
PHYSICAL REVIEW B 1 SEPTEMBER 1998-IIVOLUME 58, NUMBER 10
Field-theoretic approach to the Lifshitz point

C. Mergulhão, Jr. and C. E. I. Carneiro
Instituto de Fı´sica, Universidade de Sa˜o Paulo, Caixa Postal 66.318, 05315-970 Sa˜o Paulo, SP, Brazil

~Received 9 April 1998!

We study the renormalization of the field theory that describes the Lifshitz point~LP!. Our motivation was
an old controversy on the order-e2 values of critical exponents for this multicritical point. First we analyze the
Green functions at the LP where some simplifications occur. The primitively divergent diagrams are identified
and renormalization prescriptions that eliminate ultraviolet divergences to all orders of perturbation are found.
The Green functions in the neighborhood of the LP are expanded in terms of the Green functions calculated at
the LP. This enables us to derive the renormalization-group equation satisfied by the renormalized Green
functions and by analyzing its solutions we find expressions for the critical exponents that hold to all orders of
perturbation. Finally, we obtain generalized scaling relations for the exponents associated with the LP.
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I. INTRODUCTION

The Lifshitz point ~LP! ~Ref. 1! is a multicritical point
that occurs in magnetic systems,2 liquid crystals,3 charge-
transfer salts,4 structural phase transitions,5 domain-wall
instabilities,6 and ferroelectric crystals.7 Hornreich8 and
Selke9 reviewed most of the work related to this spec
point. In order to see how a LP arises, consider the Lan
free energy of a system described by a scalar order param
M :8

F5a2M21a4M41a6M61¯1c1~¹M !21c2~¹2M !2

1¯, ~1!

where the coefficientsai andci depend on the temperatureT
and on an external parameterp. The system has a LP if, a
we move along the critical lineTc(p) ~obtained from the
conditiona250), the coefficientc1(T,p) changes sign. The
point (TL ,pL) on the critical line at whichc150 is the LP.
In this case, thec2 term becomes relevant and has to be ke

A simple model with these properties is the axial ne
nearest-neighbor Ising~ANNNI ! model.10 It consists of a
spin-12 Ising model on a cubic lattice with nearest-neighb
ferromagnetic couplings and next-nearest-neighbor com
ing antiferromagnetic couplings along a single lattice ax
Its phase diagram, in thep-T plane, wherep is the ratio
between the competing couplings, is divided into three
gions. In addition to the usual paramagnetic and ferrom
netic phases, due to the competition there is a region w
modulated phases, which are spatially modulated struct
characterized by a wave vectork. High-temperature serie
techniques were utilized to study the neighborhood of the
in the three-dimensional ANNNI model by Redner and St
ley, Oitmaa, and Mo and Ferer.11 The critical exponentsb l ,
g l , andn l were estimated from Monte Carlo data by Sel
and Fisher.12

The first renormalization-group calculation of critical e
ponents associated with the LP was performed by Hornre
Luban, and Shtrikman1 using the Ginsburg-Landau-Wilso
Hamiltonian
PRB 580163-1829/98/58~10!/6047~10!/$15.00
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~FW q1
•FW q2

!

3~FW q3
•FW 2q12q22q3

!,

v~q!5r 01qb
21c0qa

21~qa
2 !2, ~2!

qa
2[ (

m51

m

qm
2 , qb

2[ (
m5m11

d

qm
2 ,

whereFW q is ann-component order parameter. Note that t
space is divided into two isotropic subspaces: ana subspace
of dimensionm, and ab subspace of dimensiond2m. A LP
is associated with a wave-vector instability inm directions of
the a subspace. A large class of models is described by
Hamiltonian ~2!, each one parametrized by different valu
of n and m, 1<m<8.1 The ANNNI model corresponds to
them5n51 case. At the Lifshitz point, bothr 0 andc0 go to
zero and theqa

4 term has to be kept. The upper critical d
mensiondu(m), above which classical critical behavior
expected, is obtained by means of the Ginsburg criterion
is given by1

du~m!541
m

2
, m<8. ~3!

Using renormalization-group techniques and ane expan-
sion aboutdu(m), Hornreich, Luban, and Shtrikman1 calcu-
lated, for allm, the exponentsn l 2 andn l 4 to ordere, and,
for m58, n l 2, n l 4, andh l 4 to ordere2, where the subscrip
l 4 (l 2) refers to thea subspace (b subspace!. Mukamel13

determinedh l 2 and h l 4 to order e2 for all m, and bk to
order e2 for m,6 ~one does not expect helical long-rang
order for m>6). Hornreich and Bruce14 calculated, form
51, the exponentsh l 2 andh l 4 to ordere2 and the exponen
bk to ordere2 and their result agrees with Mukamel’s. How
ever, Sak and Grest15 performed an independent calculatio
for m52 andm56, of h l 2, h l 4, andbk to ordere2, ob-
6047 © 1998 The American Physical Society
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taining results that are different from Mukamel’s. As emph
sized in a review of the papers8,9 cited above, the reason fo
this discrepancy is not clear.

All renormalization-group calculations mentioned abo
use the Wilson-Fisher momentum space technique.16 Since
the Hamiltonian ~2! is not rotationally invariant and the
propagator contains a quartic term, the two-loop integr
over momentum shells are extremely involved, and in
calculations performed so far different approximations w
used. Due to the difficulty in analyzing which approximatio
gives the correct two-loop corrections, we have resorted
different approach. We decided to use field theory to cal
late exactly the ordere2 contributions to the critical expo
nents for the Lifshitz point. In order to do this, we first had
analyze the renormalization of the theory described by
Hamiltonian~2!, and then to adapt to our problem a forma
ism introduced by Weinberg17 and applied to critical phe
nomena by Zinn-Justin.18 A clear presentation of this tech
nique can be found in Amit’s book.19 In its original
formulation, the critical behavior of thef4 theory is obtained
by expanding all Green functions in terms of the massl
Green functions calculated at the critical point. In our ca
we expand about the LP. Our formalism applies to all valu
of m in the Hamiltonian~2! to all orders in perturbation
theory, and allows us to identify the critical exponents
terms of the renormalization constants. It is important
mention that field theory has already been applied to st
other properties of the Lifshitz point. Nasser and Folk20 stud-
ied crossover phenomena, Abdel-Hady and Folk21 analyzed
tricritical Lifshitz points, and Nasser, Abdel-Hady, an
Folk22 calculated universal amplitude ratios. In the pres
work, a thorough study of the renormalization of the fie
theory that describes the LP is made and used to obtain
pressions for the critical exponents.

This paper is organized as follows. In Sec. II we revie
briefly the field theory formalism emphasizing the modific
tions that have to be done to apply it to the Hamiltonian~2!.
In Sec. III we derive the renormalization-group equatio
identify the critical exponents, and demonstrate that they
isfy generalized scaling relations. In Sec. IV we present
conclusions. Finally, in the Appendix we show in some d
tail the cancellation mechanism of the divergences due to
insertion of the two-point function into other diagrams. Th
cancellation is more involved than in the usualf4 theory.

II. PERTURBATIVE FIELD THEORY
AND CRITICAL PHENOMENA

In this section we present a brief review of renormaliz
field theory and its relation to critical phenomena.19 The
starting point consists in using the Ginsburg-Landau-Wils
effective Hamiltonian~2! with an extra parameters0. Thus,
instead ofv(q) given in Eq.~2!, we shall use

v~q!5r 01qb
21c0qa

21s0~qa
2 !2. ~4!

The dimensionless parameters0, as we are going to show
below, plays an important role in the renormalization of t
two-point Green function. As a consequence of our choos
it dimensionless, thea components of the momentumq have
dimension of square root of mass,@qa#5@k1/2#, wherek has
dimension of mass. The parametersr 0 andc0 are related to
-
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the temperature and top by r 05T2T0L and c0;p2p0L ,
where T0L and p0L are the mean-field coordinates of th
Lifshitz point in thep-T plane. In momentum space there
an ultraviolet cutoff,L.1/a, wherea is the lattice spacing
in the original system.

All equilibrium properties can be obtained from the on
particle irreducible~1PI! Green functionsG (N,L)(k1 , . . . ,
kN ,p1 , . . . ,pL ;s0 ,c0 ,r ,l,f̄,L), which containN external
legs,L insertions off2(pi) operators, and that are renorma
ized in such a way that the corresponding renormalized fu
tions GR

(N,L) are finite in the infinite cutoff limit when the

space dimensiond<du(m). The magnetizationf̄ is zero in
the paramagnetic phase and not null in the ferromagn
phase in zero magnetic field. In this paper we shall be c
cerned with the calculation of critical exponents for the LP
the paramagnetic and ferromagnetic regions. In this case
magnetization is constant, and can be used with a sin
component order parameter. The dependence onn, the num-
ber of components ofFW q , is contained only in the combina
torial factors of the Feynman diagrams and can be inserte
the last stage of calculations.

The inverse of the zero-field susceptibilityx is propor-
tional to G (2,0) calculated at zero external momenta:19

x215b21G~2,0!~0,0,s0 ,c0 ,r 0 ,l,f̄50,L!. ~5!

At criticality, x diverges, and the equation that determin
the critical lineTc(p) is given by

G~2,0!~0,0,s0 ,c0 ,r 0 ,l,0,L!50. ~6!

At the Lifshitz point the coefficient ofka
2 is zero and, in

addition to Eq.~6!, the coordinates (cL ,r L) of the Lifshitz
point also satisfy

]

]ka
2

G~2,0!~k,2k,s0 ,c0 ,r 0 ,l,0,L!U
k

a
250

50. ~7!

Recall thatr 05T2T0L and c0;p2p0L , and, to lowest
order in perturbation theory~mean-field approximation!, r L
5TL2T0L50 andcL;pL2p0L50. As we take fluctuations
into account,TL and pL move away from their mean-field
values. The corrections are determined by expandingr L and
cL in the coupling constantl, inserting these expansions i
Eqs. ~6! and ~7! and solving them perturbatively. When w
expand the propagators in the Feynman diagrams abour L
5cL50 we obtain integrals without any dimensional para
eters. These integrals in the dimensional regularizat
scheme vanish and all corrections to the mean-field coo
nates of the Lifshitz point are exactly zero. Thus, Gre
functions at the LP are calculated with the propaga
(s0qa

41qb
2)21. From now on we shall use dimensional reg

larization, calculating integrals in dimensiond5du(m)2e,
and taking the limitL→`.

The identification of the primitively divergent 1PI func
tions is not straightforward. Due to the fact that thea com-
ponents of momenta in the propagator are raised to the fo
power and theb components to the second power in t
propagators, naive power counting does not give the cor
degree of divergenced of the diagrams. To obtain the corre
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d, we first integrate over theb components. Consider a gen
eral diagram that contributes toG (N,L) with N external legs,
L insertions of operatorsf2, I internal lines~propagators!, l
loops (l integrations over internal momenta!, andv vertices.
These variables are not independent. Af4 vertex has four
lines, af2 insertion has two lines, and each internal line
shared between two vertices, or two insertions, or betwee
vertex and an insertion. Thus, we have the relation

4v12L52I 1N. ~8!

According to the Feynman rules there is a momentum a
ciated with each internal line and integration over this int
nal momentum. However, the conservationd functions at
vertices and insertions eliminatev1L integrations. There
remains only oned function that expresses the overall m
mentum conservation of the diagram, and we obtain

l 5I 2v2L11. ~9!

Each propagator in this diagram has the form

Fs0S (
i

qia1KaD 4

1S (
i

qib1KbD 2G21

, ~10!

where K stands for the sum of the external momenta t
flow through the propagator and the sum is over inter
momenta. We can use Feynman parameters to put aI
propagators together, obtaining a single term in the deno
nator raised to the powerI . After integrating overqib , i
51,2, . . . ,l , the resulting term in the denominator, whic
now only contains theqia components, is raised to the pow
I 2l db/2. Using naive power counting for the remaininga
components, we obtaind5l da24(I 2l db/2). Using Eqs.
~8! and ~9!, we rewrite this expression as

d5Fd2S 41
da

2 D G I 1S L2
N

2 D S da

2
1dbD . ~11!

Recalling thatda5m, we see that the term that depends oI
in the equation above cancels whend is equal to the uppe
critical dimensiondu , see Eq.~3!. At d5du , the only 1PI
functions with primitive divergences (d>0) areG (2,0), G (4,0),
G (2,1), andG (0,2). These are the same as in thef4 theory and
here we can also neglectG (0,1), which gives an infinite con-
stant.

As in the usualf4 theory, which describes the criticalit
of the Ising model, allG (N,L) at the LP are renormalize
multiplicatively exceptG (0,2), which also requires additive
renormalization. We have checked this point by performin
two-loop calculation of the primitively divergent Green fun
tions for m52 and 6. However, there are differences. F
example, the divergent part ofG (2,0) has the structure

G~2,0!5
As0

e
ka

41
B

e
kb

21O~e0!, ~12!

with AÞB. Thus, besides field renormalization we need
renormalization of thes0 parameter to eliminate the poles
G (2,0). In general, the relations betweenG (N,L) andGR

(N,L) at
the LP are given by

GR
~N,L !(ki ,pi ,s,g,k)
a

o-
-

t
l

i-

a

r

e

5Zf
N/2 Zf2

L [G~N,L !(ki ,pi ,s0 ,l)

2dN,0dL,2G
(0,2)(p,2p,s0 ,l) Usp

a
45k2

p
b
250

], ~13!

whereg is the renormalized coupling constant,s5Zss0 is
the renormalizeds0 parameter,Zs , Zf , andZf2 are renor-
malization constants, andk is an arbitrary momentum scale
Bare parameters and renormalization constants are calcu
through the renormalization conditions

]

]ka
4

GR
~2,0!~k,2k,s,g,k!Usk

a
45k2

k
b
250

5s, ~14!

]

]kb
2

GR
~2,0!~k,2k,s,g,k!Usk

a
450

k
b
25k2

51, ~15!

GR
~4,0!~k1 , . . . ,k4 ,s,g,k!uspa

5g, ~16!

GR
~2,1!~k1 ,k2 ,p,s,g,k!usp̄a

51, ~17!

GR
(0,2)(p,2p,s,g,k) Usp

a
45k2

p
b
250

50, ~18!

where the renormalization points are defined as follows:spa

meanss1/2kiakj a5k(4d i j 21)/4; sp̄a meanss1/2kia
2 53k/4,

s1/2k1ak2a52k/4, s1/2(k11k2)a
25s1/2pa

25k, and, except
in Eq. ~15!, the external momenta at which the values of t
Green functions are evaluated have no components in thb
subspace. This choice of renormalization points will ma
bare parameters and renormalization constantss indepen-
dent, as we are going to show below.

Let us discuss in more detail the dependence ofGR
(N,L) on

s. In order to do that we first determine the dependence
G (N,L) on s0. In perturbation theory,G (N,L) is a sum of infi-
nite 1PI diagrams. Consider one of these diagrams, witv
vertices,I propagators,L insertions of operatorsf2, and l

loops. If we make the change of variableqia→s0
21/4qia , for

the a components of alll internal momentaqi , thenddqi

[ddaqiaddbqib→s0
2da/4ddqi and the whole diagram is mul

tiplied by a factors0
2l da /4. In the propagators, see Eq.~10!,

after changing variables, only thea components of the ex
ternal momenta are multiplied bys0

1/4. Combining Eqs.~8!
and ~9! we obtainl 5v2N/211, and the global factor can
also be written as (s0

2da/4)v2N/211. Part of it (s0
2vda /4) mul-

tiplies the coupling constantsl since each vertex has a facto
l. Thus, thea components of all external momenta in th
1PI Green functions are multiplied bys0

1/4 and the coupling
constant by s0

2da/4 . There remains a global facto

(s0
da/4)N/221. This analysis holds for all diagrams ofG (N,L)

and we can finally write



n
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G~N,L !~ki ,pi ,s0 ,l!5~s0
da/4

!N/221G~N,L !~s0
1/4kia ,kib ,s0

1/4pia ,pib,1,ls0
2da/4

!

5~sda/4!N/221G~N,L !~s1/4kia ,kib ,s1/4pia ,pib ,Zs
21 ,ls2da/4!, ~19!

where we used the expressions05Zs
21s to write the last equality in Eq.~19!. If we can show that the renormalizatio

constantsZf , Zf2, andZs do not depend ons, then Eqs.~19! and~13! can be used to give the dependence ofGR
(N,L) on s.

Equation~19! enables us to rewrite the renormalization conditions@Eqs.~14! through~18!# as

]

]ka
4 FZfG~2,0!~ska

4 ,kb
2 ,Zs

21 ,ls2da/4! Gsk
a
45k2

k
b
250

5s, ~20!

]

]kb
2 FZfG~2,0!~ska

4 ,kb
2 ,Zs

21 ,ls2da/4! Gsk
a
450

k
b
25k2

51, ~21!

sda/4Zf
2 G~4,0!~s1/4kia ,kib ,Zs

21 ,ls2da/4!uspa
5g, ~22!

ZfZf2G~2,1!~s1/4kia ,kib ,s1/4pa ,pb ,Zs
21 ,ls2da/4!usp̄a

51, ~23!

G~0,2!~spa
4 ,pb

2 ,Zs
21 ,ls2da/4!2G~0,2!~spa

4 ,pb
2 ,Zs

21 ,ls2da/4! Usp
a
45k2

p
b
250

50. ~24!
n

g

n
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-
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-

nt
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ve
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in

the
At this stage it is convenient to introduce the dimensio
less coupling constantsu0 andu such that

uk42D5gs2da/4,

u0k42D5l, ~25!

D[da/21db .

Equations ~20!–~24! can be satisfied by expressin
u0s2da/4 and renormalization constantsZs , Zf , andZf2 as
power series inu. In fact, due to the rotational symmetry i
each subspace,G (N,L) depends only on the external momen
through scalar products of theira and b components sepa
rately. Recall that thea components of the momenta a
always multiplied bys1/4. With our choice for the renormal
ization points@see the definitions after Eq.~18!# this depen-
dence ons disappears. This is less obvious for Eq.~20!. In
this case rotational invariance implies thatGR

(2,0)

5GR
(2,0)(ska

4 ,kb
2). After calculating its derivative with re-

spect toka
4 and evaluating it at the renormalization poi

ska
45k2, kb

250, a global factors remains. However, this
factor is canceled out by thes on the right-hand side of Eq
~20!. Finally, according to Eq.~19!, whens is factored out
the coupling constantl5k42Du0 is multiplied by s2da/4.
Expanding the productu0s2da/4 in powers ofu, instead of
expanding onlyu0 as in the usualf4 theory, we eliminate
the last dependence ons in Eqs.~20!–~24!. In this way, we
can satisfy these equations by expressingu0s2da/4 and
renormalization constants as a power series inu only, as
-stated above. An alternative choice for the renormalizat
points consists in choosing, except in Eq.~20!, the external
momenta without components in thea subspace. In this
case, it is clear again that Eqs.~20!–~24! do not depend on
s. However, we verified that the resulting two-loop integra
are more involved than in the previous case. We ha
calculated,23 for m56, the critical exponents using bot
choices for the external momenta. The results are the s
and confirm the independence ons.

Since the renormalization constants do not depend ons,
Eqs.~13! and ~19! imply that

GR
~N,L !~ki ,pi ,s,u,k!

5~sda /4!N/221GR
~N,L !~s1/4kia ,kib ,s1/4pia ,pib,1,u,k!

5Zf
N/2Zf2

L FG~N,L !~ki ,pi ,s0 ,u0k42D!

2dN,0dL,2G
~0,2!~p,2p,s0 ,u0k42D! Usp

a
45k2

p
b
250

G , ~26!

whereu is defined in Eq.~25! and all dependence ofGR
(N,L)

on s is in thea components of the external momenta and
an overall multiplicative factor.

In an analogous way we derive the expression for
renormalized connected Green functionGcR

(N,L) ~see the Ap-
pendix for more details!,
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GcR
~N,L !~ki ,pi ,s,u,k!

5Zf
2N/2Zf2

L FG~N,L !~ki ,pi ,s0 ,u0k42D!

2dN,0dL,2G
~0,2!~p,2p,s0 ,u0k42D! Usp

a
45k2

p
b
250

G . ~27!

The renormalization-group equation can now be obtai
in the standard19 way by first movingZf

N/2 and Zf2
L to the

left-hand side of Eq.~26! and then applying the operato
(k]/]k)l,s0

to the resulting expression. In this way we o
tain

H k
]

]k
1b~u!

]

]u
1gs~u!s

]

]s
2

N

2
gf~u!1Lgf2~u!J

3GR
~N,L !~ki ,pi ,s,u,k!5dN,0dL,2k

D24B~u!, ~28!

where

kD24B~u!52Zf2
2 k

]

]k
G~0,2!~p,2p,s0 ,u0k42D! Usp

a
45k2

p
b
250

,

~29!

b~u!5S k
]u

]k D
l,s0

, ~30!

gs~u!5S k
] ln Zs

]k D
l,s0

, ~31!

gf~u!5S k
] ln Zf

]k D
l,s0

, ~32!

gf2~u!52S k
] lnZf2

]k D
l,s0

. ~33!

Green functions withTÞTL can be expanded aboutTL .
This technique is analogous to the expansion of the re
malized f4 above and belowTc in terms of the massles
critical theory introduced by Weinberg17 and applied to criti-
cal phenomena by Zinn-Justin.18 In our case, we expand
Green functions aboutT5TL and f̄50. It can be shown19

that

G~N,L !~ki ,pi ,s0 ,c050,dr ,l,f̄ !

5(
I ,J

~dr ! I~f̄ !J

I !J!
G~N1J,L1I !

3~ki ,l i50,pi ,qi50,s0 ,c050,dr 50,l,f̄50!.

~34!

Note that thec0 parameter was kept fixed and equal to ze
which is equivalent to keepingp5pL . In this way, our
analysis is restricted to the linep5pL in the p-T plane. This
d

r-

,

is irrelevant for the determination of the exponentsh l 2 and
h l 4 that are calculated precisely at the Lifshitz point. On t
other hand,n l 2 andn l 4 require the determination of Gree
functions in the neighborhood of the Lifshitz point. How
ever, we expect the exponents to be the same if we cross
boundary between the paramagnetic and the ferromagn
phase, through the Lifshitz point, along any direction in t
p-T plane. This is the case for the one-loop corrections. O
results agree with the one-loop results of Hornreich, Lub
and Shtrikman.1 We expect that this invariance with direc
tion also holds for our two-loop calculation ofn l 2 andn l 4.

If we subtract the termdN,0dL,2G
(0,2)usp

a
45k2,p

b
250 from

both sides of Eq.~34!, multiply the resulting expression b
Zf

N/2Zf2
L , we define

t5Zf2
21dr , M5Zf

21/2f̄, ~35!

where t and M are finite, introduce the dimensionless co
plings u0 andu @see Eqs.~25!#, and use Eq.~13! we obtain

Zf
N/2Zf2

L F G~N,L !~ki ,pi ,s0 ,dr ,u0k42D,f̄ !

2dN,0dL,2G
~0,2!~p,2p,s0,0,u0k42D,0! Usp

a
45k2

p
b
250

G ,

5(
I ,J

t IMJ

I !J!
GR

~N1J,L1I !~ki ,l i50,pi ,qi50,s,u,k!

[GR
~N,L !~ki ,pi ,s,t,u,M !, ~36!

where the double sum in Eq.~36! definesGR
(N,L) in the neigh-

borhood of the LP. Thus, we can renormalize Green fu
tions away fromTL using the renormalization constants ca
culated at the LP solving Eqs.~20!–~24!.

Recalling that eachGR
(N,L) in the right-hand side of Eq

~36! satisfies the renormalization-group equation~28!, it is
simple to check that the Green functions away fromTL sat-
isfy the renormalization-group equation

Fk ]

]k
1b~u!

]

]u
1gs~u!s

]

]s
2

1

2
gf~u!S N1M

]

]M D
1gf2~u!S L1t

]

]t D GGR
~N,L !~ki ,pi ,s,t,u,M ,k!

5dN,0dL,2k
D24B~u!, ~37!

where the terms that appear in Eq.~37! were defined in Eqs.
~29!–~33!.

Finally, Eqs.~36! and~26! give us the dependence of th
renormalized 1PI Green functions ons,

GR
~N,L !~ki ,pi ,s,t,u,M ,k!

5~sda /4!N/221GR
~N,L !

3~s1/4kia ,kib ,s1/4pia ,pib,1,t,u,Msda/8,k!. ~38!

Equation~38! is valid in the broken symmetry phase. Abov
TL , in the paramagnetic phase, one obtains an analog
expression withM50.
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III. IDENTIFICATION OF THE CRITICAL EXPONENTS

In field theory the critical behavior is obtained combinin
the solutions of the renormalization-group equation at
fixed point with dimensional analysis. In our case, para
eters, fields, and 1PI Green functions without the momen
conserving d function have the following dimensions
@r 0#5@k2#, @c0#5@k0#, @s0#5@k0#, @kb#5@k#, @xb#
5@k21#, @ka#5@k1/2#, @xa#5@k21/2#, @l#5@k41m/22d#,
@f(x)#5@k211da/41db/2#, and @G (N,L)(ki ,pi , . . . )#
5@k (da/21db)(12N/2)1N22L#. Note that our choosings0 di-
mensionless leads to a coupling constantl that is dimension-
less at the upper critical dimension, as usual.

The exponentsh l 2, h l 4, n l 2, n l 4, and g l 4 are deter-
mined from the renormalization-group equation forGR

(2,0) at
the fixed pointu5u* . It suffices to consider the caseT
>TL for which M50. Replacingu* for u in Eq. ~37! with
N52, L50, and recalling19 that b(u* )50, we obtain

Fk ]

]k
1gs* s

]

]s
1g2* t

]

]t
2g1* GGR

~2,0!~ka
4 ,kb

2 ,s,t,u* ,k!50,

~39!

wheregs* [gs(u* ), g1* [gf(u* ), g2* [gf2(u* ). The defi-
nitions of gs(u), gf(u), andgf2(u) are given in Eqs.~31!,
~32!, and ~33!, respectively. Rotational invarianc
in each subspace guarantees thatGR

(2,0)(k,t,u* ,k)
5GR

(2,0)(ka
4 ,kb

2 ,t,u* ,k).
The general solution of Eq.~39! is given by

GR
~2,0!~ka

4 ,kb
2 ,s,t,u* ,k!

5kg1* F~2,0!~ka
4 ,kb

2 ,sk2gs* ,tk2g2* ,u* !, ~40!

where F (2,0) is an arbitrary function. Combining Eq.~38!,
which gives the dependence ofG (2,0) on s, and Eq.~40!, we
obtain

GR
~2,0!~ka

4 ,kb
2 ,s,t,u* ,k!

5kg1* F~2,0!~sk2gs* ka
4 ,kb

2,1,tk2g2* ,u* !. ~41!

On the other hand, ifr is an arbitrary mass parameter, th
the dimensional analysis yields
e
-
m

GR
~2,0!~ka

4 ,kb
2 ,s,t,u* ,k!5r2GR

~2,0!S ska
4

r2
,
kb

2

r2
,

t

r2
,u* ,

k

r D .

~42!

Combining Eqs.~41! and ~42!, we finally obtain

GR
~2,0!~ska

4 ,kb
2 ,t,u* ,k!

5r22g1* kg1* F~2,0!S ska
4

r2 S k

r D 2gs*

,
kb

2

r2
,

t

r2S k

r D 2g2*

,u* D .

~43!

The exponenth l 4 is obtained puttingt50 andkb50 in Eq.
~43!, and choosing

r5s1/~22gs* !k2gs* /~22gs* !ukau4/~22gs* !. ~44!

In this way,

GR
~2!~ska

4 ,kb
2 ,u* ,k!

5s~22g1* !/~22gs* !k~2g1* 22gs* !/~22gs* !

3ukau~824g1* !/~22gs* !FR
~2,0!~1,0,0,u* !, ~45!

and from Eq.~45! we identify

h l 454S g1* 2gs*

22gs*
D . ~46!

In an analogous way, puttingt50, ka50, and choosingr
5ukbu in Eq. ~43!, we obtain the exponenth l 2,

h l 25g1* . ~47!

The exponentsg, n l 2, andn l 4 are also obtained from Eq
~43!, keepingtÞ0 and choosing

r5t1/~22g2* !k2g2* /~22g2* !. ~48!

Thus,
GR
~2,0!~ska

4 ,kb
2,1,t,u* ,k!5kg1* ~ tk2g2* !~22g1* !/~22g2* !F~2,0!~sk2gs* ka

4~ tk2g2* !2~22gs* !/~22g2* !,kb
2~ tk2g2* !22/~22g2* !,1,u* !.

~49!
Inspecting Eq.~49! we note thatF (2,0) depends only on
the combinationsukauj l 4 and ukbuj l 2 with

j l 4;t ~1/4![ ~22gs* !/~22g2* !] ,

j l 2;t1/~22g2* !. ~50!

The correlation lengthsj l 4;t2n l 4 and j l 2;t2n l 2 define
the exponentsn l 4 andn l 2. Thus,
n l 45
1

4S 22gs*

22g2*
D ,

~51!

n l 25
1

22g2*
.

Finally, putting ka5kb50 in Eq. ~49!, and recalling that
GR

(2,0)(0,0,u* ,t,k);x21;tg, we identify the exponentg l :
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g l 5
22g1*

22g2*
. ~52!

The exponentd l is obtained from the renormalizatio
equation forH(t,u,M ,k)5GR

(1,0)(t,u,M ,k). The general so-
lution of Eq. ~37! for N51 andL50 at the fixed pointu
5u* is given by

H~s,t,u* ,M ,k!5kg1* /2h~sk2gs* ,tk2g2* ,u* ,Mkg1* /2!.
~53!

Taking into account the dependence ofH5G (1,0) on s @see
Eq. ~38!#, we obtain

H~s,t,u* ,M ,k!

5s2da/8k~1/2!g1* 1~da/8!gs*

3h~1,tk2g2* ,u* ,sda/8Mk~1/2!g1* 2~da/8!gs* !. ~54!

Using dimensional analysis and recalling that@H#
5@k11da/41db/2#[@k11D/2#, @M #5@k211da/41db/2#
[@k211D/2#, and@r#5@k#, we obtain
f

c

H~s,t,u* ,M ,k!

5s2da/8r11D/2S k

r D ~1/2!g1* 1~da/8!gs*

3hS 1,
t

r2S k

r D 2g2*

,u* ,s2da/8
M

r211D/2

3S k

r D ~1/2!g1* 2~da/8!gs* D . ~55!

In order to calculate the exponentsb l andd l we chooser
such that

s2da/8
M

r211D/2S k

r D ~1/2!g1* 2~da/8!gs*

51. ~56!

In this way, Eq.~55! becomes
H~s,t,u* ,M ,k!5k~1/2!g1* 1~da/8!gs* ~Mk~1/2!g1* 2~da/8!gs* ! [D122g1* 2~da/4!gs* ]/[ D221g1* 2~da/4!gs* ]

3h~1,tk2g2* ~Mk1/2g1* 2da/8gs* !~2412g2* !/[D221g1* 2~da/4!gs* ] ,u* ,1!. ~57!
s

Putting t50⇔T5TL in Eq. ~57!, and recalling that on this
line H;M d l , we identify

d l 5
D122g1* 2~da/4!gs*

D221g1* 2~da/4!gs*
. ~58!

The exponentb is calculated by makingH50 andt,0
in Eq. ~57!. The resulting equation can only be satisfied i

x0[tk2g2* ~Mk~1/2!g1* 2~da/8!gs* !~2412g2* !/[D221g1* 2~da/4!gs* ] ,
~59!

is such thath(1,x0 ,u* ,1)50. Near the LP we expectM;
(2t)b l . Thus, from Eq.~59! we extract

b l 5
1

2S D221g1* 2~da/4!gs*

22g2*
D . ~60!

Finally, the exponenta l is associated with the specifi
heat at constant field. It can be shown19 that

GR
~0,2!~0,0,s,t,M50,u* ,k!;t2a. ~61!

The general solution of Eq.~37! with N50 andL52 at the
fixed pointu5u* is given by

GR
~0,2!~0,0,s,t,u* ,k!

5k22g2* F~0,2!~sk2gs* ,tk2g2* ,u* !
1
s2da/4kD24B~u* !

D2412g2* 2~da/4!gs*
. ~62!

Taking into account the dependence ofG (0,2) on s, given in
Eq. ~26!, we obtain

GR
~0,2!~0,0,s,t,u* ,k!

5s2da/4k22g2* 1~da/4!gs* F~0,2!~1,tk2g2* ,u* !

1
s2da/4kD24B~u* !

D2412g2* 2~da/4!gs*
. ~63!

Dimensional analysis allows us to rewrite this equation a

GR
~0,2!~0,0,s,t,u* ,k!

5s2da/4rD24S k

r D 22g2* 1~da/4!gs*

3F~0,2!S 1,
t

r2S k

r D 2g2*

,u* D 1
s2da/4kD24B~u* !

D2412g2* 2~da/4!gs*
.

~64!

Choosingr such that
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t

r2S k

r D 2g2*

51, ~65!

we obtain

GR
~0,2!~0,0,s,u* ,t,k!5s2da/4k22g2* 1~da/4!gs* ~ tk2g2* ! [D2412g2* 2~da/4!gs* ]/ ~22g2* !3F~0,2!~1,1,u* !1

s2da/4kD24B~u* !

D2412g2* 2~da/4!gs*
.

~66!
th
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Comparing Eqs.~61! and~66!, we find the following expres-
sion for a l :

a l 5
42D22g2* 1~da/4!gs*

22g2*
. ~67!

It is important to emphasize that the expressions for
critical exponents Eqs.~46!, ~47!, ~51!, ~52!, ~58!, ~60!, and
~67! hold to orders of perturbations. Using these equation
is a simple task to check that the critical exponents ass
ated with the LP satisfy the generalized scaling relatio
given below.

Fisher’s law:

g l 5n l 4~42h l 4!5n l 2~22h l 2!; ~68!

Widom’s law:

g l 5b l ~d l 21!; ~69!

Rushbrooke’s law:

a l 12b l 1g l 52; ~70!

and Josephson’s law~hyperscaling!

22a l 5dbn l 21dan l 4 . ~71!

These scaling relations were first derived by Hornreich1,8

based on a one-loop analysis.

IV. CONCLUSIONS

We have studied the renormalization of the field theo
that describes the LP. This has been done by first stud
the Green functions at the LP. In this case the propag
simplifies considerably and we are capable of making a th
ough analysis of the renormalization structure of the theo
Three points are worth emphasizing:~1! our finding renor-
malization prescriptions for which the renormalization co
stantsZf , Zf2, and Zs depend only on the renormalize
constantu and not on the parameters; ~2! our determining
the precise dependence of the renormalized Green func
on s; ~3! the expansion of the Green functions in the neig
borhood of the LP in terms of the Green functions calcula
at the LP. All three points have allowed us to obtain rath
simple renormalization-group equations whose soluti
have enabled us to identify the critical exponents. Our
pressions are valid for all orders of perturbation and for
values ofm. Using this formalism we have rederived th
scaling relations first put forward by Hornreich, Luban, a
Shtrikman based on a one-loop analysis. Our ideas can p
e

it
i-
s

y
g

or
r-
y.

-

ns
-
d
r
s
-

ll

b-

ably be adapted for other multicritical points.
Finally, our main motivation was the solution of an o

controversy on the values of the critical exponents for the
with m52 andm56. We have solved this problem and w
anticipate the solution. Our technique gives the same ex
nentsh l 2 and h l 4, as obtained by Sak and Grest.15 In the
field-theoretic approach that we have used in order to de
mine the critical exponents, we first have to calculate dim
sional regularization poles of primitively divergent Gree
functions. We have accomplished this without any appro
mations. Our calculations are as accurate as the analo
one for thef4 theory. Since the algebra is rather long, w
shall present the details, as well as the values forn l 2 and
n l 4, to ordere2 in a forthcoming paper.23
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APPENDIX

In this Appendix we illustrate in a simple case the canc
lation of singularities that come from the insertion ofG (2,0)

into other diagrams. This cancellation is a consequence
the interplay of the renormalization constantsZf , Zs and of
the renormalization of the coupling constantl. The renor-
malization ofl plays a double role: it cancels the primitiv
logarithmic divergence ofG (4,0) and, together withZf , it
eliminates part of the divergences due to the insertions
G (2,0). It is convenient, following Amit,19 to analyze both
effects separately by extracting a factorZf

2 from the renor-
malized coupling constantg and define

g5Zf
2 g̃, ~A1!

where g̃ is determined in such a way as to eliminate t
primitive logarithmic divergence of ofG (4,0), and Zf

2 takes
care of the logarithmic divergence ofG (2,0).

The poles ofG (2,0) to two-loop order come from the dia
gramD2 shown in Fig. 1. Recall that

D252l2FAs0

6e
ka

41
B

6e
kb

2 G1regular terms, ~A2!
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whereAÞB, and we have written down explicitly the com
binatoric factor1

6 and the minus sign that multiplies all 1P
diagrams.

Following the prescriptions to obtainGR
(2,0) from G (2,0),

given in Eq.~13!, and recalling thats05Zs
21s, we obtain

GR
~2,0!5ZfZs

21ska
41Zfkb

22g̃2FAs

6e
ka

41
B

6e
kb

2 G
1regular terms. ~A3!

Note that, sinceD2 is orderl2, we can make the replace
mentss0→s and l→g in its contributions toGR

(2,0) . The
error isO(g4). Zf andZs are chosen so that Eqs.~14! and
~15! are satisfied. A simple calculation yields

Zf511
B

6e
g2,

~A4!

Zs511
~B2A!

6e
g2.

Consider the diagrams shown in Fig. 2 that contribute
the connected four-point Green functionGc

(4,0) . Let us con-
sider only the poles of the diagrams and neglect the reg
parts. After expandingl in terms of g̃, the primitive loga-
rithmic divergences of the diagrams (C) and (D) are elimi-
nated and the only divergence that remains comes from
gram (B) in Fig. 2. Diagram (B) results from the insertion o
D2 in the upper left leg of diagram (A). We have to insert
D2 in all legs of diagram (A). Thus, the singular part o
Gc

(4,0) is given by

Gc
~4,0!~k1 ,k2 ,k3 ,k4!52g̃G0~k1!G0~k2!G0~k3!G0~k4!

2g̃3G0
2~k1!G0~k2!G0~k3!G0~k4!

3FAs0

6e
k1a

4 1
B

6e
k1b

2 G2•••

2g̃3G0~k1!G0~k2!G0~k3!G0
2~k4!

3FAs0

6e
k4a

4 1
B

6e
k4b

2 G , ~A5!

FIG. 1. DiagramD2.

FIG. 2. Diagrams that contribute toGc
(4,0) .
o

ar

a-

and

G0~k!5
1

s0ka
41kb

2
~A6!

is the free propagator. Note the absence of the minus sig
the G (2,0) insertion that is now a part ofGc

(4,0) and as such
should not be multiplied by21. We have to show tha
GcR

(4,0)5Zf
22Gc

(4,0) is finite, after we make the replacemen

s0→Zs
21s and g̃→Zf

22g in Gc
(4,0) . The renormalization

constantsZf andZs are given in Eq.~A4!. After expanding
s0, the free propagatorG0(k), to orderg̃3, becomes

G0~k!5G~k!2g̃2
ska

4

6e
~A2B!G2~k!, ~A7!

where

G~k!5
1

ska
41kb

2
. ~A8!

In the terms proportional tog̃3 in Eq. ~A5! we can make the
substitutionss0→s, g̃→g, Zf→1, Zs→1, G0(k)→G(k).
The error is orderg̃5. After making all these replacemen
the terms proportional toA in Eq. ~A5! cancel out. On the
other hand, the terms proportional toB combine in such a
way as to produce terms likeskia

4 1kib
2 5G21(ki), i

51,2,3, and 4, which eliminate one of the squared propa
tors in the orderg3 terms. In this way we obtain the finite
result

Gc
~4,0!~k1 ,k2 ,k3 ,k4!

52S gZf
2414g3

B

6e DG~k1!G~k2!G~k3!G~k4!

52gG~k1!G~k2!G~k3!G~k4!, ~A9!

where we have used the definition ofZf given in Eq.~A4! to
cancel out the singularities proportional toB.

To summarize: the expansion ofs0 in the propagators of
the lower order diagram, withoutG (2,0) insertions, cancels
the poles proportional toA. The poles proportional toB
combine to eliminate the extra propagator on the line wh
G (2,0) was inserted. In this way all terms become proportio
to the lower order diagram. Finally, theZf constant, which
comes from the definition of the renormalized Green fun
tions (GcR

(N,0)5Zf
2N/2Gc

(N,0) , GR
(N,0)5Zf

N/2G (N,0)) and from the

renormalized coupling constant (g5Zf
22g̃), eliminates the

singularities proportional toB. This mechanism generalize
to all orders of perturbation.

Examining the demonstration above, one realizes that
essential ingredient is the presence of a factorZf

21 for each

line of the diagram. Consider a diagram of orderg̃v that
contributes toGc

(N,0) containingI internal lines andN exter-
nal lines. In this case we need a factorZf

2I 2N to eliminate
the divergences. The coupling constant provides a fa
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Zf
22v , another factorZf

N/2 comes from the definition o
GcR

(N,0) . There is a global factorZf
N/222v5Zf

2I 2N , and in the
last equality we used the fact that since each internal lin
shared by two vertices, then 4v52I 1N. Thus,Zf is raised
tt

.,

d

.

y-
n

s.
is

to a power equal to the total number of lines of the diagra
The demonstration forGR

(N,0) is analogous. However, in thi
case the external lines are removed and one needs a g
factor Zf

2I .
r-
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