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Theoretical study of the response of 12 cubic metals to uniaxial loading

Frederick Milstein and Somchart Chantasiriwan*
Departments of Materials and Mechanical Engineering, University of California, Santa Barbara, California 93106

~Received 7 October 1997; revised manuscript received 30 March 1998!

The theoretical mechanical response of 12 cubic metals~Al, Cu, Mo, Na, Li, K, Rb, Nb, Fe, Ni, Au, and Ag!
to unconstrained uniaxial loadings, coaxial with each of the three principal symmetry directions, is analyzed, at
finite strain, in the framework of the embedded-atom method model calculations. The models have been
formulated to reproduce, identically, empirical values of the three second-order elastic moduli (C11, C12, and
C44) and the six third-order elastic moduli~C111, C112, C123, C144, C166, andC456), and thus both the linear
~harmonic! and nonlinear~anharmonic! response of the metals is represented in the computations. The me-
chanical behavior, including theoretical strengths, is strongly influenced by crystalline symmetries and bifur-
cation phenomena. Characteristic anisotropies, both at infinitesimal and at finite strain, are associated with each
of three subgroups, i.e., the fcc metals, the bcc alkali metals, and the bcc group-V and group-VI transition
metals. The behavior of bcc Fe is intermediate to that of the bcc alkalis and that of the group-V and group-VI
transition metals. For the fcc metals under@100# loading, the maximum stress generally is about 20–50 % of
the value of Young’s modulus, although a potential instability associated with the vanishing of the elastic
moduli combinationC222C23 occurs at stresses of about 10–25 % of Young’s modulus. Also, for the fcc
metals, the maximum tensile stress in@111# loading is generally comparable with that in@100# loading, but in
@110# loading, the maximum stresses are only about 2–5 % of the respective Young’s modulus values. By
contrast, in the bcc alkali metals, the maximum tensile stress in@100# loading is only about 1–3 % of Young’s
modulus, while in@111# and@110# loading, these percentages are about 10% and 30–35 %, respectively. The
relative anisotropy of the bcc transition metals at finite strain is much less than that of the bcc alkali metals. For
example, the maximum theoretical stresses in Nb range from about 25 GPa~in @100# loading! to 70 GPa~in
@111# loading!; for bcc Na, these values range from about 0.04 GPa~in @100# loading! to 2 GPa~in @110#
loading!. @S0163-1829~98!00730-9#
on

c
el
an
ri

e
,
o-

o-
e
en
th
th
e.

th
o
n
ni
EM

o be
ons.

as
e of

as
lly
el
icu-
dif-
uch
nite

stal
.,
ac-

-
ng,
tal-
at
d

ing
-

-
rve
rd
I. INTRODUCTION

The study of solids under hydrostatic pressure has l
been an active field of research.1 In recent years, interest in
homogeneous, large strain, nonhydrostatic deformation
crystals has accelerated; see, e.g., Refs. 2–6, and the
tions therein. With a view toward the development of mod
for use in theoretical, finite strain, studies, Chantasiriwan
Milstein7 developed a technique for incorporating expe
mental values of the second-order elastic moduli~SOEM!
and third-order elastic moduli~TOEM! in models of cubic
metals described by the embedded-atom method~EAM!.8 In
the preceding paper,9 this technique is used to construct sp
cific EAM models for 12 metals, viz, Al, Cu, Mo, Na, Li, K
Rb, Nb, Fe, Ni, Au, and Ag. The models identically repr
duce empirical values of the three SOEM (C11, C12, and
C44) and six TOEM (C111, C112, C123, C144, C166, and
C456) of the respective metals. Additionally they yield the
retical pressure-volume curves and phonon-dispersion r
tions that are generally in good agreement with experim
The present paper examines the theoretical response of
models to unconstrained uniaxial loading along each of
three principal symmetry directions of a cubic crystal, i.
@100#, @110#, and @111#. The loading is ‘‘unconstrained
uniaxial’’ in the sense that, at each stage, on each of
loading paths, the lattice parameters that are transverse t
direction of load are allowed to ‘‘relax,’’ by an iteratio
technique, to the state where the transverse loads va
Since the models incorporate empirical values of the SO
PRB 580163-1829/98/58~10!/6006~13!/$15.00
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and TOEM, both the linear~harmonic! and nonlinear~anhar-
monic! elastic response of the metals may be presumed t
reasonably accurately reproduced by the model calculati

A number of years ago, Hill10 observed that ‘‘Single crys-
tals free from lattice imperfections are used increasingly
microstructural components. Perfect crystals are capabl
elastic strains well beyond what can properly be treated
infinitesimal. Their response to general loading is virtua
unknown and is doubtless complex ... .’’ Atomistic mod
computations can shed light on these complexities, part
larly when comprehensive comparisons are made among
ferent metals, crystal structures, and loading directions. S
comparisons can also serve to distinguish between fi
strain responses that are sensitive to specificdetails of
atomic binding and those dependent mainly on just cry
symmetries and thegeneralnature of interatomic forces, i.e
attractive between atoms at relatively large interatomic sp
ing and repulsive between close, neighboring atoms.

Milstein and co-workers11–13have analyzed the infinitesi
mal elastic response of cubic crystals to uniaxial loadi
based on the general nature of interatomic forces, on crys
line symmetries, and on theoretical bifurcations occurring
finite strain. They deduced ‘‘standard models’’ for fcc an
bcc crystals. In the standard model of an fcc crystal,11,12 ~i!
the initial values of Young’s modulus are ordered accord
to E111.E110.E100 ~the subscripts indicate the crystallo
graphic direction of loading!, ~ii ! a concave downward cur
vature occurs in the initial portion of the stress-strain cu
in @111# and @110# uniaxial loading and a concave upwa
6006 © 1998 The American Physical Society
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curvature in@100# loading, and~iii ! Poisson’s ration110
11̄0 is

negative.11,14 ~For a crystal loaded uniaxially in the@hkl#

direction, Poisson’s rationhkl
h8k8 l 8[2«h8k8 l 8 /«hkl , where«hkl

and«h8k8 l 8 are, respectively, the axial and transverse stra
the superscript onn is omitted if the transverse strain is iso
tropic.! There is generally good agreement between
‘‘standard’’ model of fcc crystals and experiment
observation;11,12,14 the only apparent exceptions are Al~for

which n110
11̄0.0 and the@100# loading curve is initially con-

cave downward!, Pt and Ir (n110
11̄0.0), and Pd (n110

11̄0,0 ex-
cept at low temperatures!.

According to experimental data and pseudopoten
computations,13 the alkali metals and variousb brasses be-
have, as a group, in agreement with the standard model
bcc crystal, in which~i! Young’s moduli are ordered accord
ing to E111.E110.E100, ~ii ! the initial portion of the stress
strain curve is concave downwards in@100# and @111# load-
ing but concave upwards in@110# loading, and~iii ! Poisson’s

ratio n110
11̄0 is negative. On the other hand, the experimenta

determined elastic properties of the bcc group-V transit
metals V and Nb and the group-VI transition metals Cr, M
and W are not consonant with the standard model of a

crystal; for these metals,n110
11̄0 is positive and the ordering o

Young’s moduli is reversed, i.e.,E100.E110.E111. To our
knowledge, no previous model computations of the uniax
loading behavior, at finite strain, have been carried out
crystals with this characteristic infinitesimal response. Ot
relations and orderings among Young’s moduli, the sh
moduli, and Poisson’s ratios are discussed in Ref. 15,
stability and bifurcation principles are presented in Refs. 1
18.

II. COMPUTATIONAL PROCEDURE

Consider a cubic crystal as it is deformed homogeneou
under uniaxial load along any one of its three principal sy
metry directions. The stretchla of any fiber is defined as its
length in the current state divided by its initial length~in the
reference, or unstressed, cubic state!; the terms ‘‘stretch’’
and ‘‘strain’’ are used interchangeably although, stric
speaking, strain may be defined asla21. The stretch co-
axial with the applied load isla ; under @100# and @111#
loading, the transverse stretchl t is isotropic; under@110#
loading, the transverse stretches in the@001# and@11̄0# direc-

tions are designated asl t
001 andl t

11̄0, respectively. The crys
tal structure on each of the primary loading paths may
described in terms of a crystallographic cell, called t
‘‘computational cell,’’ the edges of which are formed b
three mutually orthogonal vectorsa1 , a2 , anda3 . The com-
putational cell is unique to the particular structure and mo
of loading; in the unstressed state, the computational ce
identical to the conventional cubic cell only for the@100#
modes of loading. The vectorsai may be expressed in term
of a fixed frame of reference that has mutually orthogo
unit vectorsî , ĵ , andk̂. These unit vectors are parallel to th
edges of the initial~unstressed!, conventional, cubic cell,
which may be either face-centered or body-centered cu
the unstressed lattice parameter, or cube edge, of this c
a0.
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With the direction of load defined parallel toa1 , the edges
of the computational cell may be expressed in terms of
stretches and unit vectors. For@100# loading of structures
that are initially bcc or fcc,

a15laa0î , a25l ta
0 ĵ , a35l ta

0k̂. ~1!

The initial computational cells are thus cubic; under lo
they are tetragonal. For@110# loading of an initial bcc struc-
ture,

a15laa0~ î 1 ĵ !, a25l t
11̄0a0~2 î 1 ĵ !, a35l t

001a0k̂.
~2a!

The computational cell is face-centered tetragonal initia
and it becomes face-centered orthorhombic under load.
@110# loading of an initial fcc crystal,

a15
laa0

2
~ î 1 ĵ !, a25

l t
11̄0a0

2
~2 î 1 ĵ !, a35l t

001a0k̂.

~2b!

The computational cell is initially body-centered tetragon
and it becomes body-centered orthorhombic under load.
nally, under@111# loading,

a15
laa0

2
~ î 1 ĵ 1 k̂!, a25l ta

0~22î 1 ĵ 1 k̂!,

a35l ta
0~2 ĵ 1 k̂! ~3a!

for the bcc crystal, and

a15laa0~ î 1 ĵ 1 k̂!, a25
l ta

0

2
~22î 1 ĵ 1 k̂!,

a35
l ta

0

2
~2 ĵ 1 k̂! ~3b!

for fcc. The crystal structure is trigonal under@111# loading,
although the computational cell is orthorhombic.

The energy per atomE of a homogeneously deforme
cubic crystal may be expressed as a function of six geome
parameters, which we take as the lengths of the edgesa1 ,
a2 , and a3 of the computational cell and their include
angles,a4 , a5 , anda6 . With this designation, in the EAM,

E~a1 ,a2 ,a3 ,a4 ,a5 ,a6!5F~r!1 1
2 (

l
f~r l !, ~4a!

with

r5(
l

f ~r l !, ~4b!

wherer l is the distance between the atom at thel th site and
the atom at the origin; the indexl is summed over all sites
except the origin. The explicit pair-potential functionsf(r )
and electron-density functionsf (r ) used in the present stud
are given by Eqs.~2! and ~3! in Ref. 9; the corresponding
model parameters are listed in Ref. 9, Table II. The emb
ding function F(r) is determined from a modification o
Rose’s equation of state; see Eqs.~9!–~12! of Ref. 9.
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The vector connecting the atom at the origin and the a
at thel th atomic site may be written as

r l5
1
2 ~ l 1a11 l 2a21 l 3a3!, ~5!

where~for a given initial crystal structure and mode of loa
ing! l 1 , l 2 , and l 3 are numerical indices that are unique
the particular sitel. For a crystal under load, specification
all allowed sets of indices,l 1 , l 2 , l 3 , and the vectors form-
ing the edges of the computational cell,a1 , a2 , anda3 , also
completely determines the crystal structure. In practice
computer algorithm selects the sets ofl 1 , l 2 , l 3 that are
appropriate to the particular structure and mode of load
under consideration. For@100# loading of bcc crystals and
@110# loading of fcc crystals, the computational cells a
body centered, and the lattice summations are over all se
integer valuesl 1 , l 2 , l 3 , subject to the restriction thatl 1 , l 2 ,
andl 3 are either all even or all odd integers at any given s
l. Under @100# loading of fcc crystals and@110# loading of
bcc crystals, the computational cells are face centered,
l 1 , l 2 , and l 3 take on all integer values, subject to the r
striction thatl 11 l 21 l 3 is an even integer. Under@111# load-
ing of either the bcc or fcc structure, all sitesl are included
that satisfy the conditions (l 1 ,l 2 ,l 3)5(m1 ,m2 ,m3) or (m1
6 2

3 ,m27 2
3 ,m3), wherem1 , m2 , andm3 are integers, with

the restriction thatm1 andm21m3 are even, or equivalently
( l 1 ,l 2 ,l 3)5(2n1 ,n2,2n32n2) or (2n16 2

3 ,n27 2
3 ,2n32n2),

wheren1 , n2 , andn3 comprise all sets of integers.
The axial load per unit reference areaLi , coaxial withai

and normal to thej -k face of the computational cell is

Li5
N

aj
0ak

0

]E

]ai
5

ai
0

V0

]E

]ai
, i 51,2,3, iÞ j Þk; ~6!

N is the number of atoms per computational cell~two for bcc
under@100# and fcc under@110# loadings, four for fcc under
@100# and bcc under@110# loadings, and six for both struc
tures under@111# loading!; V0 is the volume per atom in the
unstressed cubic state, andai

0 is the length of theith edge of
the computational cell in this state. The axial loads divid
by the current cross-sectional areas on which they act~i.e.,
the ‘‘true stresses’’! are

s i5
N

ajak

]E

]ai
5

ai

V

]E

]ai
, i 51,2,3, iÞ j Þk; ~7!

V is the current volume per atom. The crystalline symme
on the uniaxial loading paths ensures that no shear stre
act on the faces of the computational cell. In the EAM,

]E

]ai
5F8( f 8

]r 2

]ai
1

1

2 ( f8
]r 2

]ai
, ~8!

where F85dF/dr, f 85d f /dr2, f85df/dr2, and d/dr2

5(1/2r )(d/dr). Also, from Eq.~5!,

r 25 1
4 ~ l 1

2a1
21 l 2

2a2
21 l 3

2a3
212l 2a2l 3a3 cosa4

12l 1a1l 3a3 cosa512l 1a1l 2a2 cosa6!; ~9!

so, for i 51, 2, or 3,]r 2/]ai5ai l i
2/2 and
m

a

g
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]E

]ai
5

ai

2
F8( f 8l i

21
ai

4 ( f8l i
2, ~10!

when a45a55a6590°. The axial loads and stresses a
readily computed with the aid of Eqs.~6!–~10!. At each
stage of loading~i.e., for each selected value of the lattic
parametera1), an iteration procedure is used to determi
the values ofa2 anda3 that render]E/]a25]E/]a350 to
within the required numerical accuracy. This procedure th
locates the states of uniaxial loading, at which the ‘‘fina
transverse stretches are recorded and the uniaxial loadLa
and stressessa are computed, as functions of axial stret
la .

The main concern of the present paper is the ‘‘stre
strain’’ response of the crystals on their primary loadi
paths. Another important consideration, which shall be de
with extensively, in due course, is stability under load. He
we also determine the locations of a particularly interest
potential instability, associated with the vanishing of t
moduli combinationC222C23, under @100# uniaxial load.
Elastic moduli are central in theories of branching and ins
bility. For a crystal under load, elastic moduli may be d
fined in terms of second derivatives of internal energy w
respect to some convenient choice of geometric parame
or strain variablesqr , i.e., in terms of]2E/]qr]qs . In pio-
neering work, Born and co-workers19–21 took the ‘‘positive
definiteness’’ of the matrix of second-order moduliCrs ~the
values of which vary with crystal deformation! to be synony-
mous with stability. This may be expressed asCrsdqrdqs
.0 ~summation convention,r ,s51,2,...,6), whered repre-
sents a small, incremental change. However, as first note
Hill, 10 and elaborated by Hill and Milstein,16 Born’s criterion
omits the effects of external loading upon the assessmen
stability; specifically it includes first- and second-order inte
nal energy terms,prdqr and Crsdqrdqs , but neglects
second-order work terms,krsdqrdqs , where thekrs repre-
sent second derivatives of external work with respect to
strain variables; thekrs depend on test configuration an
choice of variablesqr . It follows, in general, that theoretica
‘‘ranges of stability’’ computed via Born’s criterion depen
upon the choice of parameters used to define strain in a c
tal under load, and thus such ranges do not represent intr
measures of crystal strength or stability~except in special,
invariant cases as noted below!. Hill and Milstein16

modified Born’s criterion to a coordinate invariant form
(Crs2krs)dqrdqs.0, and in subsequent work22,23 demon-
strated the importance, quantitatively, of thekrs terms. There
are, however, certain modes of loading and subsequent in
bility under which bothCrsdqrdqs and (Crs2krs)dqrdqs
pass from positive definite to indefinite at the same sta
independent of the algebraic forms of theqr . Hill and
Milstein16 have shown the state, whereC222C2350 on a
primary path of@100# loading of an initially cubic crystal, to
possess this characteristic and hence have termed it the
variant C225C23 eigenstate’’~see Ref. 16 for further de
tails!. Now consider a crystal subjected to a given mode
loading. On a stable primary path, the crystal’s symme
remains unchanged~e.g., an initially cubic crystal unde
@100# loading remains tetragonal! and its incremental re-
sponse to a change in load depends on its current value
second-order elastic moduli. At the termination of a stab
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range, where (Crs2krs)dqrdqs.0 is first violated for any
setdqr ~not all of which are zero!, the crystal may branch o
bifurcate to a secondary path of lower energy and new s
metry. The nature of this branching may depend not only
the second-order moduli, but also on thehigher-order moduli
at the branch point.24 For initially cubic crystals, two specific
cases have been worked out in detail, i.e., branching f
tetragonal to orthorhombic under@100# loading and from cu-
bic to tetragonal under hydrostatic pressure. The former
curs atC222C2350 ~Refs. 5, 17, 18, and 24! and the sec-
ondary path characterization at the branch point~i.e., stress
sa versus stretchla) depends on ‘‘up to’’ fourth-order
moduli Crstu at the point whereC222C2350. The latter~i.e.,
branching from cubic to tetragonal! occurs at the hydrostati
pressure where the shear modulusm vanishes and depend
on ‘‘up to’’ third-order moduliCrst .

25

The state whereC222C2350 on the@100# loading path is
interesting for a variety of reasons. First, as mention
above, its location on the primary loading path is indep
dent of the choice of geometric variablesqr ~provided, of
course, thatq1 is coaxial with the loading direction andq2

andq3 are coincident with the transverse crystal axes,a2 and
a3). Second, branching occurs under dead load,10,16 from the
tetragonal structure to an orthohombic structure,17,18 thus
forming a secondary loading path, of an orthorhombic crys
structure, under uniaxial load. In prior computations w
both pseudopotential and Morse models of elastically sta
fcc ~or bcc! crystals, after theC225C23 state is reached, th
uniaxial load drops~or increases! rapidly, through zero, on
the secondary path asla increases~or decreases! under con-
tinued longitudinal extension of the initially fcc crystal~or
under continued longitudinal compression of the initially b
crystal!.5,17,18In this region the crystals were unstable, owi
to the negative slope of thesa versusla path, so theC22

5C23 eigenstate has been found to limit the theoreti
strength of fcc crystals in@100# uniaxial tension~or bcc crys-
tals in@100# uniaxial compression!. @The state of ‘‘maximum
stress’’ or ‘‘maximum theoretical tensile stress’’ is reach
when the true stress~i.e., load divided by current cross
sectional area! achieves its maximum theoretical value o
the primary path, regardless of whether the crystal is sta
as this state is approached. The value of stress at this po
often taken as the ‘‘theoretical strength’’ of the crystal und
the particular mode of loading, although, more accurately
is an ‘‘upper bound’’ to the theoretical strength. If an inst
bility is known to occur at some point on the primary pa
before the maximum stress is reached, the value of stre
the instability represents a lower ‘‘upper bound’’ to the th
oretical strength.# Third, the orthorhombic uniaxial loading
paths that branch from the@100# path at theC225C23 state
also pass through the unstressed cubic configurations,
these secondary paths are in fact the primary paths of@110#
loading of cubic crystals. These bifurcations thus profoun
affect the character of the@110# loading paths,12,13 which, in
turn, determines the nature of crack propagation during
mistic simulations26 of rapidly applied uniaxial loadings. Fi
nally, these bifurcations can be associated with bcc↔fcc
transitions in the alkali metals under uniaxial loading.5,6

With qi[ai , moduli Ci j are readily computed from
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]2E

]ai]aj
5S F9( f 8

]r 2

]ai
D( f 8

]r 2

]aj
1F8( f 9

]r 2

]ai

]r 2

]aj

1F8( f 8
]2r 2

]ai]aj
1

1

2 ( f9
]r 2

]ai

]r 2

]aj

1
1

2 ( f8
]2r 2

]ai]aj
, i , j 51,...,6. ~11!

The condition forC222C2350, with the aid of Eq.~9!, be-
comes

]2E

]a2
2 2

]2E

]a2]a3
5

F8a2
2

4 ( ~ l 2
42 l 2

2l 3
2! f 9

1
a2

2

8 ( ~ l 2
42 l 2

2l 3
2!f9

1
F8

2 ( l 2
2f 81

1

4 ( l 2
2f850. ~12!

Also, if the crystal is under uniaxial load coaxial witha1 ,
F8S l 2

2f 81 1
2 S l 2

2f8 vanishes, as seen from Eqs.~6! or ~7! and
~10!. Thus, in the EAM, the condition for theC225C23
eigenstate reduces to

F8( ~ l 2
42 l 2

2l 3
2! f 91 1

2 ( ~ l 2
42 l 2

2l 3
2!f950. ~13!

III. RESULTS AND DISCUSSION

Figures 1–5 show the mechanical responses, in the ra
of axial stretch 0.9<la<1.1, of four representative meta
that comprise a ‘‘standard’’ fcc metal~Cu!, a ‘‘standard’’
bcc metal~Na!, an ‘‘anomalous’’ fcc metal~Al !, and a bcc
group-VI transition metal~Mo!. The response of Na, origi
nally in its fcc configuration, is also included since, at lo
temperatures, Na exists in a close-packed phase, equiv
to fcc with stacking faults; additionally, it is instructive t
compare the responses of a bcc and an fcc crystal desc
with the identical EAM model. The initial slopes~i.e., at
la51) of the sa ~axial stress! versus la ~axial stretch!
curves are the initial Young moduli and the initial slopes
thel t ~transverse stretch! versusla curves are the~negative!
Poisson ratios at zero stress. The moduli of course vary w
strain.

Figure 1 shows the behavior of Cu, in which the initi
ordering of the Young moduli is seen to beE111.E110
.E100 and the initial Poisson’s ratios are ordered accord

to n110
001.n100.n111.0.n110

11̄0. The upward concavity of the
initial @100# sa vs la curve is also evident; this concavity i
naturally associated with the well-known Bain transform
tion, which has been widely viewed as a mechanism
fcc↔bcc transitions under tetragonal lattice distortions.27,28

A related phenomenon is the relatively shallow minimu
stresssa on the@100# path in compression. Under high com
pression, the@110# loading path becomes ‘‘stiffest,’’ as ex
pected, since@110# is the direction of closest approach o
neighboring atoms in an fcc structure. In the range of beh
ior depicted in Fig. 1, under@110# loading the transverse
stretch in the@11̄0# direction is always positive under tensio
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and negative under compression; the@001# transverse stretch
is of opposite sign, and the variation of its magnitude
greater than that of any of the other transverse stretche
the region of highla , the rate of changes of the magnitud
of the transverse stretches under@110# loading increase
markedly with increasingla ; in fact, as the state is ap
proached where the@110# path branches from the@100# path,

dl t
001/dla→2` and dl t

11̄0/dla→`; for the EAM model
of Cu, this state occurs in a region of compressive loadin
the point whereC4450, relative to the axes of the face
centered-tetragonal computational cell~or equivalently,
where C225C23, relative to the body-centered-tetragon
axes!, on the @100# path. The existence of this bifurcatio
also causes the maximum stresssa-max on the@110# path to
be relatively depressed, as the@110# tensile loading curve
‘‘bends over’’ to meet the@100# loading curve at the branc
point. The actual bifurcation occurs atla51.124 on the
@110# path, out of the range depicted in Fig. 1; however,
presence clearly influences the mechanical response thro
out the full @110# path. A distinct~but analogous! bifurcation
occurs atla51.133 on the@100# path of Cu, at a tensile
stress of 9.8 GPa, at the state whereC225C23 relative to the

FIG. 1. Mechanical response of face-centered-cubic copper~a!
Uniaxial stressessa applied along the@100#, @110#, and @111# di-
rections vs axial stretchla (1 Mbar5100 GPa), and~b! stretchesl t

transverse to the loading directions@100#, @111#, and@110# vs axial
stretchla ; the transverse stretches under@100# and @111# loading
are isotropic; under@110# loading, the transverse stretchesl t

001

along the@001# direction andl t
11̄0 along the@11̄0# direction are

designated by the nomenclature@110#/@001# and @110#/@11̄0#, re-
spectively.
s
In

at

l

s
gh-

axes of the face-centered-tetragonal cell; the occurrenc
this state provides an upper bound to the theoretical stre
of Cu in @100# uniaxial loading29 (1 Mbar5100 GPa). The
stress at which this occurs is less than half the maxim
@100# tensile stress~of 23.7 GPa atla51.381).

The behaviors of bcc and fcc Na are shown in Figs. 2 a
3, respectively. For both structures, the respective order
of the initial Young’s moduli and Poisson’s ratios are seen

be E111.E110.E100 andn110
001.n100.n111.0.n110

11̄0. Under
increasing compression, the@111# path of the bcc structure
continues to be the stiffest; this agrees with intuition, sin
@111# is the direction of closest approach for atoms in a b
crystal. The extremely small value of maximum tensile str
sa-max on the @100# path of the bcc structure@Fig. 2~a!# is
owing to the aforementioned Bain transformation, as is
small compressive stress on the@100# path of the fcc struc-
ture @Fig. 3~a!#. ~The body-centered-tetragonal and fac
centered-tetragonal structures are identical at a given v
of a1 under uniaxial load, so the@100# paths shown in Figs.
2 and 3 just comprise different sections of the same path,
with separate reference states atla51.) In each of the load-
ing directions, the behavior of fcc Na is qualitatively simil
to that of fcc Cu, except that, for fcc Na, the bifurcatio
under which the@110# path branches from the@100# path,
occurs within the range depicted in the figures. This is e
dent in Figs. 3~a! and 3~b! at an axial stretch of 1.081 on th
@110# path of the initially fcc structure, where the slopes
the sa and l t curves change abruptly; for values ofla

FIG. 2. Mechanical response of body-centered-cubic sodi
See descriptions of~a! and ~b! in Fig. 1 for descriptions of~a! and
~b! in this figure.
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.1.081 on this path, the structure is tetragonal, rather t
orthorhombic, and thus this section of the@110# path also
resides on the@100# path. An analogous bifurcation is seen
Figs. 2~a! and 2~b! on the@110# path of initially bcc Na at an
axial stretch of 0.933; forla,0.933, the structure is likewis
tetragonal, rather than orthorhombic, so this portion of
@110# path is thus also equivalent to@100# loading. This bi-
furcation occurs in a region of tensile loading on the@100#
path of bcc Na at the point whereC4450, relative to the axes
of the body-centered-tetragonal computational cell,
equivalently, whereC225C23, relative to the face-centered
tetragonal axes~i.e., to the axes of the computational ce
under @100# loading of the fcc structure!. The existence of
this bifurcation, wherein the load on the@110# path has
‘‘turned upward’’ to meet the@100# path in a region of ten-
sile loading ~or equivalently, where the load on the@110#
path has dropped suddenly from the@100# path!, may be
considered responsible for the upward concavity of the@110#
stress-strain relation of the bcc structure and for the r
tively small maximum compressive stress on this path.~The
‘‘meeting’’ of these curves is not apparent in the figur
depicted here, since the initial states~i.e., atla51) on the
diverse paths are reckoned to different crystal axes. In o
to view directly the convergence of the@100# and@110# load-
ing paths at a single point, whereC225C23, the values of
stretch on both the@110# and @100# paths would need to be
reckoned to the same set of crystal axes.!

The behavior of the EAM model of Al is shown in Fig. 4

FIG. 3. Mechanical response of face-centered-cubic sodium.
descriptions of~a! and~b! in Fig. 1 for descriptions of~a! and~b! in
this figure.
n

e

r

-

er
Aluminum is characterized by a lack of strong anisotro
that extends over relatively large ranges of uniaxial loadi
The initial Poisson ratios are all positive, and remain so o
large ranges ofla ; the axial stress is initially concave down
ward under@100# loading, but becomes concave upward u

ee

FIG. 4. Mechanical response of face centered cubic alumin
See descriptions of~a! and ~b! in Fig. 1 for descriptions of~a! and
~b! in this figure.~c! Absolute values of uniaxial stressusau ~Mbar!
in compressionC and in tensionT vs absolute value of strain
ula21u.
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der @100# compressive loading, owing to the influence of t
Bain transformation. While the initial slopes of thesa vs la
curves are similar, the@110# path exhibits considerable cu
vature and diverges most rapidly, in both compression
tension, from the initial grouping of stress-strain curves, a
seen in Fig. 4~c!. Although the EAM model of Al exhibits a

FIG. 5. Mechanical response of body-centered-cubic molyb
num. See descriptions of~a! and~b! in Fig. 1 for descriptions of~a!
and~b! in this figure and see description of~c! in Fig. 4 for descrip-
tion of ~c! in this figure.
d
is

bifurcation of the type experienced on the@110# paths of the
fcc models of Cu and Na, the bifurcation occurs at a re
tively large value ofla on aluminum’s@110# path, i.e., at
la51.233, and thus does not have as strong an influenc
the @110# loading behavior as is observed for fcc Na and C
Under increased tensile loading, however, the axial stres
the @110# path does achieve a lower maximum stress than
either the@100# or the @111# paths, owing to the incipien
bifurcation. In other words, Al is qualitatively similar to th
other fcc metals in that the theoretical maximum tens
stress on the@110# path is strongly influenced by critica
crystal symmetries, and is not the stress inherent in
strength of the atomic bonds.

Figure 5 shows the mechanical response of bcc M
which may be contrasted with that of bcc Na in Fig. 2. A
though the anisotropy of Mo is not as great as that of the
alkali metals, or of the fcc metals~excluding Al!, the ‘‘re-

verse’’ orderings E100.E110.E111 and n110
11̄0.n111.n100

.n110
001.0 are clearly evident in Figs. 5~a! and 5~b!, respec-

tively. Although @111# is the ‘‘softest’’ direction initially, it
becomes stiffest under increased compressive loading
might be expected. The@100# tensile path also exhibits a
relatively low maximum stress, although the ratios of t
maximum tensile stresses on the@100#, @110#, and @111#
paths, respectively, are 1:2.4:2.8 in Mo, compared w
1:47:34 for these ratios in bcc Na. In part, the much sma
anisotropy of the maximum stresses in Mo, when compa
with Na, is understood from the relative anisotropies of t
initial Young’s moduliEhkl . However, this contrast persists
in particular when@110# is compared with@100# and @111#
loadings, even when the differences in theEhkl are ‘‘factored
out.’’ That is, if sa-max/E represents the maximum tensi
stress in the@hkl# direction divided by the initial slopeEhkl

of the stress-strain curve, then the ratios ofsa-max/E in the
@100#, @110#, and@111# directions, respectively, are 1:3.1:3
in Mo and 1:17:4.9 in bcc Na. The relatively large maximu
tensile stress in@110# loading of bcc Na apparently is owin
to the upward concavity of the@110# stress-strain curve
which remains concave upward over a very large region
tensile and compressive loading and which, in turn, is ow
to the bifurcation seen in Fig. 2 and discussed earlier.
though the @110# path of the bcc structure of Mo als
branches from the@100# path, as in the case of bcc Na~and
of the other bcc metals!, for Mo this path branches with a
positive slope ofsa vs la at the point of bifurcation. This
type of response has not been reported in the literature
viously. We plan, in due course, to provide a detailed ex
sition of the characteristic modes of bifurcation, includin
the roles of the elastic moduli~up to, and including, the
fourth-order moduliCi jkl at the branch point24!. While the
branching behavior of Mo is complex~e.g., under very high
compression, the orthorhombic@110# sa vs la uniaxial load-
ing path ceases to be a simple, single-valued function!, the
bifurcation occurs in a region where it does not influence
@110# loading path significantly within the range depicted
Fig. 5. While the relative ‘‘accessibility’’ of the branch
points on the@110# and @100# paths of Na apparently is as
sociated with the ‘‘ease’’ of phase transitions in that metal5,6

the relative ‘‘inaccessibility’’ of these states in Mo is con

-
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TABLE I. Initial values of Young’s moduliE, theoretical ultimate tensile stressessa-max, and theoretical ultimate tensile loads per un
reference areaLa-max for the bcc metals under@100#, @110#, and@111# uniaxial loading and theoretical stresssa-crit for these metals at the
C225C23 eigenstate in@100# loading.

Mechanical
property
~Mbar!

Mode of
loading

Metals

Nb Mo Fe Rb K Na Li

E @100# 1.530 3.814 1.189 7.5531023 0.0109 0.0201 0.0335
E @110# 0.916 3.024 2.104 0.0193 0.0294 0.0558 0.0961
E @111# 0.808 2.829 2.831 0.0399 0.0681 0.137 0.255
sa-max @100# 0.140 0.247 0.0599 2.0531024 3.2031024 4.1931024 2.7531024

sa-max @110# 0.215 0.603 0.331 6.1431023 9.7531023 0.0195 0.0291
sa-max @111# 0.419 0.696 0.300 4.4031023 7.0631023 0.0142 0.0273
La-max @100# 0.107 0.235 0.0553 1.9431024 3.0131024 3.9931024 2.7131024

La-max @110# 0.194 0.557 0.306 5.7731023 9.3331023 0.0186 0.0283
La-max @111# 0.349 0.615 0.264 3.7831023 6.3631023 0.0126 0.0250
sa-crit @100# 2.526 20.885 20.143 26.0831023 28.8931023 21.1931023 29.0331023
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cordant with the high degree of stability of the bcc structu
of this metal.

Numerical values indicative of the theoretical mechani
responses of the bcc metals Nb, Mo, Fe, Rb, K, Na, and
and of the fcc metals Al, Ni, Cu, Ag, Au, and Na are listed
Tables I–V. It is interesting to note that bulk structural m
terials, such as steels, can achieve tensile strengths~i.e., true
stresses at failure! of over 2 GPa~see, e.g., Kelly,30 pp. 138–
148! and Fe whiskers in@111# loading have reached breakin
strengths of 13 GPa, as discussed by Kelly,30 pp. 36–39,
based on the work of Brenner.31 Tables I and II indicate tha
the theoretical maximum tensile stresses,sa-max, for bcc
transition metals Nb, Mo, and Fe are in the range of abou
GPa ~for Fe in @100# loading! to 70 GPa~for Mo in @111#
loading! and, for the fcc structural metals Al, Ni, and Cu,
the range of about 4.2 GPa~for Al in @110# loading! to 39
GPa for Ni in@100# and@111# loading. The theoretical maxi
mum stresses are greater than the actual ultimate te
strengths, as would be expected; however, the theore
values are generally within about an order of magnitude
the upper range of experimental values. Also, Kelly30 reports
the breaking strengths of Cu and Ag whiskers tested
e

l
i

-

6

ile
al
f

y

Brenner; the strongest directions were@111# and @100#; the
best Cu and Ag whiskers broke at 2.94 and 1.73 GPa, res
tively; i.e., Cu was 1.7 times stronger than Ag. From Tab
II, we note that the theoretical maximum loads per unit r
erence area,La-max, are 1.7 times greater for Cu than for A
in @100# loading and 1.9 times greater in@111# loading. In
@100# loading, the theoretical strength is reduced by the on
of instability whenC225C23, which occurs at 3.8 GPa fo
Ag and 9.8 GPa for Cu. The EAM models of Cu and Ag th
appropriately reflect the relative strengths of these met
when compared with experimental values of whisk
strengths.

For a given metal and a given loading direction, the ma
mum stress and the maximum load occur within proximity
each other, as seen in Table III. For the group-V a
group-VI transition metals~i.e., Nb and Mo!, the loading
direction with the greatest values of maximum stresssa-max
is @111# and the direction with the smallestsa-max values is
@100#, as seen in Table I; the ratio ofsa-max in the @111#
direction tosa-max in @100# is about 3 for both of these met
als; this behavior is relatively isotropic. For Fe and the b
alkali metals, the greatest value ofsa-max occurs in @110#
TABLE II. Initial values of Young’s moduliE, theoretical ultimate tensile stressessa-max, and theoretical
ultimate tensile loads per unit reference areaLa-max for the fcc metals under@100#, @110#, and@111# uniaxial
loading and theoretical stresssa-crit for these metals at theC225C23 eigenstate in@100# loading.

Mechanical
property
~Mbar!

Mode of
loading

Metals

Al Ni Cu Ag Au Na

E @100# 0.708 1.385 0.725 0.449 0.425 0.0209
E @110# 0.801 2.335 1.410 0.841 0.807 0.0592
E @111# 0.837 3.026 2.058 1.185 1.153 0.152
sa-max @100# 0.126 0.390 0.237 0.127 0.225 0.0210
sa-max @110# 0.0418 0.117 0.0547 0.0202 0.0284 9.7331024

sa-max @111# 0.148 0.393 0.265 0.136 0.214 0.0196
La-max @100# 0.103 0.327 0.201 0.116 0.188 0.0180
La-max @110# 0.0386 0.110 0.0517 0.0192 0.0261 9.4731024

La-max @111# 0.125 0.370 0.245 0.129 0.197 0.0191
sa-crit @100# 0.111 0.213 0.0982 0.0382 0.100 1.4631023
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TABLE III. Values of axial stretchla at states of maximum tensile stresssa-max and at states of
maximum tensile load~per unit reference area! La-max under@100#, @110#, and@111# uniaxial loading and at
the criticalC225C23 eigenstate in@100# loading.~Example: in Nb,sa-max andLa-max occur atla51.104 and
1.102, respectively, under@100# loading and atla51.153 and1.152, respectively, under@111# loading.!

Metal
Initial

structure
la under

@100# loading
la under

@110# loading
la under

@111# loading

la at
C225C23

in @100#
loading

Nb bcc 1.104, 1.102 1.153, 1.152 1.290, 1.283 0.747
Mo bcc 1.101, 1.099 1.246, 1.246 1.276, 1.270 0.756
Fe bcc 1.107, 1.101 1.262, 1.263 1.244, 1.225 0.904
Rb bcc 1.062, 1.060 1.323, 1.329 1.278, 1.249 0.953
K bcc 1.067, 1.065 1.311, 1.319 1.234, 1.213 0.953
Na bcc 1.053, 1.051 1.297, 1.300 1.250, 1.225 0.964
Li bcc 1.017, 1.017 1.332, 1.323 1.200, 1.192 0.983
Al fcc 1.386, 1.348 1.113, 1.108 1.302, 1.290 1.233
Ni fcc 1.362, 1.357 1.086, 1.084 1.219, 1.220 1.183
Cu fcc 1.381, 1.371 1.074, 1.072 1.245, 1.239 1.133
Ag fcc 1.273, 1.173 1.060, 1.057 1.206, 1.205 1.060
Au fcc 1.207, 1.201 1.100, 1.097 1.178, 1.177 1.102
Na fcc 1.449, 1.450 1.032, 1.031 1.244, 1.248 1.046
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Nb
loading and the least in@100# loading; the ratio of the ‘‘great-
est’’ to the ‘‘least’’ is 5.5 for Fe and it varies from about 3
to 100 for the bcc alkali metals, which are thus highly anis
tropic in this regard. The behavior of Fe is ‘‘intermediate
when compared with the bcc alkalis and the bcc group-V
group-VI transition metals. For a given fcc metal, und
@100# and @111# loading, the theoretical values ofsa-max are
generally comparable, and are from about 3 to 20 tim
larger thansa-max under@110# loading, as is seen from Tabl
II. In Table III it is observed that the maximum tensi
stresses in Nb, Mo, and Fe occur at axial strains of ab
10% in @100# loading, 25% in@110# loading~except for Nb!,
and 25–30% in@111# loading. For the bcc alkali metals
these axial strains are, respectively, about 2–7%, 30%,
-

d
r

s

ut

nd

20–30%. For each of the bcc metals, except Nb, both
maximum stresses~Table I! and the corresponding stretche
~Table III! are comparable in the@110# and@111# directions.
Nb is unusual, in that the@110# tensilepath contains an un
stressed face-centered-orthorhombic configuration. For
fcc metals other than Na, the maximum stresses and lo
occur at axial strains of about 20–40% in@100# loading,
5–10% in @110# loading, and 20–30% in@111# loading;
among these fcc metals, Al exhibits the greatest strain
sa-max for each direction of loading. Face-centered-cubic
exhibits a particularly large difference between the strains
sa-max in the @100# and @110# directions.

For the bcc metals in@100# loading, theC225C23 eigen-
states occur under compressive stretches of about 0.75 in
t
TABLE IV. Normalized maximum tensile stressessa-max/E for crystals under uniaxial load coinciden
with the @100#, @110#, and @111# directions; normalized axial stresssa-crit /E at theC225C23 eigenstate in
@100# loading; andsa-crit /sa-max in @100# loading. The initial Young modulus~or initial slope of the stress-
strain curve! under the respective mode of loading isE.

Metal
Initial

structure
sa-max/E
in @100#

sa-max/E
in @110#

sa-max/E
in @111#

sa-crit /E
in @100#

sa-crit /sa-max

in @100#

Nb bcc 0.0746 0.235 0.519 1.652 22.151
Mo bcc 0.0647 0.199 0.246 20.232 23.587
Fe bcc 0.0504 0.157 0.106 20.120 22.384
Rb bcc 0.0272 0.319 0.110 20.0805 22.959
K bcc 0.0294 0.331 0.104 20.0817 22.781
Na bcc 0.0209 0.350 0.103 20.0595 22.852
Li bcc 8.2131023 0.303 0.107 20.0269 23.279
Al fcc 0.178 0.0522 0.176 0.157 0.879
Ni fcc 0.281 0.0503 0.130 0.154 0.547
Cu fcc 0.327 0.0388 0.129 0.135 0.414
Ag fcc 0.283 0.0240 0.114 0.0850 0.301
Au fcc 0.529 0.0352 0.186 0.236 0.445
Na fcc 1.004 0.0164 0.129 0.0696 0.0693
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TABLE V. Values of transverse stretchl t at states of maximum tensile stresssa-max under@100#, @110#,
and@111# uniaxial loading and at theC225C23 eigenstate in@100# loading. The transverse stretch is isotrop
under@100# and@111# loading. Under@110# loading, two values of transverse stretch are indicated; these
reckoned, respectively, along the orthogonal directions@11̄0# and@001# ~relative to the initial cubic structure!;
these directions are of course also orthogonal to the@110# loading direction.

Metal
Initial

structure
l t under

@100# loading
l t under

@110# loading
l t under

@111# loading

l t at
C225C23

in @100#
loading

Nb bcc 0.967 0.914, 0.986 0.911 1.104
Mo bcc 0.976 0.979, 0.944 0.940 1.104
Fe bcc 0.960 1.039, 0.888 0.935 1.036
Rb bcc 0.972 1.052, 0.894 0.922 1.021
K bcc 0.970 1.069, 0.895 0.946 1.021
Na bcc 0.976 1.059, 0.898 0.939 1.016
Li bcc 0.992 1.092, 0.891 0.955 1.008
Al fcc 0.902 0.972, 0.950 0.918 0.933
Ni fcc 0.915 1.009, 0.930 0.971 0.946
Cu fcc 0.920 1.071, 0.929 0.960 0.959
Ag fcc 0.954 1.008, 0.947 0.975 0.979
Au fcc 0.914 0.997, 0.922 0.960 0.958
Na fcc 0.924 1.022, 0.952 0.987 0.981
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and Mo, 0.9 in Fe, and 0.95–0.98 in the bcc alkali meta
here, again, the behavior of Fe is ‘‘intermediate.’’ For the f
metals, these states occur under tensile stretches ran
from about 1.05 for Na to 1.23 for Al. Since theC225C23
eigenstates can limit the theoretical tensile strengths of
crystals in@100# loading, it is of particular interest to exam
ine where these states occur relative to the states of m
mum stresssa-max on the@100# paths. Among the fcc crys
tals, the ‘‘critical stress’’sa-crit , at whichC225C23, varies
from about 90% ofsa-max, for Al, to about 7% ofsa-max, for
Na. For most of the fcc metals included in the present stu
sa-crit /sa-max is in the approximate range of 0.3–0.5. Th
corresponding strains atsa-crit range from about 10%~for
Na! to 60% ~for Al ! of the strains atsa-max.

In order to gain a firmer understanding of the role
‘‘structure,’’ as distinct from ‘‘bond strength,’’ it is useful to
examine the normalized stress-strain responses of
metal, i.e., wherein the axial stresssa is divided by the ini-
tial Young’s modulusE appropriate to the particular meta
and specific loading direction. Table IV shows the norm
ized maximum tensile stresses under@100#, @110#, and@111#
loading and the critical stresses atC225C23 in @100# loading
and Figs. 6~a!–6~c! show the normalized, tensile, stres
strain curves of the bcc metals Na and Mo and the fcc me
Na, Cu, and Al over ranges of axial stretch that include
maximum theoretical tensile stressessa-max. The influence
of crystal symmetry is clearly evident in Figs. 6~a! and 6~b!;
the maximum valuessa /E under uniaxial tensile loading ar
relatively small and occur at relatively small values ofla for
the bcc metals in@100# loading and in the fcc metals in@110#
loading. The striking differences between the theoretical
sponses of bcc and fcc crystals observed in Figs. 6~a! and
6~b! are absent in Fig. 6~c!. For example, for Na, the value
of sa-max/E of the bcc and fcc crystals under@111# tensile
loading are within about 25% of each other, whereas th
values differ by factors of about 50 under@100# loading and
;
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20 under@110# loading. The theoretical tensile@111# loading
paths of bcc crystals pass through the unstressed simple
bic ~sc! states when the ratio of axial to transverse stret
la /l t , is doubled.32 However, since these sc states tend
reside at significantly greater energies than either the bc
fcc unstressed configurations, the ‘‘stress barriers’’ for tra
forming the crystals from the bcc to the sc states under@111#
loading ~i.e., the maximum@111# tensile stresses for bc
crystals! are generally quite large. In fact, these stress ba
ers are close to the theoretical maximum stressessa-max in
@110# tensile loading of bcc crystals; these values, in turn,
indicative of the inherent strength of the atomic bonds, i
they are limited neither by crystallographic transformatio
among unstressed states~e.g., the Bain transformation! nor
bifurcation phenomena~with the exception of Nb, as is men
tioned above!.

The characteristic responses of the crystals to homo
neous, finite, strain may also affect inhomogeneous beha
critically. For example, Abraham26 has modeled crack propa
gation under very rapid@100#, @110#, and @111#, uniaxial,
tensile, loading of an fcc crystal with Lennard-Jones int
atomic interactions; the cracks were oriented in such a m
ner that the plane in which the propagation occurred w
perpendicular to the direction of load. He found the crack
propagate in a brittle manner under@110# loading, whereas
under @100# and @111# loading, crack propagation wa
blunted by the emission of dislocations at the crack t
Abraham attributed the brittle mode of crack propagat
under @110# loading to the relatively low theoretical max
mum tensile strength of the perfect crystal under@110# load-
ing. Here we demonstrate the generality of this ‘‘depresse
stress-strain response to@110# tensile loading of fcc crystals
and emphasize the influence of the bifurcation process on
loading response. The present work also demonstrates
generality of the relatively low theoretical tensile strength
bcc crystals under@100# loading, and suggests that, in sim
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lations such as those performed by Abraham, crack prop
tion under@100# loading of bcc crystals may be similar t
that of fcc crystals under@110# loading.

Abraham also found that, under@100# loading of the fcc
Lennard-Jones crystal, dislocations were emitted from
crack tip in an ordered geometrical pattern, whereas un

FIG. 6. Mechanical response of the fcc metals Na, Cu, and
and the bcc metals Na and Mo to unconstrained uniaxial ten
loading in the three principal symmetry directions;sa /E represents
the uniaxial stress applied to the crystal in the@hkl# direction di-
vided by the initial slope of the stress-strain~or stress-stretch! curve
~i.e., divided by the initial Young’s modulus,Ehkl) and la is the
stretch coaxial with the load. The numerical values ofE for each
metal, for each loading axis, are given in Tables I and II. T
crystals are loaded in~a! the @100# ~or ‘‘cube-edge’’! direction,~b!
the @110# ~or ‘‘face-diagonal’’! direction, and~c! the @111# ~or
‘‘body-diagonal’’! direction.
a-

e
er

@111# loading, dislocations were generated in a more r
dom, disordered manner. One may speculate that the di
ences are owing to theC225C23 eigenstate, which always
has been found to occur in the tensile region of the@100#
path of fcc crystals, before the maximum stresssa-max is
reached. It is likely that the incipient crystal bifurcation a
sociated with this eigenstate is responsible for the ‘‘orde
under which the dislocations are emitted. The generality
the occurrence of this eigenstate also imparts generalit
the behavior of Abraham’s fcc Lennard-Jones crystal un
@100# loading. Since an analogous state has not been fo
on the tensile paths of the bcc crystals, one further ma
speculate that such ordered emission of dislocations wo
be unlikely during rapid loading of bcc crystals in such sim
lations.

In earlier work11,12,32–36Milstein and co-workers studied
the uniaxial loading behavior of crystals using Morse33 and
generalized Morse35 potentials to model interatomic bond
ing. Such purely central-force models are known to pos
Cauchy symmetries among the elastic moduli, e.g.,C44

5C23, C555C13, and C665C12 for body-centered-
orthorhombic or face-centered-orthorhombic crystals, wh
reduces toC125C44 for cubic crystals. Thus, in the centra
force approximation, it may be possible to model accurat
the experimental values ofC11 andC12 or of C11 andC44 of
cubic metals, but not ofC11, C12, andC44, except in fortu-
itous cases where, experimentally,C12'C44, which is not a
common occurrence. Additional restrictions are of cou
placed on the third-order moduli of central-force crysta
thus it is clear that such models are limited in their ability
reproducequantitativelythe complete harmonic and anha
monic, anisotropic, elastic response of metal crystals. M
stein chose to fit the three Morse parameters to experime
values of the unstressed atomic volume and elastic mo
C11 and C12; this ensured that the initial slope@i.e., C11

22C12
2 /(C111C12)# of the @100# loading path agreed with

experiment.~The fcc crystals accommodated such fitting
but bcc crystals could not be modeled in this manner, w
the exception of alkali metals.! Despite these deficiencies
the fcc crystals and the bcc alkali metals modeled in t
manner exhibited behavior, including bifurcation pheno
ena, that is qualitatively similar to that found in the prese
study. For example, Milstein and Rasky12 used such a Morse
model to study the loading behavior of fcc Cu; Fig. 7 sho
their results, with comparisons to the loading behavior of
in the present study. The present computations are of co
considered more reliable, since EAM models rest upon
firmer theoretical foundation8 than purely central-force mod
els of metals, and the present EAM model reproduces
three second-order and all six third-order elastic mod
Nevertheless, the qualitative agreement between the M
and EAM loading behaviors is remarkable. This comparis
further emphasizes the roles of crystalline symmetries
the general nature of interatomic forces as controlling infl
ences on the mechanical responses of the fcc metals; sim
comparisons can be made for the bcc alkali metals. T
group-V and group-VI bcc transition metals, however, b
have uniquely, both in their infinitesimal loading respon
and in their ‘‘bifurcation activity’’ under large strain. In or
der to model these responses, it has been necessary to
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ploy models that are more sophisticated than those that
only on the general nature of interatomic forces, such as
Morse interactions.

IV. SUMMARY AND CONCLUSIONS

This is the first of several papers that explore the theo
ical elastic behavior of metals at finite strain in the fram
work of the embedded-atom method. As a means to
end, EAM models that incorporate empirical values of bo
the second- and the third-order elastic moduli have b
constructed for twelve cubic metals. The models are
scribed in Ref. 9 and the underlying methodology is p
sented in Ref. 7. Here the mechanical response~load, stress,
and transverse strain versus longitudinal strain! is determined
on primary paths of uniaxial loading coaxial with the princ
pal symmetry directions, i.e.,@100#, @110#, and @111#. Also
the locations of potential instabilities on the@100# paths at
the ‘‘C225C23 eigenstates16–18’’ are determined; the occur
rence and positions of these states on the@100# paths pro-
foundly affect the@110# paths, since the latter branch fro
the former, under strict uniaxial load, at branch points co
cident with the eigenstates. Additional physical phenom
influenced by the path branchings are stress-induced p
transitions, which may be prevalent when theC225C23
states lie at relatively low stresses~as in the alkali metals!,5,6

and crack propagation and dislocation emission from a cr
tip.26 Subsequent papers will deal specifically with the iss
of stability under load and the detailed nature of path bran
ings.

Three general characteristic elastic responses are obse
among the cubic metals, i.e., those of the fcc metals, the
alkali metals, and the bcc group-V and group-VI transiti
metals. These are displayed and explained systematic
First the mechanical response of Cu is examined, as a re

FIG. 7. Mechanical response of the Morse potential model of
~reproduced from Ref. 12! and the EAM model~present work!; the
solid lines containing ‘‘data points’’ are from Ref. 12. The symbo
l hkl andlhkl are equivalent toLa andla in the present study.
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sentative of fcc metals; this is followed by expositions of t
response of a representative bcc alkali metal~Na! and of a
typical bcc transition metal~Mo!. In order to emphasize the
role of structure, as distinct from bonding, the behavior
fcc Na is also presented and contrasted with that of bcc
in the fcc configuration, the mechanical response of Na
similar to that of other fcc metals, although as indicat
above, theC225C23 eigenstate occurs at a relatively lo
stress~and strain! on the@100# path. The influence of bond
ing character, as distinct from structure, is seen from co
paring bcc Na and Mo. For example, strong, noncentral,
rectional bonding evidently causes the magnitude of
uniaxial stress in Mo, at a given small~but finite! longitudi-
nal strain, to be greatest under@100# loading and least unde
@111# loading, whereas the opposite occurs in bcc Na. T
behavior of Mo is somewhat contrary to intuition; i.e., on
might expect the stress magnitude to be greatest along
‘‘close-packed’’@111# direction.~Consider, e.g., if the atom
were incompressible ‘‘hard spheres,’’ then the compress
stress, at finite strain, under a@111# load, would be infinite.!
However, under large strain, the uniaxial compressive st
in Mo does become greatest along the@111# direction, as
expected. Analogously, the@110# stress magnitude in
fcc metals also becomes greatest under high compres
~The necessary ordering of the uniaxial stressesshkl along
the @hkl# directions must be eithers100>s110>s111 or
s111.s110.s100 for cubic crystals underinfinitesimal
strain, according to general elasticity requirements,15 al-
though neither of these orderings need be observed u
finite strain.!

Numerous comparisons are made among the qualita
and quantitative theoretical responses of the three ‘‘norm
metals, Cu, Na, and Mo, and of an ‘‘anomalous’’ metal, A
these lead to various insights into the influence of crys
symmetry, bifurcation, and bonding character upon mech
cal response, as is discussed in detail in the prior sect
After thoroughly discussing the mechanical responses
these four metals, numerical values indicative of the
sponses of all twelve metals are listed and evaluated. Fa
able comparisons are made among computed ‘‘theore
strengths’’ and experimental whisker strengths. This is
broad interest, since a common goal of metal physicists,
terials scientists, and metallurgists is to design and cre
strong metals. The strength of metals is of course ultima
limited by the strength inherent in the atomic bonds and
ability of the metal to remain stable under load. Metals us
in most structural applications are in ‘‘bulk form,’’ and th
strengths are much lower than those computed here or
those of fine metallic whiskers, owing to the presence
various defects in the bulk. In brittle metals, microcracks a
other stress raisers cause localized stresses that greatl
ceed the average stress present in the bulk. In such c
failure generally occurs by crack propagation, and the hig
localized stresses in the neighborhood of the crack tip m
approach those inherent in the strength of the bonds. In d
tile metals, dislocations readily glide on slip planes in t
presence of much lower stresses, causing permanent d
mation of the bulk. The strength of ductile metals can
enhanced by the ‘‘pinning’’ of dislocations, generally again
precipitates, grain boundaries, or other dislocations, thus
dering them immobile. Here again, highly localized stress
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approaching the inherent bond strengths, may be built u
the neighborhood of such ‘‘pinning sites.’’ The reasonab
good agreement between calculated and experimental w
ker strengths apparently is owing to the very large str
required to nucleate and/or propagate a dislocation in s
fine structural specimens.

Estimates of the theoretical strength of crystals are o
stated as a percent of the initial Young’s modulus, witho
accounting for anisotropic crystalline effects. Here the infl
ence of crystal structure and bifurcation phenomena is
ther elucidated from comparisons of the normalized unia
loading curvessa /E vs la , where the axial stresssa
[shkl , the initial Young modulusE[Ehkl , and the longi-
tudinal stretchla[lhkl ; the inadequacy of simply quoting
theoretical strength as a percent ofE, without reference to
the specific structure and the mode of loading, is clea
demonstrated for a wide variety of metals. For examp
among bcc metals, the maximum tensile stress in@100# load-
ing ranged from about 1%~for Li ! to 7.5%~for Nb! of E100,
whereas in@110# loading, the maximum stress varied fro
about 16%~for Fe! to 35% ~for Na! of E110. By contrast,
among fcc metals~excluding Al!, the maximum tensile
stresses encompass values from 1.6%~for Na! to 5%~for Ni!
of E110 under@110# loading and from 28%~for Ni! to 100%
g
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~for Na! of E100 under @100# loading. The response of th
alkali metals is particularly anisotropic at finite strain.

Finally, connections are made with the present theoreti
finite strain, elastic responses of metals and the crack pro
gation simulations of Ref. 26, and comparisons are m
among our results and those of earlier studies based o
simpler, central-force, model of crystals. The compariso
show that the central-force model~which ‘‘captures the es-
sence of atomic bonding,’’ i.e., interatomic interactions th
are repulsive and attractive, respectively, at small and la
interatomic distances! yields good qualitative agreemen
with the present results for fcc metals and the bcc alk
metals. However, a more sophisticated approach, as is
in the present study, is required to model even qualitativ
the anisotropic response of the group-V and group-VI b
transition metals.
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