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Reflection coefficient and localization length of waves in one-dimensional random media

Kihong Kim*

Department of Physics, Ajou University, Suwon 442-749, Korea
~Received 11 March 1998!

We develop a powerful method of exactly calculating various transport characteristics of waves in one-
dimensional random media with~or without! coherent absorption or amplification. Using the method, we
compute the probability densities of the reflectance and of the phase of the reflection coefficient, together with
the localization length, of electromagnetic waves in sufficiently long random dielectric media. We find sub-
stantial differences between our exact results and the previous results obtained using the random phase ap-
proximation ~RPA!. The probability density of the phase of the reflection coefficient is highly nonuniform
when either disorder or absorption~or amplification! is strong. The probability density of the reflectance when
the absorption or amplification parameter is large is also quite different from the RPA result. We prove that the
probability densities in the amplifying case are related to those in the absorbing case with the same magnitude
of the imaginary part of the dielectric permeability by exact dual relationships. From the analysis of the
average reflectance that shows a nonmonotonic dependence on the absorption or amplification parameter, we
obtain a useful criterion for the applicability of the RPA. In the parameter regime where the RPA is invalid, we
find that the exact localization length is substantially larger than the RPA localization length.
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I. INTRODUCTION

Propagation and localization of waves of various kinds
one-dimensional disordered media have been studied in
sively for several decades. Examples of particular interest
classical electromagnetic wave propagation in random
electric media1,2 and quantumelectron transport in disor
dered solids.3–5 Much recent attention has been paid to t
problem of wave propagation in coherently absorbing or a
plifying random media.6–15 It has been demonstrated that t
wave is more strongly localized in both types of media th
in unitary ~or elastic! random media with no absorption an
amplification.

A large number of previous studies have been based
the so-called random phase approximation~RPA!, where it is
assumed that the phase of the reflected wave relative to
of the incident wave is uniformly and randomly distribute
over all angles. One can easily prove that this approxima
is equivalent to assuming large wave energy or weak di
der and, at the same time, weak absorption or amplificat
When these conditions are not met, an exact calculation
yond the random phase approximation is required.

Recently, several authors have performed numerical
culations of the probability densities of the transmittance,
reflectance, and the phase of the complex reflection co
cient in absorbing, amplifying, and unitary random med
using methods that go beyond the random ph
approximation.7,14–17 Their results clearly indicate that th
random phase approximation can often lead to qualitativ
wrong conclusions on the behavior of waves in random m
dia. Above all, it has been demonstrated that the distribu
of the phase of the reflection coefficient is generally nonu
form in all of absorbing, amplifying, and unitary media. Th
distribution of the reflectance is also quite different from t
RPA result. For example, the average reflectance in the R
is a monotonically decreasing function of the absorption
PRB 580163-1829/98/58~10!/6153~8!/$15.00
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rameter, whereas the exact average reflectance is a nonm
tonic one.7

In the present work, we develop a powerful method
exactly calculating various disorder-averaged quantities
cluding the reflectance, the transmittance, and their proba
ity densities in absorbing, amplifying, and unitary media. W
also calculate the probability density of the phase of the
flection coefficient and the localization length exactly. In a
dition, we derive a couple of exact dual relationships th
relate the probability densities in the absorbing case to th
in the amplifying case with the same magnitude of the ima
nary part of the dielectric permeability. From the quantitati
analysis of the average reflectance in the absorbing case
obtain a useful criterion for the applicability of the RPA.

The outline of the paper is as follows. In the next sectio
we introduce the model. In Sec. III, we describe our meth
of calculating the probability densities and the localizati
length in detail. We also prove the exact dual relationsh
that relate the probability densities in the amplifying case
those in the absorbing case. Results of our calculation
presented in Sec. IV. Finally, we summarize the paper
Sec. V.

II. MODEL

We are interested in the propagation of a monochrom
electromagnetic wave of frequencyv in disordered dielectric
media. For the sake of simplicity, we consider the on
dimensional case, where the dielectric permeabilitye varies
only in one direction in space and the wave propagates in
same direction. We take this direction as thez axis and as-
sume the medium lies in 0<z<L. Then the complex ampli-
tude of the electric fieldE satisfies the Helmholtz equatio
with wave numberk5v/c, wherec is the speed of light in a
vacuum,
6153 © 1998 The American Physical Society
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F d2

dz2 1k2e~z!GE~z!50. ~1!

The dielectric permeabilitye(z) is equal to 1 forz,0 and
z.L and e(z)511a1de(z)1 ig for 0<z<L, where a
and g are assumed to be real constants andde(z) is a real
random function ofz. We supposede(z) to be a Gaussian
random function with zero mean and a white-noise spectr

^de~z!de~z8!&5gd~z2z8!, ^de~z!&50, ~2!

where^•••& denotes an average over disorder and the c
stant g is a measure of the strength of randomness. T
imaginary part of the dielectric permeability,g, makes the
medium absorb (g.0) or amplify (g,0) the wave without
destroying its phase coherence. For simplicity,g is assumed
to be uniform. The constant 11a is the disorder average o
the real part of the dielectric permeability and, in general
not equal to 1. Our method is applicable to the cases whea
is an arbitrary nonrandom function, e.g., a periodic functi
of z, but in this paper, we restrict our attention to the ca
wherea is a constant.

The above model is also relevant to the electron trans
problem in disordered quasi-one-dimensional solids. In t
case, the electron wave functionc(z) plays the same role a
E(z) and e(z) is replaced by 12U(z)/E0 , whereU(z) is
the random potential experienced by electrons andE0 is the
kinetic energy of incident electrons.

III. METHOD

We consider a plane wave of unit magnitudeE(z)
5eik(L2z) incident on the medium from the right. The qua
tities of main interest are the complex reflection and tra
mission coefficientsr 5r (L) and t5t(L) defined by the
wave function outside the medium:

E~z!5H eik~L2z!1r ~L !eik~z2L !, z.L,

t~L !e2 ikz, z,0.
~3!

Using the so-calledinvariant imbeddingmethod,18,19 we de-
rive exact differential equations forr andt with respect toL:

dr~L !

dL
52ikr ~L !1

ik

2
@a1 ig1de~L !#@11r ~L !#2,

r ~L50!50, ~4!
:

n-
e

s

,
e

rt
at

-

dt~L !

dL
5 ikt~L !1

ik

2
@a1 ig1de~L !#@11r ~L !#t~L !,

t~L50!51. ~5!

These stochastic differential equations can be used in ca
lating the disorder averages of various physical quanti
consisting ofr ([AReiu) andt ([ATeif), where the reflec-
tanceR5ur u2 and the transmittanceT5utu2 as well as the
phasesu andf are functions ofL. In the present work, we
are mainly interested in computing theexactprobability den-
sities PR(R) and Pu(u) in semi-infinite (L→`) absorbing
and amplifying random dielectric media. We will also com
pute theexactlocalization lengthj of the wave in absorbing
random media defined by

lim
L→`

^ lnT&52L/j. ~6!

The unitary case with no absorption or amplificationg
50) is also of great interest. In that case, the probabi
density PR(R) in the L→` limit is clearly equal tod(R
21) regardless of the strength of disorderg. But the prob-
ability densityPu(u) and the localization lengthj depend on
g in a nontrivial manner and will be studied in the prese
work.

A. Probability distribution of the reflectance

We obtain the probability densityPR(R) from the mo-
ments^Rn& for all integersn. An infinite number of coupled
nonstochastic ordinary differential equations satisfied
these moments are obtained using Eq.~4! and Novikov’s
formula.20 It turns out that in order to computêRn&
5^r nr * n&, one needs to compute the momentsZnñ

[^r nr * ñ& for all integersn and ñ. In other words, the mo-
mentsZnñ with n5ñ are coupled toZnñ with nÞñ. Using
the notation l 5L/j0 , C5kj0 , a5kj0a, and b5kj0g,
wherej054/gk2 is the localization length with no absorp
tion or amplification in the random phase approximation,
obtain thenonrandomequation satisfied byZnñ :
dZnñ

dl
5@ i ~2C1a!~n2ñ!2b~n1ñ!14nñ23n223ñ2#Znñ1n@ 1

2 ~ ia2b!22n12ñ21#Zn11,ñ

1n@ 1
2 ~ ia2b!22n12ñ11#Zn21,ñ2ñ@ 1

2 ~ ia1b!22n12ñ11#Zn,ñ112ñ@ 1
2 ~ ia1b!22n12ñ21#Zn,ñ21

1nñZn11,ñ111nñZn21,ñ211nñZn11,ñ211nñZn21,ñ112 1
2 n~n11!Zn12,ñ2 1

2 n~n21!Zn22,ñ2 1
2 ñ~ ñ11!Zn,ñ12

2 1
2 ñ~ ñ21!Zn,ñ22 , ~7!
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with the conditionsZ0051 andZnñ( l 50)50 for n, ñ.0.
The random phase approximation applies to the case w
C@1 andC@b, that is,g!1. Then it is clear thatZnñ with
nÞñ can be neglected. This leads to the much simpler eq
tion for Zn[Znn5^Rn& obtained previously in Ref. 6:

dZn

dl
522n~n1b!Zn1n2Zn111n2Zn21 , ~8!

with the conditionsZ051 andZn.0( l 50)50. In this paper,
we go beyond the random phase approximation and solve
exact equation~7! directly.

We consider the absorbing (b.0) case first. Whenb is
positive, the momentsZnñ with n, ñ>0 are coupled to one
another and are well behaved for alll. Furthermore, the mag
nitude of the momentZnñ decays~more rapidly for largerb
values! as eithern or ñ increases. Based on this crucial o
servation, we solve the infinite number of coupled equatio
Eq. ~7!, by a simple truncation method, which was develop
and applied successfully to the problem of computing
electronic properties of quasi-one-dimensional Peierls s
tems by the author and collaborators in previo
publications.21,22We assumeZnñ50 for eithern or ñ greater
than some large positive integerN and solve afinite number
@5N(N12)# of coupled equations numerically for give
values ofC, a, and b. We increase the cutoffN, repeat a
similar calculation, and then compare the newly obtainedZnñ
with the value of the previous step. If there is no change
the values ofZnñ within an allowed numerical error, we con
clude that we have obtained the exact solution ofZnñ . In the
present work, we will limit our attention further and consid
only the l→` limit, where we expectdZnñ /dl50. Then the
left-hand side of Eq.~7! vanishes and we have a set
coupledalgebraic equations. We solve these equations
the truncation method described above to find^Rn& for every
integern.0.

It is possible to get the probability densityPR(R) from
the moments by several different methods. We find it is
ficient to use the expansion ofPR(R) in terms of the shifted
Legendre polynomials:

PR~R!5 (
m50

`

~2m11!^Pm* ~R!&Pm* ~R!, ~9!

wherePm* (R) is the shifted Legendre polynomial of orderm
defined over the interval 0<R<1. The average value
^Pm* (R)& is computed using the moments^Rn& for 0<n
<m and turns out to be a rapidly decreasing function ofm.

The amplifying (b,0) case is a little trickier. Our
method fails sinceuZnñu does not decay asn or ñ increases to
large positive values. For sufficiently large values ofl, how-
ever, Eq.~7! is well-defined ifn and ñ are negative. From
Eq. ~7!, we can easily prove thatZnñ(b5b0)5Z2ñ,2n(b
52b0). Thus we obtain

^Rn&b5b0
5^R2n&b52b0

, ~10!

which is equivalent to
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PR~R,b52b0!5
1

R2 PRS 1

R
,b5b0D . ~11!

We observe that Eq.~11! suggestsPR(R) to be nonzero only
for 1<R<` in the amplifying case. This result does n
make much sense forl !1 because in that case, we expe
PR(R) for b,0 as well asPR(R) for b.0 to have a sharp
peak aroundR50. Nevertheless, we conjecture that Eq.~11!
is true for all l @1, that is for allL@j0. Once we getPR(R)
for b,0, we can compute the moments^Rn& using the defi-
nition

^Rn&b,05E
1

`

dR RnPR~R,b,0!. ~12!

The unitary case requires a separate consideration.
expect allZnñ’s with n5ñ are equal to 1 andPR(R,b50)
5d(R21) in the l→` limit. Therefore we have to setZnn
for n5N11 equal to 1 instead of 0 in solving Eq.~7!. This
changes the right-hand side of the last one of ourN(N12)
algebraic equations, by solving which we obtain all mome
of the form^ei (n2ñ)u&. The result will be used in Secs. III B
and III C in calculating the probability density of the pha
of the reflection coefficient and the localization length e
actly.

B. Probability distribution of the phase
of the reflection coefficient

The probability densityPu(u) is most easily obtained us
ing the Fourier series expansion

FIG. 1. Probability density of the reflectance in the absorb
case fora50, b51, 3, 6, 10, 20 and~a! C55 ~exact result! or ~b!
C5` ~RPA!.
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Pu~u!5
1

2p
1

1

p (
m51

`

^cos~mu!&cos~mu!

1
1

p (
m51

`

^sin~mu!&sin~mu!. ~13!

Therefore we need the averages^cos(mu)& and^sin(mu)& for
.

d

g

b

by

ac
every positive integerm. Unfortunately, we are not aware o
how to compute these averages directly whenm is an odd
integer unlessb50. For even integersm52n, we can cal-
culate ^e2inu&5^cos(2nu)&1i^sin(2nu)& using the relation
^e2inu&5Zn,2n5^(r /r * )n&. SinceZn,2n is coupled to every
Znñ with n>0 and ñ<0, we need to calculateYnñ[Zn,2ñ

with n, ñ>0. The equation satisfied byYnñ is obtained from
Eq. ~7! by a simple substitution:
dYnñ

dl
5@ i ~2C1a!~n1ñ!2b~n2ñ!24nñ23n223ñ2#Ynñ1n@ 1

2 ~ ia2b!22n22ñ21#Yn11,ñ

1n@ 1
2 ~ ia2b!22n22ñ11#Yn21,ñ1ñ@ 1

2 ~ ia1b!22n22ñ21#Yn,ñ11

1ñ@ 1
2 ~ ia1b!22n22ñ11#Yn,ñ212nñYn11,ñ112nñYn21,ñ212nñYn11,ñ212nñYn21,ñ11

2 1
2 n~n11!Yn12,ñ2 1

2 n~n21!Yn22,ñ2 1
2 ñ~ ñ11!Yn,ñ122 1

2 ñ~ ñ21!Yn,ñ22 , ~14!
re-
ur-

me

ly

s be-
ly,

f
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with the conditionY0051. We find that whenC@1, b or,
more precisely, whenu2C1au@1, b, all Ynñ’s exceptY00
are negligible, which obviously means that the phaseu is
distributed randomly and uniformly over the interval 0<u
<2p. We solve Eq.~14! in the l→` limit for b.0 using
the truncation method described in the previous section
order to obtainPu(u), we also need to find̂eimu& for oddm.
For this purpose, we make a conjecture that^eim(u2p)& is a
smoothfunction of m, the validity of which can be teste
directly in the unitary case where we can compute^eimu& for
every integerm. Then the averageŝeimu& for odd m can be
obtained by a numerical interpolation between the avera
for evenm. Once we getPu(u) for b.0, it is trivial to find
Pu(u) for b,0. We easily see from Eq.~14! that Ynñ(b
5b0)5Yñn(b52b0). This implies

Pu~u,b5b0!5Pu~u,b52b0!. ~15!

C. Localization length

In order to compute the localization length as defined
Eq. ~6!, we need to compute the averageW[^ lnT& in the l
→` limit. The nonrandom differential equation satisfied
W in the absorbing (b.0) and unitary (b50) cases is ob-
tained using Eqs.~4! and ~5! and Novikov’s formula in a
straightforward manner:

dW

dl
52~11b!2Re@~21b2 ia!Z101Z20#. ~16!

In the case of the random phase approximation,Z10 andZ20
vanish and the RPA localization length becomes6

jRPA5
j0

11b
. ~17!

Z10 andZ20, however, do not vanish in general and the ex
localization length is obtained from
In

es

y

t

j0

j
511b1Re@~21b2 ia!Z10~ l→`!1Z20~ l→`!#,

~18!

where the asymptotic values ofZ10 and Z20 found in Sec.
III A are used.

IV. RESULTS

All of our results were obtained for the cutoffN560. In
other words, we have solved 6036253720 coupled alge-
braic equations numerically. We have confirmed that the
sults presented in this section are exact for all practical p
poses.

A. Probability distribution of the reflectance

We consider the absorbing case first. Figure 1~a! shows
the probability density of the reflectancePR(R) in the large
distance limit forC55, a50, andb51,3,6,10,20. Figure
1~b! is the probability density of the reflectance for the sa
b values in the random phase approximation~that is, C
5`), the analytical form of which was obtained previous
in Ref. 9:

PR~R,C5`!5
2b exp@22bR/~12R!#

~12R!2 for 0<R<1.

~19!

For smallb values (b51,3), we find that the exactPR(R)
agrees pretty well with the RPA probability density. Asb
increases, however, there appear remarkable difference
tween the exact and RPA probability densities. Most notab
the exact PR(R) develops a sharp peak at nonzeroR
5Rmax, while the RPA probability density has a peak atR
50 for all b>1. This Rmax increases and the half-width o
the peak decreases asb increases further. We have observ
a similar behavior for other values ofC. In the parameter
range we have explored in detail (1<C, b<10, a50),
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we do not find a double-peaked structure in the exact pr
ability density reported in Ref. 7.

In Fig. 2, we show the average reflectance^R& as a func-
tion of b for C51,5,10,̀ anda50. In the RPA case,̂R& is
a monotonically decreasing function ofb. Since 12^R& is
the amount of average absorption, this means that absorp
increases monotonically as the dimensionless absorption
rameterb gets bigger. Though this may sound reasonable
is actually a false conclusion. As pointed out in Ref. 7, t
medium with a sufficiently largeb behaves as a reflecto
rather than as an absorber. In agreement with Ref. 7, we h
found that ^R& reaches a minimum atb5bmin and is an
increasing function ofb for b.bmin . We have checked nu
merically that, in theb→` limit, ^R&→1 and PR(R)
→d(R21). As is obvious from Fig. 2,bmin increases asC
increases and can be used as a useful criterion for the re
of validity of the random phase approximation.7,8 That is, the
RPA is approximately valid whenubu,bmin @andC@1 ~see
Sec. IV B!#. In Fig. 3, we plotbmin versusC for a50. It is a
monotonically increasing function and is fitted fairly well b
a power law functionbmin5aCb with a'2.0460.03 andb
'0.5860.01.

Next we show the probability density of the reflectance
the amplifying case, which we obtain quite easily using
dual relationship~11!. In Fig. 4~a!, we showPR(R) for C
55, a50, andb521,23,26,210,220. Figure 4~b! is the
RPA probability density for the samea andb values. In the
RPA case,PR(R) is proportional to 1/R2 in the R→` limit
for all b,0, sincePR(R50) is a finite constant for allb
.0. This implies that the average reflectance in the ampl
ing case is always divergent. The RPA result is wrong, ho
ever, because whenb→2`, the medium has to behave as
pure reflector with^R&51. In Fig. 1~a!, we observe that

FIG. 2. Average reflectance vsb in the absorbing case fora
50 andC51, 5, 10,`.

FIG. 3. bmin vs C for a50. bmin is the value ofb at which the
average reflectance takes the minimum value. The dotted line
numerical fit:bmin5aCb with a'2.0460.03 andb'0.5860.01.
b-

ion
a-
it
e

ve

ion

e

-
-

PR(R) is finite atR50 for b51,3,6, but goes to zero asR
→0 for sufficiently largeb values. This observation and th
dual relationship~11! ensure that̂R& is finite for sufficiently
large negativeb ’s.

Finally, in Figs. 5~a! and 5~b!, we show the probability
density of the reflectance forb55,25, a50, and C

a

FIG. 4. Probability density of the reflectance in the amplifyin
case fora50, b521, 23, 26, 210, 220 and~a! C55 ~exact
result! or ~b! C5` ~RPA!.

FIG. 5. Probability density of the reflectance~a! in the absorbing
case (b55) and~b! in the amplifying case (b525) for a50 and
C51, 2, 4, 7, `.
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51,2,4,7,̀ . In this way, we can clearly see how the exa
PR(R) departs from the RPA result asC decreases.

B. Probability distribution of the phase
of the reflection coefficient

As explained in Sec. III B, we have difficulty in obtainin
the exact probability distribution of the phase of the refle
tion coefficientPu(u) for arbitraryb values in the absorbing
and amplifying cases. This difficulty does not arise in t
unitary case (b50). Therefore we show the probability den
sity in this case first in Figs. 6~a!–6~c! for a wide range ofC
values anda50. For sufficiently smallC’s, Pu(u) has a
sharp symmetric peak located atu5p. We expect that
Pu(u) approachesd(u2p) as C→0. As C increases from
zero, this large peak moves tou slightly bigger thanp and a
small secondary peak appears atu smaller thanp. As C is
increased further, the large peak keeps moving away f
u5p and another small secondary peak is developed au
,p. The overall shape of the probability density becom
broader. WhenC'0.05, the small peaks merge and a
turned into a flat region. ForC@1, Pu(u) is almost constan
with a small and broad peak atu55p/3 and a valley atu
5p/3.

In the absorbing and amplifying cases, we can calcu
Pu(u) reliably only when̂ eim(u2p)& is a smooth function of
the integerm. It turns out that our interpolation method d
scribed in Sec. III B works whenubu is sufficiently large
compared toC or C is sufficiently small, in other words
when the random phase approximation does not work
Fig. 7, we illustrate the behavior ofPu(u) for a rather small
value of C ~50.1! and a50, ubu50.1,0.6,1,1.5,2,3. When
ubu@C, Pu(u) has a sharp peak atu5p. As ubu decreases
this peak becomes lower and broader. Whenb&2, the peak
shifts to u,p and a new peak appears atu.p. This new
peak grows and the old peak decays asubu increases further
At b50.1, Pu(u) is almost identical to the probability den
sity in the unitary case@Fig. 6~b!#.

C. Localization length

In Fig. 8~a!, we plot the inverse~dimensionless! localiza-
tion length j0 /j in the unitary case versus log10C. When
C@1, j is close to the RPA localization length in the unita
casej0 . In the opposite limitC→0, j0 /j goes to zero or,
equivalently,j/j0 diverges. Figure 8~b! shows the same dat
on a log-log plot. We note that theC!1 region is approxi-
mately linear and is fitted by a power law functionj0 /j
5a8Cb8 with a8'0.81 andb8'0.65.

Finally, in Fig. 9~a!, we show the localization length in
the absorbing case as a function ofb for C55 andC5`.
We note that the exact localization length is always lar
than the RPA localization length@5j0 /(11b)# for the
sameb. Figure 9~b! shows the localization length as a fun
tion of C for b55.

V. CONCLUSION

In this paper, we have presented a numerical method
calculating various transport characteristics of waves in o
dimensional random media with~or without! absorption or
t

-

m

s

te
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r

of
e-

FIG. 6. Probability density of the phase of the reflection coe
cient in the unitary case (b50) for a50 and ~a! C
50.00001, 0.0001, 0.001,~b! C50.01, 0.1, 1, and ~c! C
510, 100, 1000.

FIG. 7. Probability density of the phase of the reflection coe
cient, Pu(u), in the absorbing and amplifying cases forC50.1, a
50 and ~a! ubu53, 2, 1.5 and~b! ubu51, 0.6, 0.1. Note that
Pu(u,b)5Pu(u,2b).
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PRB 58 6159REFLECTION COEFFICIENT AND LOCALIZATION . . .
amplification and used it to obtain the probability densities
the reflectance and of the phase of the reflection coeffic
in the large distance limit, together with the localizatio
length of waves. Our method is completely beyond the r
dom phase approximation that has been used frequent
previous works and gives essentially exact results in
sense that the numerical error is unnoticeably small in al
the figures presented in this paper. The probability distri
tion of the phase of the reflection coefficient turns out to
highly nonuniform when either the disorder parameter or
absorption~or amplification! parameter~that is, the magni-
tude of the imaginary part of the dielectric permeability,ugu)
is large. When the absorption or amplification paramete
large, the probability distribution of the reflectance sho
behavior that is totally different from the RPA behavior. W
have also proved a couple of exact dual relationships
tween the probability densities in the absorbing case
those in the amplifying case with the sameugu. The prob-
ability density of the phase of the reflection coefficient in t
amplifying case is the same as that in the absorbing case
the sameugu. The probability density of the reflectance
obtained from that in the absorbing case with the sameugu by

FIG. 8. Inverse dimensionless localization length in the unit
case fora50 ~a! vs log10C and~b! vs C on a log-log plot.j0 is the
RPA localization length in the unitary case.
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a simple transformation@Eq. ~11!#. From the quantitative
analysis of the average reflectance that shows a nonm
tonic dependence on the absorption or amplification par
eter, we find a criterion for the applicability of the RPA. I
the parameter regime where the RPA is invalid, we find t
the exact localization length is much larger than the R
localization length.

In the present work, we have limited our attention to t
large distance limit. However, we could have integrated
differential equations~7! and~14! directly to obtain the prob-
ability densities of the finite-size system. Our method c
also be generalized in a straightforward manner to the ca
lation of the probability densities of the transmittance and
phase of the transmission coefficient. Work in this directi
is in progress and will be presented elsewhere.
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FIG. 9. Dimensionless localization length in the absorbing c
with a50 ~a! vs b for C55, ` and ~b! vs C for b55. j0 is the
RPA localization length in the unitary case.
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