PHYSICAL REVIEW B VOLUME 58, NUMBER 10 1 SEPTEMBER 1998-II

Self-trapping problem of electrons or excitons in one dimension
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We present a detailed numerical study of the one-dimensional Holstein model with a view to understanding
the self-trapping process of electrons or excitons in crystals with short-range particle-lattice interactions.
Applying a very efficient variational Lanczos method, we are able to analyze the ground-state properties of the
system in the weak- and strong-coupling, adiabatic and nonadiabatic regimes on lattices large enough to
eliminate finite-size effects. In particular, we obtain the complete phase diagram and comment on the existence
of a critical length for self-trapping in finitéclosed one-dimensional systems. In order to characterize large
and small polaron states we calculate self-consistently the lattice distortions and the particle-phonon correlation
functions. In the strong-coupling case, two distinct types of small polaron states are shown to be possible
according to the relative importance of static displacement field and dynamic polaron effects. Special emphasis
is on the intermediate-coupling regime, which we also study by means of direct diagonalization, preserving the
full dynamics and quantum nature of phonons. The crossover from large to small polarons shows up in a strong
decrease of the kinetic energy accompanied by a substantial change in the optical absorption spectra. We show
that our numerical results in all important limiting cases reveal excellent agreement with both analytical
perturbation theory predictions and very recent density matrix renormalization group data.
[S0163-182698)02034-1

[. INTRODUCTION Although the problems of exciton and electron ST have
much in common, there are fundamental differences. Most
Electrons, holes, or excitons delocalized in a perfect rigichotably excitons are short-living nonequilibrium quasiparti-
lattice can be “trapped” within a potential well produced by cles being immediately, after the optical excitation, in a free
displacements of atoms from their carrier-free equilibriumstate and can reach the ST state only by tunneling through
positions, provided the particle-lattice interaction is suffi-the potential barrier at low temperatures. Moreover, if the
ciently strong'™ Trapping of a carrier in this manner is electron and hole, forming the exciton, have very different
more advantageous energetically as compared to widebarmadfective masses, the internal coordinates of this large-radius
Bloch states, if the lowering of the carrier’s energy due to its(Wannier-Mot} exciton will be of importance.
binding exceeds the strain energy required to produce the Itis clear that the microscopic structure of the ST state is
trap. Since the potential that binds the carrier depends on theery diverse in various groups of materials. The stability of
carrier's state itself—i.e., the local distortion of the lattice is different types of ST states depends on the nature of the
self-induced by the particle—this process is called “self-electron- or exciton-phono{EP) coupling(e.qg., deformation
trapping” or “autolocalization.” Obviously, self-trapping potentiat? against Fralich'® coupling, the vibrational fre-
(ST) is a highly nonlinear phenomenon. A self-trapped statequenciege.g., acoustic vs opticthe dimensionality D) of
is referred to as “large” if it extends over multiple lattice the lattice, and other parameters. A detailed classification of
sites. Alternatively, if the quasiparticle is practically confined ST states and ST criteria is presented, e.g., in the excellent
to a single site, the ST state is designated as “small.” Nonefeview of Rashba.In particular, from a scaling treatment of
theless, ST does not imply a breaking of translational invari-a continuum lattice model in the adiabatic limit, it has been
ance. ST eigenstates in a crystal are Bloch-like. Thus coheshown that inmultidimensionakystems D>1) with only a
ent transport of ST patrticles can, in principle, occur but theshort-range nonpolarEP interaction a ST carrier always
width of the corresponding band is extremely snfafl the ~ forms a small polarof**>4If there is an energy barrier that
discussion in Ref. b separates delocalized and spatial confined states, the free and
Introducing the concept of polarons into physics, the posST states can coexit!’ as evidenced, e.g., for solid xenon,
sibility of electron immobilization or ST was pointed out by by the coexistence of two exciton luminescence baode
Landau as early as 1983Shortly after, the ST of excitons narrow and the other broad On the other hand, the pres-
was also suggested and studied theoreticdlIgT polarons ence of dong-range polarEP coupling ensures that at least
and excitons can be found in a wide variety of alkali metalthe formation of large polaron states with moderate lattice
halides, alkaline earth halides, II-IV and group IV semicon-deformation becomes possible. The picture is qualitatively
ductors, condensed rare gases, organic molecular crystalshanged when turning tow-dimensionakystems. Recently
electrochromics, and other systefiisWith the observation it was shown that, unlike the continuum limit, the formation
of polaronic effects in new materials exhibiting exceptionalof a ST state in the two-dimension&D) case within a
properties such as the high- cuprate®’ or the colossal model of local EP coupling is always accompanied by the
magnetoresistance manganatesesearch on polarons has formation of an energy barrier attributed to the lattice
attracted renewed attention. discretenes® The 1D case is essentially different from the
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2D and 3D ones. In 1D ST proceeds without overcoming aligmatic model for small polaron formation. Herelenotes
barrier. To be more precise, the ST state is the ground statee nearest-neighbor free-electron transfer amplitugeis
of the infinite system at any value of the EP coupling. In thethe strong-coupling polaron binding ener¢in the atomic
weak-EP-coupling regime its radius exceeds several timelimit t=0), and w, is the bare phonon frequency of the
the lattice spacing; i.e., a large polaron is formed even undetispersionsless optical phonon mode. Referring to excitons
the nonpolar interaction condition. we have in mind the small-radiBrenkel or charge transfer
Although the basic concepts underlying the ST transitionexcitons only, and neglect, in the lowest order of approxima-
are long standing and the gross features of “large” andtion, the internal structure of the exciton: i.e., we consider it
“small” polarons and excitons have been extensively stud-as a single neutral particle.
ied, our understanding of the ST problem is still incomplete. Generally speaking, the ground-state and spectral proper-
In particular the physically most important crossover regimeties of the model1) are governed by three ratigsontrol
characterized byintermediateEP-coupling strengths and parametensdefined from the bare energy scatesw,, and
phonon frequencies, is difficult to handle theoretically due tog,. First the adiabaticity parameter
the failure of the standard phase transition conégptAs
yet, there exist no well-controlled analytical techniques to a=wolt 2
describe the transition region. Other problems, for exampled
concern the existence of a critical length for ST in spatially
restricted 1D systents,the behavior of the polaron kinetic
energy?? or the spectrum of light excitons under ST

conditions depending on the strength of the particle-phonon interaction.

With these motivations, in this paper we want to diSCUSSOn the contrary, in the antiadiabatic limit>1, the lattice

:22 ﬁ;sﬁ?r?lsqng dgf'-%goﬂlé”&?,:(;ﬂs@ﬁthé)dse' the dfgcgi; Z?ieformation is presumed to adjust instantaneously to the po-
! ' : lon. by ex lag IZ85ition of the carrier. Conveniently the patrticle is referred to

tion of finite systems we analyze various ground-state an s a “light” or “heavy” electron and exciton in the adia-

spectral properties of the m0d§|é4 Since fqr the HOls.tembatic or nonadiabatic regimésThe second parameter is the
model exact results are very rété>**and previous numeri- . Z Lo e coupling constant
a

cal studies have been limited either to small systems or to
particular parameter reginf&; ?°this is a challenge by itself. N=ge. /W 3)
Besides, we hope to gain more insight into the physics of P
small and large polarons and into the nature of thevhereW=2Dt denotes the half-width of the electrgexci-
localization-delocalization transition. ton) band in a rigidD-dimensional lattice. Let us stress that
The paper is organized as follows: In the next section we\ represents the ratio between “localization” energy
briefly introduce the Holstein model and outline our varia-(*&;) andbarekinetic energy W) of a single particle. Both
tional Lanczos approach that allows us to study the ground® and « are commonly used as parameters within a pertur-
state properties for all regimes of parameters on large latticggative analysis of the Holstein model in the limits of weak
in a very efficient way. The numerical results will be pre- (A<1) and strong X>1) EP couplings. In the latter case
sented in Sec. Ill. More precisely, the phase diagram of théwo different approaches, based on expansions in powers of
Holstein model(Sec. 1l A), the electron lattice correlations (¢<1) and (1A<1), have been elaborated for the
(Sec. Il B), the optical responséSec. 111 O, and the kinetic  adiabati¢>*® and nonadiabati regimes, respectively. A
energy(Sec. Il D) will be discussed. The principal results third parameter
are summarized in Sec. IV.

etermines which of the two subsystems, excitons and elec-
trons or phonons, is the fast and which is the slow one. In the
adiabatic limita<<1, the motion of the particle is affected by
quasistatic lattice deformationadiabatic potential surfage

g2=8p/w0 (4)

Il. MODEL AND METHODS will be shown to be crucial in the strong-coupling situation.
s_g2 determines the relative deformation of the lattice which
surrounds the particle.

In the limit of small particle density, a crossover between

With our focus on the self-trapping phenomenon in sy
tems with only short-range nonpolar electron- or exciton-
lattice interaction, it is appropriate to consider a model where . . X . . ; .
a single excess carrier is placed in a one-dimensional per >ssentially delocalized carriers and quasilocalized particles is

odic array of identical molecular units, each having an inter- nlowln .tOSﬂOCCUF.d f:jon;] ezri]rly quar&t_qm M>0r11te dCarIo
nal vibrational degree of freedom. Introducing elect(er- calculations,” provided that thewo conditionsi =1 andg

citor) ai[ﬂ and phonorbi[ﬂ destruction[creatior] operators =1 are fulfilled. So while the first condition is more restric-

) o X . tive if @ is small, i.e., in the adiabatic case, the formation of
we can write Holsteins’s molecular crystal modeh lattice . . o
. . a small ST state will be determined by the second criterion in
site representation as

the antiadiabatic reginm@:3233
1 It is not surprising that standard perturbative techniques
H=hwoz (bini+ 5) — \/SpﬁwOE (biT+ b)n; are less able to describe the system close to the crossover
: : region, where the energy scales are not well separated (
~1, g~1). Therefore we will apply in the following two

—tz (afaﬁa}‘ai) (1) distinct numerical methods that allow investigating the ST
() phenomenon on finite clusters with great accuracy.
(nizafai ; below7 =1). In the case of electrons the Hol-  The first methodis a variational Lanczos technigide-

stein Hamiltonian(1) has been studied extensively as a paraveloped originally for the Holsteiri-J modef®3%, which
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enables us to study tlground-state propertiesf fairly large o« 1

systems. In recent work this technique has been adapted suc- H= 2(724— 72N+ ax > AZ—(1-y) 2 Ajn;
cessfully to treat the lattice degrees of freedom in the gener- ' '
alized double-exchange Hamiltonian commonly used for the

_ 2 27_2
description of colossal magnetoresistance matefidls.the —2 y(2—y) 2 nj—e 97 2 (afa;+afa).
case of the pure Holstein model, as a first step, we perform ' Y
an inhomogeneous variational Lang-Firs@VLF) transfor- (10
mation

In Eq. (10), the first term leads to an increase of the zero-

point energy of the phonons < 1. The second and third
H=U"HU, U=e S1(A)g=S21g=S3(n, (5) contributions give the elastic energy and the particle-lattice

interaction, respectively, both owing to the static lattice de-
with formation. As a result of the incomplete LF transformation
we get a constanfpolaronig level shift and an exponential
band renormalizatioffourth and fifth terms Even the sim-
plified model (10) cannot be solved exactly. Therefore we
carry out a Lanczos diagonalization on finNesite lattices
using periodic boundary conditiorf®BC'’s). Employing the
Hellmann-Feynman theorem, thHé+2 variational param-

_ t t eters can be obtained by iteratively solving the following set

Say)= ygzi (bi—bi)aja;, D o self-consistency equations:

1
S8 =550 2 Ai(bl—by), (6)

Aj=4N(1-y)n;, (11)
Sa(r)=—In 772X (bfb{—bib)) ®) _
' a[ 1—Ep /4N ]

Y= 2,.—g> nsz— ! (12)
(rescalingH=H/t and measuring, in what follows, all ener- a—77e %7 7 By
gies in units oft). In a certain sense the canonical transfor-
mation I/ is a (variationa) synthesis of two different ap- F2- @ (13)
proaches developed in the adiab3fft'>® and Ja?—8rv2e P E. N
antiadiabati€®3’ theories of ST polarons and exciton$, 4 kin
introduces a set of static site-dependent displacement fieldshere
A; related to local lattice distortions. This transformation en-
sures the correct behavior in the adiabatic limit. ThatSis, Fi:<ni>77 with Z Ezl, (14)

describes the ST of “light” excitons and electrons under the
conditions that(i) the electronic bandwidth significantly ex-
ceed the characteristic phonon frequency &éndthe lattice _
deformation energy be largavhich allows one to treat the Exin= —Z <(a;raj+ajTai)>ﬁ7 (15
lattice vibrations quasiclassically Within polaron theory (i)

such a type of ST quasiparticle is often called an adiabatic .

Holstein polarort? S,, on the other hand, describes the ST Ean=2> (Ain))i (16)
process in the antiadiabatic limit. The variational parameter ‘

y (with 0< y<1) is introduced as a measure of the nonadiagenote the local particle density, the kinetic energy, and the
batic phonon d_resss'{gg of “heavy” particles, designated asp jnteraction contribution to the ground-state energy, re-
localized” excitons™ or nonadiabatic Lang-Firsov small gpectively. Note that each iteration step involves the exact

pole_lrons. Fory=1, th_e well-known Lang-Firsov dlsplaceQ— iagonalization Ofﬁ(y,Tz,{Ai}). We note further that the
oscillator transformation results. In addition, we have applie oo ; .
amiltonian (10) potentially contains symmetry-broken

the two-phonon squeezing transformatifn(0< r<1).3°4° : - . )
The squeezing phenomenon is a many-particle effect beinstates which originate from inhomogeneous displacement

S . . : felds A;#0. Therefore we have to work with an unsymme-
of special importance at intermediate-EP-coupling Strength%‘r&zed set of basis states

This effect can be seen as a phonon frequency softening an . .
! The second methogle are going to use in the computa-
tends to offset thépolaror) band narrowing. As a second . , X . . .
tional work is the direct numerical diagonalization of the

step, we approximate the eigenstat#$ of 7 by the varia-  jnjtial Holstein Hamiltonian(1). On the one hand, this should
tional states bring out valuable information on the applicability of various
approximative analytical and numerical approaches. In par-
9 ticular we would like to test the quality of IVLF-Lanczos
scheme described so far. On the other hand, combining our
o ] exact diagonalizatiolED) algorithm with the Chebyshev
Then, performing in a thid siep the~average over the transrecyrsion and maximum entropy methddsye are able to
formed phonon vacuunﬂ—{z(\lfgh|7-[|llfgh>, we obtain the discuss thedynamical propertiesof the systems, e.g., the
effective (electronic-excitonig Hamiltonian optical conductivity, in more detail. Moreover, ED provides

[T = T @[ Te).



PRB 58 SELF-TRAPPING PROBLEM OF ELECTRONSPR. .. 6211

3.0

s

small polarons, in particular in the nonadiabatic regime
where the staticA; are less significant. According to the

K importance of the\; (e<1) andy («=1) effects, the small
— polaron formed in region Il will be called an adiabatic Hol-

‘ 1 stein polaron(AHP) and nonadiabatic Lang-Firsov polaron
I (NLFP), respectively.

As a peculiarity of ouffinite system with PBC's a further
strongly finite-size dependent transition to a nearly-free-
electron statéphase ) is observed by lowering the EP cou-
m 00 pling strength. In other words, it seems that a critical cou-
bo 00 "9; 04 pling A.(N) or equivalently a critical system sizi.(\)

] exists for self-trapping in 1D. Indeed, for the Iontinuum
0.00- * 1'0 2'0 3'0 4'0 S0 mode| w_here the ST problem can be described by a nonlin-
) ) ) A : : ‘ ear Schrdinger equation, it has been shown recently by
Rashb! that the ST condition is
FIG. 1. Phase diagram of the 1D Holstein model. Nearly free
polarons, large polarons, and small polarons exist in the regions I,
I, and lll, respectively. Results are obtained for finite rings with
N=32(0O), 64 (O, *), 96 (A), and 128(V) sites using the IVLF-
Lanczos method. The inset shows the critical coupling for self-This relation holds rigorously within the adiabatic thedry
trapping,\¢, ata=0 (X), 0.1($), 1.0(>>), and 3.0(<)). The solid ~ and is reproduced by ouattice modelcalculation as well
line gives the relatiorf17). For further explanation see the text.  (cf. inset Fig. 3. At «=0, the nearly free-electron phase
(phase ) corresponds to a solution with=0 andA;=A
the only reliable tool for treating the transition regime. Dif- =4\/N. The kinetic energy, however, is unrenormalized.
ferently from the IVLF-Lanczos treatment the translational Our IVLF-Lanczos scheme allows us to extend the above
invariance of the system is ensured. The ED method, basegbnsiderations to the finite-phonon-frequency regime. Again,
on a well-controlled truncation procedure of the phonon Hil-at low EP couplings, we found a nearly-free-electron phase
bert space, has been described elsewtfete®**3Using par-  with a small uniform level shift(«—2\[y(2—y)+2(1
allel computers, we are able to diagonalize systems with a ¥)?/N]). More significantly, since we havg>0 now, the

20 t

1.0

B

A>N =m?/2N. (17)

total dimension of 1%. inclusion of nonadiabatic phonon effects slightly renormal-
izes the electron half-bandwidt=2 exd—g?y?7}. If A

IIl. NUMERICAL RESULTS AND DISCUSSION becomes larger thax,(«), the ST proceeds by.a monotonic

. lowering of the total energy without overcoming a ST bar-

A. Phase diagram rier. This is in accordance with the expansion of the total

In the numerical work we start with a discussion of the €nergy of the continuum model near the ST threshold in the

ground-state properties of the transformed Hamiltorglzp). ~ adiabatic limit a—0, which yields a smooth behavior of
Applying the IVLF-Lanczos technique presented in the pre-Eo(\) with a discontinuity only in the second derivatite.
vious section, we have determined the phase diagram of thEhe scaling of\.(a) with N is shown in the inset of Fig. 1.
1D Holstein model. The results are depicted in Fig. 1. FirsAt A¢c @ minimum in the total energy develops, which corre-
let us consider regimes Il and IlI, corresponding to large angPonds to a state with inhomogeneous lattice deformations.
small po'aronsi respective'y_ Just for brevity we will use in For a discrete lattice model with PBC's it is a formidable
the following the “polaron terminology,” keeping in mind task to analyze analytically the ground-state energy profile as
that all statements hold for the case of Frenkel excitons ad function of a multidimensional lattice deformation coordi-
well. The distinct types of polarons, found in regimes Il andnateQ={A;}. This is because the shape of the energy func-
I, may be characterized by the Spatia| extension andional is determined by the Complicated interplay of kinetic
strength of théinhomogeneoudattice displacements; and ~ and (confinement-strain potential energy contributions.
by the magnitude of the polaron variational parametésee ~ However, the existence of a critical system size for self-
below). Fromexactanalyticaf® and numerical*>?°(cf. also  trapping may be understood easily from the fact that the
Sec. Il D) results it is well known that the large-size polaron (noninteracting electron spectrum exhibits finite-size gaps
turns continuouslyinto a small-size polaron with increasing [due to the discrete set of th¢ allowed Bloch K) levels).

EP coupling. Since there is no true phase transition betwee@onsequently, to gain energy by forming a large-gizave-
large and small ST states at>0, the transition lindstarg packej ST state the system has to overcome at least the
shown in Fig. 1 only indicates the crossover region, whichlowest of these gaps by EP coupling effects. Then, as a feed-
gets wider as the phonon frequer(ey increases. Within our back effect, the electronic band structure itself is weakly
IVLF-Lanczos treatment, the transition line has been fixedenormalized by the electron-lattice interaction. In the ther-
by the criterionA,/Ay= 1/e. Performing a finite-size analy- modynamic limitN—o the finite-size gaps vanish, and we
sis of the Ik=lll transition, we found that the results obtained obtain\ .(a)—0. Thus, in annfinite 1D (ring) system self-

for the 64-site lattice almost agree with the extrapolated valtrapping takes place at any finite value of the EP coupling.
ues for the infinite system. Via E@L1), A; is directly related Moreover, let us anticipate that.=0 holds also forfinite

to the polaron density at site Of course, this condition can 1D Holstein systems wittopen boundary conditiongsee
only give a crude estimate of the “transition” from large to Sec. Il B).
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025 ' g the leading (IN) corrections ¢g2y%e 9°7""E,,/aN)
3 [ g’g ) 2 e A0 tend to zero in the weak- and strong-coupling adiabatic and
020} 2F 2 1 o x;o‘zs antiadiabatic limits.
® :‘6* [ LA 1909 + soch’—fit The spatial extension of the static lattice deformatidg) (
sbS L1 o n=150 is visualized in Figs. @) and 2b) for different EP couplings
0151 -10 et Y ] corresponding to the nearly free, large and small polaron
< i % cases. As discussed above, theare being constant fox
0.10 R <M.(a) (phase ). For the large-size polarofphase I}, the
401 1 lattice displacements fit extremely well to the relation
005 N=96 * @ (a)
Foo A;=Apsech e 1, (18)

where lim,_ohef(N, @) =\. It is worth emphasizing that the
i functional form(18), which has been derived in the frame-
work of an adiabatic continuum theot§**8also describes
R the displacement fields in the nonadiabatic large-polaron re-
ol % oo A=0.05 gime. Obviously\.¢; defines a characteristic inverse length
2t &8 A=2.50 scale in the system; i.e., the radius of the large polaron is
:‘6‘ [ 1 * sech’—fit approximately given by (Res) 1. For a=0.1 and A
Y AR o0 A=5.00 1 =0.25 we obtained\¢¢/A=0.935. On the other hand, at
10 ’ + m a=3 and\=2.5, the effective coupling becomes strongly
< i 2 reduced:\.s;/A=0.116. In the strong-coupling regime, we
Ao observe an exponential decAy= A e~ /¢ of the lattice dis-
02 . tortion away from the polaron sitesee insets whereé de-
0=3.0 w @ (b) notes the small-polaron radius. We fouée0.29(0.19 for
N=96 ® 9 A=1.5(5.0 anda=0.1(3.0); i.e., in both cases the ST state
A is mainly confined to a single lattice site. While in the frame-

log A

04

0.0 Sensusas: 06 06 FEROBEE work of our interpolating theory thd; can be taken as a
=20 -15 -10 =5 0 5 10 15 20 measure of the “adiabatic character” of the polaronic qua-
1 siparticle, its “nonadiabatic part” is described by the Lang-
1.0 _ . _ : Firsov variational parametershown in Fig. Zc). Of course,
in the case of “light” electrons ¢<1), the nonadiabatic
(©) - polaron effect is_ rather small. In particular far>1, when
0.8 - 1 the small AHP is formed;y becomes strongly suppressed.
-~ Here the renormalization of the polaron band is mainly
driven by the static displacement fields. Otherwise, for
“heavy” electrons, we observe larger values f which
----- 0=0.1 increase with increasing EP coupling strength. As a result the
04 | —== 0=05 . free-electron band is transformed into a renormalized po-
——n =30 laron band. Due to thégeneralizeyl Franck-Condon factor

02 lmmeemt ~—— e*927272, the bandwidth is exponentially small under strong-
< coupling conditions@?, A>1), where also th&-dependent
___________ corrections to the band dispersion become negligible.
0.0 e S Within our variational approach we found a first-order tran-

) : : A : : : sition to the AHP state at an extremely strong EP interaction

(N =4, for «=3). However, this sharp transition is in

some sense an artifact of our IVLF scheme that compares the
ground-state energies of the AHP and NLFP states, both ob-
tained in the lowest order of approximatipremember that
by deriving Eq.(10) we have performed the average over the
zero-phonorstate only. Including higher-order corrections,
the NLFP withy— 1 is stabilized in the nonadiabatic strong-

To elucidate in more detail the different nature of po- coupling regime(cf. the discussion in Sec. 11D
laronic states occurring in the ground-state phase diagram of As stated at the beginning of this section, we have tried to
the effective mode{10), we present in Fig. 2 the behavior of explore the phase diagram of the Holstein model and the
the variational parameters. nature of the ST transition by calculating various ground-

First of all, we should emphasize that, studying $irgle-  state properties of the system under consideration. An alter-
electron problem, the squeezing effect¥<1) is only of  native method was used in recent numerical work by Kopi-
minor importance. This is obvious from E@l3), which  dakiset al*® (see also Vekhter and RatA8r who solved the
yields 72=1 in the thermodynamic limit. For finite systems, (time-dependentdiscrete nonlinear Schadinger equation for

0.6 F

-~
——

__________

FIG. 2. Variation of the displacement fields away from the
central site 0 for several characteristic EP couplirgs the adia-
batic (a) and nonadiabatidb) regimes. The dependence of the
Lang-Firsov polaron variational parameteon \ is depicted in(c).
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a single tight-binding electron coupled tacousticlike 0.4 - y y y - - v
(anharmonit®) eigenvibrations, where the lattice degrees of 08 i\hl.%fg%
freedom are treatedassically The results of this semiclas- OO A=005 IVLF
sical approach depend very strongly on the initial electronic 03 | 304} R
configuration. When the initial energy of the electron is close N=17 (OBC)
to the bottom of the band, i.e., in the vicinity of the pure 0.0 HKA20.05 IVLE
electronic ground state, the main characteristics of polaron ?'3““0.2 - i XX A=0.50 IVLF
formation, discussed above for the adiabatic and nonadia- Inset:

. . e A4 3=0.945 DMRG —
batic cases, were obtained. On the other hand, for an initially A A Am0.945 TVLF 0=0.1
highly excited electron, the ST is much more complex, and, 0.1 |
in general, the tendency towards electron localization is re- /.
duced as the initial energies get higher. Here we are not in '

the position to check the quality of these results. Within an 0.0
exact diagonalization approach the way to study excited -8
states is to calculate, e.g., the single-particle spectral func-

tion. For the simple Holstein model this has be done by a 10

number of authors quite recenfly>34’

B. Electron-lattice correlations

In looking for a characterization of the different polaronic

regimes for thequantum-phonorHolstein model(1), we ,HO‘G 0.0 S 1
have computed thénormalized correlation function be- 53 i i
tween the electron position=0 and the oscillator displace- 04 (b)
ment at sitej,
A=1.5 0=3.0 A=4.5 0=1.0
~ (no(bfj+boy ) 19 021 oommnveiss [} D

Xoi= 2g(no) '

by means of a direct diagonalization technique. Here fermion
and boson degrees of freedom are related by the relation
(b{ +b;)3=29(n;)s (=2g/N for the single-electron case FIG. 3. Electron-lattice correlationg; in the adiabatic weak-

Alternatively, working with the effective Hamiltonian to-intermediate EP couplings) and nonadiabatic intermediate-to-
(10), the electron-lattice correlation functigh9) can be ex- strong EP couplingb) cases. IVLF-Lanczos results are compared
pressed as with ED data and the DMRG results taken from Ref. 48.(dé)
cross and star symbols denote the IVLF-Lanczos results obtained
by using open boundary conditiof®BC's).

_ A
i
X0,j= Yo+ 73 (20) o _
the carrier is not trapped due to the zero-point quantum lat-

Hence we can use the static correlation functiggs and tice fluctuationg® From Eq.(20) it is clear that in the effec-
— ' tive model(10) the on-site dynamical polaron and spatially
Xo, to test the accuracy of the IVLF scheme. extended static displacement field contributions are well
Figure 3 shows the static correlation functioll®) and  geparated. Neglecting the residual polaron-phonon interac-
(20) in the adiabatic(@) and nonadiabati¢b) regimes for o the IVLF approach describes the real situation by a
several _co“upllng p’?_rametex,scprre_spondlng to the different (variationa) superposition of both effects. In the adiabatic
polaronic “phases” indicated in Fig. 1. For parameters clos§arge-polaron region Il a much better description of the exact
to the adiabatic weak-coupling regingghase J, the ampli-  pehavior is obtained. Especially when the small AHP state
tude of xo; is extremely small and the spatial extent of the g\ glyes atn~1 the IVLF results are even in quantitative
electron-induced lattice deformation is spread over the Who'%greement with the density matrix renormalization group
lattice. For correctness it should be stated that the nearly(-DMRG) data obtained very recently by Jeckelmann and
freg-electron phase I, .stat.)il_ized by the kin_etic energy co_ntriWhite48 [see inset Fig. @)]. At this point we would like to
bution, only occurs in finite 1D Holstein systems with emphasize that performing such DMRG and, in particular,
PBC's. If we apply open boundary conditio®PC’9 ona  gp calculations requires much more memory and CPU-time
finite chain the electron density is inhomogeneous even at resources than our extreme simple and very fast IVLF com-
A=0. Thus, according to Eql1), we found a large-size putations. In Fig. 3, the system sizes treated within the IVLF
polaron with spatially varying\; for any A>0. The corre- scheme have been restricted in order to make possible a di-
sponding electron-lattice correlations are depicted in Figrect comparison with the available ED and DMRG data.

3(a) for open chains withN=17 sites(in order to get a Obviously, for intermediate to strong EP couplings, the
symmetric solution abouj=0). Needless to say that the IVLF results agree almost exactly with the ED and DMRG
PBC and OBC IVLF results coincide fod— . data[Fig. 3(b)]. Here the electron-lattice correlations become

In the quantum-phonon modél) the coupling gives rise very localized and finite-size and boundary-condition effects
to a weak dressing of the electron at any finitetHowever,  are less important. Although the behavioraf; , shown in
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the main part of Fig. 3, is found to be very similar far
=1.5, a=3.0and\=4.5, «=1.0, we would like to empha- _
size that both parameter sets describe completely different 1o 0=0.1
physical situations. The distinct nature of the corresponding [ A=0.9
small-polaron states becomes apparent from the variation of
the static displacement fields shown in the insets. kor
=45 and an intermediatér low) phonon frequency, we
observe a static lattice distortion in the vicinity of the elec-
tron only. SinceAy/4\~1, in Eqg. (20), the second term
dominates the first one and we obtain a small AHP confined
to a single site. On the contrary, far=1.5 anda= 3, we are

still in the large-polaron region Il due to the high phonon o
frequency[cf. Fig. 1 and the spatial extension of the static 0'00_(') 1.0 20 3.0 4.0 5.0
lattice distortion shown in the left inset of Fig(l8]. Never- ®
theless, the correlations between the electron and the phonon
remain local. But now, since th&;/4\ are small for allj,

the peak structure of,; atj =0 results from the first term in 0=3.0
Eq. (20). That means it is mainly triggered by theeffect 0.08 | )
(y=0.69). This interpretation is substantiated by our ED
results, yielding a mean phonon number in the ground state
of about 0.625, which clearly indicates that the zero-phonon
state is still the most probable one. Therefore the approxima-
tion we applied by deriving Eq$10) and (20) is justified.
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C. Optical response
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Extremely valuable information on the low-energy exci- 0.0 10.0 20.0 30.0 40.0 50.0
tations in interacting electron- or exciton-phonon systems 0]

can be obtained by studying their optical response. Actually,

the optical absorption of small polarons is distinguished from FIG. 4. Optical absorption in the 1D Holstein model, Rdr
P P P 9 =8 and M =25, the regular part of the conductivity™? (thin

that of large(or quasifreg polarons by t_he shape anq the_lines) and the integrated spectral weigdl€? (thick lines are plot-
temperature dependence of the absorption bands which arigg as 4 function ob at different EP couplings for the “light{a)
from exciting the ST carrier from or within the potential well ang “heavy” (b) electron cases.

that binds it Furthermore, as was the case with the ground-

state properties, the optical spectra of light and heavy elec- Polisi(ala ., —al, a)|¥.)?
trons and excitons differ essentially as welln the most oY w)= 2, [{Woli% (2, ;X_E 100 )
simple weak-coupling and nonadiabatic strong-coupling lim- m=0 m =0

its, the absorption associated with photoionization of Hol- X 8(w—Epn+Ep). (22)

stein polarons is well understood and the optical conductivity . S _ )

can be analyzed analyticalfr >3 (for a detailed discussion of N Ed. (21), ¢"*%(w) is given in units ofre® and we have
small-polaron transport phenomena we refer to the review opmitted the IN prefactor. For the discussion of the optical
Firsov). Serious problems, caused, for example, by theProperties itis useful to consider the spectral weight function
complicated behavior of the adiabatic potential surface, arise "

if one tries to calculate the spectrum of self-trapped light Sreg(w):j do’' oY w’) (22)
excitons> Moreover, the intermediate-coupling and 0

-frequency regime is as yet practically inaccessible for a rig(;as well

prou? t?]nalyst!s. IOnbthe ct).ther. h;ndhp:etvlpus ngn:erlcal |§tu " Numerical results for botlr"™9(w) andS™9(w) are pre-
ies of the optica ”a sorp |o][1 in the ?5 Z%ngo €l Were iM-ganted in Fig. 4. We will start with the somewhat more subtle
ited to very small two- or four-site clustefS:™In orde_r 0 ase oflight electrons

calculate the optical conductivity numerically in a wide pa- gyt first let us recall that, restricting ourselves to

rameter range on fairly large systems, we have implemented . TN—1 STWIRN 3 .
our computer code, which is based on a combination oPhononic: stategs)pn=11i"g (1/yn!) (b;)"[0),n with at
) T . most M phonons, aK-symmetrized state of the Holstein
Lanczos diagonalization, Chebyshev recursion, and maxi- < — _
43 i model is given asgW¥,)==M_ sXMcmsK:ms), where

mum entropy methods;* on parallel machines. m g K m=0<s=1 Ck |, 1MLS),

The real part of the optical conductivity, R€w)  S(m)=(N—1+m)!/(N—1)!m! (for more details see Refs.
=Dé(w)+0"®Y(w), can be decomposed into the Drude 33,43. K denotes thetotal momentum of the coupled EP
weight § function atw=0 and a regular part«{>>0) written  system. Then, if the EP coupling is finite, the ground state

in spectral representation &t=0 as® |Wo) and all excited statefV,,) contain components that
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correspond tom-phonon stategwith szi’\‘:’olnissM, ny  excitations Ex—Eg<a for K< m/2). Therefore, in contrast
e[0,m]) in the tensorial product Hilbert space of electronic to the light electron caseef. Fig. 4@)], the different absorp-
and phononic states. When the EP coupling is small ( tion bands(each built up by several “electronicK levelg
<1), these multiphonon states have less spectral weight; i.ec@n be classified according to the number of phonons in-

N m(2 volved in the optical transition. As can be seen from the
the phonon distribution of the ground statig|“(M) main part of Fig. 4b), the absorption spectrum for a small-

=34fcSo|%, exhibits a pronounced maximum at the zero-gjze polaron is quite different from that of a large polaron.
phonon staté® The maximum of|cg|?(M) is shifted to  According to the results of Sec. Ill A, a small NLFP is
larger values ofm as\ increases. formed in the strong-coupling nonadiabatic limit. Here the
Keeping this in mind and noticing further that in E@1)  phonons will heavily dress the electron and, concomitantly,
an optical transition can take place only within tke=0  the “electronic character” of the resulting strongly renor-
sector (¥o)=|¥«_,)), the peak structure af"®9 shown in malized small polaron band becomes suppresgskedhe dis-
Fig. 4a may be easily understood in connection with thecussion of theK-dependent wave-function renormalization
single-particle spectrum. For low phonon frequencies ( factor Z{&=[(W|ak|¥o)|? in Ref. 33. For our parameters
<W), the energy to excite one phonon lies inside the baré\ =6, g°=4), the maximum in the phonon distribution func-
tight-binding bandE(KO)z —2t cosk and we observe a flat- tion is ]ocated betweem=3 and 4. The renormalized band-
width is small compared to all other energy scales=(
~0.0782< a,2W). Since the current operator connects only
states having a substantial overlap as far as the phononic
. state is concerned, multiphonon absorptidins., nondiago-
non .frequer]‘cy, Wherez,’the states at f'n't“e momept,a’l are Pral transition¥’) become now increasingly important in the
dominantly “phononic” states with less “electronic” spec- ,tica| response. This leads to the peak structure observed
tral weight. Thus, although in principle an optical excitationfo the nonadiabatic small-polaron optical conductivity in
can be achieved by “adding” phonons with opposite mo-Fig. 4(b). Obviously, the different bands are being separated
mentum to these stat¢m order to reach thi&K=0 secto},  py multiples of the bare phonon frequency. The height of the
the overlap to the mainly “electronic” ground state is ex- jumps in thew-integrated conductivity is directly related to
tremely small. Therefore we found, roughly speaking, thethe probability of the corresponding absorption process. We
first transitions with non-negligible weight to the free- foung that substantial spectral weight stays in the lower-
electron states and its vibrational satellifsee S®%(w)].  energy part of the spectrum at frequencies comparable to
This is perfectly illustrated by the inset of Figia} Here the . =2\ (=M a,@). These absorptions, resembling to some
first and second groups of peaks are approximately located @ktent a large polaron’s absorption, are signatures of a ST
the bare tight-binding energi€x’ (+na), for the allowed polaron with intermediate size. In the extreme strong-
wave vectors of the eight-site lattice used in the numericatoupling limit the dominant absorption process results from
calculation K=/4,7/2,...). Of course, with increasing the transfer of the ST carrier to the neighboring site without
the lattice size th& values will become dense and we will changing the lattice distortion. That means that the optical
obtain the monotonous decay of the optical absorption coefabsorption spectrum should exhibit a single-peak structure at
ficient observed for large polarons above the photoionizationa)zzsp:m\, which corresponds to the lowering of the elec-
threshold® To understand the changes in the optical absorptronic energy associated with the small-polaron
tion in the crossover region from a large-size polaron toformation®’>! This feature already evolves for the coupling
small AHP, the main part of Fig.(d) showso'™9 at two  strength considered in Fig.(# (cf. AS®9 for the seventh
intermediate-EP-coupling parameters. In this case the cohegbsorption band
ent band structur&y gets stronger renormalized, but more
important, the phonon distribution function in the ground D. Kinetic energy

state,|cg|*(M), becomes considerably broadened. For in-  Eyither information about the transition from large to
stance, atr=0.1, we havelcg|’(M=25)=0.008 M=0),  small polarons can be obtained from the behavior of the po-
0.095 M=7), and 0.008 ©h=18) and |cg|*(M=25)  |ar0n kinetic energyE,;,. ReplacingH by H, the kinetic
=0.0002 (n=0), 0.1 (m=12), and 0.0005r0=24) for\  energy can be easily obtained from the static correlation
=0.9 andA=1.0, respectively. Therefore the overlap with f,nction (15). On the other hand, according to thiesum

excited multiphonon states is enlarged and the optical req e £, is directly related to thev-integrated optical con-
sponse is enhanced. The line shape of the absorption bangﬁctivity,

reflects the phonon distribution in the ground state, where the

small oscillations are due to the discreteness of the phonon Ein _ wror. D .

frequency. As a result, the peak structure is smeared out and -5 =S “ore? +S5'0. 23
the wide sidebands, belonging to different electronic mo- me

menta(e.g.,K= w/4 andK = 7/2), merge with each other. Calculating, via Eqs(21) and(22), S§'¢9=8"9() numeri-

We now turn to theneavy electrorcase[Fig. 4b)]. The cally allows us to determine the Drude weight as well.
inset again illustrates the behavior in the large-polaron reSometimes one defines an effective polaronic transfer
gime \=1, «=3; cf. Fig. 1), where a rather moderate band amplitude?®?* t,, o1s= Eyin(N)/Exin(0), in order to charac-
renormalization occurs AE~2.33 due to the flattening terize the polaron mobility. In our reduced units we have
effect?). But now the phonon frequency is large compared totp,effES““. From Eq.(23) it is obvious thatt, .¢; includes
the finite-size gaps between the first mainly “electronic” both coherent and incoherent transport processes. Hence

tening of the coherent band structurex at large
momenta&2°® Then the coherent bandwidthE=E_—E, is
approximately given byr (<[EQ—E{()), i.e., by the pho-
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104 T broadened ahigh phonon frequencigse=3.0, Fig. b)].
\g ;12:;225?4 RéN;iszm Here the IVLF results start to deviate from the exact ones
YO\ E — S"IVLF (N=64) when g2 becomes much larger than 1, thus making the
\ —-— 872" SCPT lowest-order zero-phonon approximation inherent in the
N OOSTED (N IVLF scheme less justified. As mentioned already in Sec.
w Il A, the nonanalytic jumplike behavior at~4 is an appar-
0 =0.1 do ent shortcoming of the variational approach which compares
- I ground-state energies only.
© s Although for large enougly and A\ the simple formula
o W=W exp{—g?, which should not be identified with the
@ “Lang-Firsov approach, 28 works perfectly well in the
O . 2 determination of thecoherent bandwidth(AE=2W),2"33
0'00%0 1.0 2.0 the need of going beyond the lowest order of approximation
A to obtain reliable results for thenetic energyhas been em-
phasized many times>3485958|n the nonadiabatic strong-
1.0 Y coupling limit (g?>1, a>1), the ground-state energy ob-
Y 005 ED (Ne) tained within second-order perturbation theory is a tiny bit
\ —— S IVLF (N=64) lower than the IVLF energy and almost coincides with the
‘o ___eﬁ?‘;gz‘ ED result. Adapting the second-order strong-coupling ap-
'\ $”2" SCPT . . .
N\ ©O-~OS™ED (N=§) proach presented in our previous wdtto the 1D caséwith
2 "i\__“ y=1), the kinetic energy is obtained, Vig." "=t (H), as
" ,
N \
g o a=3.0 b
2 e, ® EEﬁ;PT:—i <3> —e 9 2+i <1> } (24)
‘e a \S| __ ., a \S| _ o,
e k=29 k=g
o0 O ~ j‘\"-\»_ . .
—— - rmvew Here (---), means the average with respect to the Poisson
0.0 o= . P —— distribution with parametek. As can be seen from Fig. 5, at
0.0 20 4-7(3 6.0 8.0 large EP interactions, strong-coupling perturbation theory

FIG. 5. Kinetic energyin units of (—W)] S and contribution
of o"®9 to the f-sum rule,S'©9, as a function of the EP coupling
in the adiabatic(a) and nonadiabati¢b) regimes. Circlegstars
denote exacfDMRG (Ref. 48] data obtained for a lattice witN
=8 (32 sites. IVLF-Lanczos resultésolid curve$ are compared
with the predictions of standard first-orde®(W= exp{—g?, thin
solid line and second-ordefchain-dashed curvesperturbation

theory.

tp.etf Substantially differs from the exponential facngz,
obtained in lowest-order perturbation theory, and cannot binto account. Therefore the results are unbiased and allow
used to determine the coherent bandwidtb under strong-
coupling conditions X,g%>1).

The evolution of the kinetic energys{°") as a function of
the EP coupling\ is displayed in Figs. @) and 8b) for the
case of light and heavy electrons, respectively. In agreemeittices, including static displacement field, nonadiabatic po-
with previous numerical resulf$;?22248g . clearly shows
the crossover from a large polaron, characterized I8/
that is only weakly reduced from its noninteracting valuethat the simple IVLF-Lanczos approach provides an excep-
[SY(A=0)=1], to a less mobile small AHENLFP) in the
adiabatic(nonadiabatig strong-coupling limit.

Forlow phonon frequencigsx=0.1, Fig. %a)], we found

(SCPT) gives a sufficiently accurate description &f°! in
both the adiabatic and nonadiabatic regimes.

IV. SUMMARY

The main objective of this study was to reexamine in
detail the self-trapping transition of electrons and excitons in
one dimension within the framework of the Holstein model
by the use of computational techniques. The calculations are
performed by exact diagonalizations of finite systems, where
the full dynamics and quantum nature of phonons were taken

one to test the applicability of a numerically much more

efficient variational Lanczos approach proposed by the au-
thors. This IVLF-Lanczos technique is designed to analyze
strongly correlated electron-phonon models on fairly large

laron, and squeezing effects. The comparison between IVLF
results and ED data, performed in this paper, clearly shows

tional good description of the ground-state properties of the
Holstein model, in particular for the light electron case.
Let us summarize the main outcome of our work.

a rather narrow transition region. As recently pointed out by Figure 6 illustrates the basic physics contained in the
Caponeet al,?° the decrease a$'°! in the crossover regime single-particle Holstein model. This model describes a con-
is driven by the sharp fall of the Drude weight. By contrasttinuous transition from large to small polarons with increas-
the optical absorption due to inelastic scattering processe#)g EP coupling strength. Depending on the adiabaticity of
described by the regular part of the optical conductivity, bethe systema= wg/t, the crossover regime is determined by
comes strongly enhanc&dsee the behavior a§™®9). Itis  the more stringent of the two conditions=¢,/2Dt=1 and

worth emphasizing that the IVLF results f6f°'(\) are in  g°=e,/wo=1. Thus starting from “light’ (a<1) or

excellent agreement with the ED and DMRG data. “heavy” (a>1) electrons it is possible to understand the

The large- to small-polaron transition is considerablyformation of small adiabatic “Holstein” or nonadiabatic
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weak - coupling residual polaron-phonon interaction generates further than

1D Large/Free 2-30 nearest-neighbor ranged hopping processes and the resulting
Polaron effective polaronic band dispersion deviates from a simple
aky tight-binding cosine bantf. the discussion in Ref. 32The

transition from large to small polarons is accompanied by
significant changes in the single-particle spectral propétties
as well as in the optical response of the system. In particular,
for “light” electrons the spectral weight of the regular part

adiabatic nonadiabatic of the optical conductivity is strongly enhanced at the tran-
Fe NN sition. For “heavy” electrons the line shape of the optical
s PN absorption spectra is highly asymmetric in the intermediate-
i aRP B NG to-strong-coupling regime and therefore differs considerably
; 10 :n_ Small Polaron  —a ¥51;4,50 1 frgm the usual small-polaron hopping behavior obtained for
1 [ ]
-------- - se=me=e- g>1.
strong - coupling As a result of self-trapping the mobility of the charge

carriers is reduced. The behavior of the kinetic energy indi-
cates that the crossover region from large to small ST states
is rather narrowbroad in the adiabationonadiabatig re-
“Lang-Firsov” polarons as two limiting cases of a general gimes. The formation of small adiabatic Holstein polarons is
picture. accompanied by a dramatic kinetic energy loss mainly driven
In the infinite 1D Holstein model the self-trapped state ispy a sharp drop of the Drude weight. Since both the band-
the ground state for any value of the EP coupling. As ayidth and the (electronid spectral weight of the small-
specific property of a finite 1D Holstein system with periodic polaron band are exponentially reduced in the extreme
boundary conditions, a critical Iength or equivalently a criti- Strong-coup”ng CaSgZ,A>1, coherent Sma||_p0|aron trans-
cal EP coupling strength exists for self-trapping, rigorouslyport becomes rapidly destroyed by thermal fluctuations.
at least atwo=0.* This may be of importance for closed ~ |n principle our ED approach allows a full quantum me-
(spatially restrictefisystems like . By contrast, there is chanical description of the dynamics, i.e., the time evolution,
no critical length and coupling if the system has open endsef coupled EP(Holstein systems. Such an investigation
which is important for nanowires. would be highly desirable since first attempts to examine this
The large-size polaron is characterized by spatially eXproblem?® which are based, however, on a classical treat-
tended lattice deformations. Within our IVLF description, ment of the lattice, indicate a much greater complexity of the
the variation of the displacement fields follows ttedia- ST phenomenon if the electron subsystem is initially a highly
batic) formula A;>sech[\esi] even in the nonadiabatic re- excited configuration. Especially the temporal energy redis-
gime, but with a strongly reduced inverse length scale giverribution between the electronic and vibrational degrees of
by an effective coupling constants¢(\,a)<\. The mean freedom, found in several EP models with optiéaind
phonon number in the large-polaron ground state is rathescoustic-phonon-deformation potentrfl® couplings, de-
small. In 2D and 3D Holstein systems a large-polaron phasgerves further verification including the effects of quantum

does not exist. lattice dynamics. Work in this direction will be started in the
The small-polaron state is basically a multiphonon statehear future.

characterized by strong on-site electron-phonon correlations.
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FIG. 6. Schematic phase diagram of the Holstein model.
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