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Onset of propagation of planar cracks in heterogeneous media
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The dynamics of planar crack fronts in hetergeneous media near the critical load for onset of crack motion
are investigated both analytically and by numerical simulations. Elasticity of the solid leads to long-range
stress transfer along the crack front which is nonmonotonic in time due to the elastic waves in the medium. In
the quasistatic limit with instantaneous stress transfer, the crack front exhibits dynamic critical phenomenon,
with a second-order-like transition from a pinned to a moving phase as the applied load is increased through a
critical value. At criticality, the crack front is self-affine, with a roughness exporden0.34+0.02. The
dynamic exponent is found to be equal to 0.740.03 and the correlation length exponent 1.52+0.02.

These results are in good agreement with those obtained from an epsilon expansion. Sound-travel time delays
in the stress transfer do not change the static exponents but the dynamic expbeenines exactly one. Real

elastic waves, however, lead to overshoots in the stresses above their eventual static value when one part of the
crack front moves forward. Simplified models of these stress overshoots are used to show that overshoots are
relevant at the depinning transition leading to a decrease in the critical load and an apparent jump in the
velocity of the crack front directly to a nonzero value. In finite systems, the velocity also shows hysteretic
behavior as a function of the loading. These results suggest a first-order-like transition. Possible implications
for real tensile cracks are discussg80163-182608)05125-X]

[. INTRODUCTION teractions have earlier been shown to play a crucial role in
the dynamics of the crack front when it is moving with a
The dynamics of cracks in heterogeneous media is a vergonzero mean velocity®
rich field involving much physics that is yet to be under- In the absenceof these stress overshoots—as obtained if
stood. Even in situations in which thgath of a crack is the stress transfer is quasistatic—many aspects of the dynam-
predetermined—for example by a preweakend fault—its dyics of a planar crack front near the onset of motion can be
namics can still be complicated. The simplest situation is anderstood by analogy with interfaces, in particular via a
crack confined to a plane. For small loads across such Bnctional renormalization-group analysis, which for cracks,
planar crack, the crack front will be at rest. As the load is@s for contact lines, entails an expansion about two
gradually increased, the crack front may undergo some trarflimensions. The phenomenology is built on the existence of
sient motion but then again be arrested. If the load is iniwo “phases” which are separated byuaiquecritical load.
creased above a critical load, however, the crack front wilWhen the applied loaG™ is small, there is no steady-state
begin to propagate through the sample. The behavior near f§otion and the crack front is pinned by the random tough-
the onsetof propagation of planar cracks—in particular ten- ness in one of many locally stable configurations—we will
sile cracks—is the subject of this paper. ignore here and henceforth the effects of thermal creep. As
In recent years there has been considerable theoretictye load is increased adiabatically, there are a series of local
progress towards understanding the dynamics of e|asti.t§1$tabi”ties of the crack front which lead to “avalanches”
manifolds moving through random media, such as Chargefhat can become large &° is increased further. Eventually
density waves, fluid-surface contact lines,and interfaces ~ at the critical loadG¢® the crack front depins and begins to
between two phaség All of these exhibit a type of non- move, albeit very jerkily, with a nonzero, mean steady-state
equilibrium critical phenomenon near to the onset of motionvelocity, v. In an infinite system, this transition from the
However there are various features which make the systetationary to the moving phase exhibits nonequilibrium dy-
of a planar crackfront moving through a heterogeneous melamic critical phenomena somewhat analogous to those near
dium different from these other systems. conventional second-order transitions. One macroscopic
For cracks(as well as for contact lingshe bulk degrees manifestation of this is the behavior of the mean velocity of
of freedom lead to effective long-range interactions betweeithe crack front at a load just above the critical load:
the points on the from?® Thus, when a point on the crack
front moves ahead, the stress at all other points on the front v~(G"—GI)A, (D)
increases due to the elastic interactions tending to pull them
forward. In addition, elastic waves are emitted as the crack A natural question that arises is the role of the stress over-
front moves nonuniformly. When one point moves aheadshoots left out of the quasistatic analysis. In particular, what
these waves result in stresses elsewhere on the front whichre their effects on the crack dynamics and how do these
for a while, are greater than those due to just the static elast@ffect the depinning transition? The temporal shape of the
deformations which will obtain long after the waves havestress overshoots seen by a point on the crack front depends
passed. Both thesstress overshootand the long range in- on various microscopic details, such as the microscopic re-
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sponse time of the crack front, acoustic damping processes,
etc. How the dynamics of the crack front depends on the (9tf(Z,t)=J, dt'PJ dz'J(z—2"t—t")a.f(z',t")
nature of the stress overshoots and if there is any limit in vt
which the dynamics of the medium can be neglected are not -y f(z,t),z] +€, 2
understood; these are questions that must be addressed. In
particular, in the presence of stress overshoots, is there \Wherez is the coordinate along the crack froftdenotes the
regime in which a second-order-like transition from theprincipal part of the integralf(z,t) is the deviation of the
pinned to the moving state persists or does the crack frorgrack front from a straight oney, is a random variable asso-
always jump directly to a finite velocity? If the stress over- Ciated with the random position dependent fracture tough-
shoots are “relevant” at the depinning transition do theyness in the solid ané represents the driving “force” due to
make the velocity versus loading curves hysteretic? In eitheihe applied loads”. The kerneld is nonlocal both in space
case, is the “moving phase” just above the threshold a nonand time. This nonlocality arises from the long-range elastic
trivial statistically stationary state or is it characterized byinteractions and the sound waves which are emitted as the
noisy linear dynamics? Thus, there are a large number ofrack moves. Note that because the basic processes near
unanswered questions even in the seemingly simple problethreshold consist of sections of the front moving ahead and
of the dynamics, near the threshold, of a crack front resSstopping—i.e., roughly step functions in time—we have cho-
stricted to move in a plane. sen to write the stress transfer in termsjpff (z',t"), so that

In this paper we study the dynamics of a crack front re-these jumps are approximatedyfunctions int’.
stricted to move in a plane, through a three-dimensional solid We will classify the models based on whether or not the
with heterogeneities only in the local fracture toughness. Thé&ernelJ is monotonicin time at every spatial coordinaie
effects of both the long-range interactions and the stresblonotonicity of the stress transfer plays a crucial role. It
pulses are considered, and some of the questions raisegeans that as a segment of the crack moves forward, the
above addressed. In the absence of the stress overshoots, steess at all other points increases monotonically in time.
obtain, numerically, some of the exponents which characterThis convexityproperty yields stringent constraints on the
ize the transition from the stationary to the moving phasepehavior as shown in Appendix A. It implies that a configu-
check the scaling laws that have been predicted and comparation of the crack which is behind another configuration at
the exponents with the analytical results obtained earlier bpne time will remain behind the other configuration at all
the 2— ¢ expansiorf. We then extend the analysis to include later times. This immediately leads to the conclusion that
the effects of sound-travel time delays in the stress transfethere is a unique critical loaGJ° for monotonic models.
Finally, we treat the effects of the stress overshoots on the
depinning transition. Both the dynamic stresses obtained 1. Quastatic approximation
from a scalar approximation to elasticity and sharp pulselike

overshoots are studied. We first consider the quasistatic approximation in which

sound waves are neglected and the stress transfestian-
. taneousso that the kernel is naturally monotonic. In this
A. Outline case, the basic phenomenology is well knd\frt. As the

Before introducing the basic model and summarizing out0ad G” is gradually increased, segments of the crack front
main results, we give an outline of the paper. In Sec. II, theVill overcome the local toughness and jump forwards, per-
details of the models and the numerical methods employeh@ps causing other segments to jump and thereby triggering
are described. Section Ill A contains the results of the qua@n avalanche which will eventually be stopped by tougher
sistatic model, where the stress transfer is instantaneouggions. We find that, similar to driven interfaces, &t
while Sec. Il B contains those in the case where there aré1e avalanches show a power-law size distribitiop to a
acoustic time delays in the stress transfer. In Sec. IV, th€haracteristic lengtlf_ with larger avalanches being much
effects of various kinds of stress overshoots are exploredarer. The distribution of avalanche size—roughly the extent
Finally the results and their possible implications arealong the crack front of an avalanche—has the form
discussed in Sec. V. The “no-passing rutd&for these mod-
els, which plays an essential role in the analytical results, is 1.
discussed in Appendix A. Appendix B has the detailed forms Prolisize of avalanche-|)~ I—KP(|/§—)- 3
of the kernels used in the numerical simulations.

The cutoff length,£ _, defines the correlation length below
B. Summary of results threshold. As the threshold lod@® is approached, the cor-

The equation of motion for the crack front can be ob-relation lengthé_ diverges as
tained by requiring energy conservation at all points on the
crack front. This implies that the elastic energy flux into the £ ~(G¥F-G")"-. 4
crack, which is a nonlocal functional in both space and time
of the shape of the crack front as well as of the local velocityAt the threshold, there is no characteristic length scale and
of the crack front, must be equal to the surface energy rethe distribution of the avalanche sizes is a pure power law.
quired to create the new crack surface, i.e.,lthoal fracture  From Eq.(3) and scaling relations between the exponents,
toughnessThe generalinearized equation of motion for a we expect that the cumulative probability of the size of an
crack front moving along the positive direction has the avalanche being greater thinas the load is swept slowly
form, from zero to the critical load scales as
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. 1. 1 that in the quasistatic approximatio®J°. However, the dy-
f “RdG" —p(l/§_)~ T (5)  namic exponent for this model is predicted to bel ex-
0 ' actly. Since the exponent identities Eq$2) and (13) also
this is in agreement with the numerics within error bars.  hold for this model, we obtaiB=1, which is consistent
As the load increases above the critical load, the crackvith the numerical results.
front begins to move with a mean velocity, which the mono-

tonicity implies is unique. The velocity scales as in EL, 3. Sound waves and stress overshoots
with the VeIOCity exponent, determined from our numerical The inclusion of the effects of sound waves leads to non-
simulations, monotonic kernels. These result in the stress at points on an

_ advancing crack front being nonmonotonic in time, which
£=0.68+0.06. 6) substantially changes the physics. We have considered two
All quoted error bars here and henceforth are enerrorbars  types of nonmonotonic kernels. The first arises from a scalar
from x? fits. Just aboves2® the motion of the front is very ~approximation to elasticity theory and the second is a simpler
jerky with fluctuations in the velocity correlated up to a dis- 0ne characterized by sharp pulses superimposed on the time-

tance&,, which di\/erges as one approaches the thresho|g9|ayeq stress transfer. In both cases We flnd that the over-
from above ag ™~ (G*—GJ% ¥+, shoots in the stress arelevantat the depinning transition,

The exponentsr, and »_ will be equal i.e.,»,=»_  Causing large avalanches to run away and changing the na-
— v, if there is only one divergent length scale in the prob_ture of the transition from the plr_med to the moving phase.
lem, as predicted by the renormalizatioRG) analysis-* The model with sharp pulses involves honmonotonic ker-
Assuming this two-sided scaling, we can obtain the correlalels of the form
tion length exponent, via finite-size scaling, from the depen- )
dence of the variance of the critical load on the size of the ~ JsdZtia,V)=0(t—[z])/mz°+ as(t—|z))/|2]*. (14)

system as For =0, there are no stress pulses and the model reduces to

»=1.52+0.02. (77 the sound travel-time-delayed model and henGe(a
=0,y) is identical to the threshold force for the quasistatic
At threshold, the crack front is self-affine with correla- model,GZ°. We find, both from analytic arguments and from
tions the numerics, that for small positive and fixedy=1/2, the
threshold load ,7), decreases with increasingas
([0~ f(z+ 1)) =%, ® Colay) "

where ( ) denotes the average over the randomness. The (G- G (a,y))~a”. (15

roughness exponeftis found numerically to be . o )
This behavior is controlled by the relevant eigenvalue for the

{=0.34+0.02, 9 overshoot perturbation at the quasistatic depinning fixed
point.

In a scalar approximation to elasticity theory, the stress
overshoots have long tails in time. In addition, the rough
crack front will affect the propagation of the stress pulses
due to the nonlinearities neglected in EB). We argue that

7~ (10) the basic features found in the sharp stress pulse model still
obtain, in particular that the stress overshoots ratevant
with and change the nature of the transition. Numerical results
using an appropriate class of kernels support this conclusion.
z2=0.74-0.03. (12) For real elastodynamics appropriate to a tensile crack, the
The exponent identities predicted from the scaling and RGtress transfer kernel, for a fixe] is found to be initially
analysis* negative, when the longitudinal sound waves arrive, and then
change sign when the Rayleigh waves arrive. The stress
B=(z—= v, (12 peaks due to the Raleigh waves are similar to those in the
scalar elastic approximation and we believe that they will
_ 1 (13) have similar effects in decreasing the critical load. However,
1-¢° the more complicated nature of the stress transfer suggests
that the depinning transition of tensile cracks may involve
essential additional physics. Some tentative ideas in this di-
rection are discussed at the end of the paper.

With or without the additional complications of the full
elastodynamic stress transfer, the nature of the transition be-

For a model with a monotonic kernel but with the stresstween a static and a moving crack front in the presence of
transfer delayed by the sound travel time, we argue that thstress overshoots is not resolved by our numerical or analyti-
static exponents’ and ¢ areidentical to the corresponding cal results. The simplest scenario, which appears to be sup-
quasistatic case. Also, for every manifestation of the randomported by the numerics, is a “first-order” transition with
ness, the critical load for this mod@‘cd is exactly equal to hysteresis from a pinned phase to a state with nonzero ve-

in excellent agreement with the-2 expansion prediction
{~1/3.

The dynamic exponent is found from the duration of ava-
lanches as a function of sizethey typically last for

14

are found to be satisfied, so that there are awy indepen-
dent exponenissay ¢ andz, characterizing the transition.

2. Effects of sound travel time
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A y Mode I more generally it is the local fracture toughness that includes
the effects of small scale physics for which linear continuum

1 elasticity is not valid. The fracture energy will be provided to
the crack front by a flux of stored elastic energy per unit area

of the new crack surfacej(z,t,{F}), which in general de-
pends on the past history of the whole crack front as well as
its instantaneous local velocigF/Jt. The equation of mo-
tion of the crack front is obtained by requiring that the elastic
energy released be equal to the surface energy required for
fracture, i.e.,

Gz t{F(t'<st)}]=I'[x=F(z1),z] 17

for all z andt. The available energyg has the general form

‘ G=Alv,(z,1)IG[z,H{F(t'<)}], (18

wherev, is the local velocity normal to the crack front and

G, which is independent afF/dt(z,t), is the elastic energy
FIG. 1. Schematic of a planar crack propagating through a hetthat would be released at,() if the crack had advanced

erogeneous medium. The crack front F(z,t) and the free crack adiabaticallyat that point, i.e., withoF/at(z,t) =012

surfaces, which are flat, are shown. The applied modenrsile For a straight stationary crack,=const,
loading is also indicated.

2

— (K2, 19

locity. This may well be the correct scenario, but possible G=G"=
concerns and other possibilities are discussed in Sec. V.
with E the Young’s modulus and the Poisson ratié?
Il. MODELS When the crack advances at a nonzero velocity, not all of the
released elastic energy is available for fracture; some fraction
In this section we discuss the equation of motion for a reabf it goes into the kinetic energy of the moving material very
tensile crack and various approximations to it that we willclose to the front. The fraction d& available for fracture
study. Alv,(z,t)] dependsonly on the local normal velocity; it
decreases from unity for small, and goes to zero fow |
A. Geometry and equation of motion =c, the Raleigh wave velocity. For a straight crack in a

We denote the plane in which the crack is confined system with uniform toughneds this leads to a monotonic

=0, with the crack open in the regiotix<F(z,t). We assume w0y _ pA—1/ o

thatF(z,t) is a single-valued function of so that, the curve v(GH)=A"(GT) 20
x=F(z,t) describes the location of the crack front. Since thefor G greater than the Griffith threshold, i.&7>T". When
crack is planar, the fracture surfaces that it leaves behind ar&™ is smaller than the Griffith threshold we assume that the

of course, smooth. The geometry is shown in Fig. 1. crack does not move, i.e., once the solid breaks, the crack
The vectorial displacement field, satisfies the equations does not to rehedthis is in fact observed in most situations,
of elastodynamics with the absence of rehealing due to plastic and other irre-
versible deformations at the crack tiprhe velocity of the
p&fui:aj aij (16)  crack is thus constrained to be positive.

. We are interested in the behavior near the depinning tran-
with oj; the stress tensor. The displacement fieldx,y  sition at which the crack starts to advance. We will use Eq.
=0",2), has a discontinuity across the crack surface whilg17) as the starting point of our analysis of the dynamics of
the normal stresses;;,(y=0~), must vanish on the crack the crack front at this transition. The fracture toughriéss
surface. For a crack with puretgnsile loadingonly uy, will a heterogeneous solidis a position-dependent quantity,
be discontinuous and will have @ (z,t) —x singularity at  which we write as
the crack front with an amplitude proportional to the local
mode | stress intensity factdf, (z,t).}* As long as the crack F'(x,2)=To[1+ y(x,2)]
remains planar, symmetry undgr— —y implies that the
loading is purely mode I, so that we will simply ugé
=K, .*® We consider the system under a static load applie
far away so that for a straight crack at rése., F(z,t)
=consj, K=K”=const. (y(x,2)¥(x",2)) =Y (x—x",z—2") 21)

As the crack front advance§,—F + 6F, an energy per
unit area of the new crack surfaces exposdd,x  with a functionY which is, generally, short ranged in space.
=F(z,t),z], must be provided to the crack front in order to  The available energy is a complicated nonlinear func-
fracture the solid; in an ideal quasiequilibrium situation thistional of the crack shape. In order to make progress, we will
is just twice the solid-vacuum interfacial energy density,expand the position of the crack front in powers of the de-

with T'y the mean value of the fracture toughness and
&“oy(x,z) the variable part of the fracture toughness which
we will take to have a zero mean and covariance given by
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viation, f(z,t), away from a straight crack. The position of crack front and the other which depends nonlocally on the

the crack front can be written as shape of the crack front at all prior times. Thus, we can
expressP as
F(z,t)=F,+f(z1), (22
whereF, is the original length of the crack which is assumed P(k,0)=—iwB+[Kk|P(w/[K|), (29)

to be much larger than the scales of motion of the crack front .

so that the applied stress intensity factof does not in- Where [k|P(w/|k|) is the nonlocal part which vanishes as
crease significantly as the crack advances. Thus, the storedt—. The equation of motion can then be written in the
elastic energy available to the crack front can thus be writtefiorm

in the form
G=G*[1+9g(zt,{fH)], Bo,f= { sz’,t’<tJ(Z_ ' t—t"Youf(Z' t")—y(z,t) + &
where G” is that for a straight crack of length, for the
given external load. 18f/dz is small, so will beg. To linear xXO|P Jz—27' t—t')
order inf, g can be written as z't'<t
g=—Paf, X oy f(Z' t) = Yzt + €|, (30)
whereP is a kernel and® represents a convolution in space
ar;gllé[ime. For a tensile crack, the Fourier transformPof \ynere
is™
J(z t):f feikz—iwt —mﬁ(w/|k|) (3D
P(k,w)=1{ 2k~ w?/c*~ Jk*— w’/a® ’ i
1 andP denotes the principal part of tlzantegral. The Heavi-
+— fﬁ dWI(W, kz,wZ)J (23)  side step functio® constrains the velocity of the crack front
2 to be positive and will not be written out explicitly hence-
with forth.

The kerneld is readily evaluated from Ed23) to be

- — 02 w)? \/ w \/ w

= mwslen 275 ANV ) Hzt)=— at®(at—|z]) ~ 2ct®(ct—|Z))
(24) ! 77_22(3‘2':2_22) 1/2 71_22(C2t2_22)1/2

the contour integral circling in the counterclockwise direc- 1 ¢

tion the cut in the compleXV plane that runs fromW=b? to + 3€

W=a? with a andb the longitudinal and transverse sound 2m% T \W(we—2z2)%2

velocities, respectively; the argument of the logarithm in Eq.

(24) the function whose zerdV, determines the Raleigh

wave velocity viaW,=c?; andw— w+i0 needed to define

all cuts, e.g.,

(32)
2_ 2/a2— _; [ 21212
k*—w%/e®=—i sgr(w)|ya®/c®—k’ (29 where the branch cuts are defined as previously.
for w?=c?k?. Thus, The stress transfer kernel E§2) is rather complicated. It
is plotted as a function of for a fixed z in Fig. 2 for a
P(k=0,0)=—iwB, (26)  Ppoission’s ratiop=0.25. At the arrival time of the Raleigh
whereB is a positive number. waves,J diverges as 14t—z)'? and then decays slowly to
To linear order irf, the equation of motion can be written 1S long-time value, e.J(z,t—)—1/mz’, the static stress
as transfer kernel. Although the negative stress precursor to the
stress peak that occurs fafta<<t<z/c may well be impor-
Pef=—1y(z,t)+& (27 tant, for our primary purposes here, we believe that the stress

peak is the more important feature. It is therefore useful to

with tht_a_constraint that the local velocity of the crack front study a somewhat simpler model which has a similar stress
be positive and

peak.
- We choose to study acalar approximatiorto elasticity
= S (29) theory. In this approximation the displacement field in the
Gc* solid is take to be a scalar fielg, satisfying the three-

. : . - dimensional scalar wave equation
which acts like the applied driving force on the crack front.

From the general structure of the energy releg$eom Eq. 1
(18), we can separate the kernlinto sum of two terms, _2'9t2<P_V2<P:0- (33
one which just depends only on the local velocity of the
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FIG. 2. Stress transfer kernel for a tensile crack is shown as a
function oft at fixed distance=1. The longitudinal sound velocity a function of time at a fixed distang=1. The thin line is the

is set equal to one and the Poisson ratio chosen to=h@.25. The L
e . . ._kernel for the quasistatic model and the squares that for the sound-
stress pulse is initially negative and then changes sign. The diver- . . .
. . R . travel time-delayed monotonic model. The open circles represent
gences at times corresponding to the longitudinal and Rayleig

wave arrival times have been out off the scalar elastic model withy=0.01, while the thick line repre-
' sents the sharp pulse model wit=0.5 andy=1.5. For all except
the quasistatic model, the stress transfer is zerd $ar.

FIG. 3. Stress transfer kerneldor various models are shown as

The displacement fielg has a discontinuity across the crack
surface while the normal derivative9ygo(y=Oi) (the
“stress”) vanishes on the crack surface. We shall refer tc\/alidity are discussed in Sec. V

th's model as thscalar modelUnder the 'externgl load, the In order to separate the effects of sound-travel time delays
displacement fieldp has ayF(zt)—x singularity at the oy those of stress pulses, we also consider a model with

crack front proportionz?lllto the scalar stres; intensity factoly,onotonic stress transfer characterized by the kernel
K(z,t) as for real elasticity. The corresponding kerRetan

be written in Fourier space &s

This quasistatic model we study first. Its possible regimes of

1
Ju(zt)=—0(t—|2)). (37)
Pscala”™ k*—w®/c (34 TZ
and the stress transfer kernel is This kernel is similar to the quasistatic kernel except that the
stress transfer is not instantaneous. Finally, in order to sepa-
ct®(ct—|z|) rate the effects of the maximum of the stress peaks from
JsdZ,t)= (PO ) (39 those of their tails, and to make the analysis of the stress

peaks more tractable, we study a kernel with sharp pulses

We see that the stress peak, the long-time tail and the statfiefined in Eq.(14). In both of these artificial models, the

stress transfer kernd(z,t— ) are all of similar form to the Velocity of signal propagation has been set equal to one.

real tensile crack case. Snapshots of the stress pulses when the crack frant tis
From the kernels Eq$32) and(35) we see that for both moved ahead by a small amounttatO and held there, are

the tensile crack and the scalar model, sound waves yielghown for the various models in Fig. 3. These are just plots

nonmonotonic kernels which lead, in response to a jump off the respectivel(z,t) for a fixedt.

one segment of the crack front, to ephemeral overshoots of In general, the stress transfer along the crack front will

the stress above the eventual static value. The magnitude gepend on the shape of the front due to nonlinear terms in

the overshoots will be governed by microscopic factors suclthe expansion of[{f}] in powers of f. Throughout this

as the microscopic response time of the crack front andaper we will ignore these. We can justify this approxima-

acoustic damping processes which can be incorporated Bjon for the quasistatic case for which we have an analytic

the replacement ab? by Q%= w?/(1—iw7y) in EQ.(23) or  understanding, and believe that it should generally be valid

Eq. (34) with 74 an acoustic relaxation time. We are inter- on long length and time scales as long as the crack front

ested in how these overshoots affect the dynamics of theoughness exponenf<1; i.e., that the crack front looks

crack front near threshold. But in the limit that all crack straight on asymptotically long scalEs.

disturbances move along the crack slowly compared toe

can neglect the effects of sound waves, and the transfer of B. Numerical implementation

stress will be effectively instantaneous yielding the quasi-

static model with the kernel given By We are interested in the behavior of the crack front near

to when it begins to move. Below and just above the critical

1 load, the motion of the crack front is very jerky and seg-

Jdz,t)= —0(1) (36)  ments of the crack front move ahead and then get stuck in a
Tz tougher region. The basic minimum length, time, and incre-
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ment in the crack front position scales of these processes afgz=0t) involves some arbitrariness. To preserve the
set by the length scales of the toughness variations, the cenonotonicity of the sound-travel time-delayed model, a cer-
efficientB in Eq. (26), etc. Thus to understand this behavior, tain choice is required. This, and the detailed form of the

g.'s natural to simulate thedcrack_ front in a manner which 'SvariousJ(z,t) used are specified in Appendix B. The evalu-
|s(c)rete n slpqce, time, a(;w posmonl. . hich i iodi ation of the elastic force at each time step is done in Fourier
ur simulations were done on a lattice which Is periodiC i, ysing the fast Fourier time algorithm and hence the

in thehdirectiodr!x of crlack aﬁvance,kbfut for Ead?o- f L . time for computation at each time step of the evolution of the
—1, the coordinate along the crack front, the row of pointsiarface scales like2 In L.

are shifted by an independent random amobliz) with 0 The “driving force” € is the forcing parameter and as this
<b(z)<1. The allowed values of the crack front position is increased the crack begins to move. When the total

are thus “force” at a point z on the crack front is greater than the
f(2)=b(2)+n(2) (39) random part of the fracture toughness there, the crack front at

z advances by one lattice constant, i.e.,
with n(z) integers. This avoids the possibility of lattice-

locked behavior in which the crack advances in a relatively f(zt+1)=f(z,t) +O[g(z,t) - y(z) +£&], (43
uniform manner characterized by all points advancing by ONG here the lattice constant is set equal to one @nis the
before any advance again, see discussion in Sec. VD. Per

dic bound uiti 4 in thedirection. W. dtep function.
odic boundary conditions are used In thedirection. We These discrete automaton models for the crack front are

have chosen the sound velocity in our models to be uni%xpected to capture the physics at threshold of the corre-

qorresponding to one lattice spacing a'of‘g the crack front pe§ponding continuum models at length scales long compared
time step(all the models we study numerically have only ON€45 the correlation length of the random toughness. Direct

sound velocny: . . evidence for universality is provided by extensive numerical
At each lattice point an independent value of the randomy;, jations on charge-density-wave modéla two dimen-
fracture toughnessy(x,2), is picked from the intervalO,  gjons which have found universal behavior for smooth and

1.5]. This range is chosen so that the variationsyirare  niacewise continuous pinning forces, as well as for discrete
comparable to the force on points of the crack front on eachiq|yiar automata analogous to the one defined above. We

other which are expect the same to hold here.

L-1

aztH=> X I|z—2'||.t-t") Iil. MONOTONIC MODELS
Z=o =t A. Quasistatic model
X[f(z',t")—f(z',t'=1)], (39

We first consider the quasistatic model. In this approxi-
where, with the periodic boundary conditionzron a crack mation, the stress transfer is instantaneous and the linearized
of lengthL; continuum equation of motion of the crack front takes the

. form
llz=2'||[=min(|z—2'|,|L—[z—2"]]) (40)

is the shortest distance betweeandz'. The stress transfer (7 t)= %Pf dz' w

o T —v[f(z,1),z] +¢&.
kernelsJ are modifications of the continuum kernels of in- (z—2')
terest with the stress pulses designed to die away smoothly (44)
after going through the system once. Thus, although there is
a long-ranged history dependence in all but the quasistati&e
model, we need keep track of the history of the interface only{zi
up to a time corresponding to the sound-travel time througfgC
half the system, i.e., a time df/2, wherelL is the system
size. Thus,

Before presenting the numerical results from which we
termine the values of various critical exponents character-
ng the depinning transition, we give, following Refs. 3,4,
aling arguments for several identities between the expo-
nents and bounds on them.

1. Exponent identities and bounds

J(z,t=L12)=I(z,2)=Jqs(2) = (41 In the moving phase, the crack front will be reasonably
smooth at scales larger than the correlation lerdgtindeed

for z#0. The sum in Eq(39) over —o<t’'<t—L/2—1 can atlarge scaleé~uvt and hence the random toughg@/:{sﬁ,z)

thus be replaced by, J(||z—z'|)f(z' ,t—L/2—1). Care will act essentially like white noise and hen @f(_z,t)

must also Ee taken %vzith(u\e “S(|=.|I12—ir(1teraction” pi)e(ze= 2 —f(0)]1*)~In@). On scales STa”er tha) the front will be

which represents the “principal part” in Eq30). In the roult_r:]1h0vrv(|jt2r| ff(ozr’tt)h_efE:?;c):LNrLfc')tion to be smooth on larger

quasistatic caseand generally for long time scales, each segment of the crack of lengthust take about
the same timer~ £* the correlation time, to move through

)s (42)  each distanceé’. In the region which a segment of lenggh
passes through in time there arg*** random values of the

so that if the crack moves uniformly there are no changes itocal toughness. This means that the force per unit length

g. More generally, in particular for the artificial models, needed to pull the crack segment through this region must

1
|I][?

j(Z: 0t)=-— ;0 qu(||2|
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vary from region to region by at least of order the randomlocal critical force at which this segment begins to move.
variation in the toughness averaged over this region, i.e Below threshold, segments of size of orddnave a substan-
1JET by the central limit theorem. Thus the coursetial chance both of having already moved or not having

grained toughness variations at the scakere moved yet whileG” was increased to its present value. Thus
(¢+ 12 the variations inGg must be comparable 16,—G™. This is
oF =10t ' (45 similar to what was argued for abow&,, but here it does

The force on the segment from the external load and the re§Ot “(allx 5’,‘; as many assumptions about scaling. Siice
of the crack must be just strong enough to overcome thesg 1/6~ ", we obtain Eq(48) just as from above thresh-
random variations. If these forces were too strong, the secld. . _ . o
ment would move more smoothly implying that it must have ~We now obtain scaling relations for the distribution of
been longer thag by definition. On the other hand, if they avalanche sizes below the threshold loading. Following Ref.
were too weak, the segment would not move at all in some We conjecture that the distribution of avalanche<Gdsis
time intervals of lengthr and thus it must have been smaller increased slightly has a scaling form
than &. $|nce the mean external load at which the segment Eraction of avalanches with sizd
moves is
1.
G.=G%, (46) when G*—G*+dG"~ “p(1/¢.) (54)

this implies that either at a given external load, with_~(G.—G*)~". Following

G"— G~ ol = 1/g+ DI, (47  the same reference we obtain
ie. k=1-1lv (55)
2 from the increase in the mean position@gis approached.
v= 1 (48 Now consider the probability distribution of the size aif

avalanches that occur on sweeping the load from zero to the
or the force per unit length from the neighboring sections ofthreshold load,
the crackG,, are comparable téI';. The latter is dominated

by nearby segments so that Fraction of all avalanches with size-|

Gel.

26 28 wf —p(11E_)NA(GP)AG "~ "« W=|"1 (56

Gn~f§ d2;~§§ l, (49) 0 le( g ) A( ) ( )
ieldi where the last equality was obtained using the scaling rela-
yielding tion Eqg. (55) and the observation that the rate of avalanche

1 production,n,(G”), per increase irG* goes to a const at
€= PREL (50 Ge- Thus,
dh Prolisize of a given avalancke )~ 1/12. (57)
and hence,

An exponent identity relating the velocity exponghto
=13 (51 the other exponents follows directly from the picture dis-

If there is only one basic scale of the forces near thresholdtuSSed above of the moving segments of lergtBince the

as simple scaling would suggest, then we should expect thdfne for a segment of length to move ahead a distance
which scales ag¢, is of orderé?, the velocity of the interface

G*—G~G,~dl;. (52)  scales ag‘ % We thus obtain
The rough equality of the typical force per unit lengih, of B=(z—{)v. (58)
a segment of lengtl§ on a segment a distanéeaway and
G”— G, thereby yields the scaling relation Another useful relation can be obtained by considering
adding an additional “force,”e(z,t), on the crack front.
_ 1 53 Denoting the resulting changéf(z,t), we can define the
1o polarizability y as

Similar argument can be used below threshold implying that 8(f(k,w))
the correlation length exponents on the two sides of the tran- x(k,w)= ek o) (59
sition are equal.We will derive the relation Eq(53) more '
directly below. in Fourier space. First consider applying a static force. In this

The bound orv, Eq. (48), comes from an argument simi- case the additional forcg(k,w) can be absorbed by redefin-
lar to that by Harri&® for equilibrium phase transitions and ing
established more generally in Ref. 19. We can also derive it
by considering some segment of the crack front of gjize e(k)

below the threshold, loosely definiiigf= G+ oI ; to be the flk )= T (kw) - k| ° (60
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since the terms from the interaction of the crack front with ' ‘
itself in the equation of motion will then exactly cancel the W”‘MMNMMN«W 10
additional forcee. The statistics of the random toughness WWVWMW 097

variables, in this distorted frame, /N%MMWMMM 0.994

0.980

)/’(X,Z):’)/[X—i_ ¢(Z),Z], (61) WWMWW 0.958
with ¢(z) the Fourier transform o&(k)/|k|, will have the f M%WWWWWV 0841
same statisticas the original ones. This is an importata- WWWM"MW‘W’WM gzzz
tistical symmetryof the system. It is the small-angle form of MMMMWWW }
the statistical rotational invariance. We thus have 0914

8(f(k,w))= e(k)/|k|, and hence po ; ™ W z:;
4 p 0 ) p 0.86
X(k,O) = ? (62) 0 A0 o AAAAAN AN ANCS O L A A8 4 1A AW 2N Ian e 0.0
| | 0 100 200

z
exactly On the other hand, on applying a low-frequency spa-

tially uniform force e(w), we should have FIG. 4. Series of avalanches in the quasistatic model in a system
of size 256, as the load is gradually increased by just enough at each
v step to trigger the most weakly pinned site. The system is then
—lox(0,w)= d—N(Gm—Gc)B_l- (63)  allowed to evolve until motion stops before the load is increased
€ again. The configuration of the crack front is shown by a thin line at
Generally, we expect that(k, ) will have the scaling form the begining and by a thick line at the end of each avalanche to
demarcate the sites which have moved. The position of the crack
-1 front in the figure is displaced vertically by a constant factor after
X(ké, wé%) (64) each avalanche to differentiate between the individual avalanches.
The initial almost straight configuration of the crack front at zero
with the form of the prefactors implied by E¢3). In the Ic_)ad_ is also shown_. The avalanches shown occur at fractional loads
static limit, X(ké,u=0)=0, and (indicated on the rightin the range from 0.86 of the threshold load
to the threshold load at which point the crack front starts moving.

G"—G.)*?
X(k,w)~( )

C
—iw

lim x(k,0)~ &(G”—G)?P 1 w . (65 2. Numerical results
u
w0 u=0 We now present the numerical results for the quasistatic
Comparing Eqs(62) and (65) we see that model from which we obtain the values of the various expo-
nents. As discussed earlier, we simulate a discretized version
E(G"—GP ™t 1 of this equation, here simply
—_— 7 (66)
We K L1
- oy fzt+1)=f(zt)+ 0| S M—y(zt)-ﬂ‘)
But sinceé~(G”—G,) ¥, we have * ' = (-2 ' '
B—1—wv(z—1)=0. (67) (70)

wherelL is the system size, to study the dynamics at thresh-
old. We start with a pinned configuration of the crack front
that is as close as possible to being straight and gradually
increase the load until the most weakly pinned point be-
©omes unstable and jumps. This point, in turn, may pull
along other points on the crack front due to the elastic inter-
actions, causing an avalanche. During the avalanche, the load
is held fixed. Once the avalanche subsides, the load is in-

Using the expression fo8 from Eq. (58) we again obtain
Eqg. (53). As noted above, this simply relates the force of
length £ segments on each other & -G, .

We thus have two independent exponents from which th
others can be obtained. In addition, from EG) and (58)
we obtain the bounds

(=153, (68) creased once again until another point becomes unstable, and
and hence so on. A series of avalanches, as the load is gradually in-
creased in this way is shown in Fig. 4. A space-time plot of
v=3/2. (69)  one of the large avalanches is shown in Fig. 5.

Defining thesizeof an avalanche is somewhat problem-
All of the exponent identities and the form of scaling func- atic. We have chosen to define it as the number of distinct
tions such as Eqg.(64) have been derived from a points on the crack front that move during the course of the
renormalization-group expansion about two dimensionsvalanche. Note that various other ways of defining the
which is the critical dimension for the depinning transition of “size” of an avalanche along the crack front by, e.g., its
manifolds driven through random media with long-range in-“moment of inertia” about its center of mass or by its maxi-
teractions decaying asrf/'t,—i.e., |k| in Fourier spacé®  mum extent have problems because of the power-law tail of
The analytical results from thé=2— & expansion are com- the interactions which can trigger some jumps far away. In
pared with our numerical results in the next subsection.  addition, periodic boundary conditions would complicate a



PRB 58 ONSET OF PROPAGATION OF PLANAR CRACKS IN ... 6035
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FIG. 5. Space-time plot of a large avalanche in the quasistatic F|G. 7. Log-log plot of the mean duration of an avalanche ver-
model in a system of size 512, with the points on the interfacesys the bin size is shown for the quasistatic model with system size
which moved ahead at each instant of time indicated. 1024. The avalanches are binned according to their size which is

determined by the number of sites that moved during that ava-
definition. To study the statistics of many avalanches, thanche. Thenth bin is defined by (bin size)2<avalanche size
avalanche sizes are binned in powers of 2. To measure the,2(bin size). The slope of the graph yields a dynamic critical
dynamic exponert, statistics of avalanche sizes versus theirexponent ofz=0.74+0.03.
durations are collected for all the avalanches that occur as the
load is increased from zero to the critical load. The log-logtions of Narayaft yield the leading irrelevant eigenvalue at
plot of the number of avalanches in a given bin against thehe critical fixed point to be approximately /3~ —1/3 in
bin size is shown in Fig. 6 and a linear fit gives us a slope obur case withe=1. We thus fit the data to the formy,

2.14+0.3 in agreement with E¢57) but with large errors.  =CIZ,/(1+ A, Y® and find thatA,<1 and hence this fit
Figure 7 shows the plot of the mean duration of ava-gives the same value afto within error bars.
lanches in a binry, versus bin sizd;,,, for a system of From thee expansior?® it was found that

length 1024. From the slope of the log-log plot we determine
z~1-2¢/9+ O(£?)~7/9~0.78 (72)

2=0.74-0.03, (71 for e=2—d=1. If we neglect tha)(¢?) and higher terms,

As is generally true, one must be very careful not to takethis agrees with our numerical result within error bars.

such statistical estimates of uncertainties in exponents at face In a finite system, there is some ambiguity in the defini-
value due to the existence of corrections to scaling. Fortution of the critical load. For example, if the system extends
nately, in our case, the2e expansion provides an estimate Very far in the direction of motion, the whole crack front

of the leading correction to scaling exponent; the calculawould typically move from its initial position but get stuck in
a rare tough region far away. In order not to bias the results

10° ‘ , ‘ ‘ by choice of the system extent in the direction of motion, we
define the critical load as the load at which every point but
° L=1024 one on the interface has moved at least once. For a large
o system we find

G.~0.97. (73)

Note that the random forces, the critical driving force and the
nearest-neighbor elastic forces are very comparable.

Right at threshold the crack front is found to be self-affine
as expected. Figure 8 shows the plot of the power spectrum
2| ] of the crack front|f(k)|?) at threshold, as a function of the
® wave vector for various system sizes ranging from 4 to 4096.
We expect the power spectrum to ke?¢*1) for small k.

The best fit to a straight line is shown in Fig. 9 for a system
n 16 ” 256 To24  size of 4096 averaged over 1000 samples. The slope of this
Bin Size line gives us 2+ 1, from which we determine

No. of events
>

FIG. 6. As the load is increased from zero towards the critical {=0.34+0.02. (74)
load, the avalanches that occur in the quasistatic model are binned
according to their size, which is defined as the number of distincSUrprisingly, even at very small wave vectors, the power
sites that move during an avalanche. The bin is defined byspectrum still looks linear on a log-log plot and we do not
(bin size)A/2<avalanche size \2(bin size). The number of ava- See significant finite-size effects even at the wave vector cor-
lanches in each bin are plotted versus the bin size for systems ¢esponding to half the system size. Since the data in Fig. 9
size 1024. The slope of the log-log plot is 2:1@.3. have very small statistical uncertainties, we can try to fit the
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k FIG. 10. Log-log plot of the variance of the quasistatic threshold

load as a function of the system size in the range from 4 to 8096.
FIG. 8. Log-log plot of the power spectrum versus the waveprom a linear fit over the full range;=1.80+0.05, while a fit for
vector is shown for systems at the quasistatic critical load, ranging;jzes from 256 to 8096 yieldg=1.72+0.12.
in size from 4 to 4096. They have been shifted along the vertical

axis for clarity. suming that there is only one important length scélehe
variance of the threshold fordAG.(L)]? scales with the

power spectrum to the fornCk™(#*Y(1+A kY3 using system length_ as

corrections to scaling. The coefficieff turns out to be very

small and we obtain the same roughness exponent with com- [AG(L)]?~L"2", (76)

parable error bars. This gives us some confidence in the es-

timate Eq.(74). A direct fit to L~ of the plot in Fig. 10 of the variance
Our result foré‘ satisfies, and may saturate, the bo[é‘nd of the threshold load versus the system size, for system

=1/3. The prediction of from thes expansion is lengths ranging from 4 to 8192, leads to=1.80+0.05,

while a fit for system lengths ranging from 256 to 8192,
{=¢l3+0(e") (75  givesy=1.72+0.12. But a systematic curvature can be seen.

for all n,%i.e., there appears to be no corrections to all ordersl,n light of the knowledge of the corrections to scaling, we

ig =1y =1/

in & although “nonperturbative” corrections cannot be ruled ﬁ?)%c\i/:/)hilz:ittgl;tg% fiting to the forr®L™*/(1+A,L"*)
out. Nevertheless, the bound E§8), thee expansion result
Eg. (75, and the numerics suggest that perhgpsay be y=1.52+0.02. (77
exactly 1/3 although at this point we know of no solid argu-_ =~ . o
ment that yields 1/3 as an upp@o complement the lowgr This fit is shown in Fig. 11 for systems of length 4 to 8192
bound. lattice constants. In this case, as suggested by the Alaia,

The correlation exponent can be obtained via the finite- N0t small and the fit indeed yields,=0.87. Note that the
size scaling hypothesis by measuring the variance of th&Xpected scaling equality E(63) is obeyed, bubnly when

threshold loadG (L) as a function of the system size. As- the corrections to scaling are included
As the load is increased above threshold, the crack front

begins to move. As for the critical load, we must be careful

-

e
G
0 2
N | ) \
™
10% : : : 10° : : ‘
0.001 0.01 0.10 1.0 1 10 100 1000 10000
k System Size

FIG. 9. Log-log plot of the power spectrum for system size  FIG. 11. Best fit of the variance of the quasistatic threshold load
4096, averaged over 1000 samples and a linear fit over &R04 as a function of the system size to the foh~Y*/(1+A L),
=<0.35 which leads to 2+1=1.68+0.04. This yieldsy=1.52+0.02 andA,=0.87+0.03.
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1.00 ‘ - random toughnesg(x,z), there would have been an inter-
mediate length scale and this would no longer have been the
L=1024 case. Note that the renormalization-group methods can be
used to show that nonlinearities associated with higher-order
terms in the expansion af[{f}] are, for quasistatic stress
transfer, irrelevant for the critical behavior. One could have
> 0.10 guessed this since, from the homogeneityGpff}] higher
powers off have an equivalent number of powers of gradi-
ents, so that <1 implies that they are irrelevant.

B. Monotonic model with time-delayed interaction

0.01 In the previous section, we saw that the quasistatic ap-
0.01 0.10 1.00 e ; i .

GG proximation to stress transfer gave rise to a critical depinning
e transition with a dynamic exponent 1. This means that for

FIG. 12. Log-log plot of the mean velocity in the quasistatic large enough avalanches which typically occur only if the

model versus the the excess of the load above the critical value. TH@ad is close enough 16, the effective disturbance veloc-
slope yieldsg=0.68+0.06. ity of an avalanche of sizé will be I/1* times the basic

microscopic velocity scale of disturbances set by the dissipa-
how we define the velocity for finite length crack fronts. If tive coefficientB in Eq. (29). Thus for sufficiently large,
we choose a system of great exteWt, in the direction of the quasistatic avalanches will progress faster than the sound
motion, the front will tend to get stuck in anomalously toughspeed. This is clearly unphysical and in this regime, the
regions; this effect will be more pronounced for smalBut ~ sound travel-time delays in the stress transfer must play a
since we are interested in the critical behavior and we have le. In order to understand the effects of these and of stress
good handle on the scaling df with L, we can instead Overshoots separately, we study a monotonic model—i.e.,
choose systems of extet~ C,L¢ with periodic boundary ~With no stress overshoots—but with sound-travel time de-
conditions in the direction of motion. For monotonic models, lays. The simplest form of this is to simply replace th¢z)
the convexity then implies convergence to a unique steadip the quasistatic stress transfer witt(t—|z[). On a lattice
state'® Since at threshold f~L¢ with a coefficient roughly ~ the stress transfer kernel becomes
of order unity, we choos€,,=4.
There is a complication that must be considered: due to Ot—||z|) 1
the possibility of a pinned configuration for loads above that ~ Ju(Z0)= W(l_ 82,0~ 02,0 2 W (81
at which the last point became depinned, the mininGifnat z 20 iz
whichv>0 will sometimes be greater than our definition of some care is needed in choosing the second, local, term in
G, by a random amount whose distribution depend<on Eq. (81). The natural choice would be to fi(z=0) by the
From scaling we expect condition that for all timesy,J(z,t)=0. This condition is
GMOVINg_ 51/ (79 satisfied for the qua§i§tatic model and for the scalar model as
min c ' well as for real elasticity. It ensures that for a straight crack,
By scaling, there will thus be a typical minimum velocity ~ the instantaneous crack front velocity is a function solely of
the instantaneous external load and independent of the past
U min~ LILPV ~1/L77 ¢, (79 history of the crack, since for a straight crack the effect of
Note that the minimum velocity due to the discreteness o he crack front interactions vanishes at all times. If we made
time is much less than this and hence negligible for ldrge 2(z1)=0 .here also, however, E¢81) vyould no longer
: . be monotonic. Rather, the stress at a pairdfter a jump at
Figure 12 shows a plot of the mean velocity of the front as

X ) the same point, would decrease in time as the integrated
a fgncﬂon of the _Ioadmg for a system of length 1024 frOmstress transferred to the rest of the crack increases; this would
which we determine

act like a stress overshoot. For now we will, therefore, give
8=0.68+0.06. (80) up the independence (.)f.a straig.h.t crack on its past history to
preserve the monotonicity condition.
The fit using the corrections to scaling leads to the same \We see that in this model the force on any given point on
value of 8 within the error bars. Surprisingly, there do not the crack front at any given time is always less than or equal
seem to be substantial deviations e G "9. to the equivalent force for the same configuration in the qua-
The e-expansion prediction i8=2/3 if we use{=1/3  sistatic model. Note also that for a crack front which is sta-
and z=7/9; again there is reasonably good agreement betionary after some timet, in the discrete-time periodic
tween our numerical results and tleexpansion although boundary-condition version of this modelee Appendix B
our error bars are larger f@ than forz, v or . the force at all points on the crack front, will reach the qua-
In our numerical results, the critical force and all of the sistatic value by timet+L/2. As shown in Appendix A,
coefficients in scaling laws are of order unity suggesting thathese conditions imply that if the external load is increased
we have no intermediate length, displacement or time scaleadiabatically from the same initial conditions, the time-
and thus that the scaling should work well for all but smalldelayed model, Eq81), hasexactly the same static proper-
size samples. If we had chosen too narrow a distribution ofies as the quasistatic model. Indeed, for a given realization
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FIG. 13. Space-time plot of an avalanche f@ the time- kernel in a system of size 64, and a linear fit to the data.

delayed monotonic moddtop) and (b) for the quasistatic model for w<k, since the Ifk| term fromJ will dominate thee

(bottom) starting from the same initial configuration of the crack dependence. In mean-field theorv. this gives rise to times
front. The sets of jumps in the two figures are identical, but they P . Y 9

occur at different times. scaling with lengths as

of the random toughness, every finite avalanche that occurs T¢in & (85
in the two models will be identical, except for the times atIn the absence of the [k, renormalization due to the random
which points on the crack front jump. Therefore, both theroughness would makBe decrease with length scale in 2
models will have identical threshold forces, and the expo-—& dimensions. However, the [, being singular, cannot
nentsy and{ are then obviously identical to their quasistatic renormalize. But itcan feed into the renormalization d3.

values. Following this through yields
The space-time plot of a particular avalanche as one site is ~
triggered by increasing the load, is shown in Fig. 13 for the T~ CE (86)

quasistatic model and of the identical avalanche in thei\n dimensionsd=2— & with @ an effective velocity of order
sound-travel time-delayed model starting from the same ini- for small &. but presumably of order unit ir): our one-
tial configuration of the crack front in a system of length Simensionalsézase pThus we );ee that assur):zi leads
512. It is evident that the dynamics of the avalanches in th ack to ' nd
two models is very different.
The Fourier transform of the continuum version of the -

. ; . z=1, (87
time-delayed kernel in Eq81) is given by ) ) ) o

which we believe should be correct witlo logarithmic cor-

1 i i rections. Using the exponent identities E(&8) and(53) we
J(k,w)=— E[ — ;(k+ w)In|k+ o] +;(k—w)ln|k— o obtain
1 1 B=1. (88
- §|k+ w|— §|k_ | +U(w), 82 A plot of the load versus the mean crack velocity is shown in

Fig. 14 for a system of size 64. It is very close to linear
where there is an ambiguity in the uniforks=0 part of the  although the range is small enough that one cannot reliably
Fourier transformU(w). It is clear that the dynamic expo- extractS. Note that because of the dependence on the past
nent must bez=1. Let us assume that>1 or more pre- history, we are limited here to rather small samples. While
cisely that the characteristic time>¢ near threshold. We the computations for each time step for the quasistatic model
are thus interested in the behavior in the scaling limit intake a time of ordet In L, those for the sound-travel time-
which |w|<[K|. In this limit delayed model také? In L and hence even for a system of

length 64, the statistics are more difficult to obtain.

||

2
J(K,w)~= ;|n|k|+ o (83)  |v. STRESS OVERSHOOTS: NONMONOTONIC KERNELS

. . . . We now turn to more realistic stress transfer kernels. We
From the equation of motion, the response function defined, 5 e seen from Eq¢34) and (23), that bulk sound modes
in Eq. (59) is in the absence of the randomness naturally lead to nonmonotonic kernels of the stress transfer
along the crack front. A regime of negative stress transfer, as
_ 1 _ 1 occurs at intermediate times for tensile cracks, cannot by
X~ TiwoBtiwd(kw) —io(2/mn(Lk])+ K] itself, change the behavior much from the time-delayed
(84 monotonic models since, in the absence of stress overshoots,
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—G¢(a,y)/GZ for a system of size 64, is plotted as a function of
FIG. 15. Space-time plot of an avalanche for the time-delayedy? for y=0.5, 1, 1.5, 3.5, anch.
monotonic modelopen circleg and the stress pulse model with
20.5,’)/: 1.5 (Wlth dOtQ from identical initial conditions. It can be |ng over thesameset of random samp]es with and without
seen that a large number of additional sites jump for the model withhe overshoot; this greatly reduces the error bars. The value
stress overshoots. of G, can be accurately determined from the quasistatic

. ) , , ) ) .. model where the code is much less numerically intensive.
the static behavior will again be identical to the quasistatiG=q, a1l the values ofy studied,y=0.5, we find results con-
model. Thus the primary differences between the timeigiant with ’ ’

delayed model and more realistic models must be associated
with the stress overshoo_ts. The actual shape of _the stress GI-Gy(a,y)~a? (90)
overshoot may be complicated by various factors including
the effects of multiple scattering of sound waves off thefor small «, a form which will be derived below. Thus the
crack front. Therefore, we would like to understand whatovershoot appears to always f®evantat the quastatic de-
features of the stress overshoot play a crucial role in thginning fixed point.
dynamics near threshold. To do this, we study simpler mod- One of the advantages of starting with monotonic models
els and hope that the conclusions drawn from these modefsr which we have quite a detailed understanding, is that the
will help us understand the case of real elastodynamics. effects of perturbations away from these can be analyzed
using known scaling properties of the monotonic models. We
A. Sharp stress pulses would like to carry this out for weak stress pulses added to
. the time-delayed monotonic model; i.e., to consider the be-
{;‘Pavior of the crack with stress transfer given by Ep) for
all . In order to do this we first obtain the response to a
glestress overshoot.
We focus on a given space-time point, &) which we
denote ‘A” and an avalanche that started at (0,0) in the
Jsp(z,t;oz,y)=®(t—|Z|)/22+a5(t—|z|)/|2| Y. (89) time-_delayeq mod_el V\_/it_h_out stress pulses. For simplicity we
restrict consideration initially tay/—oc so that only the near-
This kernel reduces to the previous case of the monotoniest neighbor of a jump site will feel a stress pulse which will
time-delayed interactions when=0. be a above the static stress. In order foto be affected, one
In Fig. 15 a large avalanche that occurs on triggering thexf the two neighboring sites of, say Z—1, must have
most weakly pinned site is shown for both the monotonicjumped at timeT—1 producing a pulse; denote this space-
time-delayed kernel and for the kerndl(zt;a=0.5, y  time point “P.” Three conditions must be met fok to be
=1.5) starting from the same initial configuration of the affected by the stress pulse frof+1, i.e., for pointZ to
crack front and the same configuration of random toughjump an extra time. FirstA must be withina of jumping
nesses. We see that in the presence of the overshoot maagyway for the stress pulse to have been able to trigger its
more sites are triggered than for the monotonic kernel. Oujump. The force increment needed for individual sites to
data show that even for small overshoots their effects builjump are uniformly distributed for sites near to jumping, so
and cause sufficiently large avalanches to run away. Thighe probability of this is simply of ordes. Second, the in-
causes the crack front to depin and start moving at a threslgrease in stress at sifeaftertime T must be less than, or
old load which is less than the one for the quasistatic stresgise the site would have jumped again regardless; denote this

We first consider a simple model of the overshoots
which sharp stress pulse travels with the sound speed.
take the amplitude of the overshoot to decay as a power Ia\g/in
of distance as it moves along the crack front. The continuum
version of the kernel we study has the form

transfer. condition “L" (for “later stress”). Third, the neighbor must
We find that for any value of and any nonzera, the jump atT—1, i.e., the jumpP must occur.
threshold loadG.(«, ) is lower thanG.(a=0,y)=GZJ°. A The scaling properties of avalanches imply that within the

plot of (GY°— G(a,y)) as a function ofx? is shown in Fig.  space-time volume of a large avalanche, there are holes on
16 for various values of, including y=c°, for which only  all scales(sincel?l<I?) and subavalanches of all sizes; see
the nearest neighbor of a jumped site feels the overshooEig. 13a). Consider a subavalanche that occurs in a region
The shift in threshold load frors . was obtained by averag- within a time 7<<T beforeP and within distance of order
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t in a space-time region of extent, X 7, nearP. SincelL is
T 4 A then quite probable

Profjump at P and L|size (S)~ 7,]

~ 1%t gt TV, (92)

which is simply proportional to the increase in stressPat
Sound cone
of P due toS.
What is the chance that there is such an appropriate sub-
avalanches in the space-time region within, of P? If there
is any activity in this region, then it should include subava-
Sub avalanche S lanches on all scales, but we also need this to beldhte
g activity in this region(or elseL will be violated. If T is of
A & order the duration of the full avalanche, the last activity in
\¥ 4 this region could occur anywhere within a time of order
{ Thus

z

Proklast activity being within7, of T)~7,/T. (93
FIG. 17. Schematic of situation used in estimating the effects of . . . .
a single small stress pulse. The space-time péirgt which we V€ obtain the probability of a pulse-triggered extra jump at
estimate the probability of an additional jump due to a stress pulsé Py combining all the factors from Eqg92),(93), and the
from its neighbor jumping at a space-time poitandP’s “sound  Probability « of siteZ being close to jumping again, yielding
cone” showingP’s isolation from the subavalanct&by a scaler . . .
are all shown. Prok( pulse triggering extra jump af\| avalanche

2
from P that is mostly contained within the “backward sound of size~T)~ 2_1_ Ea~ bl (94)
cone” of P, as shown in Fig. 17. IP is not well enough T ¢T T

“isolated” from the bulk of this subavalanche, then we must
consider a smaller subavalanche until we find the largest
such that there is a subavalanche with size of ordéom
which P is “isolated” in space time by order (if this does

not exist, then it is highly unlikely that condition can be

using ther, given by Eq.(91). Since such an event could
occur over a range of times of ordérand the number of
sites in the original avalanche is of orderthe total number
of primary extra triggers caused by the pulses is of order

satisfied. By isolated, we mean that there are féar no N;~ @?T. (95)
jumps on or outside of the backwards sound cond®ef

“P’s cone”—within a timer. This is illustrated in Fig. 17. The spatial density of the primary extra triggers is small
The maximal such subavalanche which we dend®g typi- so that each of them will cause roughly independent second-

cally has of order?*¢ jumps of which a fraction I, i.e.,7¢,  ary avalanches under the dynamics without further stress
are onP’s sound cone. Since these are typically a distanceulses. The probability of large avalanches falls off slowly
=7 from Z, they each cause the stressPato increase by with their size up to the correlation leng#h which we as-
order 142. Thus the isolated space-time poitwill typi- sume is bigger thaf so that the original avalanche was not
cally have a stress increase ofrd/¢ (between timeT—2 exponentially unlikely. This means that the total number of
and T—1) due to the subavalanclt® the probability of a jumps in these secondary avalanches will be dominated by

jump atP given S is of this same order. the largest one which has size
The condition thaP is isolated fromS is not a stringent U
one. Any jump inS outside ofA’s cone (which is almost | max (N1) ™. (96)

identical toP’s cone will cause a stress increagq at Z
after timeT. Since there will be of order!™¢ such jumps,
each yielding a stress increasezaof order 142, A, will be
of order 11~ ¢. This stress increase will be larger than M~ (?T)1+ 0/ (97)

and hence violate conditioh, unless7>1/a¥®~9 (note _

that obtaining this condition by either a smaller subavalanch&SINg«=¢. _ _ _
with anomalously few jumps outside @'s cone or byP I_Each of th_ese secondary jumps has the potential of trig-
being less isolated frorB is very unlikely. The probability ~9€fing more jumps due to pulses. The number of such sec-
of both satisfying the condition. that the stress increase ondary triggersN, will be much less thaN; unlessM,

after T be smalland having a jump aP, is thus controlled ~Ma; the original number of jumps. Thus, for fixdd small
by the smallest enougha will cause a small number of secondary jumps,

fewer tertiary ones, even fewer quaternary ones, etc. But if

Then the total number of secondary jumps caused by the
primary extra triggers is

11—
Ta~1/a ( 0 (91) M2~M1~T1+{, (98)

for which L is satisfied with reasonable probability. The rel- i.e., T~a~?~9 the process will run away. Thus we ex-
evant subavalanché&are thus of size of order, and occur  pect that the stress pulses will become important when
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FIG. 19. Log-log plot of the fractional decrease of the threshold
force with scalar elastic stress transf@3°— G(7,)]/GJ* versus
FIG. 18. The velocity of the crack front for the stress pulse 7o iS shown for systems of size 128. The slope of the linear fit is
model witha=0.5, y=1.5 is shown as a function of cycle number —1.56.
for a system of size 64 and extent 16 with periodic boundary con-
ditions in the direction of motion. The crack front goes through the B. Scalar elastic approximation
same randqm sample in ea_ch cycle and the velpcity aV(_eraged oVer \ye finally consider kernels of the form
each cycle is measured while the external load is kept fixed.

cycle number

(t+70)O(t—|2|)

7T22[(t+ 7_0)2_ 22] 12’

E~&,~a 2170, (99) Jdz,t;7)= (100

which is appropriate for the scalar approximation to elastic-

, 0 ity. Unlike the sharp pulse models the stress overshoot has a

cal load proportional ta, i.e., of exactly the form Eq90)  |ong tail in time. We have cut off the singularity at the sound

that provided a good fit to the numerical data. __arrival time by a timer, which crudely represents the mi-
Longer range pulses can be considered by a generallzatl(gposcopic response time. Fa§— o, this model becomes the

of the above argument. It is found that thé dependence is monotonic model with the time-delayed kernel.

preserved if and only if dzJ(z) <, with J,(2) the peak We measure the threshold load as a functionrgffor

pulse heightas a function of timpat distancez. Our results  |5rge 7,, and find the reduction of the critical loadz9*

for y>1/2 agree well with the predicted? dependence of —G(7)) is consistent with-g3/2 as shown on a log-log plot

the .reduction in the critical load. The marginal cgsel/2is  , Fig. 19, we do not, however, have an analytical argument

similar numerically and we have not explored smaer for the exponent 3/2. Not surprisingly, we again find that the
For nonmonotonic models, the no-passing rule discussegdonmonotonicity of the kernel is relevant but with a larger

earlier and in Appendix A, does not apply. Thus, at least foreigenvalue that would be expected from the peak pulse

finite systems and for some length of time, moving and stapgjghts, presumably because of the long time for which the
tionary solutions can coexist. Indeed for any nonzerave  \ershoots are substantial.

expect that for loads in the rangg.(«,y)<G<GZ°, both
stationary and moving solutions should coexist and the se-
lection between the two will be determined by the past his-
tory. This effect is seen in Fig. 18 in which the velocity of a  For both the sharp pulse and the scalar elastic models, the
crack front of length 64, averaged over a cycle, is shown astress overshoots lead to velocity versus load curves that are
a function of the number of times it has passed through &oth very noisy and hysteretic. For the scalar elastic case,
sample of extenW=16 with periodic boundary conditions results are shown for various, in Fig. 20. As the load is

in the direction of motion. In monotonic models, convexity increased, the velocity appears to jump to a nonzero value
implies that at long times we would measure the same vewhich is a function of the overshoot’s strength and then jump
locity in every pass as there is a unique steady $faBait  back to zero again on decreasing the load only at smaller
with stress pulses, we see that the velocity changes with thiead. Thus the stress overshoaigpearto lead to a first-
cycle, there is no unique moving solution, and after a numbeerder-like transition, where the crack front jumps directly to
of cycles the crack front can suddenly come to a completa finite velocity from the pinned phase. Finite-sized systems
halt, as in Fig. 18, thereby directly illustrating the coexist-show hysteretic behavior as shown in Fig. 20. Several cau-
ence of moving and stationary solutions. In finite systemdionary remarks are, however, in order. First, getting statis-
with periodic boundary conditions in both directions as wetics on the sizes of hysteresis loops for these nonmonotonic
have used, whether all moving states eventually stop omodels is numerically intensive. As we saw in Fig. 18, due
whether they can survive indefinitely is likely to depend bothto the nonmonotonic nature of the models the crack front can
on the sample and on the load. The question of what happerm®me to a complete halt after passing through the system
for infinite systems, we return to in the last section. several times. The fluctuations in the mean velocity per cycle

Using 1iv=1—¢, this corresponds to a reduction in the criti-

C. Velocity and hysteresis
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the scaling laws. The dynamic exponenand the velocity
exponentB are both found to be less than one as predicted
by thee expansion. The roughness exponéns very close

to the lower bound of which may well be exact, although
we have no solid argument for this.

There have recently been two other numerical studies on
quasistatic crack models with the appropriate long-range in-
teractions. The first, by Schmittbuét al,?? obtains the same
value of the roughness exponehtis we do to within error
bars. However they obtain a dynamic exponent which is
greater than one. It is not clear from their paper as to how
0.00 J | this result was obtained and at this point the discrepancy is
0.50 0.75 1.00 not understood. The second paper, by Thomas and

G Paczusk?® obtains{~ 3. Their system sizes are large and it
is not at all clear why the results should be so different. One
model, in a single system of size 64, for various valuesyofang- pOSSib“it.Y Is the d_ynamical “updating rUIeS‘”. Thomas and
ing from 1 tox; 7y=20 corresponds to the monotonic model with Paczuski's are dlffe_rent and more .unphyS|caI than ours.
time delays where we expect a continuous transition from theé?ather than increasing the force adiabatically to depin the

pinned to the moving phase. As can be seen, the finite systenf§0St weakly pinned point on the crack front, they depin the
exhibit hysteretic behavior. point on the crack front that is farthest behind the rest.

Whether this or some other difference is the cause of the

of the crack front increases with the size of the stress oveidifferences we leave as an unresolved question.

shoot but for a given magnitude of the overshoot, decreases !N addition to these numerical studies, there is a very re-
as the system size increases. The abrupt stopping of the craggNt expgnmeﬁf in which two halves of a block of plexi-
front naturally leads to a large scatter in the size of the hysgl2ss which have been roughened and then pressure welded
teresis loops, particularly for smaller systems. Thus, evefPdether are broken apart. The crack is thus confined to the
though the computation time per step increases with systef@ne of the original weld. The crack front roughness is mea-
size ad.2 In L, the scatter in data of the hysteresis loop sizesUred while it is advancing at a very slow mean speed. With
for small system sizes makes it difficult to study the systenf rather limited range of data, the authors obtan0.55
size dependence of the hysteresis loops. Second, it is nai0.05. This would appear to be inconsistent with our quasi-

possible to ascertain whether the crack front will eventuallyStatic result, but a systematic curvature appears to be observ-

stop or not unless the load is above @ it;ving of the qua- able in the d?ta and it mf\zsbe popgsible to fit. it reasonably
s and a (1) correction to scalinga form

sistatic model, i.e., the largest load at which a static squtiorY"?” with =
exists. Third, it should be noted that the minimum velocitiesWith the same number of parameters as an unkngwin-
both on increasing and on decreasing the load in Fig. 20 arther possibility, however, is that the experiments are not

not all that much bigger than the quasistatig,, even for ~ '€ally in the quasistatic regime. . _
7o=1 for which G, has decreased by almost a factor of 2 These experiments force us to address an issue which we
C .

Thus, overall, it is not clear at this point which of the effectsN@ve o far avoided: what determines whetfwrin what

that are apparent in the numerics for these nonmonotoni9iMe @ crack will behave quasistatically’? The basic crite-
models are finite-size effects and which are indicative of thd!0" IS not directly related to the average velocity of the

behavior of much larger systems. We return to this issue at/ack- Rather, it is the speed of propagation of disturbances
the end of the paper. alongthe crack front—in particular this speed relative to the

Rayleigh wave speed—that is the essential determining
feature. But what determines the speed of propagation of
V. DISCUSSION disturbances is rather subtle. In general, if the materials that
In this last section we compare our results on the dynamMake up the heterogeneous medium are themselves reson-

ics of planar crack fronts with other work and discuss varioug@P!y close to ideal elastic solids, then there is no natural
open questions. parameter which would make the speed of propagation of

disturbances along the crack front much slower tbaaven
if the heterogeneities are weak. But if there is substantial
plasticity, creep, or other dissipative effects on the scale of
In the absence of sound waves, long range-elasticity leadfie heterogeneities, then even on these mesoscopic scales the
to a nonlocal but monotonic stress transfer kernel in theequation of motion of the crack front it given simply by
equation of motion of the front. The transition from the the “propagator” Eq.(29) with B its ideal value of order
pinned to the moving phase is then second order and there idc. If the system isvelocity tougheninglue to these small-
a unique moving solution above threshold. There are twecale effects, i.e., the effective fracture toughness on the
independent critical exponents in this case and the numericacale of the heterogeneities increases with velocity—or
results we obtain using a discrete model are in good agreequivalently that the velocity increases more slowly with
ment with those from the expansion. Note, however that it load than in an ideal solid—then the linearized dynamics is
was necessary to include the effects of corrections to scalingiven by Eq.(29) with a larger value oB. In the limit of
both to get reliable estimates of the exponents and to verifyery largeB, the large-scale behavior of the crack front will

0.10

FIG. 20. Mean velocity as a funtion of load for the scalar elastic

A. Quasistatic limit
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be well approximated by the quasistatic model except very What happens when a large avalanche runs away? We
close to the onset of crack propagation where the cumulativeave explored this by numerical studies using simplifed
effects of the stress pulses caused by a large avalanche witress transfer kernels which include both sound-travel time
still cause it to run away. Since the exponearis not much delays and stress overshoots. In order to investigate hyster-
smaller than one, however, the crossover to fully dynamicaktic effects, we have used finite systems with periodic
behavior will occur only very close to the critical load. boundary conditions in the direction of motion with the ex-
Other nonlinear effects—in particular those associatedent in this direction proportional to the cube root of the
with the local depinning of a section of the crack front length of the crack front, i.e., the scaling of the crack distor-
caused by the advance of other sections of the crack—willions at the quasistatic critical load. In the absence of stress
also affect how quasistatic the behavior of the crack fronbvershoots, moving configurations converge to a unique pe-
will be. A careful study of several experimental systems—riodic state. But, due to the nonmonotonicity, this need not
including investigating whether or not the motion appears irbe the case once stress overshoots are included.
bursts of activity when the crack is moving at a slow average Nevertheless, for a range of loads between the gBjt
speed—would appear to be needed to help resolve this arat which an avalanche runs away and the quasistatic critical

other related issues. load GZ°, we find that the crack front usually converges to a
_ state which is periodic in time with a period which is some
B. Elastodynamic effects multiple of the time to pass through the system once. If the

Close enough to the critical load the quasistatic approxiload is then decreased to belddy,,, the resulting moving
mation always breaks down. Since in this approximation thétate coexists with static configurations which atebleto
dynamic exponent<1, the effective propagation velocity @valanche runaway under small increases in the load. At still
of the disturbance associated with a quasistatic avalanche twer loads the behavior tends to becomes chaotic, with, in
size¢ diverges ag!~Z, thereby becoming of order the sound &t least some samples, the crack eventually coming to rest
speed sufficiently close to the critical load no matter hownly after passing through the sample many times as illus-
small the “bare” velocity of small-scale disturbances. Thustrated in Fig. 18. _
elastodynamic effectmustalter the asymptotic critical be- ~ The data we have collected thus suggests hysteretic be-
havior. havior with coexisting moving and stable stationary regimes

In order to understand the effects of sound-travel timecO€Xisting in some range of loads fro@,,, down to some
delays, we first considered a simplified causal model ifdower critical loadGgq,. However, our numerical results in-
which the dynamic stress transfer is still monotonic. In thisdicate that the widths of the hysteresis loops are quite a bit
model, the static exponentise.,  and ») were found to be Smaller than the difference between the critical IGag, and
the same as in the quasistatic approximation because of tf{B€ quasistatic critical load. We would of course like to know
monotonic character of the stress transfer. But the dynamihether the hysteretic behavior persists in an infinite system.
exponentz became equal to one, the minimum value consisUnfortunately, the numerics are rather_s!ow in t_he. presence
tent with causality. The scaling identities then imply tigat ©f sound-travel time delays. Thus, obtaining statistics for the
=1 which is in good agreement with our numerical resultsSiZ€S of hysteresis loops is numerically intensive and our
on this sound-travel time-delayed model. results are far from conclusive.

But the actual dynamic stress transfer along a crack is
more complicated. Indeed, proper inclusion of the dynamics
of the medium necessarily leads to a nonmonotonic kernel in
the equation of motion of a crack front. In particular, the In this penultimate section we consider various possible
stress that arises at a point on the crack front due to anothégenarios for the behavior of large systems in the presence of
section of the crack moving forward, generically rises to astress overshoots. The simplest scenario is suggested by our
peak before decaying to its long-time quasistatic value. data: As the loading is increased slowly, the stationary crack

We have examined the effects of these stress overshoa¢mps to a nonzero velocity at [0}, but when the load
and find that they are it always relevant at the depinnings decreased, the crack does not stop until a lower critical
transition. Specifically, for sufficiently large avalanches theload Ggp. At Ggop the velocity could either drop to zero
effects of the overshoots build up enough to make such avaliscontinuously, presumably the result of an instability of the
lanches run away. This causes the crack front to move, dnoving phase, or continuouslgs occurs in a hysteretic un-
least by some amount, at a load whichldsver than the derdamped Josephson junctioff the load is changed sud-
quasistatic critical load, i.e., for loads at which there are stilldenly, this could cause a jump from one phase to the other,
stable static configuration§This can occur because, in the perhaps even in the ranggove Gy, but below GZ* in
presence of stress overshoots, the “no-passing” rule whichvhich static configurations still exist. Note that the obvious
prevented moving and stationary solutions coexisting inguess, suggested by our numerics, is Bate= G, the
monotonic models is no longer valjd. point at which avalanches run away and become much big-

If the stress overshoots are weak, their effects will not beger than their size in the absence of the stress overshoots.
important until very close to the quasistatic critical load andHowever, it is not obvious that this has to be the case: One
there will be a wide regime of validity of the quasistatic could imagine a scenario in which the runaway avalanches
results. They will eventually break down only when the cor-eventually stop but only after causing the crack front to be-
relation length exceeds a crossover length scale which has @eme much rougher than it would be under the quasistatic
inverse power-law dependence on the magnitude of the stressalanches. A true moving phase might then only exist
overshoots. above a higher loa,,q.. This appears rather unlikely and

C. Possible scenarios near threshold
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seems difficult to reconcile with our numerical simulationsof the weakest segment of one lattice constant. If the ran-
even though the latter may have been biased by our choice domness is sufficiently weak, even the quasistatic stress
scaling of the length and the extent of the finite systems. transferred by this jump will be sufficient to cause the whole
A second scenario is that, in the limit of large system sizecrack to move forward by one lattice constant via the propa-
the hysteresis loops we found numerically disappear and th@ation of a pair of kinks nucleated by the first jump. Just
transition becomes “first order” with a discontinuous veloc- above the critical load>. for a macroscopic motion of the

ity versus load but no hysteresis if one waits a long enougl§'ack, a very long section will need to advance in this man-
time for the crack to settle down. ner before a local segment can jump forward by a second

Finally, and perhaps most interesting, is the possibility'attice constant and cause the process to continue. Thus for

that the onset of crack motion could still be critical with the Ioadsr{ust aboves,, hthe perﬁvior will behqhﬁﬁcterized by
velocity rising continuously at a critical load and some kind étralg t s%(]:_tlog_s with typica en?ltﬂG%hW f'c |V((a,3rge§||:;13
of diverging correlation lengths as the critical load is ap- .G This divergence, as well as the form fG) wi

proached adiabatically from above and from below. Thisbe markedly different from the. gen_eric random case Qis—
would represent a new universality class of depinning tran_c:ussed in this paper. The behavior will be nonuniversal since

sitions. A variant of this, with the velocity discontinuous but it is controlled by the weak-toughness tail of the distribution

the transition still critical in the sense of diverging correla- giggii:]oczlntg#?gge_srig'Ta?tilca;t';g S)Gf]tergesﬁl:\ﬁz tﬂgsbzgg}]
tion lengths, is also conceivable. 9 gres. pping

Which of the above scenarios obtains may well depend oﬁtUd'ed in a different context by Ji and Robb?ﬁs.'
aspects of the physics that we have left out of our numerica| I.f the r.andomnesg, Is strong enough, even in a perfect
studies and theoretical analysis. For example, multiple sca attice a single local jump is not enough to make the whole
tering of elastic waves from the crack front will cause dif- crack advance and the behavior near the onset of crack mo-

ferent regions of the crack front to see stress pulses th&on should be in the same universality class as that discussed

depend on the shape of the crack front in their vicinity and" this paper. Virtually any deviations from a perfect lattice

. . will al r ver hi me randomness-
that of the segment which has moved. However, we conjec- also cause a crossover to this same randomness
ominated critical behavior. In particular, any small density

ture that the general role of stress overshoots should not bO random dislocation lines that thread throuah the plane of
gualitatively changed by multiple scattering since the Iong-h K with B , i llel t tr? di pt ¢
wavelength sound waves will not be strongly affected by thet € crack wi urgers vectors parafl€l to the direction o
crack roughness unlegs=1. crack advance will destroy the perfect periodicity and pre-

A potentially more important effect is a consequence 0fvent the step-by-step advance of the crack from occurring.

vectorial elastodynamics. In particular, for a tensile crack theThe segments O.f the crack front l_)etween dlslqcatlon Il_nes
will act roughly like the segments in our numerical studies

behavior may be complicated by the fact that the initial stress nd on lona scales the behavior will again be that of the
pulse caused by a section of the crack jumping forwards i Y 9
random system analyzed here.

negativewith the stress only becoming positive when the The combined effects of elastodynamics and lattice trap-

Rayleigh waves arrive. If one hypothesizes a hysteretic. oo
velocity-load curve, then in the hysteretic region such ing in the absence of randomness have been studied in a

: “two-dimensional model by Marder and GrdssThey con-
stress transfer kernel can support the coexistence of mowr;}guded that(G) is discontinuous and hysteretic due to run-

and stationary zones of the crack front with the boundar Away caused by dynamic stress overshoots caused by a
?he;vlifg gﬁ;gnki?nn;gﬁngf t(f% rvglopc.:z)ti?saotn(‘:gr::;goor%dssto single jump. The basic effect of dynamic stress overshoots
~0.94c). In the movin ,hase an anomalously tou h,re io studied by Marder and GrdSsare qualitatively similar to
cou.ld th.us cause a sgt(F)) in ' “shock” 1o mgve agllon gther}hose we have studied in the three-dimensional random case.
crack front. This might I?gsu?t in a complicated andgverylndeed’ outentativeconclusion is also a discontinuous hys-

" . . . tereticv(G). But even in a perfect lattice, the presence of
rough, moving state involving large-scale stopping and starty, ra(nd)omness may bepenough to bring i?]to play the
Ing. What roles suc_h shocks might play in the pnset of MAC ubtle effects of rare regions discussed in the previous sub-
roscopic crack motion we leave as an interesting avenue fosrection An understanding of these is, however, well beyond
future study. the scope of this paper.

Finally, we have totally ignored all effects of nonplanar
crack deformations. These almost certainly play a major role
in many experimental situations and may well be important

In all of our theoretical analysis thus far, we have ignoredwhenever the crack is not confined to a preweakened plane.
the effects of lattice periodicity. Indeed, our numerical simu-

lations were specifically set up so as to minimize the effects ACKNOWLEDGMENTS
of periodicity: although our discrete model is periodic in the
direction of crack motion, the randomness inherent in Eq
(38), means that it isstatistically translationally invariant.
How will the behavior change in a lattice system with only
substitutional randomness?

With quasistatic dynamics, which we consider first, the
onset of crack motion will still be continuous but its nature
can be quite different. A long perfectly straight crack front  In this appendix we discuss the-passing rul& in the
will become unstable on increasing the load to a local jumpcontext of the quasistatic model and show that the monotonic

D. Lattice trapping and nonplanar deformations

We would like to thank O. Narayan, J. R. Rice, and D.
Ertasfor useful discussions. This work has been supported in
part by the NSF via DMR-9106237, 9630064 and Harvard
University’s MRSEC.
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model with the time-delayed interactions and the quasistatiéor z#0 and
models should have the same static exponents. The elastic
force in the quasistatic model can be derived from an elastic

potential defined as Jge(z=0)=— ;0 Jgs(2), (B2)
where
vi{th= | akKllfcol, (A1)
||zl|=min(|z],IL—|Z]]). (B3)

wherek is the wave vector corresponding to theoordinate

and f(k) is the Fourier transform of (z). This potential is In the case of the monotonic model with the time-delayed
convex inf. Following Ref. 10 consider two configurations interactions, the discretized version of the interaction kernel
of the crack front,fS(z,t=0) andf-(z,t=0) with f®(z,t  Eq.(37) is given by
=0)=fl(z,t=0) Vz. The no passing rule states that this

inequality holds for all times. This can be seen by noticing

that if the two configurations were to pa$s,would have to jtd(z’t):
first approachf® at some point. At this point, the random |I2]1?
fracture toughness and the external driving force would b
identical for both the conformations of the crack front. How-
ever, the elastic forces aton f- would be less than or equal
to that onf® at z, due to the convexity of the potential. This
prevents the passing df by f- and hence the inequality
fS(z,t)=f'(z1) is obeyed at all times. The no-passing rule
also implies a unique moving solution for the crack front in Ju(z=08)=— 2 Jue(2). (B5)
the quasistatic modéf. ‘ ’ as

Now consider the monotonic model with the time-delayed _ _ )
interaction. We see that The other models we consider in this paper have stress

overshoots which decay as the stress pulse moves along the
crack front. To include these effects with periodic boundary
J(z)<Jodz,t)  V(zD), (A2) conditions, we design our kernels such that the stress over-
where J((z,t) and Jo{z,t) are the kerels describing the shoots disappgar smoothly after running through 'ghe gystem
elastic interactions in the two models. This inequality holds®Nce, after which time the kernel equals the quasistatic ker-
when we define the kernel with the sound-travel time-nel,Jysatall points in space. Thus, for the sharp pulse model
delayed interactions a@=0 as in Eq.(81). Thus we see that defined by the kernel E¢89), we choose the discretized
if we consider two crack fronts,,{z,t) obeying the quasi- kernel to be
static equation of motion anijy(z,t) obeying the monotonic

o(t—||Z]) (B4)

Qor z#0. As noted in the text and in the previous appendix,
there is an ambiguity in defining the kernelzt 0, and in
order to preserve the monotonicity properties of the kernel
we define

time-delayed equation of motion, with,(z,0)=f4(z,0)Vz, 5 1 s(t—||z||)

then following the previous argument we see tha(z,t) Jep(zt=L2)= —=0(t—||z||) + a—— ——e M2
=f(z,t)V(z,t). Also since, as t—o, Jy(zt) I2l| ||zl
—J(2)V(2), we see that, if the load is below threshold, at (B6)

the end of the avalanctgy(z) = f4(z). Thus if we start with  and

the same initial configuration, the final positions of the crack

front at the end of each avalanche are identical. Thus the

static properties are the same for both the models. I (zt=L/2)=
By defining the kernels as in E¢42), we make sure that spe

both our scalar model ag,— and the sharp pulse model

with =0 behave like the monotonic model with the time-

1 (B7)
|II[?

for z#0. There is again an ambiguity as to how one chooses

delayed interaction, the kernel az=0 and we have defined it to be
APPENDIX B jsp(zzo't)z—ma){ ;0 jsp(z,t) ,|qu(z=0)|}.

In this appendix we give the explicit forms of the interac-
tion kernels of the various models that we studied numeri-

cally. o o S ~ Finally, in the case of the scalar model, the discretized
For the quasistatic approximation, the discretized versiofiorm of the kernel Eq(35) is chosen once again such that the

of the interaction kernel Eq36), with periodic boundary overshoots vanish after they have run through the system
conditions in the direction along the crack front is given, asgnce. Thus,
in Eq. (41), by

(B8)

Jolzt=Li2)— O 1

- 1 sl 4l = _ _

Jos(2)= —— (B1) [1Z]]? [(t+79)%~||2] |7~ -2 0712
|2/ (B9)
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and

1

Jsdz,t=L12)=
> |I2]|?

(B10)
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for z#0. As for the sharp pulse model, we define

(B11)

Jod(z=0t)=— ma{

> 3se<z.t>‘ [344(z=0)|
z#0
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