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Reflection coefficient and localization length of waves in one-dimensional random media
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We develop a powerful method of exactly calculating various transport characteristics of waves in one-
dimensional random media witfor without) coherent absorption or amplification. Using the method, we
compute the probability densities of the reflectance and of the phase of the reflection coefficient, together with
the localization length, of electromagnetic waves in sufficiently long random dielectric media. We find sub-
stantial differences between our exact results and the previous results obtained using the random phase ap-
proximation (RPA). The probability density of the phase of the reflection coefficient is highly nonuniform
when either disorder or absorpti¢or amplification is strong. The probability density of the reflectance when
the absorption or amplification parameter is large is also quite different from the RPA result. We prove that the
probability densities in the amplifying case are related to those in the absorbing case with the same magnitude
of the imaginary part of the dielectric permeability by exact dual relationships. From the analysis of the
average reflectance that shows a honmonotonic dependence on the absorption or amplification parameter, we
obtain a useful criterion for the applicability of the RPA. In the parameter regime where the RPA is invalid, we
find that the exact localization length is substantially larger than the RPA localization length.
[S0163-182698)07034-9

I. INTRODUCTION rameter, whereas the exact average reflectance is a nonmono-
tonic one’

Propagation and localization of waves of various kinds in  In the present work, we develop a powerful method of
one-dimensional disordered media have been studied inteexactly calculating various disorder-averaged quantities in-
sively for several decades. Examples of particular interest areluding the reflectance, the transmittance, and their probabil-
classical electromagnetic wave propagation in random di-ity densities in absorbing, amplifying, and unitary media. We
electric medi&? and quantumelectron transport in disor- also calculate the probability density of the phase of the re-
dered solid$™> Much recent attention has been paid to theflection coefficient and the localization length exactly. In ad-
problem of wave propagation in coherently absorbing or amdition, we derive a couple of exact dual relationships that
plifying random medi&~'°It has been demonstrated that the relate the probability densities in the absorbing case to those
wave is more strongly localized in both types of media tharin the amplifying case with the same magnitude of the imagi-
in unitary (or elasti¢ random media with no absorption and nary part of the dielectric permeability. From the quantitative

amplification. _ _ analysis of the average reflectance in the absorbing case, we
A large number of previous studies have been based ogbtain a useful criterion for the applicability of the RPA.
the so-called random phase approximatiBRA), where it is The outline of the paper is as follows. In the next section,

assumed that the phase of the reflected wave relative to thafe introduce the model. In Sec. Ill, we describe our method
of the incident wave is uniformly and randomly distributed of calculating the probability densities and the localization
over all angles. One can easily prove that this approximationength in detail. We also prove the exact dual relationships
is equivalent to assuming large wave energy or weak disorthat relate the probability densities in the amplifying case to
der and, at the same time, weak absorption or amplificatiorthose in the absorbing case. Results of our calculation are
When these conditions are not met, an exact calculation beyresented in Sec. IV. Finally, we summarize the paper in
yond the random phase approximation is required. Sec. V.

Recently, several authors have performed numerical cal-
culations of the probability densities of the transmittance, the
reflectance, and the phase of the complex reflection coeffi- Il. MODEL
cient in absorbing, amplifying, and unitary random media
using methods that go beyond the random phase We are interested in the propagation of a monochromatic
approximation’-*~" Their results clearly indicate that the electromagnetic wave of frequenayin disordered dielectric
random phase approximation can often lead to qualitativelynedia. For the sake of simplicity, we consider the one-
wrong conclusions on the behavior of waves in random medimensional case, where the dielectric permeabdityaries
dia. Above all, it has been demonstrated that the distributionly in one direction in space and the wave propagates in the
of the phase of the reflection coefficient is generally nonunisame direction. We take this direction as thaxis and as-
form in all of absorbing, amplifying, and unitary media. The sume the medium lies in®z=<L. Then the complex ampli-
distribution of the reflectance is also quite different from thetude of the electric fieldE satisfies the Helmholtz equation
RPA result. For example, the average reflectance in the RPWith wave numbek= w/c, wherec is the speed of light in a
is a monotonically decreasing function of the absorption pavacuum,
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dt(L)

=ikt(L)+ g[a%—iy%— Se(L)[1+r(L)Jt(L),

d2
d? + sz(Z)

The dielectric permeability(z) is equal to 1 forz<0 and

z>L and €(z)=1+a+ de(z)+iy for O<z<L, wherea

and y are assumed to be real constants ae(z) is a real t(L=0)=1. ®)
random function ofz We supposede(z) to be a Gaussian

random function with zero mean and a white-noise spectrum; - . . .
P mFhese stochastic differential equations can be used in calcu-

lating the disorder averages of various physical quantities

(0e(2)6e(2'))=9g8(z—=2"), (J€(2))=0, (2)  consisting ofr (=R’ andt (=T€?), where the reflec-
where(- - -) denotes an average over disorder and the con@nceR=|r|? and the trgnsmlttanc§=|t|2 as well as the
stantg is a measure of the strength of randomness. The&hasesy and ¢ are functions ol. In the present work, we
imaginary part of the dielectric permeability, makes the are mainly interested in computing teeactprobability den-
medium absorb¥>0) or amplify (y<0) the wave without Sities Pr(R) and P,(6) in semi-infinite (. —c) absorbing
destroying its phase coherence. For simplicityis assumed —and amplifying random dielectric media. We will also com-
to be uniform. The constantHla is the disorder average of pute theexactlocalization length¢ of the wave in absorbing
the real part of the dielectric permeability and, in general, igandom media defined by
not equal to 1. Our method is applicable to the cases wéere
is an arbitrary nonrandom function, e.g., a periodic function,
of z, but in this paper, we restrict our attention to the case )
wherea is a constant. lim (InT)=—L/¢. (6)

The above model is also relevant to the electron transport Lo

problem in disordered quasi-one-dimensional solids. In that
case, the electron wave functigh{z) plays the same role as g pjtary case with no absorption or amplificatiop (
E(z) and &(2) is replaced by +U(2)/Eo, whereU(z) is  _ ) is also of great interest. In that case, the probability
the random potential experienced by electrons Bpds the density Px(R) in the L—ce limit is clearly equal to8(R

kinetic energy of incident electrons. —1) regardless of the strength of disordgerBut the prob-
ability densityP 4(8) and the localization lengté depend on
Iil. METHOD g in a nontrivial manner and will be studied in the present

We consider a plane wave of unit magnitudgz) work.
=e'*(t=2) incident on the medium from the right. The quan-
tities of main interest are the complex reflection and trans-

mission coefficientsr =r(L) and t=t(L) defined by the A. Probability distribution of the reflectance

wave function outside the medium: We obtain the probability densitiPr(R) from the mo-
_ _ ments{R") for all integersn. An infinite number of coupled
ekt pr(L)e= Y, z>L, nonstochastic ordinary differential equations satisfied by
E(2)= t(L)e iz 2<0. 3 these moments are obtained using E4). and Novikov's
_ o _ formula® It turns out that in order to computéR")
Using the so-calledhvariant imbeddingmethod:®*°we de-  —(;nr*ny  one needs to compute the momends:

rive exact differential equations forandt with respect td.. —(r"r*™ for all integersn andh. In other words. the mo-

mentsZ,;, with n=n are coupled t&Z;, with n#n. Using

dr(L) . ik ) the notationl=L/&,, C=ké&,, a=ké&a, and B=ké&yy,
gL = 2kr(L)+ S [atiy+se(L)][1+r(L)]% where £,=4/gk? is the localization length with no absorp-
tion or amplification in the random phase approximation, we
r(L=0)=0, (4) obtain thenonrandomequation satisfied by, ;,:
|
Zan _

i [i(2C+a@)(n—n)—B(n+Nn)+4nn—3n2—3n2]Z -+n[3 (ia—B)—2n+20—1]Z,, 1

+n[3(ia—pB)—2n+2n+11Z, 17-n[3 (ia+B)—2n+2n+1]Z, 71— N[5 (ia+B)—2n+2"—1]Z,7 1
+nﬁZn+1;+1+ nﬁzn—l,”n—l"’ ”ﬁzn+17n—1+ nﬁzn—l}wl_ N(N+1)Zn 05— zN(N—1)Z, o5~ n(n+ DZ,542

— (A~ 1)Zy7 2, @)
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with the conditionsZy;=1 andZ;(I=0)=0 for n, n>0.
The random phase approximation applies to the case where
C>1 andC> g, that is,y<1. Then it is clear thaZ,, with

n#n can be neglected. This leads to the much simpler equ
tion for Z,=Z,,,=(R") obtained previously in Ref. 6:

1 1
PR(RwB:_:BO):ﬁiPR(ﬁr:B::BO)- (11

&e observe that Edq11) suggestPr(R) to be nonzero only
for 1<R=<w in the amplifying case. This result does not
make much sense fdi1 because in that case, we expect
Pr(R) for <0 as well asPr(R) for >0 to have a sharp
peak aroundR=0. Nevertheless, we conjecture that ELjl)

is true for alll>1, that is for allL>&;. Once we gePi(R)
with the condition&Zy=1 andZ,-o(I=0)=0. In this paper, for 8<0, we can compute the momerf") using the defi-
we go beyond the random phase approximation and solve thgtion

exact equatiort7) directly.

We consider the absorbing3¢0) case first. WheiB is
positive, the momentg,;, with n, "=0 are coupled to one
another and are well behaved for RlFurthermore, the mag-
nitude of the momenZ,;, decays(more rapidly for largeiB
values)_ as eithem or n ir)cr_ef_:lses. Based on this crucial .Ob' The unitary case requires a separate consideration. We
servation, we solve the infinite number of coupled equations, o =
Eq.(7), by a simple truncation method, which was developed®*Pect allZ;'s with n=n are equal to 1 an®g(R,3=0)
and applied successfully to the problem of computing the= 9(R—1) in thel — limit. Therefore we have to set,,

electronic properties of quasi-one-dimensional Peierls sydOr N=N+1 equal to 1 instead of 0 in solving E(). This
tems by the author and collaborators in previousChanges the right-hand side of the last one of (N +2)

publications2 2 We assumé, =0 for eithern or 7 greater algebraic equations, by solving which we obtain all moments

than some large positive integirand solve dinite number ~ Of the form<el(n—n)0>__ The result will be used in Secs. Ill B
[=N(N+2)] of coupled equations numerically for given and Il C in calculating the probability density of the phase
values ofC, @, and 8. We increase the cutoff, repeat a of the reflection coefficient and the localization length ex-

Zn

g = 2n(n+B)Zy+ nZ,,1+n%Z,_1,

8

<Rn>ﬁ<0: flwdR R]PR(R,B<O) (12)

similar calculation, and then compare the newly obtaifgg

actly.

with the value of the previous step. If there is no change in

the values o¥,;, within an allowed numerical error, we con-
clude that we have obtained the exact solutioZgf. In the

B. Probability distribution of the phase
of the reflection coefficient

present work, we will limit our attention further and consider . . ] ) ]
only thel —co limit, where we expectiZ,;/dl1=0. Then the The probability densityP ,( 6) is most easily obtained us-

left-hand side of Eq.(7) vanishes and we have a set of ing the Fourier series expansion
coupledalgebraic equations. We solve these equations by

the truncation method described above to fiRtl) for every 6
integern>0. 5
It is possible to get the probability densiBr(R) from '
the moments by several different methods. We find it is ef- 4
ficient to use the expansion &z(R) in terms of the shifted £ 3
Legendre polynomials: ~x
o 2
Pr(R)= 2, (2m+1)(Py(R))PH(R), ) gl
. . . R
wherePy,(R) is the shifted Legendre polynomial of order 6
defined over the interval ®R<1. The average value Y )
(P¥(R)) is computed using the momen{&") for O<n 511t Crinfinity
<m and turns out to be a rapidly decreasing functiomof al * p=1
The amplifying (3<0) case is a little trickier. Our = Sl T p=3 1
method fails sincéZ,;;| does not decay asor n increases to E‘I neo Bfeo
large positive values. For sufficiently large valued,diow- O 2 —_—_g;;o
ever, Eq.(7) is well-defined ifn andn are negative. From TG ) 1
Eq. (7), we can easily prove tha ;(8=B0)=Z_7 -n(B AN
0 02

04 06 08 1.0
R

%.

= —fp). Thus we obtain

<RH>B:BOZ<R_n>B:—Bo’ (10 FIG. 1. Probability density of the reflectance in the absorbing

case fora=0, 8=1, 3, 6, 10, 20 anda) C=5 (exact resujtor (b)

which is equivalent to C=x (RPA).
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1= every positive integem. Unfortunately, we are not aware of
Po(6)= 2—+ = > (cogmé))cog mo) how to compute these averages directly wimeris an odd
T T m=1 integer unlesg3=0. For even integerm=2n, we can cal-
1 cuzlatéa (e?"% ={cos(dh))+i(sin(ng)) using the relation
- ; ; (eM=2Z, _,=((r/r*)"). SinceZ, _, is coupled to every
" ™ mZ=1 {sin(mé))sin(m). (13 Z with n=0 andn=<0, we need to calculat¥ ;=7 _;
with n, 'n=0. The equation satisfied by, is obtained from
Therefore we need the averagess(nd)) and(sin(md)) for  Eqg. (7) by a simple substitution:

;(I”F‘:[i(2c+a)(n+ﬁ)—B(n—ﬁ)—4nﬁ—3n2—3ﬁz]vn;+ n[3(ie—B)—2n—20—11Y, 15
+n[3 (ia—B)—2n—2n+1]Y,_17+Nn[3 (ia+B)—2n—2"—1]Y, 7.4
+0[3 (ia+B)—2n—2n+1]Y 5 1= NNY o150 1—NNY g1~ NNY g1~ NNY 171
= 3NN+ 1)Yni25— 30(N=1)Yn 25— 2NN+ 1)Yn 72— 3N(A—1) Y5 2, (14)
[
with the conditionYy,=1. We find that wherC>1, g or, & .
more precisely, whef2C+ a|>1, B, all Y;'s exceptY g=1+ﬁ+ RE (24 B—ia)Zyol =)+ Zy(l —)],

are negligible, which obviously means that the phéses (18)
distributed randomly and uniformly over the intervek®

<27. We solve Eq(14) in thel—< limit for B3>0 using where the asymptotic values @y and Z,, found in Sec.
the truncation method described in the previous section. Il A are used.
order to obtairP ,(#), we also need to finge'™?) for oddm.

For this purpose, we make a conjecture &'’ ™) is a

smoothfunction of m, the validity of which can be tested

directly in the unitary case where we can compe&"?) for All of our results were obtained for the cutdf=60. In
every integem. Then the averagg®'™?) for oddmcan be other words, we have solved 8®2=3720 coupled alge-
obtained by a numerical interpolation between the averagdgraic equations numerically. We have confirmed that the re-
for evenm. Once we geP () for >0, it is trivial to find ~ Sults presented in this section are exact for all practical pur-
P4(6) for B<0. We easily see from Eq14) that Y, (8  PoOses.

= Bo)=Y7n(B=—Bo). This implies

IV. RESULTS

A. Probability distribution of the reflectance

Py(0,8=Bo)=Py(0,8=—Bo). (15

We consider the absorbing case first. Figuta) shows
the probability density of the reflectan&y(R) in the large
C. Localization length distance limit forC=5, «=0, and 8=1,3,6,10,20. Figure

In order to compute the localization length as defined by1(b) is the probability density of the reflectance for the same

: lues in the random phase approximatighat is, C
Eqg. (6), we need to compute the averagé=(InT) in thel 'ﬁ va . . . .
—oo limit. The nonrandom differential equation satisfied by.; O;)éfth;_ analytical form of which was obtained previously
W in the absorbing #>0) and unitary 3=0) cases is ob- ! T
tained using Eqgs(4) and (5) and Novikov’s formula in a
straightforward manner: PR(R,C=%)= 2p exd —2BRI(1-R)] for
Ry (1_ R)Z

O0<sR=<1.

dw (19
——=—(1+B8)—Rd(2+ B—ia)Ziyt+Zy)]. 16
dl (1+B)~Re 2+ fia)Ziot 2zl (16) For small 8 values 3=1,3), we find that the exa®g(R)
) agrees pretty well with the RPA probability density. #s
In the case of the random phase approximatibR,andZ,,  increases, however, there appear remarkable differences be-

vanish and the RPA localization length becofhes tween the exact and RPA probability densities. Most notably,
the exact Pir(R) develops a sharp peak at nonzeRo
€o =Rax, While the RPA probability density has a peakRat
gRPA:m' A7~ for all B=1. ThisR. increases and the half-width of

the peak decreases Adncreases further. We have observed
ZipandZ,q, however, do not vanish in general and the exact similar behavior for other values @. In the parameter
localization length is obtained from range we have explored in detail €C, B<10, «=0),
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0.4 —————————r 0.35 . .
C=1 0.30
0.3}
0.25
A o2r _. 020
v :,I 0.15
01r 0.10
0.0 0.05

0 2 4 6 8 10
p

FIG. 2. Average reflectance 8 in the absorbing case far
=0 andC=1, 5, 10,.

0.35 : .
. . (b) C=infinity
we do not find a double-peaked structure in the exact prob- 0.30+ =1 ]
ability density reported in Ref. 7. 0.25

In Fig. 2, we show the average reflecta€&® as a func-
tion of B for C=1,5,10 anda=0. In the RPA cas€R) is
a monotonically decreasing function gf Since 1-(R) is
the amount of average absorption, this means that absorption
increases monotonically as the dimensionless absorption pa-
rametergB gets bigger. Though this may sound reasonable, it
is actually a false conclusion. As pointed out in Ref. 7, the
medium with a sufficiently largegs behaves as a reflector

0.00

0.20
0.15
0.10
0.05

0.00

rather than as an absorber. m agreement with Ref. 7 we have gig. 4. Probability density of the reflectance in the amplifying
found that(R) reaches a minimum a8= By, and is an  case fore=0, B=—1, —3, —6, —10, —20 and(a) C=5 (exact
increasing function of3 for 8> B,i,. We have checked nu- resuly or (b) C== (RPA).

merically that, in the3—o limit, (R)—1 and Pg(R)

—8(R—1). As is obvious from Fig. 2B, increases a& Pr(R) is finite atR=0 for 8=1,3,6, but goes to zero &
increases and can be used as a useful criterion for the region 0 for sufficiently largeg values. This observation and the
of validity of the random phase approximatibfiThat is, the  dual relationshig11) ensure tha¢R) is finite for sufficiently
RPA is approximately valid whefB|< B, [andC>1 (see  large negatives’s.

Sec. IV B]. In Fig. 3, we plotB,,, versusC for a=0. ltis a Finally, in Figs. %a) and §b), we show the probability
monotonically increasing function and is fitted fairly well by density of the reflectance fo3=5,—5, =0, and C

a power law functionBy,;,=aCP® with a~2.04+0.03 andb
~0.58+0.01.

Next we show the probability density of the reflectance in
the amplifying case, which we obtain quite easily using the
dual relationship(11). In Fig. 4a), we showPg(R) for C
=5, =0, andB=—1,—3,—6,—10,— 20. Figure 4b) is the
RPA probability density for the same and 8 values. In the
RPA casePg(R) is proportional to 1R? in the R— oo limit
for all <0, sincePr(R=0) is a finite constant for alB
>0. This implies that the average reflectance in the amplify-
ing case is always divergent. The RPA result is wrong, how-
ever, because whe— —«, the medium has to behave as a
pure reflector with(Ry=1. In Fig. 1a), we observe that

(@)

0.35
0.30
0.25

020

€ 015
0.10
0.05

N 0.00

FIG. 3. Bmin Vs C for a=0. B, is the value ofg at which the FIG. 5. Probability density of the reflectan@ in the absorbing
average reflectance takes the minimum value. The dotted line is ease 3=5) and(b) in the amplifying casef=—5) for «=0 and
numerical fit: 8= aC® with a~2.04+0.03 ando~0.58+0.01. C=1, 2, 4, 7,.
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=1,2,4,7%. In this way, we can clearly see how the exact
Pr(R) departs from the RPA result & decreases.

B. Probability distribution of the phase
of the reflection coefficient

As explained in Sec. Il B, we have difficulty in obtaining
the exact probability distribution of the phase of the reflec-
tion coefficientP 4(#) for arbitrary 8 values in the absorbing
and amplifying cases. This difficulty does not arise in the
unitary case $=0). Therefore we show the probability den-
sity in this case first in Figs.(68)—6(c) for a wide range ofC
values anda=0. For sufficiently smallC's, P,(6) has a
sharp symmetric peak located &@t=m. We expect that
P,(60) approachesi(#—m) asC—0. As C increases from
zero, this large peak moves toslightly bigger thanmr and a
small secondary peak appearséasmaller tharner. As C is
increased further, the large peak keeps moving away from
0= and another small secondary peak is developed at
<. The overall shape of the probability density becomes
broader. WhenC~0.05, the small peaks merge and are
turned into a flat region. FAE>1, P4(0) is almost constant
with a small and broad peak @&=5/3 and a valley a®
=/3.

In the absorbing and amplifying cases, we can calculate
P,(6) reliably only when(e™(?~ ™) is a smooth function of
the integem. It turns out that our interpolation method de-
scribed in Sec. I B works whemg| is sufficiently large
compared toC or C is sufficiently small, in other words,
when the random phase approximation does not work. In
Fig. 7, we illustrate the behavior &f,(6) for a rather small
value of C (=0.1) and =0, |8|=0.1,0.6,1,1.5,2,3. When

|8|>C, P,(6) has a sharp peak @=. As |g| decreases, Cient

this peak becomes lower and broader. Wifen2, the peak
shifts to 6<# and a new peak appears @&t 7. This new
peak grows and the old peak decayg @lsincreases further.
At B=0.1, P4(0) is almost identical to the probability den-
sity in the unitary casgFig. 6(b)].

C. Localization length

In Fig. 8(@), we plot the inversédimensionlesslocaliza-
tion length &,/¢ in the unitary case versus Ig€. When
C>1, ¢is close to the RPA localization length in the unitary
caseéy. In the opposite limitC—0, &,/¢ goes to zero or,
equivalently &/ &, diverges Figure &b) shows the same data
on a log-log plot. We note that theé<1 region is approxi-
mately linear and is fitted by a power law functigg/é&
=a’'C® with a’~0.81 andb’ ~0.65.

Finally, in Fig. 9a), we show the localization length in
the absorbing case as a function@ffor C=5 andC=o.
We note that the exact localization length is always larger
than the RPA localization length=¢,/(1+8)] for the
sameg. Figure 9b) shows the localization length as a func-
tion of C for B=5.

V. CONCLUSION

2P (6)

2nP9(9)

PRB 58

0.5 1.0 15 2.0
o/n

FIG. 6. Probability density of the phase of the reflection coeffi-
the unitary case g=0) for =0 and (8 C
=0.00001, 0.0001, 0.001,(b) C=0.01, 0.1, 1, and(c) C
=10, 100, 1000.

o/n

) ) FIG. 7. Probability density of the phase of the reflection coeffi-
In this paper, we have presented a numerical method dfient, P,(6), in the absorbing and amplifying cases 0.1, «
calculating various transport characteristics of waves in one=0 and (a) |8/=3, 2, 1.5 and(b) |8|=1, 0.6, 0.1. Note that

dimensional random media witfor withouf) absorption or  P,(8,8)=P4(8,— B).
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c 0 2 4 6 8 10
Cc
FIG. 8. Inverse dimensionless localization length in the unitary
case fora=0 (a) vs log;C and(b) vs C on a log-log plot.£, is the
RPA localization length in the unitary case.

FIG. 9. Dimensionless localization length in the absorbing case
with =0 (a) vs B for C=5, « and(b) vs C for 8=5. &, is the
RPA localization length in the unitary case.

amplification and used it to obtain the probability densities of, simple transformatiofiEq. (11)]. From the quantitative

the reflectance and of the phase of the reflection coefficiergnawsiS of the average reflectance that shows a nonmono-
in the large distance limit, together with the localization ;¢ dependence on the absorption or amplification param-

length of waves. Our method is completely beyond the ranger \ye find a criterion for the applicability of the RPA. In

dom phase approximation that has been used frequently i harameter regime where the RPA is invalid, we find that

previous works and _gives ess_entially_exact results_ in th?he exact localization length is much larger than the RPA
sense that the numerical error is unnoticeably small in all o ocalization length.

the figures presented in this paper. The probability distribu- | e present work, we have limited our attention to the

tion of the phase of the reflection coefficient turns out to bﬁarge distance limit. However, we could have integrated the
highly nonuniform when either the disorder parameter or th&jjtterential equation7) and(14) directly to obtain the prob-

absorption(or amplification parameter(that is, the magni- ity densities of the finite-size system. Our method can
Fude of the imaginary part O.f the d|elect.r|_c pgrmeabnjtyj,) _also be generalized in a straightforward manner to the calcu-
is large. When the absorption or amplification parameter ig;iion of the probability densities of the transmittance and the

large, the probability distribution of the reflectance showsyhage of the transmission coefficient. Work in this direction
behavior that is totally different from the RPA behavior. We i i progress and will be presented elsewhere.

have also proved a couple of exact dual relationships be-
tween the probability densities in the absorbing case and
those in the amplifying case with the sarng. The prob-
ability density of the phase of the reflection coefficient in the The author is grateful to P. Pradhan for sending him a
amplifying case is the same as that in the absorbing case wiitopy of Ref. 17. This work has been supported by the Korea
the samey|. The probability density of the reflectance is Science and Engineering Foundation through Grant No. 95-
obtained from that in the absorbing case with the spyhéy ~ 0701-02-01-3.
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