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Spinless patrticle in a rapidly fluctuating random magnetic field
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We study a two-dimensional spinless particle in a disordered Gaussian magnetic field with short-time
fluctuations, by means of the evolution equation for the density m@tH| p(t)|x®); in this description the
two coordinates are associated with the retarded and advanced paths, respectively. In the classical limit the
baricentric coordinate = (1/2) (x +x®) is the particle position and the dual of the relative coordinate
=xM—x(? its momentum. The vector potential correlator is assumed to grow with distance with a power
whenh=0 it corresponds to @-correlated magnetic field, whdn=2 to a magnetic field with infinite range
fluctuations. We find that the value=2 separates two different propagation regimes, of diffusion and loga-
rithmic growth, respectively. When<2, r undergoes diffusion with a coefficieBt, proportional tox™". As
h>2, the magnetic-field fluctuations grow with distance &ndscales ax 2. The width inr of the density
matrix then grows for large times proportionally totixf). [S0163-18208)02734-9

[. INTRODUCTION identifies an effective generator for time evolution. One can
think of motion in a sea of high energy particles carrying flux
In recent years various studies have been devoted tdnes, or to a vortex in a rapidly varying magnetic field.

propagation in the presence of a stochastic drift term. Th&ooperon dynamics with time-dependent magnetic fluctua-
most known example comes from fluid dynamics: the transtions has been studied by Aronov and Wdifiim the context
port of a passive scalar in a velocity field. It has been showf high-T, conductors. In the present work we analyze rap-
that this problem can be solved in various physically relevantdly fluctuating magnetic disorder on an otherwise free par-
situations. In particular, Gawedzky and Kupiaiherave a ticle: our aim is to determine whether the ballistic behavior is
solution in the three-dimensional case by means of an exfrustrated in such a case, and what kind of presumably
plicit resummation of the perturbative series. Correlators oflower propagation sets in. By taking the correlation length
the scalar field of any order can be obtained. The basic inef the fluctuations as the large scale of the system we estab-
gredient is the assumption of zero correlation time for thdish the effective(annealegidynamics for various power-law
velocity, which allows for an effective evolution generator. disorder correlators. In Sec. Il we determine the time evolu-
Quotation of previous work on the passive scalar can béion generator for the density matrix from the Feynman path
found, e.g., in Ref. 2. A second, related example is quanturintegral. This is a two-particle description, since both re-
motion in a disordered magnetic field. This topic has beeriarded and advanced paths must be taken into account. Av-
raised in various physical contexts: Mott-Hubbard systéms,eraging over disorder leads to self-interaction as well as to
vortex lines in superconductots, quantum Hall effect at mutual interaction between the paths: the former amounts to
filling factor 1/2%7 In the last case the magnetic field is static a renormalization of the single-particle dynamits., it in-
with zero mean and numerically there is evidence of a delofluences the quantum amplitudevhile the latter is the in-
calization transitiorf;*°at odds with a supersymmetric treat- terference contribution to probability. In Sec. Ill we discuss
ment leading to a sigma model with unitary symmeétry. the particle-antiparticle relative dynamics by averaging over
Fluctuations in the topological density have also been heldhe baricentric variables; this is related with motion in the
responsible for the delocalization transititfnRecent work momentum space, as will be illustrated. In Sec. IV we ana-
related the occurrence of delocalized states with random aryze the full problem and give our main results on the par-
tisymmetric disorder, or with symmetric disorder as well, ticle diffusion and subdiffusion. In Sec. V we compare with
provided a peculiar sublattice decomposition is allow&d. behaviors similar to ours in different physical contexts.
Quantum mechanics with an imaginary magnetic field and a
disordered potential, introduced by Hatano and Neléae;
cently attracted much attentideee, e.g., Efetdv), showing II. DENSITY-MATRIX EVOLUTION
how nonhermiticity can sustain extended states. In a previous
work we studied the imaginary magnetic field that arise%iO
after averaging over magnetic disorder. We further inter-
preted the effective action in terms of Coulomb gas, and
discussed how its strong coupling regime can enhance phase
coherence among trajectorits Static disorder obviously

We assume that the correlation time of magnetic fluctua-
ns can be neglected and take the following Gaussian cor-
elator for the vector potential, in the transverse gauge:

produces an effective action nonlocal in time. Everythingp (k). 5(t)=(A A, (k,t)=A8" (k) 5(t),
simplifies with time-dependent disorder: when the correla- (Aats) B (K2 K22
tion time goes to zero the action is local and in principle 1)
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wherek, * is the correlation lengthy is positive, and&LB one ends up with the following evolution equation for the
=35, 5~ (K.Kg)/k2. We will take into account the range 0 density matrixp(x™,x®;t) in coordinate representation:
<h<4; the limith—0,ky— 0 gives a magnetic fiel8 delta

correlated in spacdy=3 can be associated with the anoma- ap -

lous skin effect’ h=2k,—0 gives a free massle®& This 5t - He

case incidentally corresponds to the enstrophy cascade in

two-dimensional turbulence, if the vector potential is identi- i

fied with velocity® Notice that, a$>2, the correlator oB A= (G 1), f(d00 — 52 52))

grows as a power of distance. We write the Feynman path- 2m e ‘

integral representation for the product of amplitudes: 1/g)\? . . B 2
F(X’y;xr,y/;t)E<X|U(l)(t)|y><x/|U(2)(t)|y/>*' (2) + 2 m) Da,V(G )%B(ﬂa ‘9,8 +(9ﬁ ('7'0( )

v_vhereu(_i)(t),i =1,2 are the evolution operators of two iden- N E(g) ZDX (G1)., (309D + 924D

tical copies of single-particle systems in the presence of the 2lm/ “er B\ 9B a 9B

magnetic field. The time-evolved density matrix is given by

ih
. ) T ol 7a(G Nl (9 + )
<X|p(t)|><’>=f dydy'F(x,y;x",y";t)(ylp(0)ly"). (3)
19
The representation of E@2) involves a two-particle action: + 2lm
advanced and retarded path, respectively. Averaging over the

2
) (D°=D*), [ 3,(G™h), gl(d5' =)

2

vector potential couples the paths and generates the follow- 1/ g 0 mx .
ing effective Lagrangianfes(X,X),X=(xM),x3)) : 2w/ AP =DNapda(G g,y ©®
i 2 . . . . .
m.ooigt. o1 Here the partial derivatives, unless labeled with the particle
Lefi=5X 03X+ 57 Xo3DogX=SXMX. ) index, are taken with respect to the relative coordinate

, _ o =x1—x(2) and D DX refer to the static part of the cor-
Hereg=e/c, the Pauli matrixos acts on the particle indices, (g|ator at separatio® and x, respectively. Notice that the
and the (4<4) matrix D=D(1)(i,j=1,2) corresponds to particle mass is renormalized, and an effective magnetic field
the static part of the correlator defined in Ed): D~V  [proportional to 6/m)?] acts with opposite signs on the two
25(2’2)2Daﬁ(X(l)ZX(Z));5(1’2)25(2'1)2DaB(X(l)—x(z))i trajectories. The remaining terms are dissipative; the drift
a,B=x,y. The evolution of the density matrix is given by €M acts as an imaginary magnetic figjfoportional to
Eq. (3), whereF is converted into its average over disorder; #/M). We conclude this section by noticing that if one dis-

: . : . . ~ , regards theA? term, one can directly average the two-
in the effective action the imaginary part bf is obviously article evolution operator emerging from Eg). Along the
related with dissipation. Since, contrary to the static cas P ging ' g

(see, e.g., Ref. 96we have locality in time, it is possible to ines of Ref. 1, one starts w_ith the Neumanr_1 series for this
) i - i operator, takes thé-p coupling as perturbation, then uses
extract a time evolution generater from Eq.(3). This can  \yjick's theorem and averages each term. The resulting series
be performed with no ambiguity in a flat metrics, while in o, he reexponentiated to an effective two-particle generator
general operator ordering prescriptions are needed. As d'?@at coincides with Eq(6), but with G=1. This case is for-

cussed at length in Ref. 17, if one evaluates the meltrics at t Unate since the transversality condition guarantees that the
midpoint between the initial and final configurations, and y 9

consistently normalizes the intermediate Gaussian integraieneratoiH does not depend on ordering prescriptions.

one obtains a symmetrized generator. We halde
= L(VE~1V),, whereE=(1/i#)M and VAV).=1(VVA Ill. PARTICLE-ANTIPARTICLE RELATIVE DYNAMICS

+2VAV+AVYV). Here the sum over indices is understood |t is readily verified from Eq(6), when written in terms
and the gradient is with respect ¥. The kernelF ! is  of the relative coordinate and of the baricentric coordinate

given by =1 (xM+x?) [see Eq(16) in the next sectioh that it has
_ ) a purely derivative dependence on the latter variable. This
Bl fg + (g) Iﬁ}é‘l fact, which follows from the translational invariance of dis-
m~ 3 \m ' order, make$i into a divergence term with respectr@lus

(5) an operator inx. Upon integrating over with suitable
boundary conditions, the divergence term disappears and one
is left with the evolution in the reducexl space in closed

o ) _ _ form. This evolution, which isolates the effective interaction

This simple form results fromD,, 5 being diagonal when its  petween the retarded and advanced paths, is directly associ-

argument is equal t®. The operatolG is diagonal in the ated with the dynamics in the space of momejgee Eq.

particle indices and, as one easily verifies, is even undef2l)]. Furthermore, the average over the baricentric coordi-
partic'e exchange; it Obvious|y commutes Wﬁ'];ﬁ(x(l) nate giVeS the equation of the COOperon amp”&]dﬂ.sum'

—x@)). By taking into account the transversality condition mary, the operatoH reduces to

gz 2
m—) [DZ,5(0) =D (XM =x®)].

Ga”gzﬁa'ﬁ‘k 7
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~ 9)2 o _ g?A 1 Il
H=|=| (D°~-D%, (G 1), 43,0 =
m ( )a )y.899p mﬁkg 7 >1. (12
2
+ g) (D%=D¥),,[3,(G™ 1Y), 5104 Notice that this relates the amplitude of the fluctuatices
m sociated withA) with the correlation Iengtlkal. Finally the
1/g\? 0 . kernelF~1, which is a function oflI, h, and of the quantum
talm) AP =DNapda(CG gyl (D flux unit h/g=d,/(277), reduces to
We now show that Eq.7) in the case of long-range fluc- - A\ 2 kg 1.
tuations kg<<1) further simplifies, and the drift and curva- F o= 5 A_y 1- ;A )
ture contributions can be neglected: indeed the keffnélin (13)
this limit satisfies the transversality condition, and no order- 1
ing prescription is needed. Let us examine the correlator. In =5
. 71'.

space coordinates its static part has the form

A It is easily verified that in both regimeh{€2, h>2) the
Do p(X)= (E) [Zo(X) 80t Zo(X) 2 4 1, matrix A satisfies the transversality condition; hence the gen-
erator is

211=—2,,=C082¢), 21,=2,,=siN(2¢), (8)

k dk H 1(h>2—1 (5 lA )a d (14)
- =5y aB” JAap|%%3-
Ii(X)—fO (szg)Hh,zJi(kX), 2\g) My Y

wherex andy are the polar coordinates ®fand thel;’s are  The dominant contribution is pure diffusion with a coeffi-

Bessel functions. The smad}, behavior of Eq(8) is readily cientO(k}), while the first correction has scaling form, and

obtained: in both regimes it corresponds to a faster spreading. When
0<h<2, the correction is of ordek3" and, taken alone,

A would give superdiffusionte=x?~"); when 2<h<4, it has
Dop= ﬁ)(ﬁamfr“‘laﬁ)’ order k3" with t~(Inx)% Further work on Eq.(14) is
0 needed in order to understand the interplay between diffu-
TILA sion and this faster mechanism. We end this section with
A=(§) R,0<h<2,é=KkpX, some comments on the regime of weak fluctuatian$l(#
<1). WhenG reduces to the identityf ~%, being propor-
A=(8)2T, 2<h<a, (9 tional to A, has a scaling form
.1 T(1-h/2) . ~ o, (9} -
.1 1 " A Recall that while in theh<2 range this isO(kJ), in the
T=%m(—l+%2). complementary range it diverges k%’h in the limit kg
—0. Corrections in the small fluctuation parameter come
The explicit form ofG is then from the expansion o6 ~%; since only the dominant term

5 preserves the transversality condition, the oper&towill
A 2 o> A\°. have a drift and a curvature term. The dominant term, which
G=1-1n7 Kh A occurred as the first correction in Ed.4), gives superdiffu-

0 sion (x=~tY(~M) when 0O<h<2 and time exponential be-
The subtracted correlator has a power-law behavior, and isavior when 2<h<4. As already pointed out, to approxi-

1. .
—1+A

27h ' (10

O(kp) in the limit ko—0, whenh<2: mate G with the identity means to disregard tA& term.
This corresponds to the passive scalar problem studied by
DO BX= _ Aﬁt (11) Gawedzki and Kupiainehpr, more properly, to the quantum
kg ’ version of it. In conclusion, th&? term reduces an otherwise

_ N _ _ strong tendency of the two trajectories towards separation,
The ratioA/ky has the dimensions of a momentum, let usfrom fluctuation-supported superdiffusion to diffusion.

call it IT. The order of magnitude of th&? contribution can

be estimated by means of the adimensional coupling constant
roll/A, wherer, is the classical radius of the electron,(
=g*/m). We now define the large fluctuations regime, in  Let us write Eq(6) in terms of the relative coordinate and
which G can be approximated with its second term: of the baricentric coordinate:

IV. GENERAL CASE
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F|_iﬁ - g 4 . J 4 +iﬁ d - d +1 g\? 504 DY G- L a 9 16
=om G et o ax, Tax, ar,) Tamlax,(© Ves)ar, T alm) I 1 e ar,
+(2
m

2 2

2 (D°-D9G Y
X, Xg @B

g a9 g\?l o g 1/g
0)_nx -1 o ~ . 0_ nx -1 =
[(DT=D™)G ]“'B&xa ﬁxBJr(m) (axa(D DG )aﬁaxﬁ+4(m

Here the limitk,—0 gives a finite nonzero result provided The integral can be explicitly written in terms of the trun-
that h<2. As shown in the previous section, the diffusion cated gamma function, and is a functionréfDt. In other
term for x is O(kY); similarly the other terms go to zero in words at zero momentum one gets diffusion behavior. One

the limit. From Eq.(16) we get then expects anomalous behavior, with lardependence, at large
momenta, but unfortunately tHe dependence o¥V is not
. 1(R\3(x\"" 1 Jd d easily obtained. We merely point out the following: the den-
Ho——=| 5] (RTY).g=——. 17 ; ; Al
aAlg) |2 Bor, ar g sity matrix has a stretched exponentialxirfor every initial

condition, Gaussian shaped in Recall that, for realp,

If one disregards the anisotropy, this implies an evolutionexp(—ajp|") is the Fourier transform of the Levy distribution
through the combination®- x"/t. Let us assume then Lh(z)%llz(h”) (z>1).19 It is reasonable to assume that

. o2 the largek behavior ofW is only marginally influenced by
H~D(x/2)" "V}, (18 the initial x dependencex<1), if sufficiently smooth. Thé
whereD is constant. By chosing as initial condition a Gauss-d€Pendence of the Wigner function is then approximated by

ian in both particle coordinates with equal width the Levy distribution irk, or more precisely by its derivative
with respect to the paramet&, which takes into account the

w2 factorx" in the integrand. So far we have been dealing with
E) exf —w{r?+(x/2)%] (19 theky—0 limit; as ko is small but different from zero we
must take into account other terms, starting with the first
one gets correction, which gives pure diffusion i (see the previous
section. A situation of this sort can be studied, at least in the
W 1 w) o, regime 2<h<4. We have thab, is O(k{)”?); this, together
2(2m)2 2w+ 2D(2K)"t exp =7 /X with the next to leading term givek/(£)%<1]

p(r,x)=

p(r,xt)=

. 2 1 . P ,
: (20) H”(g) ﬁ<(_1/4)(ko—x)2(T l)a,BEFBJF(ZWh)Vx .
(22

o, . . . . .
Again we disregard anisotropy; a Fourier transform with re-
fspect tor leads to a particle in a centrifugal barrier:

R
|\ 2/ (1/2w) + 2D(2/x)

For a more direct physical interpretation, it is convenient t
Fourier transform with respect t®, obtaining the Wigner
function, whose classical limit is the phase space distributio

1 (9_p_ — 9 2+V2
W(r,k,t)zﬁj d?xexp(—ik-x)p(r,x,t). (21 ir £ g\
This can be easily evaluated at zero momentum: in the large [ szZWht 23
time limit we disregard 1/(®) with respect to D(2/x)"t ™ g A7 23
and obtain
K2
W(r,k=0,t) q2=(4/3)(h—2)k—,
0
1 w fw . .
= —— o | dx X" lexp(— (W/4)x2—Qx") whereK is the momentum with respect to If we search for
(2m)2 2" "Dt o a similarity solution,p="f(u,q), u=¢2/r, the result is
e, e e ox R
~— — "+ —+1/4|f" —| =—|f=0. 24
(277_)2 2 +2th0 dXXh eXF( QX )1 u 2u ( )

1 ) Two independent solution@rovidedq is not an integerare

_ r f(u,q)=u’F(s,2s+1;—u/4), wheres=q/2,—q/2 and F is
—¢2/oh+2 1 _ hy,,h/2 ’ ' ’ ’ ’

Q=ri(2™"Dy Dt>(2w1;z)z+ ' Dt<2 W the confluent hypergeometric function. In order to avoid sin-
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45
4
35
3
25 FIG. 1. Plot of the solutiorp(r,u) [see Eg.
p 12 (24)] at different values ofu as u approaches
P zero(large time behavigr
o.g<

gular behavior at small we exclude the negativiecase. We exponent of the disorder correlator. The reduced dynamics
numerically computed the Fourier transform in order to re-after averaging over the baricentric coordinate, which is re-
construct the dependence; in Fig. 1 we shaw(r,u) for a  lated with the motion in momentum space, gives diffusion as
set of valuesi<1, i.e., in the large time regime. We find that the dominant behavior in thie,<1 regime. Superdiffusion
the width inr increases, as approaches zero, linearly in the arises in the first correction, with the scalitgx®>~" when
logarithm ofu™, up to four orders of magnitudesee Fig. <2 andt~(Inx)* when 2<h<4. The dominance of diffu-
2). Disregarding the next to leading term would result, simi-sion originates in theA? term; if this term is neglected we
larly to the previous case, in the combinaticix?/t. In con-  obtain fluctuation-sustained superdiffusion with the previ-
clusion then, when the fluctuations of the magnetic fieldously mentioned power laws. The tendency of the retarded
grow with distance, the propagation is strongly inhibited, andand advanced trajectories to spread apart very ragialy
the spread of the particle position grows with the logarithmvored by theA-p term) is partly stabilized by the quadratic
of time. term. In the general case, the linkig— 0 can be performed
exactly in the rang&<2. The solutior{see Eq(20)] shows
diffusion inr, with the dependence~ (t/x")*2. The Wigner
functionW at zero momentum, i.e., the average over particle
We studied the two-dimensional dynamics of a particle inseparation, describes diffusiot~r?); atk large it appears
the presence of a stochastic magnetic field in the fast flucin the form W~W(r?/t,k), its k behavior being associated
tuation regime. We have found a transition by varying thewith the Levy distribution in the momentum space. Random

V. CONCLUSIONS

12 T T T T T T T T T

FIG. 2. Width inAr of the solution
vs In(u).

45 -4 35 3 25 2 15 -1 05
In(u)
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walk in a quantum mechanical-system was found in thebiased random motion on percolation clusters or globally
Harper model at its critical poirff?! It was also derived isotropic fractalgsee Ref. 26 and references theyef@uan-
from a two-dimensional anisotropic random lattice model,tum mechanically, it was found by suitably perturbing at a
describing edge propagation along the surface of a quantusingle point an Anderson Hamiltonian in the localized
Hall multilaye?=25 In that case backscattering is allowed in phase?” When disorder is statit®>® smoothly varying mag-

the direction of the Hall field and neglected in the orthogonalnetic fields confine nearly free states within a narrow one-
direction; if the latter is interpreted as time one has a onedimensional region along the zero-field lines, such lines thus
dimensional chain with time-dependent hopping disordeproviding a quantum percolation network. The present case
where the quantum particle undergoes diffusion. As long asan be more properly depicted in terms of abrupt jumps in
hopping mimicks the presence of a magnetic field, thisthe space of momenta, with loss of phase coherence. This
model can be taken as a one-dimensional version of ourgpparently results in random walk when the correlator of the
Propagation is further inhibited when<h; by including the  magnetic fieldB decays with distanceh<2) and in loga-
leading and next to leading terms we determined an explicitithmic behavior when it grows (€h).

solution in this regimdsee Eq.24) and arguments follow-
ing it]. From the large time behavior of the density matrix
p(r,x,t) one extractsr~In(t/x?): this is a much slower
spread than expected from the leading term alone, giving  We thank R. Artuso for pointing to our attention Refs. 21
~(t/x?)*¥2. This ultraslow, logarithmic diffusion occurs in and 27.
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