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Field-theoretic approach to the Lifshitz point
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We study the renormalization of the field theory that describes the Lifshitz dmt Our motivation was
an old controversy on the ordef-values of critical exponents for this multicritical point. First we analyze the
Green functions at the LP where some simplifications occur. The primitively divergent diagrams are identified
and renormalization prescriptions that eliminate ultraviolet divergences to all orders of perturbation are found.
The Green functions in the neighborhood of the LP are expanded in terms of the Green functions calculated at
the LP. This enables us to derive the renormalization-group equation satisfied by the renormalized Green
functions and by analyzing its solutions we find expressions for the critical exponents that hold to all orders of
perturbation. Finally, we obtain generalized scaling relations for the exponents associated with the LP.
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|. INTRODUCTION 1 Y o
. N b A [ [y
The Lifshitz point(LP) (Ref. 1) is a multicritical point 2 qv(q) Ay Ja, q3( 0 Pay)
that occurs in magnetic systerhdiquid crystals® charge- ..
transfer salté, structural phase transitiosdomain-wall X(Pg, P-g,-q,-q5)

instabilities® and ferroelectric crystals. Hornreic and
Selké reviewed most of the work related to this special

_ 2 2 2\2
point. In order to see how a LP arises, consider the Landau v(A)=To+ Qs+ Cole+(da), 2
free energy of a system described by a scalar order parameter - g
M:8
2_ 2 2_ 2
q’ ;1 Qo = 2 A

F=a,M?+a,M*+agM®+---+c;(VM)?+cy(V2M)? )
where®,, is ann-component order parameter. Note that the
' (1) space is divided into two isotropic subspacesanasubspace
of dimensionm, and aB subspace of dimensia+m. A LP
where the coefficienta; andc; depend on the temperatufe s associated with a wave-vector instabilitynndirections of
and on an external parameter The system has a LP if, as the o subspace. A large class of models is described by the
we move along the critical lind(p) (obtained from the Hamiltonian(2), each one parametrized by different values
conditiona,=0), the coefficient,(T,p) changes sign. The of n andm, 1=m=8.! The ANNNI model corresponds to
point (T_,p.) on the critical line at whicte; =0 is the LP. them=n=1 case. At the Lifshitz point, both, andc, go to
In this case, the, term becomes relevant and has to be keptzero and thﬂli term has to be kept. The upper critical di-
A simple model with these properties is the axial next-mensiond,(m), above which classical critical behavior is

nearest-neighbor ISingANNNI) model!® It consists of a expected, is obtained by means of the Ginsburg criterion and
spin+ Ising model on a cubic lattice with nearest-neighboris given by

ferromagnetic couplings and next-nearest-neighbor compet-

ing antiferromagnetic couplings along a single lattice axis. m

Its phase diagram, in thp-T plane, wherep is the ratio dy(m)=4+ -, m=8. 3
between the competing couplings, is divided into three re- 2

gions. In addition to the usual paramagnetic and ferromag-

netic phases, due to the competition there is a region with Using renormalization-group techniques andeaexpan-
modulated phases, which are spatially modulated structuregion aboutd,(m), Hornreich, Luban, and Shtrikmaealcu-
characterized by a wave vectkr High-temperature series lated, for allm, the exponents,, andv,, to ordere, and,
techniques were utilized to study the neighborhood of the LHFOr m=8, v, v 4, andz,4 to ordere?, where the subscript
in the three-dimensional ANNNI model by Redner and Stan-"4 (/2) refers to thex subspace § subspace Mukamel®

4.

ley, Oitmaa, and Mo and Feré&tThe critical exponents,, determineds,, and 7,, to order €? for all m, and B, to
v,, andv, were estimated from Monte Carlo data by Selkeorder €? for m<6 (one does not expect helical long-range
and Fisher? order form=6). Hornreich and Brucé calculated, form

The first renormalization-group calculation of critical ex- =1, the exponents,, and 7, , to ordere® and the exponent
ponents associated with the LP was performed by Hornreich3, to ordere? and their result agrees with Mukamel’s. How-
Luban, and Shtrikmanusing the Ginsburg-Landau-Wilson ever, Sak and GreStperformed an independent calculation,
Hamiltonian for m=2 andm=6, of 7,,, 7,4, and B, to ordere?, ob-
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taining results that are different from Mukamel's. As empha-the temperature and to by ro=T—Ty_ andco~p—po.
sized in a review of the papérScited above, the reason for where To, and p,_ are the mean-field coordinates of the
this discrepancy is not clear. Lifshitz point in thep-T plane. In momentum space there is
All renormalization-group calculations mentioned abovean ultraviolet cutoff, A=1/a, wherea is the lattice spacing
use the Wilson-Fisher momentum space technifugince in the original system.
the Hamiltonian(2) is not rotationally invariant and the All equilibrium properties can be obtained from the one-
propagator contains a quartic term, the two-loop integralparticle irreducible(1Pl) Green functionsT VY (k,, ...,
over momentum shells are extremely involved, and in a"kN,pl, . PLiT0,Co.T N, b, A), which containN external
calculations performed so far different approximations Werfegs, L insertions of$2(p;) operators, and that are renormal-

used. Due to the difficulty in analyzing which approximation jzeq in such a way that the corresponding renormalized func-
gives the correct two-loop corrections, we have resorted to flons I‘(RN,L) are finite in the infinite cutoff limit when the

different approach. We decided to use field theory to calcu- di iod<d h o .
late exactly the ordee? contributions to the critical expo- SPace dimensiod<d,(m). The magnetization is zero in

nents for the Lifshitz point. In order to do this, we first had tothhe paramagnetic phasef. algd no';].null in the ferr]ro”mt?gnetic
analyze the renormalization of the theory described by th@nase in zero magnetic field. In this paper we shall be con-
Hamiltonian(2), and then to adapt to our problem a formal- cerned with the palculauon of crmcal exponents for;he LPin

ism introduced by Weinbetd and applied to critical phe- the paramagnetic and ferromagnetic regions. In this case the

nomena by Zinn-Justiff A clear presentation of this tech- magnetization is constant, and can be used with a single
niqgue can be found in Amit's book In its original COMPonent order parameter. The dependence, ohe num-
formulation, the critical behavior of thé* theory is obtained ber of components ob, is contained only in the combina-
by expanding all Green functions in terms of the massles#orial factors of the Feynman diagrams and can be inserted in
Green functions calculated at the critical point. In our casdhe last stage of calculations.

we expand about the LP. Our formalism applies to all values The inverse of the zero-field susceptibiligy is propor-

of m in the Hamiltonian(2) to all orders in perturbation tional to 29 calculated at zero external momenta:

theory, and allows us to identify the critical exponents in _

terms of the renormalization constants. It is important to x 1=p%9(0,000,c9,rg. N, ¢=0A). )
mention that field theory has already been applied to stud
other properties of the Lifshitz point. Nasser and Ed#tud-
ied crossover phenomena, Abdel-Hady and Eo#inalyzed
tricritical Lifshitz points, and Nasser, Abdel-Hady, and (2,0 _

Folk?? calculated universal amplitude ratios. In the present I#7(0.000,C0,10.1.0.A) =0. ©
work, a thorough study of the renormalization of the field At the Lifshitz point the coefficient oki is zero and, in
theory that describes the LP is made and used to obtain exddition to Eq.(6), the coordinatesq( ,r,) of the Lifshitz

At criticality, xy diverges, and the equation that determines
the critical lineT.(p) is given by

pressions for the critical exponents. point also satisfy
This paper is organized as follows. In Sec. Il we review
briefly the field theory formalism emphasizing the modifica- J
tions that have to be done to apply it to the Hamiltonian — Tk, ~k,00,Co,r0,N,0A) =0. (7)
In Sec. lll we derive the renormalization-group equations, IKa kK2=0

identify the critical exponents, and demonstrate that they sat-

isfy generalized scaling relations. In Sec. IV we present our Recall thatr,=T—T,_ andcy~p—po., and, to lowest
conclusions. Finally, in the Appendix we show in some de-order in perturbation theorgmean-field approximationr
tail the cancellation mechanism of the divergences due to the: T, — T, =0 andc,_ ~ p_— po.=0. As we take fluctuations
insertion of the two-point function into other diagrams. Thisinto account,T, and p, move away from their mean-field

cancellation is more involved than in the usus theory. values. The corrections are determined by expandingnd
¢, in the coupling constant, inserting these expansions in
Il. PERTURBATIVE FIELD THEORY Egs. (6) and (7) and solving them perturbatively. When we
AND CRITICAL PHENOMENA expand the propagators in the Feynman diagrams ahout

=c_ =0 we obtain integrals without any dimensional param-

In this section we present a brief review of renormalizedeters. These integrals in the dimensional regularization
field theory and its relation to critical phenomeflaThe  scheme vanish and all corrections to the mean-field coordi-
starting point consists in using the Ginsburg-Landau-Wilsomates of the Lifshitz point are exactly zero. Thus, Green
effective Hamiltonian2) with an extra parameter,. Thus, functions at the LP are calculated with the propagator

instead ofv(q) given in Eqg.(2), we shall use (aoq§+ qz)*l. From now on we shall use dimensional regu-
larization, calculating integrals in dimensiah+d,(m) — e,
v () =ro+ a3+ Cotla+ 0o(dz)? @ and taking the limitA —o. ’

The dimensionless parametep, as we are going to show  The identification of the primitively divergent 1Pl func-
below, plays an important role in the renormalization of thetions is not straightforward. Due to the fact that daecom-
two-point Green function. As a consequence of our choosingronents of momenta in the propagator are raised to the fourth
it dimensionless, the components of the momentugrhave  power and theB components to the second power in the
dimension of square root of ma$s,, ]=[ %], wherex has  propagators, naive power counting does not give the correct
dimension of mass. The parametegsandc, are related to degree of divergencé of the diagrams. To obtain the correct
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8, we _first integrate over thg cornpi?ngnts. Consider a gen- :Zglz Z;z[F(N’L)(ki Di 0\

eral diagram that contributes """ with N external legs,

L msertqqns of operator$ ,.I internal Ilnes(propagato@s/ 808 OD(p, = PrroN) |t 2]
loops (/ integrations over internal momentandy vertices. N,0°L,2 v BP0 RS op =kl
These variables are not independentgA vertex has four p§:0
lines, a¢? insertion has two lines, and each internal line is
shared between two vertices, or two insertions, or between\t%
vertex and an insertion. Thus, we have the relation

(13

hereg is the renormalized coupling constant=Z 0 is

e renormalizedry parameterZ,,, Z,, andZ . are renor-
malization constants, and is an arbitrary momentum scale.

4v+2L=21+N. (8)  Bare parameters and renormalization constants are calculated

] ) through the renormalization conditions
According to the Feynman rules there is a momentum asso-

ciated with each internal line and integration over this inter-
nal momentum. However, the conservatiénfunctions at

J

vertices and insertions eliminate+L integrations. There —4I‘(Ff'°>(k,—k,a,g,;<) o 2= O (14

remains only one function that expresses the overall mo- Ky ng,K

mentum conservation of the diagram, and we obtain 570

/=l-v—-L+1 9)

Each propagator in this diagram has the form il“m’)(k —K, 0,9, k) =1 (15)

akz R l 1V Y Uki:O )
4 21-1 B K2 2
ool 2 GiatKa| +| 2 aiptKg| | . (10 g
whereK stands for the sum of the external momenta that &0 k,, ... ,k4,0,g,l<)|spa=g, (16)

flow through the propagator and the sum is over internal
momenta. We can use Feynman parameters to put all 2.1 B
propagators together, obtaining a single term in the denomi- Iy’ (kl'kZ-p"”g"‘)'s—%_l' (17)
nator raised to the powdr. After integrating overqig, i
=1,2,...¢, the resulting term in the denominator, which 0.2 _
now only contains the;, components, is raised to the power F(R )(p, ~P.0.8:x) "Piz"z_o' (18
| —/dgl2. Using naive power counting for the remainiag Pf;=0

components, we obtaid=/d,—4(l —/d4/2). Using Egs.
(8) and(9), we rewrite this expression as

LNd“d
2/ 2%

where the renormalization points are defined as follows;
meanso % K, = k(4 8;; — 1)/4; sp, meanso¥%?Z, = 3«/4,
Y%Kk Koo =— kI8, 0V(ky+kp)2=0%p%=k, and, except

in Eq. (15), the external momenta at which the values of the
) Green functions are evaluated have no components iBthe
Recalling thad,,=m, we see that the term that dependsion gypspace. This choice of renormalization points will make
in the equation above cancels whens equal to the upper pare parameters and renormalization constantidepen-
critical dimensiond,,, see Eq.(3). At d=dy, the only 1Pl dent, as we are going to show below.

functions with primitive divergencesse0) arel’ %9, 149, Let us discuss in more detail the dependencE®f-) on
@Y, and(®?. These are the same as in e theory and ;| order to do that we first determine the dependence of
here we can also negleEt®, which gives an infinite con-  p(N.L) gp 6. In perturbation theoryl ™V is a sum of infi-

stant. A _ _ _._ nite 1PI diagrams. Consider one of these diagrams, with
As in the usuakp™ theory, which describes the criticality \ertices,| propagatorsl. insertions of operatorg?2, and /
of the Ising model, all' ™Y at the LP are renormalized —~1/4

e el 0.2 ] _ - loops. If we make the change of varialljg,— o, = Q;,, for
multiplicatively exceptI'(®2), which also requires additive the & components of all’ internal momentay;, thenddg;
renormalization. We have checked this point by performing a L '

L 4domy. Ad9sA. —da/4d_ . . )
two-loop calculation of the primitively divergent Green func- fd_ Giad"40; 5 UQ/d %q' and the whole diagram is mul
tions form=2 and 6. However, there are differences. FortiPlied by a factore,“ "« In the propagators, see EQ.0),
example, the divergent part 629 has the structure after changing variables, only the components of the ex-

ternal momenta are multiplied hyg*. Combining Eqs(8)

and(9) we obtain/=v —N/2+ 1, and the global factor can
also be written asdgd“"’)”*N’z*l. Part of it (o&”d““‘) mul-
tiplies the coupling constanissince each vertex has a factor
e)\. Thus, thea components of all external momenta in the
1P| Green functions are multiplied hy'* and the coupling

constant by a;d"/“. There remains a global factor

- (Ugam) N2=1 This analysis holds for all diagrams BN}
IR (ki,pi,0,9,«) and we can finally write

d
d=|d- 4+7‘” |+ 1)

AO’O

reo_—70
€

ki+Ek§+ O(€9), (12

€

with A#B. Thus, besides field renormalization we need th
renormalization of thery parameter to eliminate the poles of
I'20, In general, the relations betwe&™:Y and'M'1) at
the LP are given by
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TMND (K, py 09, 0) = (e HN2-Ip (N L (5

:(Uda/4)N/2_lF(N'L)(Ull4k klﬁva- pla1p|ﬁazila)\0_da/4)y

C. MERGULHAO, JR. AND C. E. I. CARNEIRO

PRB 58

4k|a’kl,3’o-é/4plalp|ﬁ!1 )\0’ —da /4)

(19

where we used the expressio@=Z;1cr to write the last equality in Eq(19). If we can show that the renormalization
constantZ ,, Z,42, andZ,, do not depend owr, then Eqs(19) and(13) can be used to give the dependencd“%?f"" ono.
Equation(19) enables us to rewrite the renormalization conditipiegs. (14) through(18)] as

k4[Z¢F(2°( Ka kg Zot No™ %) }gkaqz:o, (20

k=0
%[zgﬂ'@(ak;k;,z;l,xa—da/“) },,ki_():l, (21

B K2 = 2

B
o_daIAZéFM,O)(O_l/AkIa !klﬁ ,Z—l ,7\0_d"/4)|spa: g, (22)
Z4Z 202V (0K, Kig, 0o Pp 2, Nt =1, (23)
rO2(opf,p5. 2,  No™ % =T O2(opf pf, 2,1 No™ %) | pe_ 2=0. (24)
p5=0

At this stage it is convenient to introduce the dimension-stated above. An alternative choice for the renormalization

less coupling constantg, andu such that
UK4_D=gcr_da ,
(25)

D=d,/2+d,.

Equatlons (200—(24) can be satisfied by expressmg

ugo~9%* and renormalization constarifs, , Z,, andZ,2 as

power series iru. In fact, due to the rotational symmetry in
each subspac&™'Y) depends only on the external momenta
through scalar products of their and 8 components sepa-
rately. Recall that thex components of the momenta are
. With our choice for the renormal-

always multiplied byo'/*

ization points[see the definitions after E¢L8)] this depen-
dence ono disappears. This is less obvious for EgQ). In
this case rotational invariance implies thaf@?
=I'¢9ok? K3). After calculating its derivative with re-

spect tok4 and evaluating it at the renormalization point

ok =k?, k2 0, a global factore remains. However, this

factor is canceled out by the on the right-hand side of Eq.

(20). Finally, according to Eq(19), when ¢ is factored out
the coupling constank = x*~Puy, is multiplied by o~ %/,

Expanding the produatyo~ %/ in powers ofu, instead of
expanding onlyuy as in the usualp* theory, we eliminate
the last dependence enin Egs.(20)—(24). In this way, we
can satisfy these equations by expressingr~ %" and
renormalization constants as a power serieslionly, as

points consists in choosing, except in EQO0), the external
momenta without components in the subspace. In this
case, it is clear again that Eq20)—(24) do not depend on
o. However, we verified that the resulting two-loop integrals
are more involved than in the previous case. We have
calculated® for m=6, the critical exponents using both
choices for the external momenta. The results are the same
and confirm the independence on

Since the renormalization constants do not dependon
Egs.(13) and(19) imply that

(kl ,Pi o, U, k)
= (gdal)N-1p (L)1 Kig. 0D i LU, K)

=ZZIZZI<;52 T NS(ki,pi 09, Ugk*~P)

— SN0 L %2(p,—p,og,Uupk* " P) ‘ap“—,ﬁ] , (26

2_
ps=0

whereu is defined in Eq(25) and all dependence &f3"")
on o is in thea components of the external momenta and in
an overall multiplicative factor.

In an analogous way we derive the expression for the
renormalized connected Green functi@é’}'g” (see the Ap-
pendix for more detai)s
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G (ki ,pi,o,u,K)

=Z;N/2222 G(N'L)(ki ,Ri ,0'0,U0K47D)

— Sn,00L 26 % (p, — p, 0, Uok? D) O’p4—K2] . (27)

2_
p=0

The renormalization-group equation can now be obtaine

in the standartf way by first movingZ{y* and 2;2 to the

left-hand side of Eq(26) and then applying the operator
(K(?/L?K))\,O.O to the resulting expression. In this way we ob-

tain

Jd 0 Jd N
Ko+ BU) oo YU(U)U£—§7¢(U)+L7¢2(U)]

XTRD (ki ,pi,o,u, k) = Sy 08 26" *B(W), (28)
where
D—4B __Z2 iF(O,Z) _ 4—-D
K (u)_ ¢2K Ik (p! prO;UOK ) 0p1:K2|
p5=0
(29
_ Ju 30
Ed)
[ dInZ, -
vow=| =) (3D
90
alnz¢
Yo = xk—==| (32
)\0'0
vow=-|e5 ) (33

Y

Green functions withT # T can be expanded abott .

This technique is analogous to the expansion of the renor-
malized ¢* above and belowT, in terms of the massless
critical theory introduced by Weinbetgand applied to criti-

cal phenomena by zinn-Justf.In our case, we expand

Green functions abouf=T, and $=0. It can be showt?
that

F(NvL)(kl lpl ,(To,cozo,ﬁrl)\!g)

(80)'(¢)° Lt
% ™ ST P(NHILAD

X (K 1= 0,0r=0\,¢=0).

(39

0,p;,0i=0,00,Co=
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is irrelevant for the determination of the exponents, and
1,4 that are calculated precisely at the Lifshitz point. On the
other handy,, and v, require the determination of Green
functions in the neighborhood of the Lifshitz point. How-
ever, we expect the exponents to be the same if we cross the
boundary between the paramagnetic and the ferromagnetic
phase, through the Lifshitz point, along any direction in the
p-T plane. This is the case for the one-loop corrections. Our
results agree with the one-loop results of Hornreich, Luban,
nd Shtrikmart. We expect that this invariance with direc-
ion also holds for our two-loop calculation of, andv,,.
If we subtract the ternﬁNyoéLzF(O'zﬁ,,pizkzvp%o from

both sides of Eq(34), multiply the resulting expression by
ZN/ZZ¢2, we define

t=2 501, M=2,"%, (35)

wheret and M are finite, introduce the dimensionless cou-
plingsuy andu [see Egs(25)], and use Eq(13) we obtain

ZS/ZZI(;Z F(N'L)(ki ,Pi ,Uo,ér,UOKA_D,(i))

= n,00L 2L (P, — P, 00,0Uo* P,0) |opt=ic2 |,
p5=0
t'mY
ZEJ _J r Itk 1,=0,p;,9;=0,0,U,x)

=I'R"(ki,p;,ot,u,M), (36)

where the double sum in E¢B6) definesI'¢"" in the neigh-
borhood of the LP. Thus, we can renormalize Green func-
tions away fromT using the renormalization constants cal-
culated at the LP solving Eq§20)—(24).

Recalling that eac'{"") in the right-hand side of Eq.
(36) satisfies the renormalization-group equati@®), it is
simple to check that the Green functions away fromsat-
isfy the renormalization-group equation

J Jd J 1 J
5+B(U)—+70(U)rf 2m(U) N+MW

F(RN,L)(ki ,pi o t,u,M, k)

d
+ L+t—
7¢2(U)( t&t

= Sn.00L2k° B(U), (37)

where the terms that appear in E§7) were defined in Egs.
(29—(33).

Finally, Eqgs.(36) and(26) give us the dependence of the
renormalized 1PI Green functions eon

Iﬂ:qN,L)(ki Pio, UM, k)

_ ¢ d_14\N/2— 11 (N,L
= (g9l 1“(R )

X(O’lmkia,kilg ,O'l/4pia ,piﬁ,l,t,U,MO'dals,K). (38)

Note that thec, parameter was kept fixed and equal to zero,Equation(38) is valid in the broken symmetry phase. Above

which is equivalent to keeping=p,. In this way, our
analysis is restricted to the lime=p, in the p-T plane. This

T_, in the paramagnetic phase, one obtains an analogous
expression wittM =0.
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[Il. IDENTIFICATION OF THE CRITICAL EXPONENTS

In field theory the critical behavior is obtained combining
the solutions of the renormalization-group equation at the
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_1_1u*1_
2" 2 p

crki k% t K)
P’ p '

IOk K5, 0,t,u% k) =p2F(R2’O)<

(42

fixed point with dimensional analysis. In our case, param-
eters, fields, and 1P1 Green functions without the momentum Combining Eqs(41) and(42), we finally obtain

conserving 6 function have the following dimensions:
[rol=[x%1, [col=[«°], [ool=[«°], [kgl=[x], [Xdﬁ]
=[x, [ko]=[x"], [x]=[x"], [N]=[x*T™271,
[p()]=[x_*+d52],and [T (k;,p;,...)]
=[ k{02t dp(1=N2)TN=2L] Note that our choosingr, di-
mensionless leads to a coupling constatiat is dimension-
less at the upper critical dimension, as usual.

The exponentsy,», 7,4, v,2, v, 4, and y,, are deter-
mined from the renormalization-group equation Tf¢"® at
the fixed pointu=u*. It suffices to consider the case
=T, for which M=0. Replacingu* for u in Eq. (37) with
N=2,L=0, and recallin{’ that 8(u*)=0, we obtain

17 J J

kot fy:‘ro-%—l— yztﬁ -y F(Rz'o)(ki,kf; ,o,t,u* k) =0,
(39

where y5=v,(U*), yI =v4(U*), ¥ =7y42(u*). The defi-

nitions of y,(u), y,4(u), andy,2(u) are given in Eqs(31),

(32, and (33), respectively. Rotational invariance

in each subspace guarantees th&@O(k,t,u* «)

=T@KS k5, t,u* ).

The general solution of Eq39) is given by
I'2ok: K5, 0.t,u% k)

=KVI®(2'0)(ki,k2,0K77:,tK77§,u*),

(40

where 9 is an arbitrary function. Combining Eq38),
which gives the dependence Bf>® on o, and Eq.(40), we
obtain

I2o(k: K5, 0.t,u* k)

:K72®(2’0)(UK77;k§,kz,l,tK7y§,U*). (41)

On the other hand, if is an arbitrary mass parameter, then

the dimensional analysis yields

I'0(okd k5. t,u*, x)

= p2 M 1 P20

- l_l_ - Iu* -
p2 \p p2 p2\p

The exponenty, is obtained putting=0 andk;=0 in Eq.
(43), and choosing

(43

p= 0_1/(2—7:_)K—'y§_/(2— 72)|ka|4/(2—y3)_ (44)
In this way,
Fg)(aki,ké,U*,K)
= 2= Y2 }) (277 —29))I(2=7})
XK, | B~ 472729 (1,0,0u%), (45
and from Eq.(45) we identify
* *
Y1~ 70‘
77/4=4( 2= ) (46)

In an analogous way, putting=0, k,=0, and choosing
=|kg| in Eq. (43), we obtain the exponent,»,

(47)

N/2= Y’I .

The exponentsy, v,,, andv,, are also obtained from Eg.
(43), keepingt#0 and choosing
p=tH2=72) = %312 73), (48)

Thus,

P20k K2 L4,U* 1) = 17 (k= 7E) 2T 20 eok (ta= 75y~ (B~ 7o =75 %) ~24275), 1),

Inspecting Eq(49) we note that®®? depends only on
the combinationsk,|,, and|kg|£,, with

§/4~t<1/4>[<2—y;)/<2—y§ )

£/t 72), (50)

The correlation lengthg ,~t" 774 and ¢,,~t" "2 define
the exponents 4, andv,,. Thus,

(49)
[
1( 2— 'y’;)
Voa=7 )
4\ o _ *
Y2 (51)
1
Vyp= .
2-v;

Finally, puttingk,=kz=0 in Eq. (49), and recalling that
r'200,0u*,t,k)~x~1~t?, we identify the exponeny, :
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2— y* H(o,t,u* ,M,«)
Y= T (52)
2=,
. . . i\ (1277 +(da/®) 7y
The exponents, is obtained from the renormalization = g 9a/8pl+DR2 =
equation forH (t,u,M, x) =T&9(t,u,M,«). The general so- P
lution of Eq.(37) for N=1 andL=0 at the fixed pointu ¢ o M
=u* is given by Xh( 1’_2<§) u* g dal8 s
* * * * p p
H(o,t,u* ,M,k)=«k"1?h(ok™ Yo tk™ "2,u* Mx"17?). .
(53) | (1271 —(do/8) v},
- Lo x| = (55)
Taking into account the dependencetb&T'*9 on o [see P

Eg. (39)], we obtain
H(o,t,u* M, k)

= o~ 9a/8, (12T +(d,/8) 7},

In order to calculate the exponengs and 6, we choosep
such that

Xh(l,thy’Zk,u* ,a9/8M K(1/2)7f*(da/8)~/f,)_ (54) a8 M K (1/2)’/17(%/8)70:
o —1+012| p 1 (56)
Using dimensional analysis and recalling thdH] P
:[K1+d“/4+d5/2]E[K1+ D/2] [M]Z[K_l+dal4+dﬁ/2]
=[k"1*P”2] and[p]=[«], we obtain In this way, Eq.(55) becomes
|
H(o,t,u* ,M, k) = k(1271 + (a8 V5 (M 1c(127] ~(0al8) 75 ) [D+2- 9] ~(dof4) Y5 WD =2+ 97 ~(du/4) 7]
Xh(1tx™ v5 (M Yo —da/ByZ)(—4+2y; )I[D—2+ 75 —(d/4)75] U* ). (57)
|
Puttingt=0<T=T_ in Eq. (57), and recalling that on this o4, D4R (y¥)
line H~M?/, we identify (62)

D+2—vy; —(d,/4) vk
D—2+yf —(d/d s

% (58

The exponeng is calculated by makingd=0 andt<0

in Eq. (57). The resulting equation can only be satisfied if

Xo=tK~ Y5 (M K(1/2)y’l* —(da/s)y’;)<—4+2y§)/[o—2+ ¥ — (A5l ,
(59

is such thath(1xq,u*,1)=0. Near the LP we expedfl ~
(—t)#7. Thus, from Eq(59) we extract

1[ D=2+ 7 —(d /4y
B=5 : . (60

2—v;

Finally, the exponentr, is associated with the specific

heat at constant field. It can be shdWthat

ro2(0,00,t,M=0u*,k)~t"“. (62)

The general solution of Eq37) with N=0 andL=2 at the

fixed pointu=u* is given by

I'{?(0,00,t,u* x)

* * *
=k 229O0A(gk™ Yotk Y2,u*)

+ .
D—4+2y5 —(dJ4) v

Taking into account the dependenceltf? on o, given in
Eq. (26), we obtain

r2(0,00,t,u* )

— g Uald, 275 +(da/4)yjq)(o,2)(1’tK—y; u*)

O'_d“/4KD_4B(U*)

+ .
D—4+2y5—(d /4)y}

(63)

Dimensional analysis allows us to rewrite this equation as

r2(0,00,t,u* k)

. — 295 +(d /) ¥%
p
-y —d, /4, D—4n %
02 1i 5) 2 o |4 o Kk "B(U*) .
p?\p D—4+2y;—(d./4) v

(64)

Choosingp such that
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t [k 7
E(E) -t ©9

we obtain
O.—da/4KD—4B(u* )

F(RO,Z)(O,O’U,U* ,t,K):O_—da/4K—Zy§+(da/4)y:(tK—7§)[D—4+273—(da/4)y;]/(2—7§)><@(0,2)(1,1“*)_‘_ _
D—4+2y5—(d/4)y*

(66)
|
Comparing Eqs(61) and(66), we find the following expres- ably be adapted for other multicritical points.
sion fora, : Finally, our main motivation was the solution of an old
controversy on the values of the critical exponents for the LP
A= D—2y5 +(d /4 y% with m=2 andm=6. We have solved this problem and we

ay (67) anticipate the solution. Our technique gives the same expo-

*
2=z nentss,, and 7,4, as obtained by Sak and Gréstn the
It is important to emphasize that the expressions for thdield-theoretic approach that we have used in order to deter-
critical exponents Eq€46), (47), (51), (52), (58), (60), and mine the critical exponents, we fir_st _h_ave to _calculate dimen-
(67) hold to orders of perturbations. Using these equations, i§ional regularization poles of primitively divergent Green
is a simple task to check that the critical exponents assocfunctions. We have accomplished this without any approxi-
ated with the LP satisfy the generalized scaling relationdgnations. Our calculations are as accurate as the analogous

given below. one for the¢* theory. Since the algebra is rather long, we
Fisher's law: shall present the details, as well as the valuesifer and
v,4, to ordere? in a forthcoming pape?’
Yr=v (A= n2)=v,2(2= 1,2); (68)
Widom's law: ACKNOWLEDGMENTS
v,=B(6,—1); (69 It is a pleasure to thank Professor Marcia C. Barbosa,

Professor Nestor Caticha, Professor Jorge L. de Lyra, Profes-
sor David Mukamel, Professor Silvio R. Salinas, and Profes-

a,+2B,+y,=2: (7o) ~ sor Carlos S. O. Yokoi for enlightening discussions and use-
ful comments, and FAPESP for financial support.

Rushbrooke’s law:

and Josephson’s laghyperscaling

2—a,=dgv ot davy. (72) APPENDIX
These scaling relations were first derived by Hornréigh, In this Appendix we illustrate in a simple case the cancel-
based on a one-loop analysis. lation of singularities that come from the insertion %"
into other diagrams. This cancellation is a consequence of
IV. CONCLUSIONS the interplay of the renormalization constadts, Z, and of

) o ] the renormalization of the coupling constant The renor-
We have studied the renormalization of the field theorymaization of plays a double role: it cancels the primitive
that describes the LP. This has been done by first St“dy'n%garithmic divergence of 49 and, together withZ,, , it

the Green functions at the LP. In this case the propagatQfjiminates part of the divergences due to the insertions of
simplifies considerably and we are capable of making a thorp(2.0) |t is convenient following Amit® to analyze both

ough analysis of the renormalization structure of the theoryeﬁcects separately by extracting a factbi from the renor-
Three points are worth emphasizing) our finding renor- malized coupling constang and define
malization prescriptions for which the renormalization con- pling

stantsZ,, Z,2, andZ, depend only on the renormalized .
constantu and not on the parameter; (2) our determining g9=249, (A1)
the precise dependence of the renormalized Green functions
on o (3) the expansion of the Green functions in the neigh-whereg is determined in such a way as to eliminate the
borhood of the LP in terms of the Green functions calculategyimitive logarithmic divergence of of 49, andZ2 takes

. . ’ ¢
at the LP. All three points have allowed us to obtain rather.g e of the logarithmic divergence Bf29.

simple renormalizati_on-group eqqations whose solutions The poles off @9 to two-loop order come from the dia-
have _enabled us to identify the critical exponents. Our ex-grasz shown in Fig. 1. Recall that
pressions are valid for all orders of perturbation and for all
values ofm. Using this formalism we have rederived the
scaling relations first put forward by Hornreich, Luban, and ,=—\2

Shtrikman based on a one-loop analysis. Our ideas can prob-

B
6e

AO’O

4
6e k,+

k3| +regular terms,  (A2)
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and

-

FIG. 1. DiagramD. is the free propagator. Note the absence of the minus sign in
the I'?9 insertion that is now a part d{*® and as such

whereA+B, and we have written down explicitly the com- should not be multiplied by-1. We have to show that
. . 1 . . Rt

diagrams. 1 ~ o (4,0) o
Following the prescriptions to obtaifi®® from I'(29), 70—Z, o and g—Z,°g in G¢ . The renormalization

given in Eq.(13), and recalling thatrozzglcr, we obtain constant<Z, andZ,, are given in Eq(Afg' After expanding
oy, the free propagatd®y(k), to orderg®, becomes

— (A6)
ook, + K5

~.| Ao
r§2'°>=z¢z;10k§+z¢kg—g2[6 K4 —k2 .

6e ¥ Go(k)=G(k)— 2(k), (A7)
+regular terms. (A3) where
Note that, sinceD, is order\?, we can make the replace-
mentsoy,— o and\—g in its contributions tol'®?. The
error isO(g?*). Z, andZ, are chosen so that Eqd.4) and Gk)= ——— (A8)

(15) are satisfied. A simple calculation yields gk4 k2

In the terms proportional tg® in Eq. (A5) we can make the

Zy=1+ Egz, substitutionS(ro—nz, 9—09, Z,—1,Z,—1, Go(k)—G(K).
6e (Ad) The error is ordeg®. After making all these replacements
the terms proportional té\ in Eq. (A5) cancel out. On the
other hand, the terms proportional B>combine in such a
7 14 (B=A) . way as to produce terms likerk, +kis=G 1(k), i
7 6e ' =1,2,3, and 4, which eliminate one of the squared propaga-

tors in the ordelg3 terms. In this way we obtain the finite
Consider the diagrams shown in Fig. 2 that contribute taresult
the connected four-point Green functi@{*®. Let us con-
sider only the poles of the diagrams and neglect the regular

parts. After expanding. in terms ofg, the primitive loga- O (ky ka2 kg ky)

rithmic divergences of the diagram€) and @) are elimi-

nated and the only divergence that remains comes from dia- = (gz¢4+ 4¢g° )G(kl)G(kz)G(k3)G(k4)

gram B) in Fig. 2. Diagram B) results from the insertion of

D, in the upper left leg of diagramA). We have to insert = —gG(K;)G(ky)G(k3)G(k,), (A9)

D, in all legs of diagram A). Thus, the singular part of o _ )

G149 is given by where we have used the definitiondf given in Eq.(A4) to
¢ cancel out the singularities proportional Bo
G(c4'°)(k1,k2,k3,k4)= — G0 (Ky)Go(Kp) Go(ks) Gyl ka) To summarize: the expansion af, in the propagators of

the lower order diagram, withodf >? insertions, cancels
—33G2(ky)Gg(Ky) Go(Ks) Go(Ks) the poles proportional t&. The poles proportional t@®
combine to eliminate the extra propagator on the line where

[Acy .+ B, I'20 was inserted. In this way all terms become proportional
X 6e Be Kot 6€k1ﬁ o to the lower order diagram. Finally, th&, constant, which
) comes from the definition of the renormalized Green func-
—9%Go(kq)Go(ky)Go(ks)Ga(ks) tions (G{RV=2,NGMN9, r{9=2zN2TMN0) and from the
[Acy renormalized coupling constang(zz(;zé), eliminates the
X kja kfw}, (A5) singularities proportional t®. This mechanism generalizes
| 6e 6e to all orders of perturbation.

Examining the demonstration above, one realizes that the

essential ingredient is the presence of a faﬂg)? for each
line of the diagram. Consider a diagram of ordgr that
" o o o contributes taG{N"? containingl internal lines andN exter-

nal lines. In this case we need a fac&j' ~" to eliminate
FIG. 2. Diagrams that contribute ®{*9 . the divergences. The coupling constant provides a factor
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Z,?, another factorzg’2 comes from the definition of

G{R?. There is a global factaz}y* *'=z,'"", and in the

last equality we used the fact that since each internal line isase the external lines are removed and one needs a global

shared by two vertices, therv4 21 +N. Thus,Z,, is raised

C. MERGULHAO, JR. AND C. E. I. CARNEIRO
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to a power equal to the total number of lines of the diagram.
The demonstration foF 0" is analogous. However, in this

—1
factorZ o -
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