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The theoretical mechanical response of 12 cubic méfd)<Cu, Mo, Na, Li, K, Rb, Nb, Fe, Ni, Au, and Ag
to unconstrained uniaxial loadings, coaxial with each of the three principal symmetry directions, is analyzed, at
finite strain, in the framework of the embedded-atom method model calculations. The models have been
formulated to reproduce, identically, empirical values of the three second-order elastic n@dul;,, and
C,4) and the six third-order elastic modi,1;, C112, C123, C1a4, C1g6, aNdCyus¢), and thus both the linear
(harmonig and nonlineaanharmonit response of the metals is represented in the computations. The me-
chanical behavior, including theoretical strengths, is strongly influenced by crystalline symmetries and bifur-
cation phenomena. Characteristic anisotropies, both at infinitesimal and at finite strain, are associated with each
of three subgroups, i.e., the fcc metals, the bcc alkali metals, and the bcec group-V and group-VI transition
metals. The behavior of bce Fe is intermediate to that of the bcc alkalis and that of the group-V and group-VI
transition metals. For the fcc metals undl&d0] loading, the maximum stress generally is about 20—50 % of
the value of Young’s modulus, although a potential instability associated with the vanishing of the elastic
moduli combinationC,,— C,3 occurs at stresses of about 10—25 % of Young's modulus. Also, for the fcc
metals, the maximum tensile stresqir11] loading is generally comparable with that[it00] loading, but in
[110] loading, the maximum stresses are only about 2—5 % of the respective Young’s modulus values. By
contrast, in the bcc alkali metals, the maximum tensile stregs06] loading is only about 1-3 % of Young’s
modulus, while in[111] and[110] loading, these percentages are about 10% and 30-35 %, respectively. The
relative anisotropy of the bcc transition metals at finite strain is much less than that of the bcc alkali metals. For
example, the maximum theoretical stresses in Nb range from about 2%iGP#0] loading to 70 GPa(in
[111] loading; for bcc Na, these values range from about 0.04 @R4100] loading to 2 GPa(in [110]
loading. [S0163-18288)00730-9

[. INTRODUCTION and TOEM, both the lineatharmonig and nonlineafanhar-
monic) elastic response of the metals may be presumed to be
The study of solids under hydrostatic pressure has longeasonably accurately reproduced by the model calculations.
been an active field of researttn recent years, interest in A number of years ago, Hiff observed that “Single crys-
homogeneous, large strain, nonhydrostatic deformation dfals free from lattice imperfections are used increasingly as
crystals has accelerated; see, e.g., Refs. 2—6, and the cit@icrostructural components. Perfect crystals are capable of
tions therein. With a view toward the development of modelselastic strains well beyond what can properly be treated as
for use in theoretical, finite strain, studies, Chantasiriwan anéhfinitesimal. Their response to general loading is virtually
Milstein’ developed a technique for incorporating experi-unknown and is doubtless complex ....” Atomistic model
mental values of the second-order elastic modBIDEM)  computations can shed light on these complexities, particu-
and third-order elastic moduliTOEM) in models of cubic larly when comprehensive comparisons are made among dif-
metals described by the embedded-atom metB#M).2 In  ferent metals, crystal structures, and loading directions. Such
the preceding papérthis technique is used to construct spe-comparisons can also serve to distinguish between finite
cific EAM models for 12 metals, viz, Al, Cu, Mo, Na, Li, K, strain responses that are sensitive to spedi@tails of
Rb, Nb, Fe, Ni, Au, and Ag. The models identically repro- atomic binding and those dependent mainly on just crystal
duce empirical values of the three SOEM ., C;»,, and symmetries and thgeneralnature of interatomic forces, i.e.,
C,s) and six TOEM Ci11, Ci12, Cio3, Ciaa, Cigs, and  attractive between atoms at relatively large interatomic spac-
Cse Of the respective metals. Additionally they yield theo- ing and repulsive between close, neighboring atoms.
retical pressure-volume curves and phonon-dispersion rela- Milstein and co-worker$*2have analyzed the infinitesi-
tions that are generally in good agreement with experimentnal elastic response of cubic crystals to uniaxial loading,
The present paper examines the theoretical response of thesased on the general nature of interatomic forces, on crystal-
models to unconstrained uniaxial loading along each of thdine symmetries, and on theoretical bifurcations occurring at
three principal symmetry directions of a cubic crystal, i.e.,finite strain. They deduced “standard models” for fcc and
[100], [110], and [111]. The loading is “unconstrained bcc crystals. In the standard model of an fcc crystaf (i)
uniaxial” in the sense that, at each stage, on each of théhe initial values of Young’'s modulus are ordered according
loading paths, the lattice parameters that are transverse to the E11:>E ;5> E 1o (the subscripts indicate the crystallo-
direction of load are allowed to “relax,” by an iteration graphic direction of loading (ii) a concave downward cur-
technigue, to the state where the transverse loads vanistature occurs in the initial portion of the stress-strain curve
Since the models incorporate empirical values of the SOEMn [111] and [110] uniaxial loading and a concave upward
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curvature in[100] loading, and(iii) Poisson’s ratiwﬁg is With the direction of load defined parallel &, the edges

negative'™* (For a crystal loaded uniaxially in tHenkl] of the computatio'nal cell may be expres_;sed in terms of the
stretches and unit vectors. FAt0Q] loading of structures

At ; , hK > al
direction, Poisson’s rat!a)hkI = sh,k,l,/shkh wheree _that are initially bc or fec,
ande; s are, respectively, the axial and transverse strains;
the superscript om is omitted if the transverse strain is iso- a=na%, a=1a%, as=Aa%k. (1)

tropic) There is generally good agreement between this _ _
“standard” model of fcc crystals and experimental The initial computational cells are thus cubic; under load

observatpr?‘,l'lz'“the only apparent exceptions are @br  they are tetragonal. F¢i10] loading of an initial bce struc-

which »119>0 and the[100] loading curve is initially con- wre,

110 110 ~ A by A A -~
cave downwary Pt and Ir @7;5>0), and Pd ¢77,<0 ex- a=1a% +]), a2=)\t”°a°(—i +1), a3=)\?°]a°k.
cept at low temperaturgs (2a)

According to experimental data and pseudopotential i ) o
computationd? the alkali metals and varioug brasses be- 1h€ computational cell is face-centered tetragonal initially,

have, as a group, in agreement with the standard model of3hd it becomes face-centered orthorhombic under load. For
bee crystal, in whichi) Young’s moduli are ordered accord- [110] loading of an initial fcc crystal,
ing to E11:>E 10> E100, (ii) the initial portion of the stress-

strain curve is concave downwards[it00] and[111] load- a :?\aao (’i‘+’.‘) a :Mlloao (_’i‘+’.‘) aae \ 000k
ing but concave upwards [110] loading, andiii ) Poisson’s 1= 2 e % 2 Ve 8= :
ratio »119 is negative. On the other hand, the experimentally (2b)

determined elastic properties of the bcc group-V transitionthe computational cell is initially body-centered tetragonal,
metals V and Nb and the group-VI transition metals Cr, Mo,and it becomes body-centered orthorhombic under load. Fi-
and W are not consonant with the standard model of a bcgally, under[111] loading,

crystal; for these metals;}1J is positive and the ordering of

Young’s moduli is reversed, i.eEq>E 10> E111- TO our a :)‘aao (f+?+k) =\ a°(—2?+?+ﬁ)
knowledge, no previous model computations of the uniaxial 172 17K, &= A 175
loading behavior, at finite strain, have been carried out on o

crystals with this characteristic infinitesimal response. Other az=M\a% —j+k) (39

relations and orderings among Young’s moduli, the shear
moduli, and Poisson’s ratios are discussed in Ref. 15, antPr the bee crystal, and

stability and bifurcation principles are presented in Refs. 16— x.a0
18. a=N2 +] k), @=—5 (~2i+]+k),
II. COMPUTATIONAL PROCEDURE x.a0
ta I
Consider a cubic crystal as it is deformed homogeneously ag=—— (—j+k) (3b)

under uniaxial load along any one of its three principal sym-

metry directions. The stretch, of any fiber is defined as its for fcc. The crystal structure is trigonal undérl1] loading,
length in the current state divided by its initial lendth the  although the computational cell is orthorhombic.

reference, or unstressed, cubic Statbe terms “stretch” The energy per atonk of a homogeneously deformed
and “strain” are used interchangeably although, strictly cubic crystal may be expressed as a function of six geometric
speaking, strain may be defined mg— 1. The stretch co- parameters, which we take as the lengths of the edges
axial with the applied load i$\,; under[100] and [111] a,, and az of the computational cell and their included
loading, the transverse stretah is isotropic; undef110]  anglesa,, as, andag. With this designation, in the EAM,
loading, the transverse stretches in f@1] and[110] direc-

tions are designated ag® and\{*°, respectively. The crys- E(a;,a,,a3,84,85,85)=F(p)+ 1> o(r)), (4a
tal structure on each of the primary loading paths may be !

described in terms of a crystallographic cell, called the

“computational cell,” the edges of which are formed by

three mutually orthogonal vectoeg, a,, andaz. The com-

putational cell is unique to the particular structure and mode p=2 f(r), (4b)

of loading; in the unstressed state, the computational cell is !

identical to the conventional cubic cell only for th&00]| wherer, is the distance between the atom at ktresite and
modes of loading. The vectoes may be expressed in terms the atom at the origin; the indexis summed over all sites
of a fixed frame of reference that has mutually orthogonakxcept the origin. The explicit pair-potential functioggr)
unit vectorsi, j, andk. These unit vectors are parallel to the and electron-density functiorf¢r) used in the present study
edges of the initial(unstressed conventional, cubic cell, are given by Eqgs(2) and (3) in Ref. 9; the corresponding
which may be either face-centered or body-centered cubignodel parameters are listed in Ref. 9, Table Il. The embed-
the unstressed lattice parameter, or cube edge, of this cell @ging function F(p) is determined from a modification of
a’. Rose’s equation of state; see E(®—(12) of Ref. 9.
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The vector connecting the atom at the origin and the atom

at thelth atomic site may be written as

n=z(l1a+18+13a3), 5
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&E_ai ’ 12 a'i 12
a—ai—ﬁFEflﬁ—ZEcﬁl-, (10

when a,=as=ag=90°. The axial loads and stresses are
readily computed with the aid of Eq$6)—(10). At each

where(for a given initial crystal structure and mode of load- stage of loadingi.e., for each selected value of the lattice

ing) 11, I, andl; are numerical indices that are unique t0 harametera,), an iteration procedure is used to determine
the particular sité. For a crystal under load, specification of o yalues ofa, anda; that renderdE/da,= 9E/daz=0 to

all allowed sets of indiced,, |,, |5, and the vectors form-
ing the edges of the computational cel],, a,, andas, also

within the required numerical accuracy. This procedure thus

locates the states of uniaxial loading, at which the “final”

completely determines the crystal structure. In practice, gansverse stretches are recorded and the uniaxial lbads

computer algorithm selects the setslef I,, 15 that are

and stresses, are computed, as functions of axial stretch

appropriate to the particular structure and mode of loading,

under consideration. Fdrn00] loading of bcc crystals and

a
The main concern of the present paper is the ‘“stress-

[110] loading of fcc crystals, the computational cells aregyain» response of the crystals on their primary loading
body centered, and the lattice summations are over all sets ghins Another important consideration, which shall be dealt

integer values$,, |,, I3, subject to the restriction that, |,,

with extensively, in due course, is stability under load. Here

andl; are either all even or all odd integers at any given sit@ye also determine the locations of a particularly interesting

[. Under[100] loading of fcc crystals an@l110] loading of

potential instability, associated with the vanishing of the

bcc crystals, the computqtional cells are fac_e centered, angdgquli combinationC,,— Cps, under[100] uniaxial load.
l1, 1, andl; take on all integer values, subject to the re- gjasiic moduli are central in theories of branching and insta-

striction thatl ; +1,+15 is an even integer. Undé¢t11] load-
ing of either the bcc or fcc structure, all siteare included
that satisfy the conditionsl {,l,,l3)=(m;,m,,m3) or (m;
+2,m,¥%,m;), wherem;, m,, andm; are integers, with

the restriction thain; andm,+ m; are even, or equivalently,

(I 1 ,l 2,|3) = (2”1 ,n2,2n3_ n2) or (2n1i %,nzi %,2”3_ nz),
wheren,, n,, andn; comprise all sets of integers.

The axial load per unit reference arep, coaxial witha,
and normal to theé-k face of the computational cell is

N oE a° E
L=

_ma—alzwﬁ—al, |:1,2,3,

i#j#k; (6

N is the number of atoms per computational ¢gllo for bcc
under[100] and fcc undef110] loadings, four for fcc under

[100] and bcc undef110] loadings, and six for both struc-
tures undef111] loading; V° is the volume per atom in the

unstressed cubic state, aadlis the length of théth edge of

bility. For a crystal under load, elastic moduli may be de-
fined in terms of second derivatives of internal energy with
respect to some convenient choice of geometric parameters
or strain variables, , i.e., in terms of9?E/dq,dqs. In pio-
neering work, Born and co-workéfs2! took the “positive
definiteness” of the matrix of second-order mod@lis (the
values of which vary with crystal deformatipto be synony-
mous with stability. This may be expressed @g 59, 69

>0 (summation conventior,,s=1,2,...,6), wheres repre-
sents a small, incremental change. However, as first noted by
Hill, ° and elaborated by Hill and Milste#¥,Born’s criterion
omits the effects of external loading upon the assessment of
stability; specifically it includes first- and second-order inter-
nal energy terms,p,dq, and C,.8q,69s, but neglects
second-order work term, 89,695, where thek,s repre-
sent second derivatives of external work with respect to the
strain variables; the,; depend on test configuration and
choice of variableg, . It follows, in general, that theoretical

the computational cell in this state. The axial loads divided ranges of stability” computed via Born’s criterion depend

by the current cross-sectional areas on which they(iaet
the “true stresses) are

N JE a JE

:a-_akg_V&a-' i:1,2,3, I?&j?&k, (7)
l i i

aj

upon the choice of parameters used to define strain in a crys-
tal under load, and thus such ranges do not represent intrinsic
measures of crystal strength or stabil{gxcept in special,
invariant cases as noted belpowHill and Milsteint®
modified Born’s criterion to a coordinate invariant form,
(Cis—ks)89,80s>0, and in subsequent wd® demon-

V is the current volume per atom. The crystalline symmetrystrated the importance, quantitatively, of the terms. There
on the uniaxial loading paths ensures that no shear stressae, however, certain modes of loading and subsequent insta-

act on the faces of the computational cell. In the EAM,

JE
0a; B

ar?
&ai ’

ar? 1
FEr o, S ¢ ®

0a;

where F'=dF/dp, f'=df/dr?, ¢'=d¢/dr?, and d/dr?
=(1/2r)(d/dr). Also, from Eq.(5),

r2=2%(12a2+15a3+13a%+ 2l,a,l ;a5 cosa,
+2l,a;13a5 cosas+2l,a4l,a, cosag); (9

so, fori=1, 2, or 3,dr% da;=a;1%/2 and

bility under which bothC,;6q,8qs and (C,s—K;s) 69,05
pass from positive definite to indefinite at the same state,
independent of the algebraic forms of thg. Hill and
Milstein'® have shown the state, whe@,,—C,3=0 on a
primary path of 100] loading of an initially cubic crystal, to
possess this characteristic and hence have termed it the “in-
variant C,,=C,; eigenstate” (see Ref. 16 for further de-
tails). Now consider a crystal subjected to a given mode of
loading. On a stable primary path, the crystal’'s symmetry
remains unchangede.g., an initially cubic crystal under
[100] loading remains tetragonabnd its incremental re-
sponse to a change in load depends on its current values of
secondorder elastic moduli. At the termination of a stable
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range, where €,s—K,s) 89, 89,>0 is first violated for any 92E , L or? oot L ar? or?
setdq, (not all of which are zerp the crystal may branch or m: Fr f 7a > f &—aj+F > f a, 73,
bifurcate to a secondary path of lower energy and new sym-

metry. The nature of this branching may depend not only on S g 2 1 S & ar? gr?

the second-order moduli, but also on tligherorder moduli +F Ja;da t3 Ja; (9_aj

at the branch poirf* For initially cubic crystals, two specific -

cases have been worked out in detail, i.e., branching from n E E &’ i ij=1,..6 (11)
tetragonal to orthorhombic undgt00Q] loading and from cu- 2 dajda;’ e

bic to tetragonal under hydrostatic pressure. The former o
curs atC,,— C,3=0 (Refs. 5, 17, 18, and 24and the sec-
ondary path characterization at the branch p@iet, stress
o, versus stretchh,) depends on “up to” fourth-order 2p 9°E F’ag
moduli C,4;, at the point wheré&€,,— C,3=0. The latter(i.e., =
branching from cubic to tetragonalccurs at the hydrostatic
pressure where the shear modujus/anishes and depends a§
on “up to” third-order moduliC,,.%° tg > (13-131%)¢"

The state wher€,,— C,3=0 on the[100] loading path is
interesting for a variety of reasons. First, as mentioned F’ 2, 1 2.,
above, its location on the primary loading path is indepen- + o Z I2f"+ 4 E 12¢"=0. (12)
dent of the choice of geometric variablgs (provided, of
course, thaty; is coaxial with the loading direction angh, ~ Also, if the crystal is under uniaxial load coaxial with,
andqs are coincident with the transverse crystal axgsand ~ F'=15f’ + 33156’ vanishes, as seen from E¢8) or (7) and
az). Second, branching occurs under dead Badfrom the ~ (10). Thus, in the EAM, the condition for th€,,=Cy;
tetragonal structure to an orthohombic structirt thus ~ eigenstate reduces to
forming a secondary loading path, of an orthorhombic crystal
structure, under uniaxial load. In prior computations with F> (|‘21_|§|§)f”+%2 (15-131%)¢"=0. (13
both pseudopotential and Morse models of elastically stable
fce (or beg crystals, after the,,= C,5 state is reached, the
uniaxial load dropgor increasesrapidly, through zero, on [ll. RESULTS AND DISCUSSION
the secondary path as, increasegor decreasgaunder con-
tinued longitudinal extension of the initially fcc crystadr

“he condition forC,,— C,3=0, with the aid of Eq(9), be-
comes

> (131315

Ja2 dagda; 4

Figures 1-5 show the mechanical responses, in the range

d tinued lonaitudinal . fthe initially b of axial stretch 0.9\ ,=<1.1, of four representative metals
under continued longitudinal compression of the initially beey, o+ comprise a “standard” fcc metdCu), a “standard”

crysta).>*"*®In this region the crystals were unstable, owing .. metal(Na), an “anomalous” fcc metalAl), and a bec
to the negative slope of the, versus, path, so theC  group-vI transition meta(Mo). The response of Na, origi-
=Cy3 eigenstate has been found to limit the theoreticahally in its fcc configuration, is also included since, at low
strength of fcc crystals ifil00] uniaxial tensior(or bee crys-  temperatures, Na exists in a close-packed phase, equivalent
tals in[100] uniaxial compression[The state of “maximum o fcc with stacking faults; additionally, it is instructive to
stress” or “maximum theoretical tensile stress” is reachedcompare the responses of a bce and an fce crystal described
when the true stres§.e., load divided by current cross- with the identical EAM model. The initial slope§.e., at
sectional aremachieves its maximum theoretical value onx,=1) of the o, (axial stresy versus\, (axial stretch
the primary path, regardless of whether the crystal is stableurves are the initial Young moduli and the initial slopes of
as this state is approached. The value of stress at this pointilse A, (transverse stretglversus\ , curves are thénegative
often taken as the “theoretical strength” of the crystal underPoisson ratios at zero stress. The moduli of course vary with
the particular mode of loading, although, more accurately, istrain.
is an “upper bound” to the theoretical strength. If an insta- Figure 1 shows the behavior of Cu, in which the initial
bility is known to occur at some point on the primary pathordering of the Young moduli is seen to We;;:>Ejj
before the maximum stress is reached, the value of stress &tEio0 @nd the initial Poisson’s ratios are ordered according
the instability represents a lower “upper bound” to the the-to »3%%> v145> v11,>0>v119. The upward concavity of the
oretical strength. Third, the orthorhombic uniaxial loading initial [100] o, VS A, curve is also evident; this concavity is
paths that branch from the00] path at theC,,=C,; state  naturally associated with the well-known Bain transforma-
also pass through the unstressed cubic configurations, aridn, which has been widely viewed as a mechanism for
these secondary paths are in fact the primary patid1d]  fcc—bcc transitions under tetragonal lattice distortiéh€
loading of cubic crystals. These bifurcations thus profoundlyA related phenomenon is the relatively shallow minimum
affect the character of tHd10] loading path$?**which, in  stresso, on the[100] path in compression. Under high com-
turn, determines the nature of crack propagation during atopression, thd110] loading path becomes “stiffest,” as ex-
mistic simulationé’ of rapidly applied uniaxial loadings. Fi- pected, sincd110] is the direction of closest approach of
nally, these bifurcations can be associated with<bfuz ~ neighboring atoms in an fcc structure. In the range of behav-
transitions in the alkali metals under uniaxial loadwfy. ior depicted in_Fig. 1, undef110] loading the transverse
With gi=a;, moduli C;; are readily computed from stretch in thg 110] direction is always positive under tension
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FIG. 1. Mechanical response of face-centered-cubic cofgaer. FIG. 2. Mechanical response of body-centered-cubic sodium.

Unigxial stres_sesra applied along th¢100), [110], and[111] di- See descriptions df) and(b) in Fig. 1 for descriptions ofa) and
rections vs axial stretckh, (1 Mbar=100 GPa), andb) stretches\, (b) in this figure.

transverse to the loading directiof00], [111], and[110] vs axial
stretch\,; the transverse stretches und00] and[111] loading  axes of the face-centered-tetragonal cell; the occurrence of
are isotropic; undef110] loading, the transverse stretch®§”  this state provides an upper bound to the theoretical strength

along the[001] direction and\!%° along the[110] direction are  Of Cu in [100] uniaxial loading® (1 Mbar=100 GPa). The
designated by the nomenclatui&10)/[001] and [110]/[110], re-  stress at which this occurs is less than half the maximum
spectively. [100] tensile stresgof 23.7 GPa ah ,=1.381).

The behaviors of bce and fcc Na are shown in Figs. 2 and
and negative under compression; fB@1] transverse stretch 3, respectively. For both structures, the respective orderings
is of opposite sign, and the variation of its magnitude isof the initial Young’s moduli and Poisson’s ratios are seen to

greater than that of any of the other transverse stretches. e Ey10> Eq16> E 00 and V(l)(fé> V106> V111> 0> V%%g. Under

the region of highh,, the rate of changes of t.he magn'tUdeSincreasing compression, th&11] path of the bcc structure

of the transverse strgtches _unc{dﬂO] loading INCre€ase  continues to be the stiffest; this agrees with intuition, since
markedly with increasing, ; in fact, as the state is ap- [111] is the direction of closest approach for atoms in a bcc
proached where thid 10] path branches from tHa00] path,  yqial. The extremely small value of maximum tensile stress
dA % dN,— —o and d\{*%/d\,—<; for the EAM model o, ... on the[100] path of the bce structurFig. 2@)] is

of Cu, this state occurs in a region of compressive loading abwing to the aforementioned Bain transformation, as is the
the point whereC,4,=0, relative to the axes of the face- small compressive stress on tHEO0| path of the fcc struc-
centered-tetragonal computational celbr equivalently, ture [Fig. 3@]. (The body-centered-tetragonal and face-
where C,,=C,3, relative to the body-centered-tetragonal centered-tetragonal structures are identical at a given value
axes, on the[100] path. The existence of this bifurcation of a; under uniaxial load, so thgd00] paths shown in Figs.
also causes the maximum stresg ., On the[110] path to 2 and 3 just comprise different sections of the same path, but
be relatively depressed, as thel0] tensile loading curve with separate reference states\gt=1.) In each of the load-
“bends over” to meet thg¢100] loading curve at the branch ing directions, the behavior of fcc Na is qualitatively similar
point. The actual bifurcation occurs a,=1.124 on the to that of fcc Cu, except that, for fcc Na, the bifurcation,
[110] path, out of the range depicted in Fig. 1; however, itsunder which thg110] path branches from thgl00] path,
presence clearly influences the mechanical response througbecurs within the range depicted in the figures. This is evi-
out the full[110] path. A distinct(but analogousbifurcation  dent in Figs. 8a) and 3b) at an axial stretch of 1.081 on the
occurs ath,=1.133 on the[100] path of Cu, at a tensile [110] path of the initially fcc structure, where the slopes of
stress of 9.8 GPa, at the state wh€g=C,; relative to the the o, and \; curves change abruptly; for values &f
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FIG. 3. Mechanical response of face-centered-cubic sodium. See 0.08 T T 7 ¥
descriptions ofa) and(b) in Fig. 1 for descriptions ofa) and(b) in i ’/C 111
this figure. oor b Al ;o (111] ]

; /o, onoa) 7
>1.081 on this path, the structure is tetragonal, rather than 006 [ crioy; s _y
orthorhombic, and thus this section of tfiE10] path also : S,
resides on thgl00] path. An analogous bifurcation is seen in 005 ) \ ]
Figs. 2a) and Zb) on the[110] path of initially bcc Na at an _ . o T[100] ]
axial stretch of 0.933; fox ,<<0.933, the structure is likewise " 0oaf It o~
tetragonal, rather than orthorhombic, so this portion of the [ NG -~ ]
[110] path is thus also equivalent fa00] loading. This bi- 0.03 | Ay < T g
furcation occurs in a region of tensile loading on fi€0] [ 7"/ Va
path of bcc Na at the point whef,,= 0, relative to the axes 002 F N/ 3
of the body-centered-tetragonal computational cell, or ; /,//
equivalently, whereC,,= C,3, relative to the face-centered- 001 F / 3
tetragonal axegi.e., to the axes of the computational cell A
under[100] loading of the fcc structuje The existence of 0.00 L P P T
this bifurcation, wherein the load on'tI”[G.lO] 'path has 0.00 0.02 0.04 0.06 0.08 0.10
“turned upward” to meet thg¢100] path in a region of ten-
sile loading (or equivalently, where the load on tf&10] © A -1l

path has dropped suddenly from th&0Q] path, may be
considered responsible for the upward concavity off it )]

FIG. 4. Mechanical response of face centered cubic aluminum.

stress-strain relation of the bcc structure and for the relaS€€ descriptions d&) and(b) in Fig. 1 for descriptions ofa) and

tively small maximum compressive stress on this péfhe

“meeting” of these curves is not apparent in the figures

depicted here, since the initial staté®., atA,=1) on the

(b) in this figure.(c) Absolute values of uniaxial stress,| (Mbar)
in compressionC and in tensionT vs absolute value of strain
Na—1].

diverse paths are reckoned to different crystal axes. In order

to view directly the convergence of th&00] and[110] load-
ing paths at a single point, whef@,,=C,3, the values of
stretch on both th¢110] and[100] paths would need to be
reckoned to the same set of crystal axes.

The behavior of the EAM model of Al is shown in Fig. 4.

Aluminum is characterized by a lack of strong anisotropy
that extends over relatively large ranges of uniaxial loading.
The initial Poisson ratios are all positive, and remain so over
large ranges of , ; the axial stress is initially concave down-

ward undef{100] loading, but becomes concave upward un-
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bifurcation of the type experienced on tfL0] paths of the

fcc models of Cu and Na, the bifurcation occurs at a rela-
tively large value of\, on aluminum’s[110] path, i.e., at
Na=1.233, and thus does not have as strong an influence on
the[110] loading behavior as is observed for fcc Na and Cu.
Under increased tensile loading, however, the axial stress on
the[110] path does achieve a lower maximum stress than on
either the[100] or the [111] paths, owing to the incipient
bifurcation. In other words, Al is qualitatively similar to the
other fcc metals in that the theoretical maximum tensile
stress on thd110] path is strongly influenced by critical
crystal symmetries, and is not the stress inherent in the
strength of the atomic bonds.

Figure 5 shows the mechanical response of bcc Mo,
which may be contrasted with that of bcc Na in Fig. 2. Al-
though the anisotropy of Mo is not as great as that of the bcc
alkali metals, or of the fcc metal@xcluding A), the “re-

verse” orderings E;o>E110>Eq11 and v119> w11 vig0
>1%%>0 are clearly evident in Figs.(8 and 5b), respec-
tively. Although[111] is the “softest” direction initially, it
becomes stiffest under increased compressive loading, as
might be expected. ThELOQ] tensile path also exhibits a
relatively low maximum stress, although the ratios of the
maximum tensile stresses on th&00], [110], and [111]
paths, respectively, are 1:2.4:2.8 in Mo, compared with
1:47:34 for these ratios in bcc Na. In part, the much smaller
anisotropy of the maximum stresses in Mo, when compared
with Na, is understood from the relative anisotropies of the
initial Young’s moduliEy,,. However, this contrast persists,
in particular when110] is compared witH100] and[111]
loadings, even when the differences in g, are “factored
out.” That is, if o4 ma/E represents the maximum tensile
stress in th¢hkl] direction divided by the initial slop&;,,

of the stress-strain curve, then the ratiosoQf,,./E in the
[100], [110], and[111] directions, respectively, are 1:3.1:3.8
in Mo and 1:17:4.9 in bcc Na. The relatively large maximum
tensile stress in110] loading of bcc Na apparently is owing
to the upward concavity of th¢l10] stress-strain curve,
which remains concave upward over a very large region of
tensile and compressive loading and which, in turn, is owing
to the bifurcation seen in Fig. 2 and discussed earlier. Al-
though the[110] path of the bcc structure of Mo also
branches from th¢€100] path, as in the case of bcc Nand

of the other bcc metalsfor Mo this path branches with a
positive slope ofo, vs \, at the point of bifurcation. This
type of response has not been reported in the literature pre-
viously. We plan, in due course, to provide a detailed expo-
sition of the characteristic modes of bifurcation, including

FIG. 5. Mechanical response of body-centered-cubic molybdethe roles of the elastic modulup to, and including, the

num. See descriptions ¢ and(b) in Fig. 1 for descriptions ofa)
and(b) in this figure and see description @ in Fig. 4 for descrip-

tion of (c) in this figure.

fourth-order moduliCyjy, at the branch poifif). While the
branching behavior of Mo is complge.g., under very high
compression, the orthorhomHit10] o, vs \ ; uniaxial load-
ing path ceases to be a simple, single-valued fungtithre

der[100] compressive loading, owing to the influence of thebifurcation occurs in a region where it does not influence the

Bain transformation. While the initial slopes of thg vs A,

[110] loading path significantly within the range depicted in

curves are similar, thgl10] path exhibits considerable cur- Fig. 5. While therelative “accessibility” of the branch
vature and diverges most rapidly, in both compression angoints on theg/110] and[100] paths of Na apparently is as-
tension, from the initial grouping of stress-strain curves, as isociated with the “ease” of phase transitions in that mefal,

seen in Fig. &). Although the EAM model of Al exhibits a

the relative “inaccessibility” of these states in Mo is con-
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TABLE I. Initial values of Young’s modulE, theoretical ultimate tensile stresses.x, and theoretical ultimate tensile loads per unit
reference areé 5 may for the bcc metals undgd.00], [110], and[111] uniaxial loading and theoretical stresg..,;; for these metals at the
C,,= C,3 eigenstate i1100] loading.

Mechanical Metals

property Mode of

(Mbar) loading Nb Mo Fe Rb K Na Li
E [100] 1.530 3.814 1189  7.55x107° 0.0109 0.0201 0.0335
E [110]  0.916 3.024 2.104 0.0193 0.0294 0.0558 0.0961
E [111]  0.808 2.829 2.831 0.0399 0.0681 0.137 0.255
O a-max [100] 0.140 0.247 0.0599 2.05x10°4 3.20x10°* 4.19x10°4 2.75x10°4
O a-max [110] 0.215 0.603 0.331 6.14x10°3 9.75x10° 3 0.0195 0.0291
O a-max [111] 0.419 0.696 0.300  4.40x10°2 7.06x1073 0.0142 0.0273
L 5-max [100] 0.107 0.235 0.0553 1.94x10°4 3.01x1074 3.99x 1074 2.71x 1074
L 2-max [110] 0.194 0.557 0.306 5.77x10°3 9.33x10°° 0.0186 0.0283
L 2-max [111] 0.349 0.615 0.264 3.78x10°3 6.36x10°° 0.0126 0.0250
T accrit [100] 2526 -0.885 —0.143 —6.08x10°° —8.89x10°° —1.19x10°8 —9.03x10°3

cordant with the high degree of stability of the bcc structureBrenner; the strongest directions wetel 1] and [100]; the
of this metal. best Cu and Ag whiskers broke at 2.94 and 1.73 GPa, respec-
Numerical values indicative of the theoretical mechanicatively; i.e., Cu was 1.7 times stronger than Ag. From Table
responses of the bcc metals Nb, Mo, Fe, Rb, K, Na, and Lil, we note that the theoretical maximum loads per unit ref-
and of the fcc metals Al, Ni, Cu, Ag, Au, and Na are listed in erence ared, ;. are 1.7 times greater for Cu than for Ag
Tables |-V. It is interesting to note that bulk structural ma-in [100] loading and 1.9 times greater ji11] loading. In
terials, such as steels, can achieve tensile strerigthstrue  [100] loading, the theoretical strength is reduced by the onset
stresses at failujef over 2 GPgsee, e.g., Kelly’ pp. 138—  of instability whenC,,=C,5, which occurs at 3.8 GPa for
148 and Fe whiskers ifil11] loading have reached breaking Ag and 9.8 GPa for Cu. The EAM models of Cu and Ag thus
strengths of 13 GPa, as discussed by K#lypp. 36-39, appropriately reflect the relative strengths of these metals,
based on the work of Brenn&t Tables | and Il indicate that when compared with experimental values of whisker
the theoretical maximum tensile stresses,max, for bcc  strengths.
transition metals Nb, Mo, and Fe are in the range of about 6 For a given metal and a given loading direction, the maxi-
GPa(for Fe in[100] loading to 70 GPa(for Mo in [111]  mum stress and the maximum load occur within proximity of
loading and, for the fcc structural metals Al, Ni, and Cu, in each other, as seen in Table lll. For the group-V and
the range of about 4.2 GR#for Al in [110] loading to 39  group-VI transition metaldi.e., Nb and M9, the loading
GPa for Ni in[100] and[111] loading. The theoretical maxi- direction with the greatest values of maximum stregsax
mum stresses are greater than the actual ultimate tensile [111] and the direction with the smallest,. ., values is
strengths, as would be expected; however, the theoreticfl00], as seen in Table [; the ratio @f, .y, in the [1171]
values are generally within about an order of magnitude ofiirection too,_a, in [100] is about 3 for both of these met-
the upper range of experimental values. Also, K8lhgports  als; this behavior is relatively isotropic. For Fe and the bcc
the breaking strengths of Cu and Ag whiskers tested bwlkali metals, the greatest value of, . occurs in[110]

TABLE II. Initial values of Young’'s modulE, theoretical ultimate tensile stresses,.y, and theoretical
ultimate tensile loads per unit reference akga,., for the fcc metals undgrl00], [110], and[111] uniaxial
loading and theoretical stress,_.,;; for these metals at th€,,= C,5 eigenstate i100] loading.

Mechanical Metals
property Mode of
(Mbar) |0ading Al Ni Cu Ag Au Na
E [100] 0.708 1.385 0.725 0.449 0.425 0.0209
E [110] 0.801 2.335 1.410 0.841 0.807 0.0592
E [117] 0.837 3.026 2.058 1.185 1.153 0.152
O a-max [100] 0.126 0.390 0.237 0.127 0.225 0.0210
O a-max [110] 0.0418 0.117 0.0547 0.0202 0.0284 o7 4
O a-max [117] 0.148 0.393 0.265 0.136 0.214 0.0196
L a-max [100] 0.103 0.327 0.201 0.116 0.188 0.0180
L a-max [110] 0.0386 0.110 0.0517 0.0192 0.0261 o414
L a-max [111] 0.125 0.370 0.245 0.129 0.197 0.0191

T acrit [100] 0.111 0.213  0.0982  0.0382  0.100 14803




6014 FREDERICK MILSTEIN AND SOMCHART CHANTASIRIWAN PRB 58

TABLE IIl. Values of axial stretchn, at states of maximum tensile stresg ., and at states of
maximum tensile loadper unit reference argd ,_ma, Under[100], [110], and[111] uniaxial loading and at
the criticalC,,= C,5 eigenstate ifn100] loading.(Example: in Nbo,_max @ndL ;. max0Cccur aik ,=1.104 and
1.102, respectively, und¢L00] loading and ah,=1.153 andl.152, respectively, und¢i11] loading)

A\, at
Cp=Cy3
Initial N\, under N\, under N\, under in [100]
Metal structure [100] loading [110] loading [111] loading loading
Nb bcc 1.104, 1.102 1.153, 1.152 1.290, 1.283 0.747
Mo bcc 1.101, 1.099 1.246, 1.246 1.276, 1.270 0.756
Fe bcc 1.107, 1.101 1.262, 1.263 1.244, 1.225 0.904
Rb bcc 1.062, 1.060 1.323, 1.329 1.278, 1.249 0.953
K bcec 1.067, 1.065 1.311, 1.319 1.234, 1.213 0.953
Na bcc 1.053, 1.051 1.297, 1.300 1.250, 1.225 0.964
Li bcc 1.017, 1.017 1.332, 1.323 1.200, 1.192 0.983
Al fcc 1.386, 1.348 1.113, 1.108 1.302, 1.290 1.233
Ni fcc 1.362, 1.357 1.086, 1.084 1.219, 1.220 1.183
Cu fcc 1.381, 1.371 1.074, 1.072 1.245, 1.239 1.133
Ag fcc 1.273, 1.173 1.060, 1.057 1.206, 1.205 1.060
Au fcc 1.207, 1.201 1.100, 1.097 1.178, 1.177 1.102
Na fcc 1.449, 1.450 1.032, 1.031 1.244, 1.248 1.046

loading and the least if100] loading; the ratio of the “great- 20-30%. For each of the bcc metals, except Nb, both the
est” to the “least” is 5.5 for Fe and it varies from about 30 maximum stresse@able |) and the corresponding stretches
to 100 for the bcc alkali metals, which are thus highly aniso-(Table Ill) are comparable in thigl10] and[111] directions.
tropic in this regard. The behavior of Fe is “intermediate,” Nb is unusual, in that thE110] tensilepath contains an un-
when compared with the bcc alkalis and the becc group-V andtressed face-centered-orthorhombic configuration. For the
group-VI transition metals. For a given fcc metal, underfcc metals other than Na, the maximum stresses and loads
[100] and[111] loading, the theoretical values of,.,,care  occur at axial strains of about 20—40% [ii00] loading,
generally comparable, and are from about 3 to 20 time$—10% in[110] loading, and 20-30% if111] loading;
larger thano ,_max Under[110] loading, as is seen from Table among these fcc metals, Al exhibits the greatest strain at
IIl. In Table Ill it is observed that the maximum tensile o, .. fOr each direction of loading. Face-centered-cubic Na
stresses in Nb, Mo, and Fe occur at axial strains of abougxhibits a particularly large difference between the strains at
10% in[100] loading, 25% in110] loading(except for NB, 0 5.max in the[100] and[110] directions.

and 25-30% in[111] loading. For the bcc alkali metals, For the bcc metals if100] loading, theC,,= C,5 eigen-
these axial strains are, respectively, about 2—7%, 30%, anstates occur under compressive stretches of about 0.75 in Nb

TABLE IV. Normalized maximum tensile stresseg.max/E for crystals under uniaxial load coincident
with the [100], [110], and[111] directions; normalized axial stress,_.;/E at the C,,=C,3 eigenstate in
[100] loading; ando,.¢it/ T a-max IN [100] loading. The initial Young moduluéor initial slope of the stress-
strain curve under the respective mode of loadingHs

Initial Oa-max/E Tamax/E Tamax/E Tacit/ E Taciit! Ta-max
Metal structure in [100] in [110] in [111] in [100] in [100]
Nb bce 0.0746 0.235 0.519 1.652 22.151
Mo bcc 0.0647 0.199 0.246 —0.232 —3.587
Fe bcc 0.0504 0.157 0.106 —0.120 —2.384
Rb bcc 0.0272 0.319 0.110 —0.0805 —2.959
K bce 0.0294 0.331 0.104 —0.0817 —2.781
Na bce 0.0209 0.350 0.103 —0.0595 —2.852
Li bcc 8.21x1073 0.303 0.107 —0.0269 —3.279
Al fcc 0.178 0.0522 0.176 0.157 0.879
Ni fcc 0.281 0.0503 0.130 0.154 0.547
Cu fcc 0.327 0.0388 0.129 0.135 0.414
Ag fcc 0.283 0.0240 0.114 0.0850 0.301
Au fcc 0.529 0.0352 0.186 0.236 0.445
Na fcc 1.004 0.0164 0.129 0.0696 0.0693
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TABLE V. Values of transverse stretoh) at states of maximum tensile strasg ., under[100], [110],
and[111] uniaxial loading and at th€,,= C,; eigenstate ifi100] loading. The transverse stretch is isotropic
under[100] and[111] loading. Undef110] loading, two values of transverse stretch are indicated; these are
reckoned, respectively, along the orthogonal direct[dif] and[001] (relative to the initial cubic structuje
these directions are of course also orthogonal tg 11€)] loading direction.

A at

C2=Cys

Initial N\ under A\ under A\ under in [100]

Metal structure [100] loading [110] loading [1171] loading loading
Nb bce 0.967 0.914, 0.986 0.911 1.104
Mo bcc 0.976 0.979, 0.944 0.940 1.104
Fe bcc 0.960 1.039, 0.888 0.935 1.036
Rb bcc 0.972 1.052, 0.894 0.922 1.021
K bcc 0.970 1.069, 0.895 0.946 1.021
Na bcc 0.976 1.059, 0.898 0.939 1.016
Li bcc 0.992 1.092, 0.891 0.955 1.008
Al fcc 0.902 0.972, 0.950 0.918 0.933
Ni fcc 0.915 1.009, 0.930 0.971 0.946
Cu fcc 0.920 1.071, 0.929 0.960 0.959
Ag fcc 0.954 1.008, 0.947 0.975 0.979
Au fcc 0.914 0.997, 0.922 0.960 0.958
Na fcc 0.924 1.022, 0.952 0.987 0.981

and Mo, 0.9 in Fe, and 0.95-0.98 in the bcc alkali metals20 undef{110] loading. The theoretical tensil@é11] loading
here, again, the behavior of Fe is “intermediate.” For the fccpaths of bee crystals pass through the unstressed simple cu-
metals, these states occur under tensile stretches rangini: (s states when the ratio of axial to transverse stretch,
from about 1.05 for Na to 1.23 for Al. Since th®,,=C,;3  \,/\,, is doubled®? However, since these sc states tend to
eigenstates can limit the theoretical tensile strengths of fcgeside at significantly greater energies than either the bce or
crystals in[100] loading, it is of particular interest to exam- fcc unstressed configurations, the “stress barriers” for trans-
ine where these states occur relative to the states of maxjorming the crystals from the bcc to the sc states ufitig]
Mum Stressr, max 0N the[100] paths. Among the fcc crys- |oading (i.e., the maximum[111] tensile stresses for bcc
tals, the “critical stress”o,.t, at whichC,,=C,3, varies  crystalg are generally quite large. In fact, these stress barri-
from about 90% 0fr,_max, for Al, to about 7% ofo.max, fOr  ers are close to the theoretical maximum stressggy in
Na. For most of the fcc metals included in the present study|,110] tensile loading of bcc crystals; these values, in turn, are
Oa-ciit/ 0a-max 1S N the approximate range of 0.3—0.5. The indicative of the inherent strength of the atomic bonds, i.e.,
corresponding strains at, o range from about 10%for  they are limited neither by crystallographic transformations
Na) to 60% (for Al) of the strains atr,.nay- among unstressed statésg., the Bain transformatiopmor

In order to gain a firmer understanding of the role of bifurcation phenomenéwith the exception of Nb, as is men-
“structure,” as distinct from “bond strength,” it is useful to tioned abovg
examine the normalized stress-strain responses of each The characteristic responses of the crystals to homoge-
metal, i.e., wherein the axial stresg is divided by the ini-  neous, finite, strain may also affect inhomogeneous behavior
tial Young's modulusE appropriate to the particular metal critically. For example, Abrahaffihas modeled crack propa-
and specific loading direction. Table IV shows the normal-gation under very rapid100], [110], and [111], uniaxial,
ized maximum tensile stresses un@&d0], [110], and[111] tensile, loading of an fcc crystal with Lennard-Jones inter-
loading and the critical stresses@,= C,3in [100] loading  atomic interactions; the cracks were oriented in such a man-
and Figs. 6a)-6(c) show the normalized, tensile, stress-ner that the plane in which the propagation occurred was
strain curves of the bcc metals Na and Mo and the fcc metalperpendicular to the direction of load. He found the crack to
Na, Cu, and Al over ranges of axial stretch that include thepropagate in a brittle manner unddrl0] loading, whereas
maximum theoretical tensile stresse@g.,max. The influence under [100] and [111] loading, crack propagation was
of crystal symmetry is clearly evident in Figdaband &b); blunted by the emission of dislocations at the crack tip.
the maximum values-, /E under uniaxial tensile loading are Abraham attributed the brittle mode of crack propagation
relatively small and occur at relatively small values\gffor ~ under[110] loading to the relatively low theoretical maxi-
the bcc metals ih100] loading and in the fcc metals [A10]  mum tensile strength of the perfect crystal undet0O] load-
loading. The striking differences between the theoretical reing. Here we demonstrate the generality of this “depressed”
sponses of bcc and fcc crystals observed in Figa) &nd  stress-strain response[tbl0] tensile loading of fcc crystals,
6(b) are absent in Fig.(6). For example, for Na, the values and emphasize the influence of the bifurcation process on the
of o,.max/E Of the bcc and fcc crystals undgt11] tensile  loading response. The present work also demonstrates the
loading are within about 25% of each other, whereas thesgenerality of the relatively low theoretical tensile strength of
values differ by factors of about 50 undéi00] loading and  bcc crystals unddrl00] loading, and suggests that, in simu-
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[117] loading, dislocations were generated in a more ran-
dom, disordered manner. One may speculate that the differ-
ences are owing to th€,,=C,4 eigenstate, which always
has been found to occur in the tensile region of he0]
path of fcc crystals, before the maximum stresg,.y IS
reached. It is likely that the incipient crystal bifurcation as-
sociated with this eigenstate is responsible for the “order”
under which the dislocations are emitted. The generality of
the occurrence of this eigenstate also imparts generality to
the behavior of Abraham’s fcc Lennard-Jones crystal under
[100] loading. Since an analogous state has not been found
on the tensile paths of the bcc crystals, one further may
speculate that such ordered emission of dislocations would
be unlikely during rapid loading of bcc crystals in such simu-
lations.

In earlier work1%:32=35\jjlstein and co-workers studied
the uniaxial loading behavior of crystals using Morsand
generalized Mors& potentials to model interatomic bond-
ing. Such purely central-force models are known to posses
Cauchy symmetries among the elastic moduli, e@u,
=C,y3, Cs55=Cy3, and Cgz=C,;, for body-centered-
orthorhombic or face-centered-orthorhombic crystals, which
reduces taC,,= C,, for cubic crystals. Thus, in the central
force approximation, it may be possible to model accurately
the experimental values @, andC;, or of C;; andC,, of
cubic metals, but not of,;, C4,, andC,,4, except in fortu-
itous cases where, experimentaly;,,~C,,, which is not a
common occurrence. Additional restrictions are of course
placed on the third-order moduli of central-force crystals;
thus it is clear that such models are limited in their ability to
reproducequantitativelythe complete harmonic and anhar-
monic, anisotropic, elastic response of metal crystals. Mil-
stein chose to fit the three Morse parameters to experimental
values of the unstressed atomic volume and elastic moduli
C,;, and C4,; this ensured that the initial slopgée., Cq;
—2C3,J(Cy1+Cyy)] of the [100] loading path agreed with
experiment.(The fcc crystals accommodated such fittings,
but bcc crystals could not be modeled in this manner, with
the exception of alkali metajsDespite these deficiencies,
the fcc crystals and the bcc alkali metals modeled in this
manner exhibited behavior, including bifurcation phenom-
ena, that is qualitatively similar to that found in the present

FIG. 6. Mechanical response of the fcc metals Na, Cu, and Aktudy. For example, Milstein and Raskysed such a Morse
and the bcc metals Na and Mo to unconstrained uniaxial tensilenodel to study the loading behavior of fcc Cu; Fig. 7 shows

loading in the three principal symmetry directiows,/E represents
the uniaxial stress applied to the crystal in fekl] direction di-
vided by the initial slope of the stress-stra@or stress-stretgtcurve
(i.e., divided by the initial Young’s modulug,,,) and\, is the
stretch coaxial with the load. The numerical valuesEofor each

their results, with comparisons to the loading behavior of Cu
in the present study. The present computations are of course
considered more reliable, since EAM models rest upon a
firmer theoretical foundatidrthan purely central-force mod-

els of metals, and the present EAM model reproduces all

metal, for each loading axis, are given in Tables | and Il. They, e second-order and all six third-order elastic moduli.

crystals are loaded ita) the[100] (or “cube-edge’) direction, (b)
the [110] (or “face-diagonal” direction, and(c) the [111] (or

“body-diagonal”) direction.

Nevertheless, the qualitative agreement between the Morse
and EAM loading behaviors is remarkable. This comparison
further emphasizes the roles of crystalline symmetries and
the general nature of interatomic forces as controlling influ-

lations such as those performed by Abraham, crack propag@nces on the mechanical responses of the fcc metals; similar
tion under[100] loading of bcc crystals may be similar to comparisons can be made for the bcc alkali metals. The
that of fcc crystals unddrl10] loading.

Abraham also found that, undgt00] loading of the fcc

group-V and group-VI bcc transition metals, however, be-
have uniquely, both in their infinitesimal loading response

Lennard-Jones crystal, dislocations were emitted from thend in their “bifurcation activity” under large strain. In or-
crack tip in an ordered geometrical pattern, whereas undeafer to model these responses, it has been necessary to em-
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2 ' T I sentative of fcc metals; this is followed by expositions of the
Cu _ response of a representative bcc alkali méid) and of a
- typical bcc transition metalMo). In order to emphasize the
- I [601 b role of structure, as distinct from bonding, the behavior of
L > fcc Na is also presented and contrasted with that of bcc Na;
e | in the fcc configuration, the mechanical response of Na is
(no) similar to that of other fcc metals, although as indicated
=5 y above, theC,,=C,; eigenstate occurs at a relatively low
/) stress(and strain on the[100] path. The influence of bond-
Ak [no]/ | ing_character, as distinct from structure, is seen from com-
2 paring bcc Na and Mo. For example, strong, noncentral, di-
AN rectional bonding evidently causes the magnitude of the
- uniaxial stress in Mo, at a given smaklut finite) longitudi-
, nal strain, to be greatest unddi00Q] loading and least under
/ [111] loading, whereas the opposite occurs in bcc Na. The
behavior of Mo is somewhat contrary to intuition; i.e., one
-3 . might expect the stress magnitude to be greatest along the
“close-packed”[111] direction.(Consider, e.g., if the atoms
s |'o L - were incompressib[e “hard spheres,” then the cpmp_ressive
’ N ) stress, at finite strain, under{ &11] load, would be infinite.
hel However, under large strain, the uniaxial compressive stress

FIG. 7. Mechanical response of the Morse potential model of cdn Mo does become greatest along ffiel 1] dlrect_lon, as
(reproduced from Ref. 12and the EAM modelpresent work the ~ €XPected. Analogously, the¢110] stress magnitude in
solid lines containing “data points” are from Ref. 12. The symbols fCC metals also becomes greatest under high compression.
Ik and\p,, are equivalent td, and, in the present study. (The necessary ordering of the uniaxial stressgg along

the [hkl] directions must be eithetrig¢=011= 0111 OF
ploy models that are more sophisticated than those that rel§11:> 110> 0100 for cubic crystals underinfinitesimal
only on the general nature of interatomic forces, such as thétrain, according to general elasticity requiremeénts)-

L 10" dyn/cm?)
o

Morse interactions. though neither of these orderings need be observed under
finite strain)
IV. SUMMARY AND CONCLUSIONS Numerous comparisons are made among the qualitative

and quantitative theoretical responses of the three “normal”
This is the first of several papers that explore the theoretmetals, Cu, Na, and Mo, and of an “anomalous” metal, Al;
ical elastic behavior of metals at finite strain in the frame-these lead to various insights into the influence of crystal
work of the embedded-atom method. As a means to thisymmetry, bifurcation, and bonding character upon mechani-
end, EAM models that incorporate empirical values of bothcal response, as is discussed in detail in the prior section.
the second- and the third-order elastic moduli have bee#fter thoroughly discussing the mechanical responses of
constructed for twelve cubic metals. The models are dethese four metals, numerical values indicative of the re-
scribed in Ref. 9 and the underlying methodology is pre-sponses of all twelve metals are listed and evaluated. Favor-
sented in Ref. 7. Here the mechanical respdiwad, stress, able comparisons are made among computed “theoretical
and transverse strain versus longitudinal siremletermined strengths” and experimental whisker strengths. This is of
on primary paths of uniaxial loading coaxial with the princi- broad interest, since a common goal of metal physicists, ma-
pal symmetry directions, i.e[,100], [110], and[111]. Also terials scientists, and metallurgists is to design and create
the locations of potential instabilities on tfi#00] paths at strong metals. The strength of metals is of course ultimately
the “C,,=C,; eigenstateé§1®" are determined; the occur- limited by the strength inherent in the atomic bonds and the
rence and positions of these states on [th@0] paths pro- ability of the metal to remain stable under load. Metals used
foundly affect the[110] paths, since the latter branch from in most structural applications are in “bulk form,” and the
the former, under strict uniaxial load, at branch points coin-strengths are much lower than those computed here or than
cident with the eigenstates. Additional physical phenomenahose of fine metallic whiskers, owing to the presence of
influenced by the path branchings are stress-induced phasarious defects in the bulk. In brittle metals, microcracks and
transitions, which may be prevalent when tkk,=C,;  other stress raisers cause localized stresses that greatly ex-
states lie at relatively low stressés in the alkali meta)s*®  ceed the average stress present in the bulk. In such cases,
and crack propagation and dislocation emission from a crackailure generally occurs by crack propagation, and the highly
tip.2® Subsequent papers will deal specifically with the issuedocalized stresses in the neighborhood of the crack tip may
of stability under load and the detailed nature of path branchapproach those inherent in the strength of the bonds. In duc-
ings. tile metals, dislocations readily glide on slip planes in the
Three general characteristic elastic responses are observptesence of much lower stresses, causing permanent defor-
among the cubic metals, i.e., those of the fcc metals, the bamation of the bulk. The strength of ductile metals can be
alkali metals, and the bcc group-V and group-VI transitionenhanced by the “pinning” of dislocations, generally against
metals. These are displayed and explained systematicallprecipitates, grain boundaries, or other dislocations, thus ren-
First the mechanical response of Cu is examined, as a reprdering them immobile. Here again, highly localized stresses,
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approaching the inherent bond strengths, may be built up ifor Na) of E;y, under[100] loading. The response of the
the neighborhood of such “pinning sites.” The reasonablyalkali metals is particularly anisotropic at finite strain.
good agreement between calculated and experimental whis- Finally, connections are made with the present theoretical,
ker strengths apparently is owing to the very large stressinite strain, elastic responses of metals and the crack propa-
required to nucleate and/or propagate a dislocation in suchation simulations of Ref. 26, and comparisons are made
fine structural specimens. among our results and those of earlier studies based on a
Estimates of the theoretical strength of crystals are Oﬂe@,impler, central-force, model of crystals. The comparisons
stated as a percent of the initial Young’s modulus, withoutsho that the central-force modebhich “captures the es-
accounting for anisotropic crystalline effects. Here the influ-gence of atomic bonding,” i.e., interatomic interactions that
ence of crystal structure and bifurcation phenomena is furyre repulsive and attractive, respectively, at small and large
ther elucidated from comparisons of the normalized uniaxia|nteratomic distancgsyields good qualitative agreement

loading curveso,/E vs \,, where the axial stresg,
=0n, the initial Young modulu€=E,,,, and the longi-

with the present results for fcc metals and the bcc alkali
metals. However, a more sophisticated approach, as is used

tudinal stretchh ;=\py; the inadequacy of simply quoting a iy the present study, is required to model even qualitatively

theoretical strength as a percent Bf without reference to

the anisotropic response of the group-V and group-VI bcc

the specific structure and the mode of loading, is clearlyransition metals.
demonstrated for a wide variety of metals. For example,

among bcc metals, the maximum tensile stre44.00] load-
ing ranged from about 1%jor Li) to 7.5%(for Nb) of E4q,

whereas in110] loading, the maximum stress varied from

about 16%(for Fe) to 35% (for Na) of E;4o. By contrast,
among fcc metals(excluding A), the maximum tensile
stresses encompass values from 1(636Na) to 5% (for Ni)

of Eq1p under[110] loading and from 28%for Ni) to 100%
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