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Elastic constants of a bulk silicon crystal are calculated using the Monte ®4@0 technique in conjunc-
tion with an isoenthalpic-isotension-isobaric ensembltN ensemblgand the Stillinger-WebefSW) poten-
tial or one of the Tersoff potentials. This MC method is the counterpart of the Parrinello-Rahman HtN
molecular dynamics. We present HtN MC calculations of the adiabatic elastic constants of a crystalline silicon
at three different temperatures, using an HtN ensemble fluctuation formula, and compare with the correspond-
ing results from EhN ensemble molecular dynan(igld) simulation. Calculation of the elastic constants of
SW silicon using HtN MC simulation is a superior technique when compared to a corresponding HtN MD
simulation that failed to produce accurate results. The calculation of the elastic constants using the HtN
ensemble is, in general, slower in convergence than the corresponding calculation using the EhN ensemble. It
is still a useful technique for the calculation of elastic constants, because it does not require any knowledge of
the derivatives of the potential, which could be nontrivial for potentials with terms beyond two body. In order
to investigate the convergence of another potential, elastic constants of the latest silicon Tersoff potential were
calculated at a nonzero temperature. The zero-temperature elastic constants of Si SW and Si Tersoff potentials
were also calculated using a direct method and extrapolation of HtN MC results to zero temperature.
[S0163-182698)01334-4

. INTRODUCTION Stillinger-Weber siliconSW Sj potential** Finally, elastic
constants can be calculated using HtN MD or MC

An efficient way of calculating elastic constants is impor- simulation'? There are several fluctuation formulas for the
tant, because these constants are directly employed in pracalculations of elastic constants and other thermodynamics
tical uses of materials. Calculation of the elastic constants ajuantities in the HtN ensembleé:>®The elastic constants of
given temperatures can also serve as a measure of the reliennard-Jone$lJ) solids were calculated using the fluctua-
ability of the interatomic potential at those temperaturestion formulas in the HtN ensemble. The elastic constant val-
This is generally true, since often potentials are fit to theues calculated from the HtN MD method are, in general, less
extrapolation of experimental data at zero temperature.  accurate and converge much slower than the corresponding

There are several ways of calculating elastic constantszalues from the EhN MD methotlFor some potentials, one
The direct or traditional method is to apply a tension on themay obtain reasonable results using the HtN MD methfbd,
sample and calculate the corresponding strain and elastlut it would be expected that the results would be more
constants from the tension-strain relationshipThe tradi-  accurate and efficient using the HtN MC metiddowever,
tional method is inconvenient, because for the calculations athere is evidence to believe that the relative convergence of
all elastic constants several tensions need to be applied #ie elastic constants using EhN or HtN depends on the inter-
several times. Elastic constants can also be calculated usigomic potential, as well as the simulation technique used in
EhN molecular dynamicsMD) or Monte Carlo (MC) the calculation:>° In fact, convergence of the elastic con-
simulationst® In the EAN MD or MC method, elastic con- stants of a LJ solid using the HtN MD method was only
stants are directly related to the microscopic stress tensor amdarginally satisfacto’/and was unsatisfactory when applied
first and second derivatives of the potentidiAlthough EAN  to the SW solidt® On the other hand, it was shown by Fay
MD or MC calculations of the elastic constants are very acand Ray that the HIN MC calculation of the elastic con-
curate and converge rather quickly, they are often not usestants of a LJ solid converges much faster than the corre-
because they require derivatives of the potential. The derivasponding HtN MD results. In the HtN ensemble, the elastic
tives of a potential can be nontrivial for potentials that haveconstants are related to the strain-strain fluctuation, while in
terms beyond pair interactions. Formulas for the elastic conthe EhN ensemble they are directly related to the first and
stants in the EhN ensemble have been developed for th&econd derivatives of the potential. For complicated many-
Stillinger-Webet and the embedded atom meth@@AM)  body potentialsi? calculation of the derivatives could be
(Ref. 3 potentials. The zero-temperature limit of the EhN nontrivial'! and the Parrinello-Rahman fluctuation formula
elastic constants was also calculated and applied to thr the calculation of elastic constants could be very useful
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for such cases. Note that the fluctuation calculation of elastisenting the edges of the box. The equation of motion describ-

constants presented here includes all the anharmonic effeciag the box has the following form:

Other approximate methods such as quasiharmonic lattice .

dynamic$® can sometimes provide similar results. Wh=(P—Pg)A—hT, (1)
Compgrlson (.jf the results of zero-temperature e_Iastlc CONyhereW is the mass associated with the box coordinaees,

stants using various methods to be described in this paper, as . : .

; i . IS the microscopic stress tensé¥,, is the external pressure,
well as analytical values of the SW silicon elastic constants ~ =

3, _ 71 . 71 . .
can serve as a measure of the accuracy of the models. A=Vh " is t_he area t_ensoh is the Inverse of the trans-
The main objective of doing this work is to extend the pose of matrixh, andI is related to the tension applied to the

application of the elastic constants using the HtN McSYStem-Win Eq. (1) couples the box variables and the

method to more complicated systems. To follow this objec-part'cIe vgnables n the exteljded var_la_ble metho_d of

tive, we have studied the convergence of the elastic constarfidersert® The equations of motion describing the particles

of the SW Si potentiat! as well as one of the Tersoff silicon "ave the form

potential$? (T2 Si) using the HtN MC simulations, and we w1 PP

compare the corresponding results for the SW Si case with MaSai=hij "Faj=Ma(GGSa)i, 2

the ones from the EhN MD case and experiment. Furtherwherema is the mass of particlg, s,; is theith component

more, the elastic constants of the SW Si and T2 Si potentialgf the scaled coordinate of particke one overdot represents

at zero temperature are calculated using various methods. the first time derivative of that quantity, and two overdots

Sec. Il, we describe highlights of the theory. In Sec. Ill, werepresent the second time derivative of that quantify} is

present the simulation results. In Sec. IV, we summarize anghejj component of the inverse matrix, Faj is thejth com-

present conclusions. ponent of force on atora, G=hh is the metric tensor where
the tilde means matrix transpose, and the real coordinate of

Il. OUTLINE OF THE THEORY an fltlom is related to its scaled coordinate rbyhs or s .
=h""r. In the HtN ensemble, the enthalpy of the system is
In this section, we describe briefly the interatomic poten-defined as
tials employed in this study and summarize highlights of the
HtN molecular dynamics and Monte Carlo simulations. H=K+U+PgV+Vlr(te), ()]

In ;I;'S studyl, V\;e Temployk:ad Stllllnger-.V\II(.aBér and fWhereK is the kinetic energy) is the potential energW is
Tersoff” potentials of silicon. The SW potential is & sum of yha reference voluma, is the tension tensok is the strain

two- and three-body terms. The two-body term is a spheriangqr ang “tr” denotes trace of a matrix. The enthalpy is
cally symmetric function, while the three-b_ody term is ang_lec nserved during an HtN simulation. It should be mentioned
dependent. Parameters of the SW potential were determmqﬁ)at in Eq.(3), K is the total kinetic energy of the box and
by _f|tt|ng to the zero-temperature expenmental vaIues.of th articles inside the box. There ar&l3legrees of freedom in
lattice constant and cqheslve energy, W't.h the constraint thap e ¢orm i for the kinetic energy of the particles and nine
the melting point and liquid structure of silicon be calculated egrees of freedom in the formula for the kinetic energy of
correctly. The Tersoff potentials are the sum of repulsive angy oy, However, for a system of several hundred particles,
attractive interactions. The repulsive part of the potential is ne may neglect the kinetic energy of the box with a negli-
decreasing exponential pair term, and the attractive part g ible error of the order 8. Solutions of Eqs(1) and (2)

the potential depends on the local environment through rovide instantaneous values bfand s,;, a=1N and i

many-body angle-dependent term. Two different parametri-_ 1,3, at successive time steps. The phase space configura-
zations of the silicon potential were developed by Tersoff.. '’

X N S 1i he HtN MD simulati h -
These potentials are referred to in this publication as Tersot:ﬁqOns generated by the Ht simulation govern the deter

- . - . inistic evolution of system.
2:;(:?-?129;3”5?' %)(t-:_;: itisal)l avr\;ﬁiSg'?g;g?rﬁogsg:ﬁggfgsz the On the other hand, configurations generated by the HtN
Tl.Si tential F\)/v d in this stud TF;] T1 S potential TJ\/IC simulation are probabilistic in nature and are generated
- >t potential, was use s study. The 11 i potential Ok, 4o Metropolis Monte Carlo proceduteThe h matrix
silicon suffered from two problems. First, it predicted the bCCand particle variables are disturbed by the following trans-

structure to be the lowest-energy structure, rather than di ormations:
mond. The second problem was that the elastic constants '

predicted by the potential were, in general, too different than h'=h;; +Ah(2R—-1), (43)
those of the experimental values. In fact, tbg, value pre- b '
dicted by the potential was about a factor of 8 smaller than SLi=Su+AS(2R-1), (4b)

the corresponding experimental value. The parameters of the
T1 Si potential were obtained by fitting to a database includwhere the primes represent the disturbed coordinates),
ing the lattice constant, cohesive energy, and bulk modulug);; is theijth element of thér matrix, s; is theith compo-
The parameters of the T2 Si potential were obtained by fitnent of theath particle scaled coordinat&h is the ampli-
ting to a database similar to the one used for the T1 Si potude of the disturbance of ttematrix, As is the amplitude
tential, except that a constraint was imposed to produce thef the disturbance of particles, arlis a random number
three independent elastic constants to within 28%. between 0 and 1. It is important to mention tiAdt andAs

In the Parrinello-Rahman form of molecular control the acceptance dfands moves. In particular, i\h
dynamicst*5 the computational box is described by a 3 is zero, all theh moves are accepted. On the other hand, all
X 3 matrix h whose three columns are three vectors repretheh moves are rejected whexh is very large. In the simu-
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lations we have done here, we have adjustiédandAs so The reason for multiplyings;j,; by 1/2 and 1/4 is to keep

that there is an approximately 50% acceptancé i@ands.  the tension-strain relationship in a compact fosm= S;;t;

The HtN transition probability functions developed by By without the presence of factors of 1/2 and 1/4. Other fluctua-

have the following forms for the andh moves: tion formulas have been developed in the HtN ensemble for
the calculation of adiabatic compressibility, constant tension

P(ry.h)  [H= PV —U(r)]eNV specific heat, constant strain specific heat, and constant ten-

P(rn,h)  [H=PgV—U(ry) V21" (58 sjon linear coefficient of thermal expansidh.
The elastic constants of silicon can also be calculated at O
P(r{,h") V/\N[H=PgV— U(m)](lesz K using the HtN ensemblg and moleculgr statics. We rgferred
P(r—Nh): (V (H-P_V—U(r ] V2 T (5b) to this approach as the direct method in the Introduction. In

this method, one applies a constant tension and the corre-

whereH is the constant enthalpy of the systeRy, is the s_ponding strain is obtained using molecular statics._The elas-
external pressurelN is the total number of particles, and t|(_: constants can then be calcula_lted fror_n the cor_npllance ma-
U(ry) andU(r},) are the total potential energies of the sys-trXx elements and the _ tension-strain relatlonshlp. In
tem in the old and new configurations. It is important toParticular, a constant tension is applied along the-11di-
notice that theh move not only changess, but also the real 'ection, and the resulting strairg ande, are determined
coordinates of the atomsthroughr =hs. The other point fr_om the molecular statics calculations. $|m|IarIy,. all the off-
that is worth mentioning is that moving all particles at onediagonal elements of the external tension matrix are made
time can be implemented by the same transition probabilitgdual and all the main diagonal elements are made equal to
as in Eq.(5a), except that all the scaled coordinates of theZ€r0- From the strain-tension relationshipg=S,t;, &,
atoms are disturbed at the same time that disturbed. = Siz1, andes=Sydle, One can calculatB,y, Sy;, andSy,.
Configurational movesy—r{, and box movesi—h’ are The elastic constants are then calculated from the following

accepted based on the Metropolis algorithm. In the Metropo[elat'O”Sh'psl'

lis algorithm, a move is accepted if the transition probability _ _

of that move is greater than or equal to 1. If the transition C1=(SutS)/[(Su—S)(S1i+2S)], (84
probability is less than 1, then a random number is generated _

between 0 and 1. If the transition probability is greater than C12= = S/l (S~ S12) (St 28191, (8b)
that random number, the move is accepted. Otherwise, it is
rejected and the old configuration is retained again. From
Egs. (53 and(5b), one can also note that moves that lower
the potential energy are accepted and the system, in pri
ciple, should evolve into equilibrium after a long time. One
obvious advantage of the HtN MC over the HtN MD method
is that the fictitious mas®V is no longer involved.

C44: 1/844 . (80)

The 0 K elastic constants can also be calculated in the

"EnN ensemble using either the direct method or a relation-

ship between the elastic constants and the first and second
derivatives of the potentidlin the direct method, one simply

. ; . . applies two different strains; ande, at two different times,

In MC or MD simulations, various thermodynamics quan- and the resulting tensions are determined from molecular

tities are related to the average _v_alges of other quant't'.egtatics calculations. The elastic constants are then calculated
when the system has reached equilibrium. Several ﬂUCtuat'OHirectly from the tension-strain relationshibs=Ca.e.  t
- p§ 11€1y 2

formulas have been developed in the HtN ensemble. In par-

) ) =Cq0eq, andtg=Cyueq. The elastic constants can also be
ticular, Parrinello and RahmafPR) developed a formuléb) 12o 1 )
in the HtN ensemble that relates the average of the strai calculated in the EAN ensemble using the energy method.

strain fluctuations to the elastic constants of the system: Here we summarize the energy methoda) The unstrained
Y " lattice is relaxed using the EhN molecular statics to calculate

_ Eg, (b) the strained lattice is relaxed using the EhN molecu-
i Ekm — (€0 =SiksT/Vo, 6 0, D). )
<f”8km> (eij)(exm =Sk T/Vo © lar statics to calculat&gs, and(c) the elastic constants are
wheree =3 (hy 'Ghy '~ 1) is the strainh, is the reference then calculated using the relationsHibs

state for zero strairh,* is the inverse of the transpose of L s 2 2o
matrix hg, Sijm is the adiabatic compliance matri,is the U=3Cu(e11t 851+ €53 3Case12t 8131 €29
temperature, and/, is the reference volumey,=dety).

; ; . . ) + + +
The adiabatic elastic constant matfixis the inverse of the Cidereatensat 222053, (%3
compliance matrixS. Using the Voigt notation, 1+1, 22

—2,33-3, 23-4, 135, and 12-6, and the prescription Cu=2Ule1;, Cpp=Ullensezs), Cas=2Ulerz,

X . : . 9b
described in Ref. 195, , can be converted into an equiva- (9b)
lent 6X6 S, matrix: U=(Egs—Eg)/V, (90)
Sijki = 1Smn when m=3 and n<3, whereU is the elastic energy density aiWis the conserved
volume of the computational box. Finally, the elastic con-
Sijki =7 Smn stants of silicon at zero temperature can be determined either

by a direct relationship to the first and second derivatives of
when m>3 and n<3 or m=3 andn>3, the potential (in the EhN ensembjeor by extrapolation of
nonzero-temperature HtN or EhN resuitis.should be noted

Sijk,=%Smn when m>3 and n>3. (7)  that the calculation of elastic constants using the direct
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method requires that the tension-strain relationship be linear. TABLE I. Adiabatic elastic constants of silicon SW and Tersoff
Therefore, caution must be taken in applying an appropriatgotentials in units of eV/A Upper values are the results of our HtN
level of strain or tension on the sample. Too large of a tenMC simulation, middle values are the results of RRef. 1 using
sion or strain can make the relationship between the tw&hN MD simulation, and lower values are the experime(fef.
nonlinear. On the other hand, too small of a tension or straifl)- The last row of values are the results of our HtN MC simula-

may not be enough to differentiate from their reference valdion using the Tersoff potential. The total enthalpy of the system
ues (216 Si atomp at the three temperatures s885.6, —870.0, and

—851.0 eV for the SW and-950 eV for Tersoff potentials, and the
pressure is zero. Note that the SW potential is not directly fitted to
. HTN ENSEMBLE SIMULATION RESULTS the elastic constants, and so a close match is not expected between
the theory and experimental values of the elastic constants.
We employed the Stillinger-Weber silicon potential. The
main reasons for adopting this potential are that the HtN MDpPotential T (K) Cq; (eV/IA3)  Cy, (eVIA3)  Cyy (eVIAZ)
calculation of the elastic constants of this potential failed to—

produce satisfactory convergence and that some EhN MI§! Sw 888 0.8830.007 0.478:0.008 0.326-0.006
results for the elastic constants are availdble. Si sw 888 0.8768:0.000 0.47@-0.000 0.336:0.052
We have performed HtN MC simulations of the elastic 888 0.983 0.378 0.470
constants of crystalline Stillinger-Weber silicon using a lat-Si SW 1164 0.856:0.018 0.466-0.010 0.2960.006
tice of 216 silicon atoms in the diamond structure. The simuSi SW 1164 0.8520.002 0.464-0.000 0.2830.071
lations were carried out at the same three temperatures that 1164 0.952 0.368 0.457
EhN MD results are available. Periodic boundary conditionsSi SW 1477 0.836:0.007 0.46%0.007 0.2840.005
are employed in all three directions, and units of energySi SW 1477 0.831:0.000 0.46@:0.002 0.262-0.052
length, and elastic constants are eV, A, and e¥/Me 1477 0.924 0.359 0.436

present our results of the elastic constants at the three tersi Tersoff 874 0.816£0.001 0.442-0.001 0.396-0.006
peratures 888, 1164, and 1477 K with zero pressure. In the
HtN MC results presented here, two kinds of trial moves are

qonsidered, particles and_ cell. During _each MQ step, all parSimiIarIy, the average values and errorGq, and C,, were
ticles are moved sequentially one particle at a time, anththe alculated and reported in Table I. In order to further study

matr_|x representmg the bo>§ is moved once. We' a'Iso trie he convergence of the elastic constants of SW Si graphi-
moving all particles at one time and obtained a similar con-

vergence for the SW Si. The particle move is tried 8mes cally, we plotted in Fig. 1 all six elastic constalg,, Cz,,

on all particles degrees of freedom of tNeparticle system. Cas, Ci2, Cu3. Ca3, Cass Css, and Ces every 1000 MC
The cell move is tried on nine elements of thg 3 h matrix, steps for the. case 0f 1164 K. For the same average tempera-
and only the symmetric part of this move is considered. ThdUre: the main diagonal elemerttg;, ha,, andhs; of the h
antisymmetric part is related to the rotation of the cell andMatrix, the temperature of the systefi,and the volume of
produces no energy change, and the move is always athe computational boxV, are plotted in Figs. 2—4 every
cepted. An alternate way to eliminate the rotation of the box!000 MC steps.

is to make theh matrix symmetric. Both methods of elimi-  In order to further study the convergence of the elastic
nating the box rotations produced results with nonconspicuconstants of another potential, we employed the T2 Si poten-
ous differences. The temperature of the system is controlletial and calculated its adiabatic elastic constants using Eq.
by the enthalpyH. We first performed several HPN MC runs (6). We used the same conditions as we did for the SW Si
to equilibrate the system at the three temperatures 888, 116@otential, except that the enthalpy of the system was set to a
and 1477 K. The corresponding total enthalpies for thesdlifferent value and moving all particles at one time was con-
temperatures are-885.6, —870.0, and—851.0 eV, respec- sidered. The total enthalpy of the system was adjusted to the
tively. Using the three enthalpies obtained from the HPNvalue of —950 eV. This enthalpy equilibrated the average
MC runs, we performed several HtIN MC runs with zerotemperature of the system to about 874 K. The lattice was
external pressure and tension to calculate the reference valeguilibrated for about 500 000 MC steps, and the average
of h, i.e.,hy, for the three temperatures. In particular, at eachvalue ofhy was calculated over a subsequent 500 000 MC
enthalpy, we ran the simulation for about 100 000 MC stepssteps. In order to study the convergence of the T2 Si poten-
which also serves to equilibrate the system. In the next run dfial graphically, we performed MC simulation with=h,

100 000 MC steps, we determined the average valud of and the original unequilibrated lattice file. The results of the
(hg). Thehg for each temperature is then used in conjunc-elastic constants from this run are plotted every 10 000 MC
tion with Eq. (6) and a subsequent HtN MC run of 100 000 steps in Fig. 5. Because we replaced the instantaneous value
MC steps to calculate the elastic constants at that temperaf h with hy for the MC runs that were used to generate Fig.
ture. Our results for the elastic constants using HtN MCS5, the elastic constant values diverged at the first MC step,
along with the EnN MD results of Ref. 1 and the experimen-and therefore were not included in the graph.

tal dat&' are reported in Table |. We estimated the error In order to further study the zero-temperature behavior of
following a prescription employed by Fay and Rafor a  the elastic constants of the SW Si and T2 Si potentials, we
cubic crystal, there are three independent elastic constantalculated their values using various methods outlined in
C11, Cqp, andC,,. By symmetry,C,4, Cyy, andCyzare all  Sec. Il. In particular, th 0 K elastic constants of the SW Si
equivalent and independent. Their average and standard dand T2 Si potentials were calculated in the HtN and EhN
viation are measures of average value and erroCijp. ensembles and are tabulated in Table II, along with the
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tial at 1164 K and zero external pressure every 1000 MC stepind hs; are 16.3558, 16.3552, and 16.3586, respectivielis in
The Parrinello-Rahman fluctuation formulBR FH is used here. units of A
Elastic constants are in units of eVWAand 1eV/R
=1.602 19 Mba=160.219 GPa.
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IV. SUMMARY AND CONCLUSIONS o0l
Convergence of the elastic constants using the HtN en-
semble depends on the type of the simulatibtb or MC) 1000
and the potential model employed. The HtN MC calculations 900
of the elastic constants have already been applied success-

fully to the Lennard-Jones and EAM potentials. We have 800 :
extended the HtN MC calculation of elastic constants to two 0 20000 40000 50000 8OO0 100000 120000 140000 180000

silicon potentials. We have presented the results of the Hoves

Monte Carlo simulations of the elastic constants of the FIG. 3. Temperature of the system every 1000 MC steps. Con-
Stillinger-Weber and Tersoff T2 crystalline silicon using the ditions are similar to Fig. 1.
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TABLE Il. Adiabatic elastic constants of Stillinger-Weber and
Tersoff T2 silicon at zero temperature. Elastic constants are in units
of eV/A3. The experimental values are at=77 K from Ref. 23.
The EhNextrapolatioWSW are from Ref. 1.

Cu Ci2 Cus
Method/potential (eVIA®  (eVIAY)  (eVIAY)

EhN(direch¥SW 0.945 0.477 0.352
HtN(direct)/SW 1.126 0.491 0.349
Eh N(analytica)/S\/\/3 0.946 0.477 0.352

0

20000 40000 60000 80000 100000 120000 140000 160000

Moves

HtN(extrapolatioW SW 0.961 0.480 0.418
EhN(extrapolatiofW SW 0.962 0.481 0.419
EhN(direc)¥T2 0.889 0.470 0.431

FIG. 4. Volume of the computational box every 1000 MC steps. HtN(direcd/T2 1.103 0.477 0.433
Conditions are similar to Fig. 1. Average volume of the system is gyperiment 1.048 0.406 0.501
4376 R

aDirect methods of calculating elastic constants using the EhN en-
semble produced the same values either using the tension-strain or
energy method.
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HtN ensemble and compared the Stillinger-Weber results
with the corresponding EhN results from molecular dynam-

ics simulations. The HtN Monte Carlo calculations of the

elastic constants of SW silicon are in close agreement with
the corresponding results from the EhN molecular dynamics
simulations. Averages of physical quantities are calculated
more accurately using the HtN Monte Carlo method rather
than the corresponding molecular dynamics for cases where
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2000000 harmonic modes are involved and the molecular dynamics
does not sample phase space effectively. Based on our re-

sults, vibrations of the computational box may be approxi-
mately harmonic in HtN molecular dynamics. This along

with the fact that HtIN MC accuracy is not affected by the

harmonic motion of the dynamics may explain the superior
convergence of elastic constants in HtN MC simulations.
Calculations of the elastic constants of SW silicon, using
HtN molecular dynamics, did not converge satisfactorily.

The only reliable calculation of the elastic constants for these
potentials, using the HtN ensemble, is using the HtN Monte
Carlo method. Although the EhN molecular dynamics and
Monte Carlo simulations of the elastic constants are, in gen-
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and second derivatives of the potential. The derivatives of
some of the potentials that have terms beyond pairs can be
nontrivial, and therefore, the HtN Monte Carlo calculations
of the elastic constants could be an alternative method for
such cases. The reason for the higher accuracy and more
rapid convergence of the elastic constants using the EhN
ensemble as compared to the HtN ensemble is that the elastic
constants using the EhN ensemble are directly related to the
Born terms that are nonfluctuating. On the other hand, the
elastic constants obtained from the HtN ensemble are related
to the strain fluctuations which will converge more slowly in

500000

1000000
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2000000 general. For cases where we do not wish to calculate deriva-
tives of the potential, the HIN MC method is a useful

FIG. 5. Elastic constants of T2 silicon potential at 874 K and method.
zero external pressure every 10 000 MC steps. The PR FF is used The fictitious mas$V, which is an arbitrary parameter in
here. Elastic constants are in units of e¥/A

HtN molecular dynamics, is not present in HtN Monte Carlo
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simulations. This in itself removes some of the arbitrarinessiontrivial with potentials that have terms beyond pairs. The
in the form of the kinetic energy of the computational box zero-temperature elastic constants of SW Si and T2 Si have
and its equation of motion. been calculated using direct HtN or EhN molecular statics.
Furthermore, we have studied the convergence of th&he results of SW Si are in very good agreement with the
elastic constants of SW Si and T2 Si graphically by plottinganalytical results. Finally, as an alternative method for the
them versus MC steps and checking the degree of overlagalculation of elastic constants at zero temperature, we ex-
between the symmetry-equivalent elastic constants. Based arapolatedlinearly) our HtN results to zero temperature. The
our simulations, the errors in th&,; and C;, elastic con- results are in reasonable agreement with the analytical results
stants using HtN MC simulations are larger than the correat 0 K.
sponding error from the EhN MD results. On the other hand,
the Cy4, error from thg HtN MC simulation is much smaller' ACKNOWLEDGMENTS
than the corresponding error from the EhN MD result. This
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first and second derivatives of the potential, which could be_.ockheed Martin Energy Research Corp.
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