D2A«p\v0(
i

~bi
†1bi !ni

2t(̂
i j &

~ai
†aj1aj

†ai ! ~1!

(ni5ai
†ai ; below \51). In the case of electrons the Ho

stein Hamiltonian~1! has been studied extensively as a pa
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digmatic model for small polaron formation. Heret denotes
the nearest-neighbor free-electron transfer amplitude,«p is
the strong-coupling polaron binding energy~in the atomic
limit t50), and v0 is the bare phonon frequency of th
dispersionsless optical phonon mode. Referring to excit
we have in mind the small-radius~Frenkel or charge transfer!
excitons only, and neglect, in the lowest order of approxim
tion, the internal structure of the exciton: i.e., we conside
as a single neutral particle.

Generally speaking, the ground-state and spectral pro
ties of the model~1! are governed by three ratios~control
parameters! defined from the bare energy scalest, v0 , and
«p . First the adiabaticity parameter

a5v0 /t ~2!

determines which of the two subsystems, excitons and e
trons or phonons, is the fast and which is the slow one. In
adiabatic limita!1, the motion of the particle is affected b
quasistatic lattice deformations~adiabatic potential surface!
depending on the strength of the particle-phonon interact
On the contrary, in the antiadiabatic limita@1, the lattice
deformation is presumed to adjust instantaneously to the
sition of the carrier. Conveniently the particle is referred
as a ‘‘light’’ or ‘‘heavy’’ electron and exciton in the adia
batic or nonadiabatic regimes.2 The second parameter is th
dimensionless EP coupling constant

l5«p /W, ~3!

whereW52Dt denotes the half-width of the electron~exci-
ton! band in a rigidD-dimensional lattice. Let us stress th
l represents the ratio between ‘‘localization’’ energ
(}«p) andbarekinetic energy (W) of a single particle. Both
l and a are commonly used as parameters within a per
bative analysis of the Holstein model in the limits of we
(l!1) and strong (l@1) EP couplings. In the latter cas
two different approaches, based on expansions in power
(a!1) and (1/l!1), have been elaborated for th
adiabatic12,16 and nonadiabatic30 regimes, respectively. A
third parameter

g25«p /v0 ~4!

will be shown to be crucial in the strong-coupling situatio
g2 determines the relative deformation of the lattice whi
surrounds the particle.

In the limit of small particle density, a crossover betwe
essentially delocalized carriers and quasilocalized particle
known to occur from early quantum Monte Car
calculations,31 provided that thetwo conditionsl*1 andg
*1 are fulfilled. So while the first condition is more restri
tive if a is small, i.e., in the adiabatic case, the formation
a small ST state will be determined by the second criterion
the antiadiabatic regime.29,32,33

It is not surprising that standard perturbative techniqu
are less able to describe the system close to the cross
region, where the energy scales are not well separatedl
;1, g;1). Therefore we will apply in the following two
distinct numerical methods that allow investigating the
phenomenon on finite clusters with great accuracy.

The first methodis a variational Lanczos technique~de-
veloped originally for the Holsteint-J model28,34!, which
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enables us to study theground-state propertiesof fairly large
systems. In recent work this technique has been adapted
cessfully to treat the lattice degrees of freedom in the ge
alized double-exchange Hamiltonian commonly used for
description of colossal magnetoresistance materials.35 In the
case of the pure Holstein model, as a first step, we perf
an inhomogeneous variational Lang-Firsov~IVLF ! transfor-
mation

H̃5U †HU, U5e2S1~D i !e2S2~g!e2S3~t!, ~5!

with

S1~D i !52
1

2ga (
i

D i~bi
†2bi !, ~6!

S2~g!52gg(
i

~bi
†2bi !ai

†ai , ~7!

S3~t!52 ln t21/2(
i

~bi
†bi

†2bibi ! ~8!

~rescalingH5H/t and measuring, in what follows, all ene
gies in units oft). In a certain sense the canonical transf
mation U is a ~variational! synthesis of two different ap
proaches developed in the adiabatic6,36,12,16 and
antiadiabatic7,8,37 theories of ST polarons and excitons.S1
introduces a set of static site-dependent displacement fi
D i related to local lattice distortions. This transformation e
sures the correct behavior in the adiabatic limit. That is,S1
describes the ST of ‘‘light’’ excitons and electrons under t
conditions that~i! the electronic bandwidth significantly ex
ceed the characteristic phonon frequency and~ii ! the lattice
deformation energy be large~which allows one to treat the
lattice vibrations quasiclassically!. Within polaron theory
such a type of ST quasiparticle is often called an adiab
Holstein polaron.12 S2 , on the other hand, describes the S
process in the antiadiabatic limit. The variational parame
g ~with 0<g<1) is introduced as a measure of the nonad
batic phonon dressing of ‘‘heavy’’ particles, designated
‘‘localized’’ excitons38 or nonadiabatic Lang-Firsov sma
polarons. Forg51, the well-known Lang-Firsov displaced
oscillator transformation results. In addition, we have appl
the two-phonon squeezing transformationS3 (0<t<1).39,40

The squeezing phenomenon is a many-particle effect, b
of special importance at intermediate-EP-coupling streng
This effect can be seen as a phonon frequency softening
tends to offset the~polaron! band narrowing. As a secon

step, we approximate the eigenstatesuC̃& of H̃ by the varia-
tional states

uC̃V&5uC̃ph& ^ uC̃el&. ~9!

Then, performing in a third step the average over the tra

formed phonon vacuum,H̄[^C̃ph
0 uH̃uC̃ph

0 &, we obtain the
effective ~electronic-excitonic! Hamiltonian
uc-
r-
e

m
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ds
-
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H̄5
a

4
~t21t22!N1

1

8l (
i

D i
22~12g!(

i
D ini

22lg~22g!(
i

ni2e2g2g2t2

(̂
i j &

~ai
†aj1aj

†ai !.

~10!

In Eq. ~10!, the first term leads to an increase of the ze
point energy of the phonons ift2,1. The second and third
contributions give the elastic energy and the particle-latt
interaction, respectively, both owing to the static lattice d
formation. As a result of the incomplete LF transformati
we get a constant~polaronic! level shift and an exponentia
band renormalization~fourth and fifth terms!. Even the sim-
plified model ~10! cannot be solved exactly. Therefore w
carry out a Lanczos diagonalization on finiteN-site lattices
using periodic boundary conditions~PBC’s!. Employing the
Hellmann-Feynman theorem, theN12 variational param-
eters can be obtained by iteratively solving the following
of self-consistency equations:

D i54l~12g!n̄i , ~11!

g5
a@12ĒDn/4l#

a2t 2e2g2g 2t 2
Ēkin

, ~12!

t 25
a

Aa228lg2e2g2g 2t 2
Ēkin /N

, ~13!

where

n̄i5^ni&H̄ with (
i

n̄i51, ~14!

Ēkin52(̂
i j &

^~ai
†aj1aj

†ai !&H̄ , ~15!

ĒDn5(
i

^D ini&H̄ ~16!

denote the local particle density, the kinetic energy, and
EP interaction contribution to the ground-state energy,
spectively. Note that each iteration step involves the ex
diagonalization ofH̄(g,t2,$D i%). We note further that the
Hamiltonian ~10! potentially contains symmetry-broke
states which originate from inhomogeneous displacem
fields D iÞ0. Therefore we have to work with an unsymm
trized set of basis states.

The second methodwe are going to use in the computa
tional work is the direct numerical diagonalization of th
initial Holstein Hamiltonian~1!. On the one hand, this shoul
bring out valuable information on the applicability of variou
approximative analytical and numerical approaches. In p
ticular we would like to test the quality of IVLF-Lanczo
scheme described so far. On the other hand, combining
exact diagonalization~ED! algorithm with the Chebyshev
recursion and maximum entropy methods,41 we are able to
discuss thedynamical propertiesof the systems, e.g., th
optical conductivity, in more detail. Moreover, ED provide
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the only reliable tool for treating the transition regime. D
ferently from the IVLF-Lanczos treatment the translation
invariance of the system is ensured. The ED method, ba
on a well-controlled truncation procedure of the phonon H
bert space, has been described elsewhere.42,32,33,43Using par-
allel computers, we are able to diagonalize systems wit
total dimension of 1010.

III. NUMERICAL RESULTS AND DISCUSSION

A. Phase diagram

In the numerical work we start with a discussion of t
ground-state properties of the transformed Hamiltonian~10!.
Applying the IVLF-Lanczos technique presented in the p
vious section, we have determined the phase diagram o
1D Holstein model. The results are depicted in Fig. 1. F
let us consider regimes II and III, corresponding to large a
small polarons, respectively. Just for brevity we will use
the following the ‘‘polaron terminology,’’ keeping in mind
that all statements hold for the case of Frenkel excitons
well. The distinct types of polarons, found in regimes II a
III, may be characterized by the spatial extension a
strength of the~inhomogeneous! lattice displacementsD i and
by the magnitude of the polaron variational parameterg ~see
below!. Fromexactanalytical20 and numerical31,42,29~cf. also
Sec. III D! results it is well known that the large-size polaro
turnscontinuouslyinto a small-size polaron with increasin
EP coupling. Since there is no true phase transition betw
large and small ST states ata.0, the transition line~stars!
shown in Fig. 1 only indicates the crossover region, wh
gets wider as the phonon frequency~a! increases. Within our
IVLF-Lanczos treatment, the transition line has been fix
by the criterionD1 /D051/e. Performing a finite-size analy
sis of the II
III transition, we found that the results obtaine
for the 64-site lattice almost agree with the extrapolated v
ues for the infinite system. Via Eq.~11!, D i is directly related
to the polaron density at sitei . Of course, this condition can
only give a crude estimate of the ‘‘transition’’ from large

FIG. 1. Phase diagram of the 1D Holstein model. Nearly f
polarons, large polarons, and small polarons exist in the region
II, and III, respectively. Results are obtained for finite rings w
N532 ~s!, 64 ~h, * !, 96 ~n!, and 128~,! sites using the IVLF-
Lanczos method. The inset shows the critical coupling for s
trapping,lc , ata50 ~3!, 0.1 ~L!, 1.0 ~x!, and 3.0~v!. The solid
line gives the relation~17!. For further explanation see the text.
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small polarons, in particular in the nonadiabatic regim
where the staticD i are less significant. According to th
importance of theD i (a<1) andg (a>1) effects, the small
polaron formed in region III will be called an adiabatic Ho
stein polaron~AHP! and nonadiabatic Lang-Firsov polaro
~NLFP!, respectively.

As a peculiarity of ourfinite system with PBC’s a further
strongly finite-size dependent transition to a nearly-fre
electron state~phase I! is observed by lowering the EP cou
pling strength. In other words, it seems that a critical co
pling lc(N) or equivalently a critical system sizeNc(l)
exists for self-trapping in 1D. Indeed, for the 1Dcontinuum
model, where the ST problem can be described by a non
ear Schro¨dinger equation, it has been shown recently
Rashba21 that the ST condition is

l.lc5p 2/2N. ~17!

This relation holds rigorously within the adiabatic theory21

and is reproduced by ourlattice modelcalculation as well
~cf. inset Fig. 1!. At a50, the nearly free-electron phas
~phase I! corresponds to a solution withg50 and D i5D
54l/N. The kinetic energy, however, is unrenormalized.

Our IVLF-Lanczos scheme allows us to extend the abo
considerations to the finite-phonon-frequency regime. Aga
at low EP couplings, we found a nearly-free-electron ph
with a small uniform level shift„}22l@g(22g)12(1
2g)2/N#…. More significantly, since we haveg.0 now, the
inclusion of nonadiabatic phonon effects slightly renorm
izes the electron half-bandwidthW̄52 exp$2g2g2t2%. If l
becomes larger thanlc(a), the ST proceeds by a monoton
lowering of the total energy without overcoming a ST ba
rier. This is in accordance with the expansion of the to
energy of the continuum model near the ST threshold in
adiabatic limit a→0, which yields a smooth behavior o
E0(l) with a discontinuity only in the second derivative.21

The scaling oflc(a) with N is shown in the inset of Fig. 1
At lc a minimum in the total energy develops, which corr
sponds to a state with inhomogeneous lattice deformatio
For a discrete lattice model with PBC’s it is a formidab
task to analyze analytically the ground-state energy profile
a function of a multidimensional lattice deformation coord
nateQ5$D i%. This is because the shape of the energy fu
tional is determined by the complicated interplay of kine
and ~confinement-strain! potential energy contributions
However, the existence of a critical system size for se
trapping may be understood easily from the fact that
~noninteracting! electron spectrum exhibits finite-size ga
@due to the discrete set of theN allowed Bloch (KW ) levels#.
Consequently, to gain energy by forming a large-size~wave-
packet! ST state the system has to overcome at least
lowest of these gaps by EP coupling effects. Then, as a fe
back effect, the electronic band structure itself is wea
renormalized by the electron-lattice interaction. In the th
modynamic limitN→` the finite-size gaps vanish, and w
obtainlc(a)→0. Thus, in aninfinite 1D ~ring! system self-
trapping takes place at any finite value of the EP coupli
Moreover, let us anticipate thatlc50 holds also forfinite
1D Holstein systems withopen boundary conditions~see
Sec. III B!.

e
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To elucidate in more detail the different nature of p
laronic states occurring in the ground-state phase diagra
the effective model~10!, we present in Fig. 2 the behavior o
the variational parameters.

First of all, we should emphasize that, studying thesingle-
electron problem, the squeezing effect (t2,1) is only of
minor importance. This is obvious from Eq.~13!, which
yields t251 in the thermodynamic limit. For finite system

FIG. 2. Variation of the displacement fieldsD i away from the
central site 0 for several characteristic EP couplingsl in the adia-
batic ~a! and nonadiabatic~b! regimes. The dependence of th
Lang-Firsov polaron variational parameterg on l is depicted in~c!.
of

the leading (1/N) corrections (}g2g2e2g2g2t2
Ēkin /aN)

tend to zero in the weak- and strong-coupling adiabatic
antiadiabatic limits.

The spatial extension of the static lattice deformation (D i)
is visualized in Figs. 2~a! and 2~b! for different EP couplings
corresponding to the nearly free, large and small pola
cases. As discussed above, theD i are being constant forl
,lc(a) ~phase I!. For the large-size polaron~phase II!, the
lattice displacements fit extremely well to the relation

D i5D0sech2@le f fi #, ~18!

where lima→0le f f(l,a)5l. It is worth emphasizing that the
functional form~18!, which has been derived in the frame
work of an adiabatic continuum theory,16,44,18also describes
the displacement fields in the nonadiabatic large-polaron
gime. Obviously,le f f defines a characteristic inverse leng
scale in the system; i.e., the radius of the large polaron
approximately given by (2le f f)

21. For a50.1 and l
50.25 we obtainedle f f /l.0.935. On the other hand, a
a53 andl52.5, the effective coupling becomes strong
reduced:le f f /l.0.116. In the strong-coupling regime, w
observe an exponential decayD i.D0e2 i /j of the lattice dis-
tortion away from the polaron site~see insets!, wherej de-
notes the small-polaron radius. We foundj.0.29 ~0.19! for
l51.5 ~5.0! anda50.1 ~3.0!; i.e., in both cases the ST sta
is mainly confined to a single lattice site. While in the fram
work of our interpolating theory theD i can be taken as a
measure of the ‘‘adiabatic character’’ of the polaronic qu
siparticle, its ‘‘nonadiabatic part’’ is described by the Lan
Firsov variational parameterg shown in Fig. 2~c!. Of course,
in the case of ‘‘light’’ electrons (a,1), the nonadiabatic
polaron effect is rather small. In particular forl.1, when
the small AHP is formed,g becomes strongly suppresse
Here the renormalization of the polaron band is main
driven by the static displacement fieldsD i . Otherwise, for
‘‘heavy’’ electrons, we observe larger values ofg, which
increase with increasing EP coupling strength. As a result
free-electron band is transformed into a renormalized
laron band. Due to the~generalized! Franck-Condon factor
e2g2g2t2

, the bandwidth is exponentially small under stron
coupling conditions (g2, l@1), where also theK-dependent
corrections to the band dispersion become negligibl33

Within our variational approach we found a first-order tra
sition to the AHP state at an extremely strong EP interact
(l II /III .4, for a53). However, this sharp transition is i
some sense an artifact of our IVLF scheme that compares
ground-state energies of the AHP and NLFP states, both
tained in the lowest order of approximation@remember that
by deriving Eq.~10! we have performed the average over t
zero-phononstate only#. Including higher-order corrections
the NLFP withg→1 is stabilized in the nonadiabatic stron
coupling regime~cf. the discussion in Sec. III D!.

As stated at the beginning of this section, we have tried
explore the phase diagram of the Holstein model and
nature of the ST transition by calculating various groun
state properties of the system under consideration. An a
native method was used in recent numerical work by Ko
dakiset al.45 ~see also Vekhter and Ratner46!, who solved the
~time-dependent! discrete nonlinear Schro¨dinger equation for
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a single tight-binding electron coupled toacousticlike
~anharmonic46! eigenvibrations, where the lattice degrees
freedom are treatedclassically. The results of this semiclas
sical approach depend very strongly on the initial electro
configuration. When the initial energy of the electron is clo
to the bottom of the band, i.e., in the vicinity of the pu
electronic ground state, the main characteristics of pola
formation, discussed above for the adiabatic and nona
batic cases, were obtained. On the other hand, for an initi
highly excited electron, the ST is much more complex, a
in general, the tendency towards electron localization is
duced as the initial energies get higher. Here we are no
the position to check the quality of these results. Within
exact diagonalization approach the way to study exc
states is to calculate, e.g., the single-particle spectral fu
tion. For the simple Holstein model this has be done b
number of authors quite recently.22,33,47

B. Electron-lattice correlations

In looking for a characterization of the different polaron
regimes for thequantum-phononHolstein model~1!, we
have computed the~normalized! correlation function be-
tween the electron positioni 50 and the oscillator displace
ment at sitej ,

x0, j5
^n0~b01 j

† 1b01 j !&
2g^n0&

, ~19!

by means of a direct diagonalization technique. Here ferm
and boson degrees of freedom are related by the rela
^bi

†1bi&H52g^ni&H (52g/N for the single-electron case!.
Alternatively, working with the effective Hamiltonian

~10!, the electron-lattice correlation function~19! can be ex-
pressed as

x̄0, j5gd0,j1
D j

4l
. ~20!

Hence we can use the static correlation functionsx0,j and
x̄0,j to test the accuracy of the IVLF scheme.

Figure 3 shows the static correlation functions~19! and
~20! in the adiabatic~a! and nonadiabatic~b! regimes for
several coupling parametersl corresponding to the differen
polaronic ‘‘phases’’ indicated in Fig. 1. For parameters clo
to the adiabatic weak-coupling regime~phase I!, the ampli-
tude ofx0,j is extremely small and the spatial extent of t
electron-induced lattice deformation is spread over the wh
lattice. For correctness it should be stated that the nea
free-electron phase I, stabilized by the kinetic energy con
bution, only occurs in finite 1D Holstein systems wi
PBC’s. If we apply open boundary conditions~OPC’s! on a
finite chain the electron densityn̄i is inhomogeneous even a
l50. Thus, according to Eq.~11!, we found a large-size
polaron with spatially varyingD i for any l.0. The corre-
sponding electron-lattice correlations are depicted in F
3~a! for open chains withN517 sites ~in order to get a
symmetric solution aboutj 50). Needless to say that th
PBC and OBC IVLF results coincide forN→`.

In the quantum-phonon model~1! the coupling gives rise
to a weak dressing of the electron at any finitea. However,
f
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d
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e
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the carrier is not trapped due to the zero-point quantum
tice fluctuations.48 From Eq.~20! it is clear that in the effec-
tive model~10! the on-site dynamical polaron and spatia
extended static displacement field contributions are w
separated. Neglecting the residual polaron-phonon inte
tion, the IVLF approach describes the real situation by
~variational! superposition of both effects. In the adiaba
large-polaron region II a much better description of the ex
behavior is obtained. Especially when the small AHP st
evolves atl;1 the IVLF results are even in quantitativ
agreement with the density matrix renormalization gro
~DMRG! data obtained very recently by Jeckelmann a
White48 @see inset Fig. 3~a!#. At this point we would like to
emphasize that performing such DMRG and, in particu
ED calculations requires much more memory and CPU-ti
resources than our extreme simple and very fast IVLF co
putations. In Fig. 3, the system sizes treated within the IV
scheme have been restricted in order to make possible
rect comparison with the available ED and DMRG data.

Obviously, for intermediate to strong EP couplings, t
IVLF results agree almost exactly with the ED and DMR
data@Fig. 3~b!#. Here the electron-lattice correlations becom
very localized and finite-size and boundary-condition effe
are less important. Although the behavior ofx0,j , shown in

FIG. 3. Electron-lattice correlationsx0,j in the adiabatic weak-
to-intermediate EP coupling~a! and nonadiabatic intermediate-to
strong EP coupling~b! cases. IVLF-Lanczos results are compar
with ED data and the DMRG results taken from Ref. 48. In~a!,
cross and star symbols denote the IVLF-Lanczos results obta
by using open boundary conditions~OBC’s!.



-
re
in
n
r

c

ne

on
tic

on

D
ta
o

m

ci-
m
ll

om
e
ar
ll

nd
le

im
ol
vit
f

th
ris
h
d

rig
tu
m

a-
t
o

ax

e

al
ion

tle

to

n

.

ate
t

6214 PRB 58G. WELLEIN AND H. FEHSKE
the main part of Fig. 3, is found to be very similar forl
51.5, a53.0 andl54.5, a51.0, we would like to empha
size that both parameter sets describe completely diffe
physical situations. The distinct nature of the correspond
small-polaron states becomes apparent from the variatio
the static displacement fields shown in the insets. Fol
54.5 and an intermediate~or low! phonon frequency, we
observe a static lattice distortion in the vicinity of the ele
tron only. SinceD0/4l;1, in Eq. ~20!, the second term
dominates the first one and we obtain a small AHP confi
to a single site. On the contrary, forl51.5 anda53, we are
still in the large-polaron region II due to the high phon
frequency@cf. Fig. 1 and the spatial extension of the sta
lattice distortion shown in the left inset of Fig. 3~b!#. Never-
theless, the correlations between the electron and the ph
remain local. But now, since theD j /4l are small for allj ,
the peak structure ofx0,j at j 50 results from the first term in
Eq. ~20!. That means it is mainly triggered by theg effect
(g.0.69). This interpretation is substantiated by our E
results, yielding a mean phonon number in the ground s
of about 0.625, which clearly indicates that the zero-phon
state is still the most probable one. Therefore the approxi
tion we applied by deriving Eqs.~10! and ~20! is justified.

C. Optical response

Extremely valuable information on the low-energy ex
tations in interacting electron- or exciton-phonon syste
can be obtained by studying their optical response. Actua
the optical absorption of small polarons is distinguished fr
that of large~or quasifree! polarons by the shape and th
temperature dependence of the absorption bands which
from exciting the ST carrier from or within the potential we
that binds it.4 Furthermore, as was the case with the grou
state properties, the optical spectra of light and heavy e
trons and excitons differ essentially as well.2 In the most
simple weak-coupling and nonadiabatic strong-coupling l
its, the absorption associated with photoionization of H
stein polarons is well understood and the optical conducti
can be analyzed analytically49–53~for a detailed discussion o
small-polaron transport phenomena we refer to the review
Firsov54!. Serious problems, caused, for example, by
complicated behavior of the adiabatic potential surface, a
if one tries to calculate the spectrum of self-trapped lig
excitons.2 Moreover, the intermediate-coupling an
-frequency regime is as yet practically inaccessible for a
orous analysis. On the other hand, previous numerical s
ies of the optical absorption in the Holstein model were li
ited to very small two- or four-site clusters.27,29 In order to
calculate the optical conductivity numerically in a wide p
rameter range on fairly large systems, we have implemen
our computer code, which is based on a combination
Lanczos diagonalization, Chebyshev recursion, and m
mum entropy methods,41,43 on parallel machines.

The real part of the optical conductivity, Res(v)
5Dd(v)1s reg(v), can be decomposed into the Drud
weightd function atv50 and a regular part (v.0) written
in spectral representation atT50 as55
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s reg~v!5 (
mÞ0

u^C0u i ( j~aj
†aj 1x2aj 1x

† aj !uCm&u2

Em2E0

3d~v2Em1E0!. ~21!

In Eq. ~21!, s reg(v) is given in units ofpe2 and we have
omitted the 1/N prefactor. For the discussion of the optic
properties it is useful to consider the spectral weight funct

S reg~v!5E
0

v

dv8s reg~v8! ~22!

as well.
Numerical results for boths reg(v) andS reg(v) are pre-

sented in Fig. 4. We will start with the somewhat more sub
case oflight electrons.

But first let us recall that, restricting ourselves

phononic statesus&ph5P i 50
N21(1/Ani

s!) (bi
†)ni

s
u0&ph with at

most M phonons, aK-symmetrized state of the Holstei

model is given asuCK&5(m50
M ( s̄51

S̄(m)
cK

m,s̄uK;m,s̄&, where

S̄(m)5(N211m)!/(N21)!m! ~for more details see Refs
33,43!. K denotes thetotal momentum of the coupled EP
system. Then, if the EP coupling is finite, the ground st
uC0& and all excited statesuCm& contain components tha

FIG. 4. Optical absorption in the 1D Holstein model. ForN
58 and M525, the regular part of the conductivitys reg ~thin
lines! and the integrated spectral weightSreg ~thick lines! are plot-
ted as a function ofv at different EP couplings for the ‘‘light’’~a!
and ‘‘heavy’’ ~b! electron cases.
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correspond tom-phonon states~with m5( i 50
N21ni

s<M , ni
s

P@0,m#) in the tensorial product Hilbert space of electron
and phononic states. When the EP coupling is smalll
!1), these multiphonon states have less spectral weight;
the phonon distribution of the ground state,uc0

mu2(M )

5( s̄ucK50
m,s̄ u2, exhibits a pronounced maximum at the zer

phonon state.33 The maximum of uc0
mu2(M ) is shifted to

larger values ofm asl increases.
Keeping this in mind and noticing further that in Eq.~21!

an optical transition can take place only within theK50
sector (uC0&[uCK50&), the peak structure ofs reg shown in
Fig. 4~a! may be easily understood in connection with t
single-particle spectrum. For low phonon frequenciesa
!W), the energy to excite one phonon lies inside the b
tight-binding bandEK

(0)522t cosK and we observe a flat
tening of the coherent band structureEK at large
momenta.32,56 Then the coherent bandwidthDE5Ep2E0 is
approximately given bya (!@EK

(0)2E0
(0)#), i.e., by the pho-

non frequency, where the states at finite momenta are
dominantly ‘‘phononic’’ states with less ‘‘electronic’’ spec
tral weight. Thus, although in principle an optical excitati
can be achieved by ‘‘adding’’ phonons with opposite m
mentum to these states~in order to reach theK50 sector!,
the overlap to the mainly ‘‘electronic’’ ground state is e
tremely small. Therefore we found, roughly speaking,
first transitions with non-negligible weight to the fre
electron states and its vibrational satellites@see Sreg(v)].
This is perfectly illustrated by the inset of Fig. 4~a!. Here the
first and second groups of peaks are approximately locate
the bare tight-binding energiesEK

(0) (1na), for the allowed
wave vectors of the eight-site lattice used in the numer
calculation (K5p/4,p/2, . . . ). Of course, with increasing
the lattice size theK values will become dense and we w
obtain the monotonous decay of the optical absorption c
ficient observed for large polarons above the photoioniza
threshold.4 To understand the changes in the optical abso
tion in the crossover region from a large-size polaron
small AHP, the main part of Fig. 4~a! showss reg at two
intermediate-EP-coupling parameters. In this case the co
ent band structureEK gets stronger renormalized, but mo
important, the phonon distribution function in the grou
state, uc0

mu2(M ), becomes considerably broadened. For
stance, ata50.1, we haveuc0

mu2(M525).0.008 (m50),
0.095 (m57), and 0.008 (m518) and uc0

mu2(M525)
.0.0002 (m50), 0.1 (m512), and 0.0005 (m524) for l
50.9 andl51.0, respectively. Therefore the overlap wi
excited multiphonon states is enlarged and the optical
sponse is enhanced. The line shape of the absorption b
reflects the phonon distribution in the ground state, where
small oscillations are due to the discreteness of the pho
frequency. As a result, the peak structure is smeared out
the wide sidebands, belonging to different electronic m
menta~e.g.,K5p/4 andK5p/2), merge with each other.

We now turn to theheavy electroncase@Fig. 4~b!#. The
inset again illustrates the behavior in the large-polaron
gime (l51, a53; cf. Fig. 1!, where a rather moderate ban
renormalization occurs (DE;2.33 due to the flattening
effect32!. But now the phonon frequency is large compared
the finite-size gaps between the first mainly ‘‘electroni
e.,
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excitations (EK2E0,a for K<p/2). Therefore, in contras
to the light electron case@cf. Fig. 4~a!#, the different absorp-
tion bands~each built up by several ‘‘electronic’’K levels!
can be classified according to the number of phonons
volved in the optical transition. As can be seen from t
main part of Fig. 4~b!, the absorption spectrum for a sma
size polaron is quite different from that of a large polaro
According to the results of Sec. III A, a small NLFP
formed in the strong-coupling nonadiabatic limit. Here t
phonons will heavily dress the electron and, concomitan
the ‘‘electronic character’’ of the resulting strongly reno
malized small polaron band becomes suppressed~cf. the dis-
cussion of theK-dependent wave-function renormalizatio
factorZ K

(a)5u^CKuaK
† uC0&u2 in Ref. 33!. For our parameters

(l56, g254), the maximum in the phonon distribution func
tion is located betweenm53 and 4. The renormalized band
width is small compared to all other energy scales (DE
;0.0782!a,2W). Since the current operator connects on
states having a substantial overlap as far as the phon
state is concerned, multiphonon absorptions~i.e., nondiago-
nal transitions50! become now increasingly important in th
optical response. This leads to the peak structure obse
for the nonadiabatic small-polaron optical conductivity
Fig. 4~b!. Obviously, the different bands are being separa
by multiples of the bare phonon frequency. The height of
jumps in thev-integrated conductivity is directly related t
the probability of the corresponding absorption process.
found that substantial spectral weight stays in the low
energy part of the spectrum at frequencies comparable
«p52l(.mmaxa). These absorptions, resembling to som
extent a large polaron’s absorption, are signatures of a
polaron with intermediate size. In the extreme stron
coupling limit the dominant absorption process results fr
the transfer of the ST carrier to the neighboring site witho
changing the lattice distortion. That means that the opt
absorption spectrum should exhibit a single-peak structur
v52«p54l, which corresponds to the lowering of the ele
tronic energy associated with the small-polar
formation.57,51 This feature already evolves for the couplin
strength considered in Fig. 4~b! ~cf. DSreg for the seventh
absorption band!.

D. Kinetic energy

Further information about the transition from large
small polarons can be obtained from the behavior of the
laron kinetic energyEkin . ReplacingH̄ by H, the kinetic
energy can be easily obtained from the static correlat
function ~15!. On the other hand, according to thef -sum
rule, Ekin is directly related to thev-integrated optical con-
ductivity,

2
Ekin

2
5S tot5

D
2pe2

1S reg. ~23!

Calculating, via Eqs.~21! and ~22!, S reg5S reg(`) numeri-
cally allows us to determine the Drude weightD as well.
Sometimes one defines an effective polaronic trans
amplitude,28,22 tp,e f f5Ekin(l)/Ekin(0), in order to charac-
terize the polaron mobility. In our reduced units we ha
tp,e f f[S tot. From Eq.~23! it is obvious thattp,e f f includes
both coherent and incoherent transport processes. H
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tp,e f f substantially differs from the exponential factore2g2
,

obtained in lowest-order perturbation theory, and canno
used to determine the coherent bandwidthDE under strong-
coupling conditions (l,g2@1).

The evolution of the kinetic energy (S tot) as a function of
the EP couplingl is displayed in Figs. 5~a! and 5~b! for the
case of light and heavy electrons, respectively. In agreem
with previous numerical results,31,28,22,48Ekin clearly shows
the crossover from a large polaron, characterized by aS tot

that is only weakly reduced from its noninteracting val
@S tot(l50)51#, to a less mobile small AHP~NLFP! in the
adiabatic~nonadiabatic! strong-coupling limit.

For low phonon frequencies@a50.1, Fig. 5~a!#, we found
a rather narrow transition region. As recently pointed out
Caponeet al.,29 the decrease ofS tot in the crossover regime
is driven by the sharp fall of the Drude weight. By contra
the optical absorption due to inelastic scattering proces
described by the regular part of the optical conductivity, b
comes strongly enhanced33 ~see the behavior ofS reg). It is
worth emphasizing that the IVLF results forS tot(l) are in
excellent agreement with the ED and DMRG data.

The large- to small-polaron transition is considerab

FIG. 5. Kinetic energy@in units of (2W)] Stot and contribution
of s reg to the f -sum rule,Sreg, as a function of the EP couplingl
in the adiabatic~a! and nonadiabatic~b! regimes. Circles~stars!
denote exact@DMRG ~Ref. 48!# data obtained for a lattice withN
58 ~32! sites. IVLF-Lanczos results~solid curves! are compared

with the predictions of standard first-order (W̄/W5exp$2g2%, thin
solid line! and second-order~chain-dashed curves! perturbation
theory.
e

nt

y

t
s,
-

broadened athigh phonon frequencies@a53.0, Fig. 5~b!#.
Here the IVLF results start to deviate from the exact on
when g2 becomes much larger than 1, thus making t
lowest-order zero-phonon approximation inherent in
IVLF scheme less justified. As mentioned already in S
III A, the nonanalytic jumplike behavior atl;4 is an appar-
ent shortcoming of the variational approach which compa
ground-state energies only.

Although for large enoughg and l the simple formula
W̄5W exp$2g2%, which should not be identified with the
‘‘Lang-Firsov approach,’’22,58 works perfectly well in the
determination of thecoherent bandwidth(DE.2W̄),27,33

the need of going beyond the lowest order of approximat
to obtain reliable results for thekinetic energyhas been em-
phasized many times.1,33,48,59,58In the nonadiabatic strong
coupling limit (g2@1, a.1), the ground-state energy ob
tained within second-order perturbation theory is a tiny
lower than the IVLF energy and almost coincides with t
ED result. Adapting the second-order strong-coupling
proach presented in our previous work33 to the 1D case~with
g51), the kinetic energy is obtained, viaEkin

SCPT5t] t^H&, as

Ekin
SCPT52

4

a K 1

sL
k52g2

2e2g2F21
4

a K 1

sL
k5g2

G . ~24!

Here ^•••&k means the average with respect to the Pois
distribution with parameterk. As can be seen from Fig. 5, a
large EP interactions, strong-coupling perturbation the
~SCPT! gives a sufficiently accurate description ofS tot in
both the adiabatic and nonadiabatic regimes.

IV. SUMMARY

The main objective of this study was to reexamine
detail the self-trapping transition of electrons and excitons
one dimension within the framework of the Holstein mod
by the use of computational techniques. The calculations
performed by exact diagonalizations of finite systems, wh
the full dynamics and quantum nature of phonons were ta
into account. Therefore the results are unbiased and a
one to test the applicability of a numerically much mo
efficient variational Lanczos approach proposed by the
thors. This IVLF-Lanczos technique is designed to analy
strongly correlated electron-phonon models on fairly lar
lattices, including static displacement field, nonadiabatic
laron, and squeezing effects. The comparison between IV
results and ED data, performed in this paper, clearly sho
that the simple IVLF-Lanczos approach provides an exc
tional good description of the ground-state properties of
Holstein model, in particular for the light electron case.

Let us summarize the main outcome of our work.
Figure 6 illustrates the basic physics contained in

single-particle Holstein model. This model describes a c
tinuous transition from large to small polarons with increa
ing EP coupling strength. Depending on the adiabaticity
the system,a5v0 /t, the crossover regime is determined b
the more stringent of the two conditionsl5«p/2Dt*1 and
g25«p /v0*1. Thus starting from ‘‘light’’ (a,1) or
‘‘heavy’’ ( a.1) electrons it is possible to understand t
formation of small adiabatic ‘‘Holstein’’ or nonadiabati
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‘‘Lang-Firsov’’ polarons as two limiting cases of a gener
picture.

In the infinite 1D Holstein model the self-trapped state
the ground state for any value of the EP coupling. As
specific property of a finite 1D Holstein system with period
boundary conditions, a critical length or equivalently a cr
cal EP coupling strength exists for self-trapping, rigorou
at least atv050.21 This may be of importance for close
~spatially restricted! systems like C60. By contrast, there is
no critical length and coupling if the system has open en
which is important for nanowires.

The large-size polaron is characterized by spatially
tended lattice deformations. Within our IVLF descriptio
the variation of the displacement fields follows the~adia-
batic! formula D i}sech2@lef fi# even in the nonadiabatic re
gime, but with a strongly reduced inverse length scale gi
by an effective coupling constantle f f(l,a)!l. The mean
phonon number in the large-polaron ground state is ra
small. In 2D and 3D Holstein systems a large-polaron ph
does not exist.

The small-polaron state is basically a multiphonon st
characterized by strong on-site electron-phonon correlati
Due to a large local static lattice distortion, the AHP b
comes quasilocalized on a single site. Also the NLFP is
mobile because it has to drag with it a large number
phonons in its phonon cloud.

The intermediate-EP-coupling and -phonon-frequency
gime is hardly accessible to traditional analytical metho
mainly because the kinetic and EP interaction~potential! en-
ergies, favoring a delocalization and localization of t
charge carriers, respectively, are equally important. Here

FIG. 6. Schematic phase diagram of the Holstein model.
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residual polaron-phonon interaction generates further t
nearest-neighbor ranged hopping processes and the resu
effective polaronic band dispersion deviates from a sim
tight-binding cosine band~cf. the discussion in Ref. 32!. The
transition from large to small polarons is accompanied
significant changes in the single-particle spectral propertie33

as well as in the optical response of the system. In particu
for ‘‘light’’ electrons the spectral weight of the regular pa
of the optical conductivity is strongly enhanced at the tra
sition. For ‘‘heavy’’ electrons the line shape of the optic
absorption spectra is highly asymmetric in the intermedia
to-strong-coupling regime and therefore differs considera
from the usual small-polaron hopping behavior obtained
g2@1.

As a result of self-trapping the mobility of the charg
carriers is reduced. The behavior of the kinetic energy in
cates that the crossover region from large to small ST st
is rather narrow~broad! in the adiabatic~nonadiabatic! re-
gimes. The formation of small adiabatic Holstein polarons
accompanied by a dramatic kinetic energy loss mainly driv
by a sharp drop of the Drude weight. Since both the ba
width and the ~electronic! spectral weight of the small
polaron band are exponentially reduced in the extre
strong-coupling caseg2,l@1, coherent small-polaron trans
port becomes rapidly destroyed by thermal fluctuations.

In principle our ED approach allows a full quantum m
chanical description of the dynamics, i.e., the time evoluti
of coupled EP~Holstein! systems. Such an investigatio
would be highly desirable since first attempts to examine
problem,45 which are based, however, on a classical tre
ment of the lattice, indicate a much greater complexity of
ST phenomenon if the electron subsystem is initially a hig
excited configuration. Especially the temporal energy red
tribution between the electronic and vibrational degrees
freedom, found in several EP models with optical22 and
acoustic-phonon-deformation potential45,46 couplings, de-
serves further verification including the effects of quantu
lattice dynamics. Work in this direction will be started in th
near future.
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