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Spinless particle in a rapidly fluctuating random magnetic field

V. G. Benza and B. Cardinetti
Dipartimento di Fisica, Universita` di Milano, Via Celoria 16, 20133 Milano, Italy

and INFM, unitàdi Milano, Via Celoria 16, 20133 Milano, Italy
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We study a two-dimensional spinless particle in a disordered Gaussian magnetic field with short-time

fluctuations, by means of the evolution equation for the density matrix^x(1)ur̂(t)ux(2)&; in this description the
two coordinates are associated with the retarded and advanced paths, respectively. In the classical limit the
baricentric coordinater5(1/2)(x(1)1x(2)) is the particle position and the dual of the relative coordinatex
5x(1)2x(2) its momentum. The vector potential correlator is assumed to grow with distance with a powerh:
whenh50 it corresponds to ad-correlated magnetic field, whenh52 to a magnetic field with infinite range
fluctuations. We find that the valueh52 separates two different propagation regimes, of diffusion and loga-
rithmic growth, respectively. Whenh,2, r undergoes diffusion with a coefficientDr proportional tox2h. As
h.2, the magnetic-field fluctuations grow with distance andDr scales asx22. The width inr of the density
matrix then grows for large times proportionally to ln(t/x2). @S0163-1829~98!02734-9#
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I. INTRODUCTION

In recent years various studies have been devoted
propagation in the presence of a stochastic drift term. T
most known example comes from fluid dynamics: the tra
port of a passive scalar in a velocity field. It has been sho
that this problem can be solved in various physically relev
situations. In particular, Gawedzky and Kupiainen1 gave a
solution in the three-dimensional case by means of an
plicit resummation of the perturbative series. Correlators
the scalar field of any order can be obtained. The basic
gredient is the assumption of zero correlation time for
velocity, which allows for an effective evolution generato
Quotation of previous work on the passive scalar can
found, e.g., in Ref. 2. A second, related example is quan
motion in a disordered magnetic field. This topic has be
raised in various physical contexts: Mott-Hubbard system3

vortex lines in superconductors,4,5 quantum Hall effect at
filling factor 1/2.6,7 In the last case the magnetic field is sta
with zero mean and numerically there is evidence of a de
calization transition,8–10at odds with a supersymmetric trea
ment leading to a sigma model with unitary symmetry11

Fluctuations in the topological density have also been h
responsible for the delocalization transition.12 Recent work
related the occurrence of delocalized states with random
tisymmetric disorder, or with symmetric disorder as we
provided a peculiar sublattice decomposition is allowed13

Quantum mechanics with an imaginary magnetic field an
disordered potential, introduced by Hatano and Nelson,14 re-
cently attracted much attention~see, e.g., Efetov15!, showing
how nonhermiticity can sustain extended states. In a prev
work we studied the imaginary magnetic field that aris
after averaging over magnetic disorder. We further int
preted the effective action in terms of Coulomb gas, a
discussed how its strong coupling regime can enhance p
coherence among trajectories.16 Static disorder obviously
produces an effective action nonlocal in time. Everythi
simplifies with time-dependent disorder: when the corre
tion time goes to zero the action is local and in princip
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identifies an effective generator for time evolution. One c
think of motion in a sea of high energy particles carrying fl
lines, or to a vortex in a rapidly varying magnetic fiel
Cooperon dynamics with time-dependent magnetic fluct
tions has been studied by Aronov and Wolfle17 in the context
of high-Tc conductors. In the present work we analyze ra
idly fluctuating magnetic disorder on an otherwise free p
ticle: our aim is to determine whether the ballistic behavior
frustrated in such a case, and what kind of presuma
slower propagation sets in. By taking the correlation len
of the fluctuations as the large scale of the system we es
lish the effective~annealed! dynamics for various power-law
disorder correlators. In Sec. II we determine the time evo
tion generator for the density matrix from the Feynman p
integral. This is a two-particle description, since both
tarded and advanced paths must be taken into account.
eraging over disorder leads to self-interaction as well as
mutual interaction between the paths: the former amount
a renormalization of the single-particle dynamics~i.e., it in-
fluences the quantum amplitude!, while the latter is the in-
terference contribution to probability. In Sec. III we discu
the particle-antiparticle relative dynamics by averaging o
the baricentric variables; this is related with motion in t
momentum space, as will be illustrated. In Sec. IV we a
lyze the full problem and give our main results on the p
ticle diffusion and subdiffusion. In Sec. V we compare wi
behaviors similar to ours in different physical contexts.

II. DENSITY-MATRIX EVOLUTION

We assume that the correlation time of magnetic fluct
tions can be neglected and take the following Gaussian
relator for the vector potential, in the transverse gauge:

Da,b~k!•d~ t ![^AaAb&~k,t !5Dda,b
T ~k!

1

~k21k0
2!11h/2

d~ t !,

~1!
6147 © 1998 The American Physical Society
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wherek0
21 is the correlation length,h is positive, andda,b

T

[da,b2(kakb)/k2. We will take into account the range
,h,4; the limit h→0,k0→0 gives a magnetic fieldB delta
correlated in space,h53 can be associated with the anom
lous skin effect;17 h52,k0→0 gives a free masslessB. This
case incidentally corresponds to the enstrophy cascad
two-dimensional turbulence, if the vector potential is iden
fied with velocity.18 Notice that, ash.2, the correlator ofB
grows as a power of distance. We write the Feynman p
integral representation for the product of amplitudes:

F~x,y;x8,y8;t ![^xuU ~1!~ t !uy&^x8uU ~2!~ t !uy8&* , ~2!

whereU ( i )(t),i 51,2 are the evolution operators of two ide
tical copies of single-particle systems in the presence of
magnetic field. The time-evolved density matrix is given

^xur̂~ t !ux8&5E dy dy8F~x,y;x8,y8;t !^yur̂~0!uy8&. ~3!

The representation of Eq.~2! involves a two-particle action
advanced and retarded path, respectively. Averaging ove
vector potential couples the paths and generates the fol
ing effective Lagrangian,Le f f(X,Ẋ),X[(x(1),x(2)) :

Le f f5
m

2
Ẋs3Ẋ1

ig2

2\
Ẋs3D̂s3Ẋ[

1

2
ẊM̂ Ẋ. ~4!

Hereg5e/c, the Pauli matrixs3 acts on the particle indices
and the (434) matrix D̂[D̂ ( i , j )( i , j 51,2) corresponds to
the static part of the correlator defined in Eq.~1!: D̂ (1,1)

5D̂ (2,2)5Da,b(x(1)5x(2));D̂ (1,2)5D̂ (2,1)5Da,b(x(1)2x(2));
a,b[x,y. The evolution of the density matrix is given b
Eq. ~3!, whereF is converted into its average over disorde
in the effective action the imaginary part ofM̂ is obviously
related with dissipation. Since, contrary to the static c
~see, e.g., Ref. 16!, we have locality in time, it is possible t
extract a time evolution generatorĤ from Eq. ~3!. This can
be performed with no ambiguity in a flat metrics, while
general operator ordering prescriptions are needed. As
cussed at length in Ref. 17, if one evaluates the metrics a
midpoint between the initial and final configurations, a
consistently normalizes the intermediate Gaussian integ
one obtains a symmetrized generator. We haveĤ

5 1
2 (¹F̂21¹)s , where F̂5(1/i\)M̂ and (¹Â¹)s[

1
4 (¹¹Â

12¹Â¹1Â¹¹). Here the sum over indices is understo
and the gradient is with respect toX. The kernelF̂21 is
given by

F̂215F i\

m
s31S g

mD 2

D̂GĜ21,

~5!

Ga,b5da,b1S g2

m•\ D 2

@Da,b
2 ~0!2Da,b

2 ~x~1!2x~2!!#.

This simple form results fromDa,b being diagonal when its
argument is equal to0. The operatorĜ is diagonal in the
particle indices and, as one easily verifies, is even un
particle exchange; it obviously commutes withD̂[D̂(x(1)

2x(2)). By taking into account the transversality conditio
-

in
-

h-

e
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w-

;

e
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one ends up with the following evolution equation for th
density matrixr(x(1),x(2);t) in coordinate representation:

]r

]t
5Ĥr,

Ĥ5
i\

2m
~G21!a,b~]a

~1!]b
~1!2]a

~2!]b
~2!!

1
1

2S g

mD 2

Da,g
0 ~G21!g,b~]a

~1!]b
~1!1]b

~2!]a
~2!!

1
1

2S g

mD 2

Da,g
x ~G21!g,b~]a

~1!]b
~2!1]a

~2!]b
~1!!

1
i\

2m
@]a~G21!a,b#~]b

~1!1]b
~2!!

1
1

2S g

mD 2

~D02Dx!a,g@]a~G21!g,b#~]b
~1!2]b

~2!!

1
1

4S g

mD 2

]g@~D02Dx!a,b]a~G21!b,g#. ~6!

Here the partial derivatives, unless labeled with the part
index, are taken with respect to the relative coordinatex
[x(1)2x(2) and D0,Dx refer to the static part of the cor
relator at separation0 and x, respectively. Notice that the
particle mass is renormalized, and an effective magnetic fi
@proportional to (g/m)2# acts with opposite signs on the tw
trajectories. The remaining terms are dissipative; the d
term acts as an imaginary magnetic field~proportional to
\/m). We conclude this section by noticing that if one di
regards theA2 term, one can directly average the tw
particle evolution operator emerging from Eq.~2!. Along the
lines of Ref. 1, one starts with the Neumann series for t
operator, takes theA•p coupling as perturbation, then use
Wick’s theorem and averages each term. The resulting se
can be reexponentiated to an effective two-particle gener
that coincides with Eq.~6!, but with Ĝ51̂. This case is for-
tunate since the transversality condition guarantees that
generatorĤ does not depend on ordering prescriptions.

III. PARTICLE-ANTIPARTICLE RELATIVE DYNAMICS

It is readily verified from Eq.~6!, when written in terms
of the relative coordinate and of the baricentric coordin
r[ 1

2 (x(1)1x(2)) @see Eq.~16! in the next section#, that it has
a purely derivative dependence on the latter variable. T
fact, which follows from the translational invariance of di
order, makesĤ into a divergence term with respect tor plus
an operator inx. Upon integrating overr with suitable
boundary conditions, the divergence term disappears and
is left with the evolution in the reducedx space in closed
form. This evolution, which isolates the effective interacti
between the retarded and advanced paths, is directly as
ated with the dynamics in the space of momenta@see Eq.
~21!#. Furthermore, the average over the baricentric coo
nate gives the equation of the Cooperon amplitude.17 In sum-
mary, the operatorĤ reduces to
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Ĥ5S g

mD 2

~D02Dx!a,g~G21!g,b]a]b

1S g

mD 2

~D02Dx!a,g@]a~G21!g,b#]b

1
1

4S g

mD 2

]g@~D02Dx!a,b]a~G21!b,g#. ~7!

We now show that Eq.~7! in the case of long-range fluc
tuations (k0!1) further simplifies, and the drift and curva
ture contributions can be neglected: indeed the kernelF̂21 in
this limit satisfies the transversality condition, and no ord
ing prescription is needed. Let us examine the correlator
space coordinates its static part has the form

Da,b~x!5S D

4p D @I0~x!da,b1I2~x!Sa,b#,

S1,152S2,25cos~2c!, S1,25S2,15sin~2c!, ~8!

Ii~x!5E
0

` k dk

~k21k0
2!11h/2

Ji~kx!,

wherex andc are the polar coordinates ofx and theJi ’s are
Bessel functions. The smallk0 behavior of Eq.~8! is readily
obtained:

Da,b5S D

k0
hD S 1

4ph
da,b1Aa,bD ,

Â5S j

2D h

R̂,0,h,2,j[k0x,

Â5~j!2T̂, 2,h,4, ~9!

R̂5
1

8p

G~12h/2!

G~11h/2!
@2~112/h!1̂1Ŝ#,

T̂5
1

8p

1

h~h22!
~21̂1 1

2 Ŝ !.

The explicit form ofĜ is then

Ĝ51̂2S g2

m•\

D

k0
hD 2

ÂS 1

2p\
1̂1ÂD . ~10!

The subtracted correlator has a power-law behavior, an
O(k0

0) in the limit k0→0, whenh,2:

D̂02D̂x52
D

k0
h
Â. ~11!

The ratioD/k0
h has the dimensions of a momentum, let

call it P. The order of magnitude of theA2 contribution can
be estimated by means of the adimensional coupling cons
r eP/\, where r e is the classical radius of the electron (r e
[g2/m). We now define the large fluctuations regime,
which Ĝ can be approximated with its second term:
-
In

is

nt

g2D

m\k0
h
[

r eP

\
@1. ~12!

Notice that this relates the amplitude of the fluctuations~as-
sociated withD) with the correlation lengthk0

21. Finally the

kernelF̂21, which is a function ofP, h, and of the quantum
flux unit \/g[F0 /(2p), reduces to

F̂215S \

gD 2 k0
h

DgS 1̂2
1

g
ÂD ,

~13!

g[
1

2•p•h
.

It is easily verified that in both regimes (h,2, h.2) the
matrix Â satisfies the transversality condition; hence the g
erator is

Ĥ5
1

2S \

gD 2 1

PgS da,b2
1

g
Aa,bD ]a]b . ~14!

The dominant contribution is pure diffusion with a coef
cient O(k0

h), while the first correction has scaling form, an
in both regimes it corresponds to a faster spreading. W
0,h,2, the correction is of orderk0

2h and, taken alone
would give superdiffusion (t'x22h); when 2,h,4, it has
order k0

21h with t'(ln x)2. Further work on Eq.~14! is
needed in order to understand the interplay between di
sion and this faster mechanism. We end this section w
some comments on the regime of weak fluctuations (r eP/\
!1). WhenĜ reduces to the identity,F̂21, being propor-
tional to Â, has a scaling form

F̂2152S g

mD 2

PÂ. ~15!

Recall that while in theh,2 range this isO(k0
0), in the

complementary range it diverges ask0
22h in the limit k0

→0. Corrections in the small fluctuation parameter co
from the expansion ofĜ21; since only the dominant term
preserves the transversality condition, the operatorĤ will
have a drift and a curvature term. The dominant term, wh
occurred as the first correction in Eq.~14!, gives superdiffu-
sion (x't1/(22h)) when 0,h,2 and time exponential be
havior when 2,h,4. As already pointed out, to approx
mate Ĝ with the identity means to disregard theA2 term.
This corresponds to the passive scalar problem studied
Gawedzki and Kupiainen,1 or, more properly, to the quantum
version of it. In conclusion, theA2 term reduces an otherwis
strong tendency of the two trajectories towards separat
from fluctuation-supported superdiffusion to diffusion.

IV. GENERAL CASE

Let us write Eq.~6! in terms of the relative coordinate an
of the baricentric coordinate:
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]r

]t
5Ĥr,

Ĥ5
i\

2m
~G21!a,bS ]

]r a

]

]xb
1

]

]xa

]

]r b
D1

i\

2mS ]

]xa
~G21!a,bD ]

]r b
1

1

4S g

mD 2

@~D01Dx!G21#a,b

]

]r a

]

]r b

1S g

mD 2

@~D ~0!2D ~x!!G21#a,b

]

]xa

]

]xb
1S g

mD 2S ]

]xa
~D02Dx!G21D

a,b

]

]xb
1

1

4S g

mD 2 ]

]xa

]

xb
@~D02Dx!G21#a,b .

~16!
d
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Here the limitk0→0 gives a finite nonzero result provide
that h,2. As shown in the previous section, the diffusio
term for x is O(k0

h); similarly the other terms go to zero i
the limit. From Eq.~16! we get then

Ĥ→2
1

4DS \

gD 2S x

2D 2h

~R̂21!a,b

]

]r a

]

]r b
. ~17!

If one disregards the anisotropy, this implies an evolut
through the combinationr 2

•xh/t. Let us assume then

Ĥ'D~x/2!2h¹ r
2 , ~18!

whereD is constant. By chosing as initial condition a Gaus
ian in both particle coordinates with equal width

r~r ,x!5S w

2p D 2

exp@2w$r 21~x/2!2%# ~19!

one gets

r~r ,x,t !5
w

2~2p!2

1

1/2w12D~2/x!ht
expF2S w

4 D x2

2S 1

2D r 2

~1/2w!12D~2/x!ht G . ~20!

For a more direct physical interpretation, it is convenient
Fourier transform with respect tox, obtaining the Wigner
function, whose classical limit is the phase space distribu

W~r ,k,t ![
1

~2p!
E d2xexp~2 ik•x!r~r ,x,t !. ~21!

This can be easily evaluated at zero momentum: in the la
time limit we disregard 1/(2w) with respect to 2D(2/x)ht
and obtain

W~r ,k50,t !

5
1

~2p!2

w

2h12DtE0

`

dx xh11exp„2~w/4!x22Qxh
…

'
w

~2p!2

1

2h12DtE0

1/~w!1/2

dx xh11exp~2Qxh!,

Q[r 2~2h12Dt !21, Dt.
1

~2w1/2!21h ,
r 2

Dt
,2hwh/2.
n

-

o

n

e

The integral can be explicitly written in terms of the tru
cated gamma function, and is a function ofr 2/Dt. In other
words at zero momentum one gets diffusion behavior. O
expects anomalous behavior, with anh dependence, at larg
momenta, but unfortunately thek dependence ofW is not
easily obtained. We merely point out the following: the de
sity matrix has a stretched exponential inx for every initial
condition, Gaussian shaped inr . Recall that, for realp,
exp(2aupuh) is the Fourier transform of the Levy distributio
Lh(z)'1/z(h11) (z@1).19 It is reasonable to assume th
the large-k behavior ofW is only marginally influenced by
the initial x dependence (x!1), if sufficiently smooth. Thek
dependence of the Wigner function is then approximated
the Levy distribution ink, or more precisely by its derivative
with respect to the parameterQ, which takes into account the
factor xh in the integrand. So far we have been dealing w
the k0→0 limit; as k0 is small but different from zero we
must take into account other terms, starting with the fi
correction, which gives pure diffusion inx ~see the previous
section!. A situation of this sort can be studied, at least in t
regime 2,h,4. We have thatDr is O(k0

h22); this, together
with the next to leading term gives@k0

h/(j)2!1#

Ĥ'S \

gD 2 1

PS ~21/4!
1

~k0x!2 ~ T̂21!a,b

]

]r a

]

]r b
1~2ph!¹x

2D .

~22!

Again we disregard anisotropy; a Fourier transform with
spect tor leads to a particle in a centrifugal barrier:

]r

]t
5F2S q

j D 2

1¹j
2Gr,

t5S \

gD 2 k0
h2ph

D
t, ~23!

q25~4/3!~h22!
K2

k0
2

,

whereK is the momentum with respect tor . If we search for
a similarity solution,r5 f (u,q), u[j2/t, the result is

f 91S 1

u
11/4D f 82S q

2uD f 50. ~24!

Two independent solutions~providedq is not an integer! are
f (u,q)5usF(s,2s11;2u/4), wheres5q/2,2q/2 and F is
the confluent hypergeometric function. In order to avoid s
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FIG. 1. Plot of the solutionr(r ,u) @see Eq.
~24!# at different values ofu as u approaches
zero ~large time behavior!.
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gular behavior at smallu we exclude the negatives case. We
numerically computed the Fourier transform in order to
construct ther dependence; in Fig. 1 we showr(r ,u) for a
set of valuesu,1, i.e., in the large time regime. We find th
the width inr increases, asu approaches zero, linearly in th
logarithm of u21, up to four orders of magnitude~see Fig.
2!. Disregarding the next to leading term would result, sim
larly to the previous case, in the combinationr 2x2/t. In con-
clusion then, when the fluctuations of the magnetic fi
grow with distance, the propagation is strongly inhibited, a
the spread of the particle position grows with the logarith
of time.

V. CONCLUSIONS

We studied the two-dimensional dynamics of a particle
the presence of a stochastic magnetic field in the fast fl
tuation regime. We have found a transition by varying t
-

-

d
d

c-
e

exponent of the disorder correlator. The reduced dynam
after averaging over the baricentric coordinate, which is
lated with the motion in momentum space, gives diffusion
the dominant behavior in thek0!1 regime. Superdiffusion
arises in the first correction, with the scalingt'x22h when
h,2 andt'(lnx)2 when 2,h,4. The dominance of diffu-
sion originates in theA2 term; if this term is neglected we
obtain fluctuation-sustained superdiffusion with the pre
ously mentioned power laws. The tendency of the retar
and advanced trajectories to spread apart very rapidly~fa-
vored by theA•p term! is partly stabilized by the quadrati
term. In the general case, the limitk0→0 can be performed
exactly in the rangeh,2. The solution@see Eq.~20!# shows
diffusion in r , with the dependencer'(t/xh)1/2. The Wigner
functionW at zero momentum, i.e., the average over parti
separation, describes diffusion (t'r 2); at k large it appears
in the form W'W(r 2/t,k), its k behavior being associate
with the Levy distribution in the momentum space. Rando
FIG. 2. Width inDr of the solution
vs ln(u).
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walk in a quantum mechanical-system was found in
Harper model at its critical point.20,21 It was also derived
from a two-dimensional anisotropic random lattice mod
describing edge propagation along the surface of a quan
Hall multilayer22–25. In that case backscattering is allowed
the direction of the Hall field and neglected in the orthogo
direction; if the latter is interpreted as time one has a o
dimensional chain with time-dependent hopping disor
where the quantum particle undergoes diffusion. As long
hopping mimicks the presence of a magnetic field, t
model can be taken as a one-dimensional version of o
Propagation is further inhibited when 2,h; by including the
leading and next to leading terms we determined an exp
solution in this regime@see Eq.~24! and arguments follow-
ing it#. From the large time behavior of the density mat
r(r ,x,t) one extractsr' ln(t/x2): this is a much slower
spread than expected from the leading term alone, givinr
'(t/x2)1/2. This ultraslow, logarithmic diffusion occurs i
s.

. B

.

e

l,
m

l
-
r
s

s
rs.

it

biased random motion on percolation clusters or globa
isotropic fractals~see Ref. 26 and references therein!. Quan-
tum mechanically, it was found by suitably perturbing at
single point an Anderson Hamiltonian in the localize
phase.27 When disorder is static,28,29 smoothly varying mag-
netic fields confine nearly free states within a narrow o
dimensional region along the zero-field lines, such lines t
providing a quantum percolation network. The present c
can be more properly depicted in terms of abrupt jumps
the space of momenta, with loss of phase coherence.
apparently results in random walk when the correlator of
magnetic fieldB decays with distance (h,2) and in loga-
rithmic behavior when it grows (2,h).
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