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Onset of propagation of planar cracks in heterogeneous media
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~Received 16 December 1997!

The dynamics of planar crack fronts in hetergeneous media near the critical load for onset of crack motion
are investigated both analytically and by numerical simulations. Elasticity of the solid leads to long-range
stress transfer along the crack front which is nonmonotonic in time due to the elastic waves in the medium. In
the quasistatic limit with instantaneous stress transfer, the crack front exhibits dynamic critical phenomenon,
with a second-order-like transition from a pinned to a moving phase as the applied load is increased through a
critical value. At criticality, the crack front is self-affine, with a roughness exponentz50.3460.02. The
dynamic exponentz is found to be equal to 0.7460.03 and the correlation length exponentn51.5260.02.
These results are in good agreement with those obtained from an epsilon expansion. Sound-travel time delays
in the stress transfer do not change the static exponents but the dynamic exponentz becomes exactly one. Real
elastic waves, however, lead to overshoots in the stresses above their eventual static value when one part of the
crack front moves forward. Simplified models of these stress overshoots are used to show that overshoots are
relevant at the depinning transition leading to a decrease in the critical load and an apparent jump in the
velocity of the crack front directly to a nonzero value. In finite systems, the velocity also shows hysteretic
behavior as a function of the loading. These results suggest a first-order-like transition. Possible implications
for real tensile cracks are discussed.@S0163-1829~98!05125-X#
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I. INTRODUCTION

The dynamics of cracks in heterogeneous media is a v
rich field involving much physics that is yet to be unde
stood. Even in situations in which thepath of a crack is
predetermined—for example by a preweakend fault—its
namics can still be complicated. The simplest situation i
crack confined to a plane. For small loads across suc
planar crack, the crack front will be at rest. As the load
gradually increased, the crack front may undergo some t
sient motion but then again be arrested. If the load is
creased above a critical load, however, the crack front
begin to propagate through the sample. The behavior ne
the onsetof propagation of planar cracks—in particular te
sile cracks—is the subject of this paper.

In recent years there has been considerable theore
progress towards understanding the dynamics of ela
manifolds moving through random media, such as char
density waves,3 fluid-surface contact lines,4 and interfaces
between two phases.1,2 All of these exhibit a type of non-
equilibrium critical phenomenon near to the onset of moti
However there are various features which make the sys
of a planar crackfront moving through a heterogeneous
dium different from these other systems.

For cracks~as well as for contact lines! the bulk degrees
of freedom lead to effective long-range interactions betw
the points on the front.7,6 Thus, when a point on the crac
front moves ahead, the stress at all other points on the f
increases due to the elastic interactions tending to pull th
forward. In addition, elastic waves are emitted as the cr
front moves nonuniformly. When one point moves ahe
these waves result in stresses elsewhere on the front w
for a while, are greater than those due to just the static ela
deformations which will obtain long after the waves ha
passed. Both thesestress overshootsand the long range in
PRB 580163-1829/98/58~10!/6026~21!/$15.00
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teractions have earlier been shown to play a crucial role
the dynamics of the crack front when it is moving with
nonzero mean velocity.8,9

In the absenceof these stress overshoots—as obtained
the stress transfer is quasistatic—many aspects of the dyn
ics of a planar crack front near the onset of motion can
understood by analogy with interfaces, in particular via
functional renormalization-group analysis, which for crac
as for contact lines, entails an expansion about t
dimensions.4 The phenomenology is built on the existence
two ‘‘phases’’ which are separated by auniquecritical load.
When the applied loadG` is small, there is no steady-sta
motion and the crack front is pinned by the random toug
ness in one of many locally stable configurations—we w
ignore here and henceforth the effects of thermal creep.
the load is increased adiabatically, there are a series of l
instabilities of the crack front which lead to ‘‘avalanches
that can become large asG` is increased further. Eventuall
at the critical loadGc

qs the crack front depins and begins
move, albeit very jerkily, with a nonzero, mean steady-st
velocity, v. In an infinite system, this transition from th
stationary to the moving phase exhibits nonequilibrium d
namic critical phenomena somewhat analogous to those
conventional second-order transitions. One macrosco
manifestation of this is the behavior of the mean velocity
the crack front at a load just above the critical load:

v;~G`2Gc
qs!b. ~1!

A natural question that arises is the role of the stress o
shoots left out of the quasistatic analysis. In particular, w
are their effects on the crack dynamics and how do th
affect the depinning transition? The temporal shape of
stress overshoots seen by a point on the crack front dep
on various microscopic details, such as the microscopic
6026 © 1998 The American Physical Society



se
th
t i
n
d
re
he
ro
r-

ey
th
on
by
r
le
re

re
ol
h

e
is

ts
te
se
pa
b
e
fe
th

ne
lik

ou
th
ye
ua
ou
a
th
re
re

,
m

b
th
he
m
it
r

-
gh-

tic
the
near

and
o-

he

It
the
e.
e
u-
at

all
hat

ch

is

ont
er-
ring
her

h
ent

w
-

and
aw.
ts,
an
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sponse time of the crack front, acoustic damping proces
etc. How the dynamics of the crack front depends on
nature of the stress overshoots and if there is any limi
which the dynamics of the medium can be neglected are
understood; these are questions that must be addresse
particular, in the presence of stress overshoots, is the
regime in which a second-order-like transition from t
pinned to the moving state persists or does the crack f
always jump directly to a finite velocity? If the stress ove
shoots are ‘‘relevant’’ at the depinning transition do th
make the velocity versus loading curves hysteretic? In ei
case, is the ‘‘moving phase’’ just above the threshold a n
trivial statistically stationary state or is it characterized
noisy linear dynamics? Thus, there are a large numbe
unanswered questions even in the seemingly simple prob
of the dynamics, near the threshold, of a crack front
stricted to move in a plane.

In this paper we study the dynamics of a crack front
stricted to move in a plane, through a three-dimensional s
with heterogeneities only in the local fracture toughness. T
effects of both the long-range interactions and the str
pulses are considered, and some of the questions ra
above addressed. In the absence of the stress overshoo
obtain, numerically, some of the exponents which charac
ize the transition from the stationary to the moving pha
check the scaling laws that have been predicted and com
the exponents with the analytical results obtained earlier
the 22« expansion.4 We then extend the analysis to includ
the effects of sound-travel time delays in the stress trans
Finally, we treat the effects of the stress overshoots on
depinning transition. Both the dynamic stresses obtai
from a scalar approximation to elasticity and sharp pulse
overshoots are studied.

A. Outline

Before introducing the basic model and summarizing
main results, we give an outline of the paper. In Sec. II,
details of the models and the numerical methods emplo
are described. Section III A contains the results of the q
sistatic model, where the stress transfer is instantane
while Sec. III B contains those in the case where there
acoustic time delays in the stress transfer. In Sec. IV,
effects of various kinds of stress overshoots are explo
Finally the results and their possible implications a
discussed in Sec. V. The ‘‘no-passing rule’’10 for these mod-
els, which plays an essential role in the analytical results
discussed in Appendix A. Appendix B has the detailed for
of the kernels used in the numerical simulations.

B. Summary of results

The equation of motion for the crack front can be o
tained by requiring energy conservation at all points on
crack front. This implies that the elastic energy flux into t
crack, which is a nonlocal functional in both space and ti
of the shape of the crack front as well as of the local veloc
of the crack front, must be equal to the surface energy
quired to create the new crack surface, i.e., thelocal fracture
toughness. The generallinearizedequation of motion for a
crack front moving along the positivex direction has the
form,
s,
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] t f ~z,t !5E
t8,t

dt8PE dz8J~z2z8,t2t8!] t8 f ~z8,t8!

2g@ f ~z,t !,z#1E, ~2!

wherez is the coordinate along the crack front,P denotes the
principal part of the integral,f (z,t) is the deviation of the
crack front from a straight one,g is a random variable asso
ciated with the random position dependent fracture tou
ness in the solid andE represents the driving ‘‘force’’ due to
the applied loadG`. The kernelJ is nonlocal both in space
and time. This nonlocality arises from the long-range elas
interactions and the sound waves which are emitted as
crack moves. Note that because the basic processes
threshold consist of sections of the front moving ahead
stopping—i.e., roughly step functions in time—we have ch
sen to write the stress transfer in terms of] t8 f (z8,t8), so that
these jumps are approximatelyd functions int8.

We will classify the models based on whether or not t
kernel J is monotonicin time at every spatial coordinatez.
Monotonicity of the stress transfer plays a crucial role.
means that as a segment of the crack moves forward,
stress at all other points increases monotonically in tim
This convexityproperty yields stringent constraints on th
behavior as shown in Appendix A. It implies that a config
ration of the crack which is behind another configuration
one time will remain behind the other configuration at
later times. This immediately leads to the conclusion t
there is a unique critical loadGc

qs for monotonic models.

1. Quastatic approximation

We first consider the quasistatic approximation in whi
sound waves are neglected and the stress transfer isinstan-
taneousso that the kernel is naturally monotonic. In th
case, the basic phenomenology is well known.3,4,1 As the
load G` is gradually increased, segments of the crack fr
will overcome the local toughness and jump forwards, p
haps causing other segments to jump and thereby trigge
an avalanche which will eventually be stopped by toug
regions. We find that, similar to driven interfaces, etc.,3,4,1

the avalanches show a power-law size distribution5 up to a
characteristic lengthj2 with larger avalanches being muc
rarer. The distribution of avalanche size—roughly the ext
along the crack front of an avalanche—has the form

Prob~size of avalanche. l !'
1

l k
r̂~ l /j2!. ~3!

The cutoff length,j2 , defines the correlation length belo
threshold. As the threshold loadGc

qs is approached, the cor
relation lengthj2 diverges as

j2;~Gc
qs2G`!2n2. ~4!

At the threshold, there is no characteristic length scale
the distribution of the avalanche sizes is a pure power l
From Eq. ~3! and scaling relations between the exponen
we expect that the cumulative probability of the size of
avalanche being greater thanl , as the load is swept slowly
from zero to the critical load scales as
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E
0

Gc,qs
`

dG`
1

l k
r̂~ l /j2!;

1

l
; ~5!

this is in agreement with the numerics within error bars.
As the load increases above the critical load, the cr

front begins to move with a mean velocity, which the mon
tonicity implies is unique. The velocity scales as in Eq.~1!,
with the velocity exponent, determined from our numeric
simulations,

b50.6860.06. ~6!

All quoted error bars here and henceforth are one-s errorbars
from x2 fits. Just aboveGc

qs the motion of the front is very
jerky with fluctuations in the velocity correlated up to a d
tancej1 , which diverges as one approaches the thresh
from above asj1;(G`2Gc

qs)2n1.
The exponentsn1 and n2 will be equal i.e.,n15n2

5n, if there is only one divergent length scale in the pro
lem, as predicted by the renormalization~RG! analysis.1,4

Assuming this two-sided scaling, we can obtain the corre
tion length exponent, via finite-size scaling, from the dep
dence of the variance of the critical load on the size of
system as

n51.5260.02. ~7!

At threshold, the crack front is self-affine with correl
tions

^@ f ~z,t !2 f ~z1r ,t !#2&;r 2z, ~8!

where ^ & denotes the average over the randomness.
roughness exponentz is found numerically to be

z50.3460.02, ~9!

in excellent agreement with the 22« expansion prediction
z'1/3.

The dynamic exponent is found from the duration of av
lanches as a function of sizel ; they typically last for

t l; l z ~10!

with

z50.7460.03. ~11!

The exponent identities predicted from the scaling and
analysis3,4

b5~z2z!n, ~12!

n5
1

12z
, ~13!

are found to be satisfied, so that there are onlytwo indepen-
dent exponents, sayz andz, characterizing the transition.

2. Effects of sound travel time

For a model with a monotonic kernel but with the stre
transfer delayed by the sound travel time, we argue that
static exponentsn and z are identical to the corresponding
quasistatic case. Also, for every manifestation of the rand
ness, the critical load for this modelGc

td is exactly equal to
k
-

l

ld

-

-
-
e

he

-

G
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that in the quasistatic approximation,Gc
qs . However, the dy-

namic exponent for this model is predicted to bez51 ex-
actly. Since the exponent identities Eqs.~12! and ~13! also
hold for this model, we obtainb51, which is consistent
with the numerical results.

3. Sound waves and stress overshoots

The inclusion of the effects of sound waves leads to n
monotonic kernels. These result in the stress at points on
advancing crack front being nonmonotonic in time, whi
substantially changes the physics. We have considered
types of nonmonotonic kernels. The first arises from a sc
approximation to elasticity theory and the second is a simp
one characterized by sharp pulses superimposed on the
delayed stress transfer. In both cases we find that the o
shoots in the stress arerelevantat the depinning transition
causing large avalanches to run away and changing the
ture of the transition from the pinned to the moving phas

The model with sharp pulses involves nonmonotonic k
nels of the form

Jsp~z,t;a,g!5Q~ t2uzu!/pz21ad~ t2uzu!/uzug. ~14!

For a50, there are no stress pulses and the model reduc
the sound travel-time-delayed model and henceGc(a
50,g) is identical to the threshold force for the quasista
model,Gc

qs . We find, both from analytic arguments and fro
the numerics, that for small positivea and fixedg>1/2, the
threshold load,Gc(a,g), decreases with increasinga as

^Gc
qs2Gc

`~a,g!&;a2. ~15!

This behavior is controlled by the relevant eigenvalue for
overshoot perturbation at the quasistatic depinning fix
point.

In a scalar approximation to elasticity theory, the stre
overshoots have long tails in time. In addition, the rou
crack front will affect the propagation of the stress puls
due to the nonlinearities neglected in Eq.~2!. We argue that
the basic features found in the sharp stress pulse model
obtain, in particular that the stress overshoots arerelevant
and change the nature of the transition. Numerical res
using an appropriate class of kernels support this conclus

For real elastodynamics appropriate to a tensile crack,
stress transfer kernel, for a fixedz, is found to be initially
negative, when the longitudinal sound waves arrive, and t
change sign when the Rayleigh waves arrive. The str
peaks due to the Raleigh waves are similar to those in
scalar elastic approximation and we believe that they w
have similar effects in decreasing the critical load. Howev
the more complicated nature of the stress transfer sugg
that the depinning transition of tensile cracks may invo
essential additional physics. Some tentative ideas in this
rection are discussed at the end of the paper.

With or without the additional complications of the fu
elastodynamic stress transfer, the nature of the transition
tween a static and a moving crack front in the presence
stress overshoots is not resolved by our numerical or ana
cal results. The simplest scenario, which appears to be
ported by the numerics, is a ‘‘first-order’’ transition wit
hysteresis from a pinned phase to a state with nonzero
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locity. This may well be the correct scenario, but possi
concerns and other possibilities are discussed in Sec. V

II. MODELS

In this section we discuss the equation of motion for a r
tensile crack and various approximations to it that we w
study.

A. Geometry and equation of motion

We denote the plane in which the crack is confinedy
50, with the crack open in the regionx,F(z,t). We assume
thatF(z,t) is a single-valued function ofz so that, the curve
x5F(z,t) describes the location of the crack front. Since t
crack is planar, the fracture surfaces that it leaves behind
of course, smooth. The geometry is shown in Fig. 1.

The vectorial displacement fielduW , satisfies the equation
of elastodynamics

r] t
2ui5] js i j ~16!

with s i j the stress tensor. The displacement field,uW (x,y
506,z), has a discontinuity across the crack surface wh
the normal stresses,s iy(y506), must vanish on the crac
surface. For a crack with purelytensile loading, only uy will
be discontinuous and will have aAF(z,t)2x singularity at
the crack front with an amplitude proportional to the loc
mode I stress intensity factor,KI(z,t).11 As long as the crack
remains planar, symmetry undery→2y implies that the
loading is purely mode I, so that we will simply useK
[KI .13 We consider the system under a static load app
far away so that for a straight crack at rest@i.e., F(z,t)
5const#, K5K`5const.

As the crack front advances,F→F1dF, an energy per
unit area of the new crack surfaces exposed,G@x
5F(z,t),z#, must be provided to the crack front in order
fracture the solid; in an ideal quasiequilibrium situation th
is just twice the solid-vacuum interfacial energy densi

FIG. 1. Schematic of a planar crack propagating through a
erogeneous medium. The crack frontx5F(z,t) and the free crack
surfaces, which are flat, are shown. The applied mode I~tensile!
loading is also indicated.
e
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more generally it is the local fracture toughness that inclu
the effects of small scale physics for which linear continuu
elasticity is not valid. The fracture energy will be provided
the crack front by a flux of stored elastic energy per unit a
of the new crack surface,G(z,t,$F%), which in general de-
pends on the past history of the whole crack front as wel
its instantaneous local velocity]F/]t. The equation of mo-
tion of the crack front is obtained by requiring that the elas
energy released be equal to the surface energy required
fracture, i.e.,

G@z,t,$F~ t8<t !%#5G@x5F~z,t !,z# ~17!

for all z and t. The available energyG has the general form

G5A@v'~z,t !#G@z,t$F~ t8,t !%#, ~18!

wherev' is the local velocity normal to the crack front an
G, which is independent of]F/]t(z,t), is the elastic energy
that would be released at (z,t) if the crack had advanced
adiabaticallyat that point, i.e., with]F/]t(z,t)50.12

For a straight stationary crack,F5const,

G5G`5
12n2

E
~K`!2, ~19!

with E the Young’s modulus andn the Poisson ratio.14

When the crack advances at a nonzero velocity, not all of
released elastic energy is available for fracture; some frac
of it goes into the kinetic energy of the moving material ve
close to the front. The fraction ofG available for fracture
A@v'(z,t)# dependsonly on the local normal velocity; it
decreases from unity for smallv' and goes to zero forv'

5c, the Raleigh wave velocity. For a straight crack in
system with uniform toughnessG this leads to a monotonic

v~G`!5A21~G`/G! ~20!

for G` greater than the Griffith threshold, i.e.,G`.G. When
G` is smaller than the Griffith threshold we assume that
crack does not move, i.e., once the solid breaks, the cr
does not to reheal~this is in fact observed in most situation
with the absence of rehealing due to plastic and other i
versible deformations at the crack tip!. The velocity of the
crack is thus constrained to be positive.15

We are interested in the behavior near the depinning tr
sition at which the crack starts to advance. We will use E
~17! as the starting point of our analysis of the dynamics
the crack front at this transition. The fracture toughnessG in
a heterogeneous solid, is a position-dependent quantity
which we write as

G~x,z!5G0@11g~x,z!#

with G0 the mean value of the fracture toughness a
G0g(x,z) the variable part of the fracture toughness whi
we will take to have a zero mean and covariance given b

^g~x,z!g~x8,z8!&5Y~x2x8,z2z8! ~21!

with a functionY which is, generally, short ranged in spac
The available energyG is a complicated nonlinear func

tional of the crack shape. In order to make progress, we
expand the position of the crack front in powers of the d

t-
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viation, f (z,t), away from a straight crack. The position
the crack front can be written as

F~z,t !5FI1 f ~z,t !, ~22!

whereFI is the original length of the crack which is assum
to be much larger than the scales of motion of the crack fr
so that the applied stress intensity factorK` does not in-
crease significantly as the crack advances. Thus, the st
elastic energy available to the crack front can thus be wri
in the form

G5G`@11g~z,t,$ f %!#,

where G` is that for a straight crack of lengthFI for the
given external load. If] f /]z is small, so will beg. To linear
order in f , g can be written as

g52P^ f ,

whereP is a kernel and̂ represents a convolution in spac
and time. For a tensile crack, the Fourier transform ofP
is13,16

P~k,v!5H 2Ak22v2/c22Ak22v2/a2

1
1

2p i R dWĨ~W,k2,v2!J ~23!

with

Ĩ 5
2v2

AWk22v2W3/2
lnF S 22

W

b2D 2

24A12
W

a2
A12

W

b2G ;

~24!

the contour integral circling in the counterclockwise dire
tion the cut in the complexW plane that runs fromW5b2 to
W5a2 with a and b the longitudinal and transverse soun
velocities, respectively; the argument of the logarithm in E
~24! the function whose zeroW0 determines the Raleigh
wave velocity viaW05c2; andv→v1 i0 needed to define
all cuts, e.g.,

Ak22v2/c252 i sgn~v!uAv2/c22k2u ~25!

for v2>c2k2. Thus,

P~k50,v!52 ivB, ~26!

whereB is a positive number.
To linear order inf , the equation of motion can be writte

as

P^ f 52g~z,t !1E ~27!

with the constraint that the local velocity of the crack fro
be positive and

E5
G`2G0

G`
, ~28!

which acts like the applied driving force on the crack fro
From the general structure of the energy releaseG from Eq.
~18!, we can separate the kernelP into sum of two terms,
one which just depends only on the local velocity of t
t

red
n

-

.

.

crack front and the other which depends nonlocally on
shape of the crack front at all prior times. Thus, we c
expressP as

P~k,v!52 ivB1ukuP̃~v/uku!, ~29!

where ukuP̃(v/uku) is the nonlocal part which vanishes a
v→`. The equation of motion can then be written in th
form

B] t f 5HPE
z8,t8,t

J~z2z8,t2t8!] t8 f ~z8,t8!2g~z,t !1EJ
3QFPE

z8,t8,t
J~z2z8,t2t8!

3] t8 f ~z8,t8!2g~z,t !1EG , ~30!

where

J~z,t !5E E eikz2 ivtF2
uku
iv

P̃~v/uku!G ~31!

andP denotes the principal part of thez integral. The Heavi-
side step functionQ constrains the velocity of the crack fron
to be positive and will not be written out explicitly hence
forth.

The kernelJ is readily evaluated from Eq.~23! to be

J~z,t !52
atQ~at2uzu!

pz2~a2t22z2!1/2
1

2ctQ~ct2uzu!

pz2~c2t22z2!1/2

1
1

2p2i
R t

AW~Wt22z2!3/2

3 lnF S 22
W

b2D 2

24A12
W

a2
A12

W

b2G ,

~32!

where the branch cuts are defined as previously.
The stress transfer kernel Eq.~32! is rather complicated. It

is plotted as a function oft for a fixed z in Fig. 2 for a
Poission’s ratio,n50.25. At the arrival time of the Raleigh
waves,J diverges as 1/(ct2z)1/2 and then decays slowly to
its long-time value, i.e.,J(z,t→`)→1/pz2, the static stress
transfer kernel. Although the negative stress precursor to
stress peak that occurs forz/a,t,z/c may well be impor-
tant, for our primary purposes here, we believe that the st
peak is the more important feature. It is therefore usefu
study a somewhat simpler model which has a similar str
peak.

We choose to study ascalar approximationto elasticity
theory. In this approximation the displacement field in t
solid is take to be a scalar fieldf, satisfying the three-
dimensional scalar wave equation

1

c2
] t

2w2¹2w50. ~33!
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The displacement fieldw has a discontinuity across the cra
surface while the normal derivative]yw(y506) ~the
‘‘stress’’! vanishes on the crack surface. We shall refer
this model as thescalar model. Under the external load, th
displacement fieldw has aAF(z,t)2x singularity at the
crack front proportional to the scalar stress intensity fac
K(z,t) as for real elasticity. The corresponding kernelP can
be written in Fourier space as8

Pscalar5Ak22v2/c2 ~34!

and the stress transfer kernel is

Jse~z,t !5
ctQ~ct2uzu!

pz2~c2t22z2!1/2
. ~35!

We see that the stress peak, the long-time tail and the s
stress transfer kernelJ(z,t→`) are all of similar form to the
real tensile crack case.

From the kernels Eqs.~32! and ~35! we see that for both
the tensile crack and the scalar model, sound waves y
nonmonotonic kernels which lead, in response to a jump
one segment of the crack front, to ephemeral overshoot
the stress above the eventual static value. The magnitud
the overshoots will be governed by microscopic factors s
as the microscopic response time of the crack front
acoustic damping processes which can be incorporated
the replacement ofv2 by V25v2/(12 ivtd) in Eq. ~23! or
Eq. ~34! with td an acoustic relaxation time. We are inte
ested in how these overshoots affect the dynamics of
crack front near threshold. But in the limit that all crac
disturbances move along the crack slowly compared toc, we
can neglect the effects of sound waves, and the transfe
stress will be effectively instantaneous yielding the qua
static model with the kernel given by6

Jqs~z,t !5
1

pz2
Q~ t !. ~36!

FIG. 2. Stress transfer kernel for a tensile crack is shown a
function of t at fixed distancez51. The longitudinal sound velocity
is set equal to one and the Poisson ratio chosen to ben50.25. The
stress pulse is initially negative and then changes sign. The d
gences at times corresponding to the longitudinal and Rayle
wave arrival times have been cut off.
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This quasistatic model we study first. Its possible regimes
validity are discussed in Sec. V.

In order to separate the effects of sound-travel time del
from those of stress pulses, we also consider a model w
monotonic stress transfer characterized by the kernel

Jtd~z,t !5
1

pz2
Q~ t2uzu!. ~37!

This kernel is similar to the quasistatic kernel except that
stress transfer is not instantaneous. Finally, in order to se
rate the effects of the maximum of the stress peaks fr
those of their tails, and to make the analysis of the str
peaks more tractable, we study a kernel with sharp pu
defined in Eq.~14!. In both of these artificial models, th
velocity of signal propagation has been set equal to o
Snapshots of the stress pulses when the crack front atz50 is
moved ahead by a small amount att50 and held there, are
shown for the various models in Fig. 3. These are just p
of the respectiveJ(z,t) for a fixed t.

In general, the stress transfer along the crack front w
depend on the shape of the front due to nonlinear term
the expansion ofG@$ f %# in powers of f . Throughout this
paper we will ignore these. We can justify this approxim
tion for the quasistatic case for which we have an analy
understanding, and believe that it should generally be v
on long length and time scales as long as the crack fr
roughness exponentz,1; i.e., that the crack front looks
straight on asymptotically long scales.13

B. Numerical implementation

We are interested in the behavior of the crack front n
to when it begins to move. Below and just above the criti
load, the motion of the crack front is very jerky and se
ments of the crack front move ahead and then get stuck
tougher region. The basic minimum length, time, and inc

a

r-
h

FIG. 3. Stress transfer kernelsJ for various models are shown a
a function of time at a fixed distancez51. The thin line is the
kernel for the quasistatic model and the squares that for the so
travel time-delayed monotonic model. The open circles repres
the scalar elastic model witht050.01, while the thick line repre-
sents the sharp pulse model witha50.5 andg51.5. For all except
the quasistatic model, the stress transfer is zero fort,z.



a
c
r
is

dic

nt

n

-
el
on

e

nit
p

ne

om

ac

r
n-
th
e

ta
n
g

s
s,

he
er-
he
u-
rier
the

the

is
tal
e
t at

are
rre-
red

ect
cal

nd
ete
We

xi-
rized
he

we
ter-
4,
po-

ly

er

h

gth
ust

6032 PRB 58SHARAD RAMANATHAN AND DANIEL S. FISHER
ment in the crack front position scales of these processes
set by the length scales of the toughness variations, the
efficientB in Eq. ~26!, etc. Thus to understand this behavio
it is natural to simulate the crack front in a manner which
discrete in space, time, and position.

Our simulations were done on a lattice which is perio
in the directionx of crack advance, but for eachz50•••L
21, the coordinate along the crack front, the row of poi
are shifted by an independent random amount,b(z) with 0
,b(z),1. The allowed values of the crack front positio
are thus

f ~z!5b~z!1n~z! ~38!

with n(z) integers. This avoids the possibility of lattice
locked behavior in which the crack advances in a relativ
uniform manner characterized by all points advancing by
before any advance again, see discussion in Sec. VD. P
odic boundary conditions are used in thez direction. We
have chosen the sound velocity in our models to be u
corresponding to one lattice spacing along the crack front
time step~all the models we study numerically have only o
sound velocity!.

At each lattice point an independent value of the rand
fracture toughness,g(x,z), is picked from the interval@0,
1.5#. This range is chosen so that the variations ing are
comparable to the force on points of the crack front on e
other which are

g~z,t !5 (
z850

L21

(
t8<t

J̃~ uuz2z8uu,t2t8!

3@ f ~z8,t8!2 f ~z8,t821!#, ~39!

where, with the periodic boundary condition inz on a crack
of lengthL;

uuz2z8uu[min~ uz2z8u,uL2uz2z8uu! ~40!

is the shortest distance betweenz andz8. The stress transfe
kernelsJ̃ are modifications of the continuum kernels of i
terest with the stress pulses designed to die away smoo
after going through the system once. Thus, although ther
a long-ranged history dependence in all but the quasis
model, we need keep track of the history of the interface o
up to a time corresponding to the sound-travel time throu
half the system, i.e., a time ofL/2, whereL is the system
size. Thus,

J̃~z,t>L/2!5 J̃~z,`!5 J̃qs~z!5
1

uuzuu2
~41!

for zÞ0. The sum in Eq.~39! over2`<t8<t2L/221 can
thus be replaced by(z8J̃(uuz2z8uu) f (z8,t2L/221). Care
must also be taken with the ‘‘self-interaction’’ piecez5z8
which represents the ‘‘principal part’’ in Eq.~30!. In the
quasistatic case~and generally for long time!

J̃~z50,t !52(
zÞ0

J̃qs~ uuzuu!, ~42!

so that if the crack moves uniformly there are no change
g. More generally, in particular for the artificial model
re
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J̃(z50,t) involves some arbitrariness. To preserve t
monotonicity of the sound-travel time-delayed model, a c
tain choice is required. This, and the detailed form of t
variousJ̃(z,t) used are specified in Appendix B. The eval
ation of the elastic force at each time step is done in Fou
space using the fast Fourier time algorithm and hence
time for computation at each time step of the evolution of
interface scales likeL2 ln L.

The ‘‘driving force’’ E is the forcing parameter and as th
is increased the crack begins to move. When the to
‘‘force’’ at a point z on the crack front is greater than th
random part of the fracture toughness there, the crack fron
z advances by one lattice constant, i.e.,

f ~z,t11!5 f ~z,t !1Q@g~z,t !2g~z,t !1E#, ~43!

where the lattice constant is set equal to one andQ is the
step function.

These discrete automaton models for the crack front
expected to capture the physics at threshold of the co
sponding continuum models at length scales long compa
to the correlation length of the random toughness. Dir
evidence for universality is provided by extensive numeri
simulations on charge-density-wave models17 in two dimen-
sions which have found universal behavior for smooth a
piecewise continuous pinning forces, as well as for discr
cellular automata analogous to the one defined above.
expect the same to hold here.

III. MONOTONIC MODELS

A. Quasistatic model

We first consider the quasistatic model. In this appro
mation, the stress transfer is instantaneous and the linea
continuum equation of motion of the crack front takes t
form

] t f ~z,t !5
1

p
PE dz8

f ~z8,t !2 f ~z,t !

~z2z8!2
2g@ f ~z,t !,z#1E.

~44!

Before presenting the numerical results from which
determine the values of various critical exponents charac
izing the depinning transition, we give, following Refs. 3,
scaling arguments for several identities between the ex
nents and bounds on them.

1. Exponent identities and bounds

In the moving phase, the crack front will be reasonab
smooth at scales larger than the correlation lengthj, indeed
at large scalesf 'vt and hence the random toughnessg( f ,z)
will act essentially like white noise and hence^@ f (z,t)
2 f (0,t)#2&; ln(z). On scales smaller thanj, the front will be
rough with u f (z,t)2 f (0,t)u;uzuz.

In order for the crack motion to be smooth on larg
scales, each segment of the crack of lengthj must take about
the same timet;jz the correlation time, to move throug
each distancejz. In the region which a segment of lengthj
passes through in timet, there arejz11 random values of the
local toughness. This means that the force per unit len
needed to pull the crack segment through this region m
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vary from region to region by at least of order the rando
variation in the toughness averaged over this region,
1/Ajz11 by the central limit theorem. Thus the cour
grained toughness variations at the scalej are

dGj*1/j~z11!/2. ~45!

The force on the segment from the external load and the
of the crack must be just strong enough to overcome th
random variations. If these forces were too strong, the s
ment would move more smoothly implying that it must ha
been longer thanj by definition. On the other hand, if the
were too weak, the segment would not move at all in so
time intervals of lengtht and thus it must have been small
than j. Since the mean external load at which the segm
moves is

Gc[Gc
qs , ~46!

this implies that either

G`2Gc;dGj*1/j~z11!/2, ~47!

i.e.,

n>
2

z11
, ~48!

or the force per unit length from the neighboring sections
the crackGn are comparable todGj . The latter is dominated
by nearby segments so that

Gn;E
j

2j

dz
zz

z2
;jz21, ~49!

yielding

jz21>
1

j~z11!/2
~50!

and hence,

z>1/3. ~51!

If there is only one basic scale of the forces near thresh
as simple scaling would suggest, then we should expect

G`2Gc;Gn;dGj . ~52!

The rough equality of the typical force per unit lengthGm of
a segment of lengthj on a segment a distancej away and
G`2Gc thereby yields the scaling relation

n5
1

12z
. ~53!

Similar argument can be used below threshold implying t
the correlation length exponents on the two sides of the t
sition are equal.3 We will derive the relation Eq.~53! more
directly below.

The bound onn, Eq. ~48!, comes from an argument sim
lar to that by Harris18 for equilibrium phase transitions an
established more generally in Ref. 19. We can also deriv
by considering some segment of the crack front of sizej2

below the threshold, loosely definingGj
c5Gc1dGj to be the
.,
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local critical force at which this segment begins to mov
Below threshold, segments of size of orderj have a substan
tial chance both of having already moved or not havi
moved yet whileG` was increased to its present value. Th
the variations inGj

c must be comparable toGc2G`. This is
similar to what was argued for aboveGc , but here it does
not rely on as many assumptions about scaling. SincedGj

*1/j2
(11z)/2 , we obtain Eq.~48! just as from above thresh

old.
We now obtain scaling relations for the distribution

avalanche sizes below the threshold loading. Following R
3 we conjecture that the distribution of avalanches asG` is
increased slightly has a scaling form

Fraction of avalanches with size. l

when G`→G`1dG`'
1

l k
r̂~ l /j2! ~54!

at a given external load, withj2;(Gc2G`)2n. Following
the same reference we obtain

k5121/n ~55!

from the increase in the mean position asGc is approached.
Now consider the probability distribution of the size ofall
avalanches that occur on sweeping the load from zero to
threshold load,

Fraction of all avalanches with size. l

'E
0

Gc 1

l k
r̂~ l /j2!nA~G`!dG`; l 2k21/n5 l 21, ~56!

where the last equality was obtained using the scaling r
tion Eq. ~55! and the observation that the rate of avalanc
production,nA(G`), per increase inG` goes to a const a
Gc . Thus,

Prob~size of a given avalanche5 l !;1/l 2. ~57!

An exponent identity relating the velocity exponentb to
the other exponents follows directly from the picture d
cussed above of the moving segments of lengthj. Since the
time for a segment of lengthj to move ahead a distanc
which scales asjz, is of orderjz, the velocity of the interface
scales asjz2z. We thus obtain

b5~z2z!n. ~58!

Another useful relation can be obtained by consider
adding an additional ‘‘force,’’e(z,t), on the crack front.
Denoting the resulting changed f (z,t), we can define the
polarizability x as

x~k,v!5
d^ f ~k,v!&
de~k,v!

~59!

in Fourier space. First consider applying a static force. In t
case the additional forcee(k,v) can be absorbed by redefin
ing

f ~k,v!→ f 8~k,v!2
e~k!

uku
, ~60!
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since the terms from the interaction of the crack front w
itself in the equation of motion will then exactly cancel th
additional forcee. The statistics of the random toughne
variables, in this distorted frame,

g8~x,z!5g@x1f~z!,z#, ~61!

with f(z) the Fourier transform ofe(k)/uku, will have the
same statisticsas the original ones. This is an importantsta-
tistical symmetryof the system. It is the small-angle form o
the statistical rotational invariance. We thus ha
d^ f (k,v)&5e(k)/uku, and hence

x~k,0!5
1

uku
~62!

exactly. On the other hand, on applying a low-frequency s
tially uniform forcee(v), we should have

2 ivx~0,v!5
dv
de

;~G`2Gc!
b21. ~63!

Generally, we expect thatx(k,v) will have the scaling form

x~k,v!;
~G`2Gc!

b21

2 iv
X~kj,vjz! ~64!

with the form of the prefactors implied by Eq.~63!. In the
static limit, X(kj,u50)50, and

lim
v→0

x~k,v!;jz~G`2Gc!
b21i

]X~kj,u!

]u U
u50

. ~65!

Comparing Eqs.~62! and ~65! we see that

jz~G`2Gc!
b21

ukuj
;

1

uku
. ~66!

But sincej;(G`2Gc)
2n, we have

b212n~z21!50. ~67!

Using the expression forb from Eq. ~58! we again obtain
Eq. ~53!. As noted above, this simply relates the force
lengthj segments on each other toG`2Gc .

We thus have two independent exponents from which
others can be obtained. In addition, from Eqs.~48! and ~58!
we obtain the bounds

z>1/3, ~68!

and hence

n>3/2. ~69!

All of the exponent identities and the form of scaling fun
tions such as Eq.~64! have been derived from
renormalization-group expansion about two dimensio
which is the critical dimension for the depinning transition
manifolds driven through random media with long-range
teractions decaying as 1/r d11,—i.e., uku in Fourier space.20

The analytical results from thed522« expansion are com
pared with our numerical results in the next subsection.
-

f

e

s

-

2. Numerical results

We now present the numerical results for the quasist
model from which we obtain the values of the various exp
nents. As discussed earlier, we simulate a discretized ver
of this equation, here simply

f ~z,t11!5 f ~z,t !1QF (
z50

L21
f ~z8,t !2 f ~z,t !

uuz2z8uu2
2g~z,t !1EG ,

~70!

whereL is the system size, to study the dynamics at thre
old. We start with a pinned configuration of the crack fro
that is as close as possible to being straight and gradu
increase the load until the most weakly pinned point b
comes unstable and jumps. This point, in turn, may p
along other points on the crack front due to the elastic in
actions, causing an avalanche. During the avalanche, the
is held fixed. Once the avalanche subsides, the load is
creased once again until another point becomes unstable
so on. A series of avalanches, as the load is gradually
creased in this way is shown in Fig. 4. A space-time plot
one of the large avalanches is shown in Fig. 5.

Defining thesizeof an avalanche is somewhat problem
atic. We have chosen to define it as the number of dist
points on the crack front that move during the course of
avalanche. Note that various other ways of defining
‘‘size’’ of an avalanche along the crack front by, e.g.,
‘‘moment of inertia’’ about its center of mass or by its max
mum extent have problems because of the power-law ta
the interactions which can trigger some jumps far away.
addition, periodic boundary conditions would complicate

FIG. 4. Series of avalanches in the quasistatic model in a sys
of size 256, as the load is gradually increased by just enough at
step to trigger the most weakly pinned site. The system is t
allowed to evolve until motion stops before the load is increa
again. The configuration of the crack front is shown by a thin line
the begining and by a thick line at the end of each avalanche
demarcate the sites which have moved. The position of the c
front in the figure is displaced vertically by a constant factor af
each avalanche to differentiate between the individual avalanc
The initial almost straight configuration of the crack front at ze
load is also shown. The avalanches shown occur at fractional lo
~indicated on the right! in the range from 0.86 of the threshold loa
to the threshold load at which point the crack front starts movin
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definition. To study the statistics of many avalanches,
avalanche sizes are binned in powers of 2. To measure
dynamic exponentz, statistics of avalanche sizes versus th
durations are collected for all the avalanches that occur as
load is increased from zero to the critical load. The log-l
plot of the number of avalanches in a given bin against
bin size is shown in Fig. 6 and a linear fit gives us a slope
2.1460.3 in agreement with Eq.~57! but with large errors.

Figure 7 shows the plot of the mean duration of av
lanches in a bintbin versus bin sizel bin , for a system of
length 1024. From the slope of the log-log plot we determ

z50.7460.03. ~71!

As is generally true, one must be very careful not to ta
such statistical estimates of uncertainties in exponents at
value due to the existence of corrections to scaling. Fo
nately, in our case, the 22« expansion provides an estima
of the leading correction to scaling exponent; the calcu

FIG. 5. Space-time plot of a large avalanche in the quasist
model in a system of size 512, with the points on the interfa
which moved ahead at each instant of time indicated.

FIG. 6. As the load is increased from zero towards the criti
load, the avalanches that occur in the quasistatic model are bi
according to their size, which is defined as the number of dist
sites that move during an avalanche. The bin is defined
(bin size)/A2,avalanche size<A2(bin size). The number of ava
lanches in each bin are plotted versus the bin size for system
size 1024. The slope of the log-log plot is 2.1460.3.
e
he
r
he

e
f

-

e

e
ce
-

-

tions of Narayan21 yield the leading irrelevant eigenvalue
the critical fixed point to be approximately2«/3'21/3 in
our case with«51. We thus fit the data to the formtbin

5Clbin
z /(11Azl bin

21/3) and find thatAz!1 and hence this fit
gives the same value ofz to within error bars.

From the« expansion,3,4 it was found that

z'122«/91O~«2!'7/9'0.78 ~72!

for «522d51. If we neglect theO(«2) and higher terms,
this agrees with our numerical result within error bars.

In a finite system, there is some ambiguity in the defi
tion of the critical load. For example, if the system exten
very far in the direction of motion, the whole crack fron
would typically move from its initial position but get stuck i
a rare tough region far away. In order not to bias the res
by choice of the system extent in the direction of motion,
define the critical load as the load at which every point b
one on the interface has moved at least once. For a la
system we find

Gc'0.97. ~73!

Note that the random forces, the critical driving force and
nearest-neighbor elastic forces are very comparable.

Right at threshold the crack front is found to be self-affi
as expected. Figure 8 shows the plot of the power spect
of the crack front̂ u f (k)u2& at threshold, as a function of th
wave vector for various system sizes ranging from 4 to 40
We expect the power spectrum to bek2(2z11) for small k.
The best fit to a straight line is shown in Fig. 9 for a syste
size of 4096 averaged over 1000 samples. The slope of
line gives us 2z11, from which we determine

z50.3460.02. ~74!

Surprisingly, even at very small wave vectors, the pow
spectrum still looks linear on a log-log plot and we do n
see significant finite-size effects even at the wave vector
responding to half the system size. Since the data in Fig
have very small statistical uncertainties, we can try to fit
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l
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FIG. 7. Log-log plot of the mean duration of an avalanche v
sus the bin size is shown for the quasistatic model with system
1024. The avalanches are binned according to their size whic
determined by the number of sites that moved during that a
lanche. Thenth bin is defined by (bin size)/A2,avalanche size
<A2(bin size). The slope of the graph yields a dynamic critic
exponent ofz50.7460.03.



o
e

e
ed

u

-
th

s-

tem

2,
en.
e

2

ont
ful

ve
in

ica

ze
4

old
96.

ad
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power spectrum to the formCk2(2z11)(11Azk
1/3) using

corrections to scaling. The coefficientAz turns out to be very
small and we obtain the same roughness exponent with c
parable error bars. This gives us some confidence in the
timate Eq.~74!.

Our result forz satisfies, and may saturate, the boundz
>1/3. The prediction ofz from the« expansion is

z5«/31o~«n! ~75!

for all n,3 i.e., there appears to be no corrections to all ord
in « although ‘‘nonperturbative’’ corrections cannot be rul
out. Nevertheless, the bound Eq.~68!, the« expansion result
Eq. ~75!, and the numerics suggest that perhapsz may be
exactly 1/3 although at this point we know of no solid arg
ment that yields 1/3 as an upper~to complement the lower!
bound.

The correlation exponentn can be obtained via the finite
size scaling hypothesis by measuring the variance of
threshold loadGc(L) as a function of the system size. A

FIG. 8. Log-log plot of the power spectrum versus the wa
vector is shown for systems at the quasistatic critical load, rang
in size from 4 to 4096. They have been shifted along the vert
axis for clarity.

FIG. 9. Log-log plot of the power spectrum for system si
4096, averaged over 1000 samples and a linear fit over 0.00<k
<0.35 which leads to 2z1151.6860.04.
m-
s-

rs

-

e

suming that there is only one important length scalej, the
variance of the threshold force@DGc(L)#2 scales with the
system lengthL as

@DGc~L !#2;L22/n. ~76!

A direct fit to L21/n of the plot in Fig. 10 of the variance
of the threshold load versus the system size, for sys
lengths ranging from 4 to 8192, leads ton51.8060.05,
while a fit for system lengths ranging from 256 to 819
givesn51.7260.12. But a systematic curvature can be se
In light of the knowledge of the corrections to scaling, w
can do better by fitting to the formCL21/n/(11AnL21/3)
from which obtain

n51.5260.02. ~77!

This fit is shown in Fig. 11 for systems of length 4 to 819
lattice constants. In this case, as suggested by the data,An is
not small and the fit indeed yieldsAn50.87. Note that the
expected scaling equality Eq.~53! is obeyed, butonly when
the corrections to scaling are included.

As the load is increased above threshold, the crack fr
begins to move. As for the critical load, we must be care

g
l

FIG. 10. Log-log plot of the variance of the quasistatic thresh
load as a function of the system size in the range from 4 to 80
From a linear fit over the full range,n51.8060.05, while a fit for
sizes from 256 to 8096 yieldsn51.7260.12.

FIG. 11. Best fit of the variance of the quasistatic threshold lo
as a function of the system size to the formCL21/n/(11AnL21/3).
This yieldsn51.5260.02 andAn50.8760.03.
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how we define the velocity for finite length crack fronts.
we choose a system of great extent,W, in the direction of
motion, the front will tend to get stuck in anomalously tou
regions; this effect will be more pronounced for smallL. But
since we are interested in the critical behavior and we ha
good handle on the scaling off with L, we can instead
choose systems of extentW'CWLz with periodic boundary
conditions in the direction of motion. For monotonic mode
the convexity then implies convergence to a unique ste
state.10 Since at thresholdD f ;Lz with a coefficient roughly
of order unity, we chooseCW54.

There is a complication that must be considered: due
the possibility of a pinned configuration for loads above t
at which the last point became depinned, the minimumG` at
which v.0 will sometimes be greater than our definition
Gc by a random amount whose distribution depends onCW .
From scaling we expect

Gmin
moving2Gc;1/L1/n. ~78!

By scaling, there will thus be a typical minimum velocity

vmin;1/Lb/n;1/Lz2z. ~79!

Note that the minimum velocity due to the discreteness
time is much less than this and hence negligible for largeL.

Figure 12 shows a plot of the mean velocity of the front
a function of the loading for a system of length 1024 fro
which we determine

b50.6860.06. ~80!

The fit using the corrections to scaling leads to the sa
value of b within the error bars. Surprisingly, there do n
seem to be substantial deviations forG>Gmin

moving.
The «-expansion prediction isb.2/3 if we usez51/3

and z57/9; again there is reasonably good agreement
tween our numerical results and the« expansion although
our error bars are larger forb than forz, n or z.

In our numerical results, the critical force and all of th
coefficients in scaling laws are of order unity suggesting t
we have no intermediate length, displacement or time sc
and thus that the scaling should work well for all but sm
size samples. If we had chosen too narrow a distribution

FIG. 12. Log-log plot of the mean velocity in the quasista
model versus the the excess of the load above the critical value.
slope yieldsb50.6860.06.
a
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random toughnessg(x,z), there would have been an inte
mediate length scale and this would no longer have been
case. Note that the renormalization-group methods can
used to show that nonlinearities associated with higher-o
terms in the expansion ofG@$ f %# are, for quasistatic stres
transfer, irrelevant for the critical behavior. One could ha
guessed this since, from the homogeneity ofG@$ f %# higher
powers off have an equivalent number of powers of gra
ents, so thatz,1 implies that they are irrelevant.

B. Monotonic model with time-delayed interaction

In the previous section, we saw that the quasistatic
proximation to stress transfer gave rise to a critical depinn
transition with a dynamic exponentz,1. This means that for
large enough avalanches which typically occur only if t
load is close enough toGc , the effective disturbance veloc
ity of an avalanche of sizel will be l / l z times the basic
microscopic velocity scale of disturbances set by the diss
tive coefficientB in Eq. ~29!. Thus for sufficiently largel ,
the quasistatic avalanches will progress faster than the so
speed. This is clearly unphysical and in this regime,
sound travel-time delays in the stress transfer must pla
role. In order to understand the effects of these and of st
overshoots separately, we study a monotonic model—
with no stress overshoots—but with sound-travel time
lays. The simplest form of this is to simply replace theQ(z)
in the quasistatic stress transfer withQ(t2uzu). On a lattice
the stress transfer kernel becomes

Jtd~z,t !5
Q~ t2uuzuu!

uuzuu2
~12dz,0!2dz,0 (

z8Þ0

1

uuzuu82
. ~81!

Some care is needed in choosing the second, local, term
Eq. ~81!. The natural choice would be to fixJ(z50,t) by the
condition that for all times,(zJ(z,t)50. This condition is
satisfied for the quasistatic model and for the scalar mode
well as for real elasticity. It ensures that for a straight cra
the instantaneous crack front velocity is a function solely
the instantaneous external load and independent of the
history of the crack, since for a straight crack the effect
the crack front interactions vanishes at all times. If we ma
(zJ(z,t)50 here also, however, Eq.~81! would no longer
be monotonic. Rather, the stress at a pointz, after a jump at
the same point, would decrease in time as the integra
stress transferred to the rest of the crack increases; this w
act like a stress overshoot. For now we will, therefore, g
up the independence of a straight crack on its past histor
preserve the monotonicity condition.

We see that in this model the force on any given point
the crack front at any given time is always less than or eq
to the equivalent force for the same configuration in the q
sistatic model. Note also that for a crack front which is s
tionary after some timet, in the discrete-time periodic
boundary-condition version of this model~see Appendix B!,
the force at all points on the crack front, will reach the qu
sistatic value by timet1L/2. As shown in Appendix A,
these conditions imply that if the external load is increas
adiabatically from the same initial conditions, the tim
delayed model, Eq.~81!, hasexactly the same static proper
ties as the quasistatic model. Indeed, for a given realizat
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of the random toughness, every finite avalanche that oc
in the two models will be identical, except for the times
which points on the crack front jump. Therefore, both t
models will have identical threshold forces, and the ex
nentsn andz are then obviously identical to their quasista
values.

The space-time plot of a particular avalanche as one si
triggered by increasing the load, is shown in Fig. 13 for
quasistatic model and of the identical avalanche in
sound-travel time-delayed model starting from the same
tial configuration of the crack front in a system of leng
512. It is evident that the dynamics of the avalanches in
two models is very different.

The Fourier transform of the continuum version of t
time-delayed kernel in Eq.~81! is given by

J~k,v!52
1

ivH 2
i

p
~k1v!lnuk1vu1

i

p
~k2v!lnuk2vu

2
1

2
uk1vu2

1

2
uk2vuJ 1U~v!, ~82!

where there is an ambiguity in the uniformk50 part of the
Fourier transformU(v). It is clear that the dynamic expo
nent must bez>1. Let us assume thatz.1 or more pre-
cisely that the characteristic timet@j near threshold. We
are thus interested in the behavior in the scaling limit
which uvu!uku. In this limit

J~k,v!'
2

p
lnuku1

uku
iv

. ~83!

From the equation of motion, the response function defi
in Eq. ~59! is in the absence of the randomness

x5
1

2 ivB1 ivJ~k,v!
'

1

2 iv~2/p!ln~1/uku!1uku
~84!

FIG. 13. Space-time plot of an avalanche for~a! the time-
delayed monotonic model~top! and ~b! for the quasistatic mode
~bottom! starting from the same initial configuration of the cra
front. The sets of jumps in the two figures are identical, but th
occur at different times.
rs
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e
e
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for v!k, since the lnuku term from J will dominate thev
dependence. In mean-field theory, this gives rise to tim
scaling with lengths as

t;j ln j. ~85!

In the absence of the lnuku, renormalization due to the random
roughness would makeBeff decrease with length scale in
2« dimensions. However, the lnuku, being singular, canno
renormalize. But itcan feed into the renormalization ofB.
Following this through yields

tj; c̃j ~86!

in dimensionsd522« with c̃ an effective velocity of order
« for small «, but presumably of order unity in our one
dimensional case. Thus we see that assumingz.1 leads
back to

z51, ~87!

which we believe should be correct withno logarithmic cor-
rections. Using the exponent identities Eqs.~58! and~53! we
obtain

b51. ~88!

A plot of the load versus the mean crack velocity is shown
Fig. 14 for a system of size 64. It is very close to line
although the range is small enough that one cannot relia
extractb. Note that because of the dependence on the
history, we are limited here to rather small samples. Wh
the computations for each time step for the quasistatic mo
take a time of orderL ln L, those for the sound-travel time
delayed model takeL2 ln L and hence even for a system
length 64, the statistics are more difficult to obtain.

IV. STRESS OVERSHOOTS: NONMONOTONIC KERNELS

We now turn to more realistic stress transfer kernels.
have seen from Eqs.~34! and ~23!, that bulk sound modes
naturally lead to nonmonotonic kernels of the stress tran
along the crack front. A regime of negative stress transfer
occurs at intermediate times for tensile cracks, cannot
itself, change the behavior much from the time-delay
monotonic models since, in the absence of stress oversh

y

FIG. 14. Velocity versus load for the time-delayed monoton
kernel in a system of size 64, and a linear fit to the data.
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the static behavior will again be identical to the quasista
model. Thus the primary differences between the tim
delayed model and more realistic models must be assoc
with the stress overshoots. The actual shape of the s
overshoot may be complicated by various factors includ
the effects of multiple scattering of sound waves off t
crack front. Therefore, we would like to understand wh
features of the stress overshoot play a crucial role in
dynamics near threshold. To do this, we study simpler m
els and hope that the conclusions drawn from these mo
will help us understand the case of real elastodynamics.

A. Sharp stress pulses

We first consider a simple model of the overshoots
which sharp stress pulse travels with the sound speed.
take the amplitude of the overshoot to decay as a power
of distance as it moves along the crack front. The continu
version of the kernel we study has the form

Jsp~z,t;a,g!5Q~ t2uzu!/z21ad~ t2uzu!/uzug. ~89!

This kernel reduces to the previous case of the monoto
time-delayed interactions whena50.

In Fig. 15 a large avalanche that occurs on triggering
most weakly pinned site is shown for both the monoto
time-delayed kernel and for the kernelJsp(z,t;a50.5, g
51.5) starting from the same initial configuration of th
crack front and the same configuration of random tou
nesses. We see that in the presence of the overshoot m
more sites are triggered than for the monotonic kernel. O
data show that even for small overshoots their effects b
and cause sufficiently large avalanches to run away. T
causes the crack front to depin and start moving at a thr
old load which is less than the one for the quasistatic st
transfer.

We find that for any value ofg and any nonzeroa, the
threshold loadGc(a,g) is lower thanGc(a50,g)5Gc

qs . A
plot of ^Gc

qs2Gc(a,g)& as a function ofa2 is shown in Fig.
16 for various values ofg, including g5`, for which only
the nearest neighbor of a jumped site feels the oversh
The shift in threshold load fromGc was obtained by averag

FIG. 15. Space-time plot of an avalanche for the time-dela
monotonic model~open circles! and the stress pulse model witha
50.5,g51.5 ~with dots! from identical initial conditions. It can be
seen that a large number of additional sites jump for the model w
stress overshoots.
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ing over thesameset of random samples with and witho
the overshoot; this greatly reduces the error bars. The v
of Gc can be accurately determined from the quasista
model where the code is much less numerically intens
For all the values ofg studied,g>0.5, we find results con-
sistent with

Gc
qs2Gc~a,g!;a2 ~90!

for small a, a form which will be derived below. Thus th
overshoot appears to always berelevantat the quastatic de
pinning fixed point.

One of the advantages of starting with monotonic mod
for which we have quite a detailed understanding, is that
effects of perturbations away from these can be analy
using known scaling properties of the monotonic models.
would like to carry this out for weak stress pulses added
the time-delayed monotonic model; i.e., to consider the
havior of the crack with stress transfer given by Eq.~89! for
small a. In order to do this we first obtain the response to
singlestress overshoot.

We focus on a given space-time point, at (Z,T) which we
denote ‘‘A’’ and an avalanche that started at (0,0) in t
time-delayed model without stress pulses. For simplicity
restrict consideration initially tog→` so that only the near-
est neighbor of a jump site will feel a stress pulse which w
bea above the static stress. In order forA to be affected, one
of the two neighboring sites ofA, say Z21, must have
jumped at timeT21 producing a pulse; denote this spac
time point ‘‘P.’’ Three conditions must be met forA to be
affected by the stress pulse fromZ21, i.e., for pointZ to
jump an extra time. First,A must be withina of jumping
anyway for the stress pulse to have been able to trigge
jump. The force increment needed for individual sites
jump are uniformly distributed for sites near to jumping,
the probability of this is simply of ordera. Second, the in-
crease in stress at siteZ after time T must be less thana, or
else the site would have jumped again regardless; denote
condition ‘‘L ’’ ~for ‘‘later stress’’!. Third, the neighbor mus
jump atT21, i.e., the jumpP must occur.

The scaling properties of avalanches imply that within t
space-time volume of a large avalanche, there are hole
all scales~sincel zl ! l 2) and subavalanches of all sizes; s
Fig. 13~a!. Consider a subavalanche that occurs in a reg
within a timet!T beforeP and within distance of ordert

d

th

FIG. 16. The fractional decrease in the threshold load,
2Gc(a,g)/Gc

qs for a system of size 64, is plotted as a function
a2 for g50.5, 1, 1.5, 3.5, and̀ .
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from P that is mostly contained within the ‘‘backward soun
cone’’ of P, as shown in Fig. 17. IfP is not well enough
‘‘isolated’’ from the bulk of this subavalanche, then we mu
consider a smaller subavalanche until we find the larget
such that there is a subavalanche with size of ordert from
which P is ‘‘isolated’’ in space time by ordert ~if this does
not exist, then it is highly unlikely that conditionL can be
satisfied!. By isolated, we mean that there are few~or no!
jumps on or outside of the backwards sound cone ofP—
‘‘ P8s cone’’—within a timet. This is illustrated in Fig. 17.
The maximal such subavalanche which we denote ‘‘S’’ typi-
cally has of ordert11z jumps of which a fraction 1/t, i.e.,tz,
are onP8s sound cone. Since these are typically a dista
*t from Z, they each cause the stress atP to increase by
order 1/t2. Thus the isolated space-time pointP will typi-
cally have a stress increase of 1/t22z ~between timeT22
and T21) due to the subavalancheS, the probability of a
jump atP given S is of this same order.

The condition thatP is isolated fromS is not a stringent
one. Any jump inS outside ofA8s cone ~which is almost
identical to P8s cone! will cause a stress increaseDL at Z
after timeT. Since there will be of ordert11z such jumps,
each yielding a stress increase atZ of order 1/t2, DL will be
of order 1/t12z. This stress increase will be larger thana,
and hence violate conditionL, unlesst.1/a1/(12z) ~note
that obtaining this condition by either a smaller subavalan
with anomalously few jumps outside ofA’s cone or byP
being less isolated fromS is very unlikely!. The probability
of both satisfying the conditionL that the stress increas
after T be smalland having a jump atP, is thus controlled
by the smallestt

ta;1/a1/~12z! ~91!

for which L is satisfied with reasonable probability. The re
evant subavalanchesS are thus of size of orderta and occur

FIG. 17. Schematic of situation used in estimating the effect
a single small stress pulse. The space-time pointA at which we
estimate the probability of an additional jump due to a stress p
from its neighbor jumping at a space-time pointP, andP’s ‘‘sound
cone’’ showingP’s isolation from the subavalancheS by a scalet
are all shown.
t

e

e

in a space-time region of extentta3ta nearP. SinceL is
then quite probable

Prob@ jump at P and Lusize ~S!;ta#

;1/ta
22z;a111/~12z!, ~92!

which is simply proportional to the increase in stress atP
due toS.

What is the chance that there is such an appropriate
avalancheS in the space-time region withinta of P? If there
is any activity in this region, then it should include subav
lanches on all scales, but we also need this to be thelast
activity in this region~or elseL will be violated!. If T is of
order the duration of the full avalanche, the last activity
this region could occur anywhere within a time of orderT.
Thus

Prob~ last activity being withinta of T!;ta /T. ~93!

We obtain the probability of a pulse-triggered extra jump
A by combining all the factors from Eqs.~92!,~93!, and the
probabilitya of siteZ being close to jumping again, yieldin

Prob~pulse triggering extra jump atAu avalanche

of size;T!;
1

ta
22z

ta

T
a;

a2

T
~94!

using theta given by Eq.~91!. Since such an event coul
occur over a range of times of orderT and the number of
sites in the original avalanche is of orderT, the total number
of primary extra triggers caused by the pulses is of orde

N1;a2T. ~95!

The spatial density of the primary extra triggers is sm
so that each of them will cause roughly independent seco
ary avalanches under the dynamics without further str
pulses. The probability of large avalanches falls off slow
with their size up to the correlation lengthj, which we as-
sume is bigger thanT so that the original avalanche was n
exponentially unlikely. This means that the total number
jumps in these secondary avalanches will be dominated
the largest one which has size

l max;~N1!1/k. ~96!

Then the total number of secondary jumps caused by
primary extra triggers is

M2;~a2T!~11z!/z ~97!

usingk5z.
Each of these secondary jumps has the potential of t

gering more jumps due to pulses. The number of such s
ondary triggersN2 will be much less thanN1 unlessM2
;M1; the original number of jumps. Thus, for fixedT, small
enougha will cause a small number of secondary jump
fewer tertiary ones, even fewer quaternary ones, etc. Bu

M2;M1;T11z, ~98!

i.e., T;a22/(12z), the process will run away. Thus we ex
pect that the stress pulses will become important when
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j;ja;a22/~12z!. ~99!

Using 1/n512z, this corresponds to a reduction in the cri
cal load proportional toa2, i.e., of exactly the form Eq.~90!
that provided a good fit to the numerical data.

Longer range pulses can be considered by a generaliza
of the above argument. It is found that thea2 dependence is
preserved if and only if*dzJp

2(z),`, with Jp(z) the peak
pulse height~as a function of time! at distancez. Our results
for g.1/2 agree well with the predicteda2 dependence o
the reduction in the critical load. The marginal caseg51/2 is
similar numerically and we have not explored smallerg.

For nonmonotonic models, the no-passing rule discus
earlier and in Appendix A, does not apply. Thus, at least
finite systems and for some length of time, moving and s
tionary solutions can coexist. Indeed for any nonzeroa, we
expect that for loads in the rangeGc(a,g),G,Gc

qs , both
stationary and moving solutions should coexist and the
lection between the two will be determined by the past h
tory. This effect is seen in Fig. 18 in which the velocity of
crack front of length 64, averaged over a cycle, is shown
a function of the number of times it has passed throug
sample of extentW516 with periodic boundary condition
in the direction of motion. In monotonic models, convex
implies that at long times we would measure the same
locity in every pass as there is a unique steady state.10 But
with stress pulses, we see that the velocity changes with
cycle, there is no unique moving solution, and after a num
of cycles the crack front can suddenly come to a comp
halt, as in Fig. 18, thereby directly illustrating the coexi
ence of moving and stationary solutions. In finite syste
with periodic boundary conditions in both directions as
have used, whether all moving states eventually stop
whether they can survive indefinitely is likely to depend bo
on the sample and on the load. The question of what happ
for infinite systems, we return to in the last section.

FIG. 18. The velocity of the crack front for the stress pu
model witha50.5,g51.5 is shown as a function of cycle numb
for a system of size 64 and extent 16 with periodic boundary c
ditions in the direction of motion. The crack front goes through
same random sample in each cycle and the velocity averaged
each cycle is measured while the external load is kept fixed.
on

ed
r
-

e-
-

s
a

e-

he
r

te
-
s

or

ns

B. Scalar elastic approximation

We finally consider kernels of the form

Jse~z,t;t!5
~ t1t0!Q~ t2uzu!

pz2@~ t1t0!22z2#1/2
, ~100!

which is appropriate for the scalar approximation to elas
ity. Unlike the sharp pulse models the stress overshoot h
long tail in time. We have cut off the singularity at the sou
arrival time by a timet0 which crudely represents the m
croscopic response time. Fort0→`, this model becomes the
monotonic model with the time-delayed kernel.

We measure the threshold load as a function oft0, for
large t0, and find the reduction of the critical load̂Gc

qs

2Gc(t0)& is consistent witht0
23/2 as shown on a log-log plo

in Fig. 19, we do not, however, have an analytical argum
for the exponent 3/2. Not surprisingly, we again find that t
nonmonotonicity of the kernel is relevant but with a larg
eigenvalue that would be expected from the peak pu
heights, presumably because of the long time for which
overshoots are substantial.

C. Velocity and hysteresis

For both the sharp pulse and the scalar elastic models
stress overshoots lead to velocity versus load curves tha
both very noisy and hysteretic. For the scalar elastic ca
results are shown for varioust0 in Fig. 20. As the load is
increased, the velocity appears to jump to a nonzero va
which is a function of the overshoot’s strength and then ju
back to zero again on decreasing the load only at sma
load. Thus the stress overshootsappear to lead to a first-
order-like transition, where the crack front jumps directly
a finite velocity from the pinned phase. Finite-sized syste
show hysteretic behavior as shown in Fig. 20. Several c
tionary remarks are, however, in order. First, getting sta
tics on the sizes of hysteresis loops for these nonmonot
models is numerically intensive. As we saw in Fig. 18, d
to the nonmonotonic nature of the models the crack front
come to a complete halt after passing through the sys
several times. The fluctuations in the mean velocity per cy

-

ver

FIG. 19. Log-log plot of the fractional decrease of the thresh
force with scalar elastic stress transfer@Gc

qs2Gc(t0)#/Gc
qs versus

t0 is shown for systems of size 128. The slope of the linear fit
21.56.
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6042 PRB 58SHARAD RAMANATHAN AND DANIEL S. FISHER
of the crack front increases with the size of the stress o
shoot but for a given magnitude of the overshoot, decrea
as the system size increases. The abrupt stopping of the c
front naturally leads to a large scatter in the size of the h
teresis loops, particularly for smaller systems. Thus, e
though the computation time per step increases with sys
size asL2 ln L, the scatter in data of the hysteresis loop siz
for small system sizes makes it difficult to study the syst
size dependence of the hysteresis loops. Second, it is
possible to ascertain whether the crack front will eventua
stop or not unless the load is above theGmin

moving of the qua-
sistatic model, i.e., the largest load at which a static solu
exists. Third, it should be noted that the minimum velocit
both on increasing and on decreasing the load in Fig. 20
not all that much bigger than the quasistaticvmin , even for
t051 for which Gc has decreased by almost a factor of
Thus, overall, it is not clear at this point which of the effec
that are apparent in the numerics for these nonmonot
models are finite-size effects and which are indicative of
behavior of much larger systems. We return to this issu
the end of the paper.

V. DISCUSSION

In this last section we compare our results on the dyna
ics of planar crack fronts with other work and discuss vario
open questions.

A. Quasistatic limit

In the absence of sound waves, long range-elasticity le
to a nonlocal but monotonic stress transfer kernel in
equation of motion of the front. The transition from th
pinned to the moving phase is then second order and the
a unique moving solution above threshold. There are
independent critical exponents in this case and the nume
results we obtain using a discrete model are in good ag
ment with those from the« expansion. Note, however that
was necessary to include the effects of corrections to sca
both to get reliable estimates of the exponents and to ve

FIG. 20. Mean velocity as a funtion of load for the scalar elas
model, in a single system of size 64, for various values oft0 rang-
ing from 1 to`; t05` corresponds to the monotonic model wi
time delays where we expect a continuous transition from
pinned to the moving phase. As can be seen, the finite sys
exhibit hysteretic behavior.
r-
es
ck

s-
n
m
s

ot
y

n
s
re

.

ic
e
at

-
s

ds
e

is
o
al
e-

g
fy

the scaling laws. The dynamic exponentz and the velocity
exponentb are both found to be less than one as predic
by the« expansion. The roughness exponentz is very close
to the lower bound of13 which may well be exact, although
we have no solid argument for this.

There have recently been two other numerical studies
quasistatic crack models with the appropriate long-range
teractions. The first, by Schmittbuhlet al.,22 obtains the same
value of the roughness exponentz as we do to within error
bars. However they obtain a dynamic exponent which
greater than one. It is not clear from their paper as to h
this result was obtained and at this point the discrepanc
not understood. The second paper, by Thomas
Paczuski,23 obtainsz' 1

2. Their system sizes are large and
is not at all clear why the results should be so different. O
possibility is the dynamical ‘‘updating rules.’’ Thomas an
Paczuski’s are different and more unphysical than ou
Rather than increasing the force adiabatically to depin
most weakly pinned point on the crack front, they depin t
point on the crack front that is farthest behind the re
Whether this or some other difference is the cause of
differences we leave as an unresolved question.

In addition to these numerical studies, there is a very
cent experiment24 in which two halves of a block of plexi-
glass which have been roughened and then pressure we
together are broken apart. The crack is thus confined to
plane of the original weld. The crack front roughness is m
sured while it is advancing at a very slow mean speed. W
a rather limited range of data, the authors obtainz50.55
60.05. This would appear to be inconsistent with our qua
static result, but a systematic curvature appears to be obs
able in the data and it may be popssible to fit it reasona
well with z5 1

3 and a (1/l )21/3 correction to scaling~a form
with the same number of parameters as an unknownz). An-
other possibility, however, is that the experiments are
really in the quasistatic regime.

These experiments force us to address an issue which
have so far avoided: what determines whether~or in what
regime! a crack will behave quasistatically? The basic cri
rion is not directly related to the average velocity of th
crack. Rather, it is the speed of propagation of disturban
along the crack front—in particular this speed relative to t
Rayleigh wave speedc—that is the essential determinin
feature. But what determines the speed of propagation
disturbances is rather subtle. In general, if the materials
make up the heterogeneous medium are themselves re
ably close to ideal elastic solids, then there is no natu
parameter which would make the speed of propagation
disturbances along the crack front much slower thanc, even
if the heterogeneities are weak. But if there is substan
plasticity, creep, or other dissipative effects on the scale
the heterogeneities, then even on these mesoscopic scale
equation of motion of the crack front isnot given simply by
the ‘‘propagator’’ Eq.~29! with B its ideal value of order
1/c. If the system isvelocity tougheningdue to these small-
scale effects, i.e., the effective fracture toughness on
scale of the heterogeneities increases with velocity—
equivalently that the velocity increases more slowly w
load than in an ideal solid—then the linearized dynamics
given by Eq.~29! with a larger value ofB. In the limit of
very largeB, the large-scale behavior of the crack front w
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be well approximated by the quasistatic model except v
close to the onset of crack propagation where the cumula
effects of the stress pulses caused by a large avalanche
still cause it to run away. Since the exponentz is not much
smaller than one, however, the crossover to fully dynam
behavior will occur only very close to the critical load.

Other nonlinear effects—in particular those associa
with the local depinning of a section of the crack fro
caused by the advance of other sections of the crack—
also affect how quasistatic the behavior of the crack fr
will be. A careful study of several experimental systems
including investigating whether or not the motion appears
bursts of activity when the crack is moving at a slow avera
speed—would appear to be needed to help resolve this
other related issues.

B. Elastodynamic effects

Close enough to the critical load the quasistatic appro
mation always breaks down. Since in this approximation
dynamic exponentz,1, the effective propagation velocit
of the disturbance associated with a quasistatic avalanch
sizej diverges asj12z, thereby becoming of order the soun
speed sufficiently close to the critical load no matter h
small the ‘‘bare’’ velocity of small-scale disturbances. Th
elastodynamic effectsmustalter the asymptotic critical be
havior.

In order to understand the effects of sound-travel ti
delays, we first considered a simplified causal model
which the dynamic stress transfer is still monotonic. In t
model, the static exponents~i.e., z andn) were found to be
the same as in the quasistatic approximation because o
monotonic character of the stress transfer. But the dyna
exponentz became equal to one, the minimum value cons
tent with causality. The scaling identities then imply thatb
51 which is in good agreement with our numerical resu
on this sound-travel time-delayed model.

But the actual dynamic stress transfer along a crac
more complicated. Indeed, proper inclusion of the dynam
of the medium necessarily leads to a nonmonotonic kerne
the equation of motion of a crack front. In particular, t
stress that arises at a point on the crack front due to ano
section of the crack moving forward, generically rises to
peak before decaying to its long-time quasistatic value.

We have examined the effects of these stress oversh
and find that they are it always relevant at the depinn
transition. Specifically, for sufficiently large avalanches t
effects of the overshoots build up enough to make such a
lanches run away. This causes the crack front to move
least by some amount, at a load which islower than the
quasistatic critical load, i.e., for loads at which there are s
stable static configurations.~This can occur because, in th
presence of stress overshoots, the ‘‘no-passing’’ rule wh
prevented moving and stationary solutions coexisting
monotonic models is no longer valid.!

If the stress overshoots are weak, their effects will not
important until very close to the quasistatic critical load a
there will be a wide regime of validity of the quasistat
results. They will eventually break down only when the co
relation length exceeds a crossover length scale which ha
inverse power-law dependence on the magnitude of the s
overshoots.
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What happens when a large avalanche runs away?
have explored this by numerical studies using simplif
stress transfer kernels which include both sound-travel t
delays and stress overshoots. In order to investigate hy
etic effects, we have used finite systems with perio
boundary conditions in the direction of motion with the e
tent in this direction proportional to the cube root of th
length of the crack front, i.e., the scaling of the crack dist
tions at the quasistatic critical load. In the absence of str
overshoots, moving configurations converge to a unique
riodic state. But, due to the nonmonotonicity, this need
be the case once stress overshoots are included.

Nevertheless, for a range of loads between the pointGrun
at which an avalanche runs away and the quasistatic cri
loadGc

qs , we find that the crack front usually converges to
state which is periodic in time with a period which is som
multiple of the time to pass through the system once. If
load is then decreased to belowGrun, the resulting moving
state coexists with static configurations which arestable to
avalanche runaway under small increases in the load. At
lower loads the behavior tends to becomes chaotic, with
at least some samples, the crack eventually coming to
only after passing through the sample many times as il
trated in Fig. 18.

The data we have collected thus suggests hysteretic
havior with coexisting moving and stable stationary regim
coexisting in some range of loads fromGrun down to some
lower critical loadGstop. However, our numerical results in
dicate that the widths of the hysteresis loops are quite a
smaller than the difference between the critical loadGrun and
the quasistatic critical load. We would of course like to kno
whether the hysteretic behavior persists in an infinite syst
Unfortunately, the numerics are rather slow in the prese
of sound-travel time delays. Thus, obtaining statistics for
sizes of hysteresis loops is numerically intensive and
results are far from conclusive.

C. Possible scenarios near threshold

In this penultimate section we consider various possi
scenarios for the behavior of large systems in the presenc
stress overshoots. The simplest scenario is suggested b
data: As the loading is increased slowly, the stationary cr
jumps to a nonzero velocity at loadGmove, but when the load
is decreased, the crack does not stop until a lower crit
load Gstop. At Gstop the velocity could either drop to zer
discontinuously, presumably the result of an instability of t
moving phase, or continuously~as occurs in a hysteretic un
derdamped Josephson junction!. If the load is changed sud
denly, this could cause a jump from one phase to the ot
perhaps even in the rangeabove Gmove but below Gc

qs in
which static configurations still exist. Note that the obvio
guess, suggested by our numerics, is thatGmove5Grun, the
point at which avalanches run away and become much
ger than their size in the absence of the stress oversho
However, it is not obvious that this has to be the case: O
could imagine a scenario in which the runaway avalanc
eventually stop but only after causing the crack front to b
come much rougher than it would be under the quasist
avalanches. A true moving phase might then only ex
above a higher loadGmove. This appears rather unlikely an
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seems difficult to reconcile with our numerical simulatio
even though the latter may have been biased by our choic
scaling of the length and the extent of the finite systems

A second scenario is that, in the limit of large system si
the hysteresis loops we found numerically disappear and
transition becomes ‘‘first order’’ with a discontinuous velo
ity versus load but no hysteresis if one waits a long eno
time for the crack to settle down.

Finally, and perhaps most interesting, is the possibi
that the onset of crack motion could still be critical with th
velocity rising continuously at a critical load and some ki
of diverging correlation lengths as the critical load is a
proached adiabatically from above and from below. T
would represent a new universality class of depinning tr
sitions. A variant of this, with the velocity discontinuous b
the transition still critical in the sense of diverging corre
tion lengths, is also conceivable.

Which of the above scenarios obtains may well depend
aspects of the physics that we have left out of our numer
studies and theoretical analysis. For example, multiple s
tering of elastic waves from the crack front will cause d
ferent regions of the crack front to see stress pulses
depend on the shape of the crack front in their vicinity a
that of the segment which has moved. However, we con
ture that the general role of stress overshoots should no
qualitatively changed by multiple scattering since the lon
wavelength sound waves will not be strongly affected by
crack roughness unlessz51.

A potentially more important effect is a consequence
vectorial elastodynamics. In particular, for a tensile crack
behavior may be complicated by the fact that the initial str
pulse caused by a section of the crack jumping forward
negativewith the stress only becoming positive when t
Rayleigh waves arrive. If one hypothesizes a hyster
velocity-load curve, then in the hysteretic region such
stress transfer kernel can support the coexistence of mo
and stationary zones of the crack front with the bound
between the zones moving at a velocitys that corresponds to
the zero of the kernelP(k,v) ~for a Poisson’s ratio of14, s
'0.94c). In the moving phase, an anomalously tough reg
could thus cause a stopping ‘‘shock’’ to move along t
crack front. This might result in a complicated, and ve
rough, moving state involving large-scale stopping and st
ing. What roles such shocks might play in the onset of m
roscopic crack motion we leave as an interesting avenue
future study.

D. Lattice trapping and nonplanar deformations

In all of our theoretical analysis thus far, we have ignor
the effects of lattice periodicity. Indeed, our numerical sim
lations were specifically set up so as to minimize the effe
of periodicity: although our discrete model is periodic in t
direction of crack motion, the randomness inherent in
~38!, means that it isstatistically translationally invariant.
How will the behavior change in a lattice system with on
substitutional randomness?

With quasistatic dynamics, which we consider first, t
onset of crack motion will still be continuous but its natu
can be quite different. A long perfectly straight crack fro
will become unstable on increasing the load to a local ju
of
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of the weakest segment of one lattice constant. If the r
domness is sufficiently weak, even the quasistatic str
transferred by this jump will be sufficient to cause the who
crack to move forward by one lattice constant via the pro
gation of a pair of kinks nucleated by the first jump. Ju
above the critical loadGc for a macroscopic motion of the
crack, a very long section will need to advance in this ma
ner before a local segment can jump forward by a sec
lattice constant and cause the process to continue. Thu
loads just aboveGc , the behavior will be characterized b
straight sections with typical lengthj(G) which diverges as
G↘Gc . This divergence, as well as the form ofv(G) will
be markedly different from the generic random case d
cussed in this paper. The behavior will be nonuniversal si
it is controlled by the weak-toughness tail of the distributi
of the local toughness—in a lattice system simply the bo
breaking energies. This lattice trapping behavior has b
studied in a different context by Ji and Robbins.26

If the randomness is strong enough, even in a per
lattice a single local jump is not enough to make the wh
crack advance and the behavior near the onset of crack
tion should be in the same universality class as that discu
in this paper. Virtually any deviations from a perfect lattic
will also cause a crossover to this same randomne
dominated critical behavior. In particular, any small dens
of random dislocation lines that thread through the plane
the crack with Burger’s vectors parallel to the direction
crack advance will destroy the perfect periodicity and p
vent the step-by-step advance of the crack from occurr
The segments of the crack front between dislocation li
will act roughly like the segments in our numerical studi
and on long scales the behavior will again be that of
random system analyzed here.

The combined effects of elastodynamics and lattice tr
ping in the absence of randomness have been studied
two-dimensional model by Marder and Gross.25 They con-
cluded thatv(G) is discontinuous and hysteretic due to ru
away caused by dynamic stress overshoots caused b
single jump. The basic effect of dynamic stress oversho
studied by Marder and Gross25 are qualitatively similar to
those we have studied in the three-dimensional random c
Indeed, ourtentativeconclusion is also a discontinuous hy
teretic v(G). But even in a perfect lattice, the presence
weak randomness may be enough to bring into play
subtle effects of rare regions discussed in the previous s
section. An understanding of these is, however, well beyo
the scope of this paper.

Finally, we have totally ignored all effects of nonplan
crack deformations. These almost certainly play a major r
in many experimental situations and may well be import
whenever the crack is not confined to a preweakened pl
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APPENDIX A

In this appendix we discuss theno-passing rule10 in the
context of the quasistatic model and show that the monoto
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model with the time-delayed interactions and the quasist
models should have the same static exponents. The el
force in the quasistatic model can be derived from an ela
potential defined as

V~$ f %!5E dkukuu f ~k!u2, ~A1!

wherek is the wave vector corresponding to thez coordinate
and f (k) is the Fourier transform off (z). This potential is
convex in f . Following Ref. 10 consider two configuration
of the crack front,f G(z,t50) and f L(z,t50) with f G(z,t
50)> f L(z,t50) ;z. The no passing rule states that th
inequality holds for all times. This can be seen by notici
that if the two configurations were to pass,f L would have to
first approachf G at some pointz. At this point, the random
fracture toughness and the external driving force would
identical for both the conformations of the crack front. Ho
ever, the elastic forces atz on f L would be less than or equa
to that onf G at z, due to the convexity of the potential. Th
prevents the passing off G by f L and hence the inequalit
f G(z,t)> f L(z,t) is obeyed at all times. The no-passing ru
also implies a unique moving solution for the crack front
the quasistatic model.10

Now consider the monotonic model with the time-delay
interaction. We see that

Jtd~z,t !<Jqs~z,t ! ;~z,t !, ~A2!

where Jtd(z,t) and Jqs(z,t) are the kernels describing th
elastic interactions in the two models. This inequality ho
when we define the kernel with the sound-travel tim
delayed interactions atz50 as in Eq.~81!. Thus we see tha
if we consider two crack fronts,f qs(z,t) obeying the quasi-
static equation of motion andf td(z,t) obeying the monotonic
time-delayed equation of motion, withf qs(z,0)5 f td(z,0);z,
then following the previous argument we see thatf qs(z,t)
> f td(z,t);(z,t). Also since, as t→`, Jtd(z,t)
→Jqs(z);(z), we see that, if the load is below threshold,
the end of the avalanchef qs(z)5 f td(z). Thus if we start with
the same initial configuration, the final positions of the cra
front at the end of each avalanche are identical. Thus
static properties are the same for both the models.

By defining the kernels as in Eq.~42!, we make sure tha
both our scalar model ast0→` and the sharp pulse mode
with a50 behave like the monotonic model with the tim
delayed interaction.

APPENDIX B

In this appendix we give the explicit forms of the intera
tion kernels of the various models that we studied num
cally.

For the quasistatic approximation, the discretized vers
of the interaction kernel Eq.~36!, with periodic boundary
conditions in the direction along the crack front is given,
in Eq. ~41!, by

J̃qs~z!5
1

uuzuu2
~B1!
ic
tic
ic

e

s
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t
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e
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s

for zÞ0 and

J̃qs~z50!52(
zÞ0

J̃qs~z!, ~B2!

where

uuzuu[min~ uzu,uL2uzuu!. ~B3!

In the case of the monotonic model with the time-delay
interactions, the discretized version of the interaction ker
Eq. ~37! is given by

J̃td~z,t !5
1

uuzuu2
Q~ t2uuzuu! ~B4!

for zÞ0. As noted in the text and in the previous append
there is an ambiguity in defining the kernel atz50, and in
order to preserve the monotonicity properties of the ker
we define

J̃td~z50,t !52(
zÞ0

J̃qs~z!. ~B5!

The other models we consider in this paper have str
overshoots which decay as the stress pulse moves alon
crack front. To include these effects with periodic bounda
conditions, we design our kernels such that the stress o
shoots disappear smoothly after running through the sys
once, after which time the kernel equals the quasistatic k
nel, J̃qs at all points in space. Thus, for the sharp pulse mo
defined by the kernel Eq.~89!, we choose the discretize
kernel to be

J̃sp~z,t<L/2!5
1

uuzuu2
Q~ t2uuzuu!1a

d~ t2uuzuu!

uuzuug
e21/~L/22t !

~B6!

and

J̃sp~z,t>L/2!5
1

uuzuu2
~B7!

for zÞ0. There is again an ambiguity as to how one choo
the kernel atz50 and we have defined it to be

J̃sp~z50,t !52maxFU(
zÞ0

J̃sp~z,t !U,uJ̃qs~z50!uG .
~B8!

Finally, in the case of the scalar model, the discretiz
form of the kernel Eq.~35! is chosen once again such that t
overshoots vanish after they have run through the sys
once. Thus,

J̃se~z,t<L/2!5
t1t0

uuzuu2
1

@~ t1t0!22uuzuu2e21/~L/22t !#1/2

~B9!
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and

J̃se~z,t>L/2!5
1

uuzuu2
~B10!
.

for zÞ0. As for the sharp pulse model, we define

J̃se~z50,t !52maxFU(
zÞ0

J̃se~z,t !U,uJ̃qs~z50!uG .
~B11!
t.
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