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Embedded-atom models of 12 cubic metals incorporating second- and third-order
elastic-moduli data
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An embeded-atom metho@EAM) formulation that can reproduce identically the empirically determined
second-order and third-order elastic moduli is employed in constructing the EAM models of 12 cubic metals
(Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb The models yield phase stabilities, pressure-volume
curves, and phonon-frequency spectra that are in generally good agreement with experiments.
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[. INTRODUCTION finite strain, including theoretical strengths, elastic stabil-
ity under loadf® and bifurcations leading from primary to
The embedded-atom methodEAM) has been widely secondary crystallographic configurations under prescribed
used in the study of condensed matter; Ref. 1 contains Bnodes of loading=** An accompanying paper uses the mod-
comprehensive review. Chantasiriwan and Milstegtently ~ €ls to examine and compare the theoretical responses of the
examined the higher-order elasticity of cubic metals in themetals to uniaxial loading.
framework of the EAM. They developed formulas for com-
puting the third-order elastic moduliTOEM) in general Il. MODIFIED EQUATION OF STATE
EAM formulations and showed that appropriate groupings of
the elastic moduli depend solely on either the electron
density function or the pair-potential function. Their aim, in
part, was to develop a convenient method of constructing
EAM models that incorporate experimental values of both E=F(p)+3 > o(r)), (1a
the second-order elastic modsOEM) and the TOEM; !
such models thereby display accurately the harmonic andith
anharmonic, anisotropic, elastic behavior of the parent crys-
tal. As examples of the efficacy of that approach, specific
EAM models were constructed for four metdise., alumi-
num, copper, sodium, and molybdenumhese models iden- .
tically reproduced the respective second- and third-ordeyvhere the summations are performed over all atoms except
elastic moduli, as well as the binding energy, atomic volumethe reference atom in the crystal, andis the distance be-
unrelaxed vacancy formation energy, and Rose’s universd/Ve€en the reference atom and a surrounding gtddere, we
equation of state. They also provided reasonable phonoi!S€ the same forms for the pair potentia(r) and the
frequency spectra and structural energy differences. electron-density functiof(r) as in Ref. 2; these are repeated
In the present paper we modify the EAM formulation of P€low as Egs(2) and (3);
Ref. 2 in order to improve the fit between the theoretical and
experimental pressu?e-volume relations. In addition, the for- G(1)=A(r =1 ) {1+ dyr +dar?
mulation is used to construct specific EAM models for 12 +dar3+d,r 4+ dsr 3+ dgr ], ®)
metals(Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb
All of the SOEM (C,;, Cy», andCy,,) and TOEM (C,4;,  Wherer, is the cutoff distancéi.e., ¢(r)=0 forr=r], and
Ci12, Ci23, Cia4, Cigs, andCysg) of each model are iden- A and thed; are fitting parameters that are determined from
tical with those empirically determined for the metal itself empirical values of the atomic volumé, at zero pressure,
(all elastic-moduli data are experimental with the exceptionghe unrelaxed vacancy formation enefy,, and the com-
of the TOEM of the alkali metals Li, Na, K, and Rb, which binations of elastic moduliC;;—C15, Cus, C111—3C112
were taken from pseudopotential calculations because ex-2C;,3, Ci4a— Cies, and Cyse;? the analytic expressions
perimental values of these TOEM were not found in the lit-for these quantities are given in E§24)—(30) in Ref. 2. The
eraturg. The theoretical and experimental pressure-volumeutoff distancer, must be greater than the third-nearest-
(P-V) and phonon-dispersion relations of each metal areeighbor distance in order to avoid artificial restrictions on
also compared; there is excellent agreement among the réne calculated values of th€, e.g., C144=Cjgg for bcc
spectiveP-V relations and, as in Ref. 2, reasonably goodand C,ss=0 for fcc? With regard tof(r), Chantasiriwan
agreement among the phonon relations. and Milstein have demonstrated theoretically the importance
It is our intention, in due course, to use these EAM mod-of selecting an oscillatory form; the following was found to
els to explore the theoretical elastic response of metals dte suitable:

In the EAM format, the cohesive energy per aténof a
homogeneous monatomic crystal can be written as

p=§j: f(ry), (1b)
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TABLE I. The physical constants of Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb used as input parameters for EAM model

construction. Data for the elastic moduli and the lattice constants are for room temperature, except for K, Li, Na, and Rb, which are for low

temperature.

Ag Al Au Cu Fe K Li Mo Na Nb Ni Rb
ay (A)?2 4.10 4.03 4.09 3.60 287 525 3.49 315  4.23 3.31 352  5.62
E (eV) 1.1 0.66 0.9 1.28 179 042  0.34 319 042 279 1.6 0.312
Econ (€V) 2.95 3.34 3.81 3.50 429 0941  1.65 6.81  1.13 7.47 445  0.852
Cy (Mban®  1.222  1.143 1.929  1.762 226 0.0416 0.148 4696 0.0821 2465 2508 0.0296
Ci, (Mban® 0907  0.6192  1.638  1.2494 140 0.0341 0.125 1676 0.0683 1.333 1500 0.0244
Cs (Mban® 0454  0.3162 0415 0.8177 1.16 0.0286 0.108 1.068 0.0577 0.284  1.235 0.016
Cyy; (Mban —-843 —1427" -17.30 -200 -27.2' -0.38? -2.70° —355P —0.93% -2564 -204 —0.274
Cip(Mba) —529 —4.08 -922 -12.2 —-6.08 —0.057 —0.386 —13.33 —0.144 -11.40 -10.3 —0.041
Cips(Mbar)  1.89 032 -233 -50 -5.78 -0.091 -0.693 -6.17 -0.230 -467 -21 —0.059
Cius(Mba) 056 —085 —-013 -1.32 —8.36 —0.114 -0944 -2.69 -0298 -343 -14 -0.075
Cies(Mbar) —6.37 —396 -6.48 -—7.05 —53 —0.058 —0590 —-893 -0172 -1.677 —-9.2 —0.035
Cuss (Mbar)  0.83 -0.42  —0.12 025 -7.2 -0.097 -0.733 —-555 -0.248 1.366 —0.7 —0.069

%Reference 15.
bReference 16.
‘Reference 17.
dreference 18.
®Reference 19.
fReference 20.
9Reference 21.
hReference 22.
iReference 23.

_ 1+b; cogar)+b; sin(ar)

IReference 24.
kReference 25.
'Reference 26.
MReference 27.
"Reference 28.
%Reference 29.
PReference 30.
9Reference 31.
'Reference 32.

data, as discussed belojWVe refer to Eq.(4) as “Rose’s

f(r) B : (3)  EOS” regardless of the value &f] SinceP=—dE/dV and
k=V d’E/dV?,
where o and B8 are positive parameters, afid andb, are 3 3
fitting parameters that are chosen to satisfy the expressions o = d_": dx/dV _ —V d°E/dV 1 6)
for the elastic-moduli ratios §;,— C44)/(Ciaa— Cas9 and dP dP/dV  d’E/dV? ’

(012_ C44)/(2.0144+ CllZ_ C166_ 0123_ C456)
(22) and(23) in Ref. 2].

[see Egs.

where the derivatives are taken Rt=0. Evaluation of Eq.

(6) using Eq.(4) yields

The primary difference between the EAM formulation
used here and that of Ref. 2 lies in the embedding function
F(p). Previously, we used Rose’s universal equation of
staté? to determine F(p), following the suggestion of
Foiles, Baskes, and Dat¥.For a cubic crystal with lattice
parameter, Rose’s equation of stat&OS is

NMkx'—1) 1
Ty @

whereink’ is computed frort

. . U _ C111t6Cyyp+ 2C 03 ®
EEoéa ): _Ecoh(l‘Fa +ka )e (4) K 3(C11+ 2C12)
with a* =(a—ap)/apgh and A= VEc/9Vok. Substitution  For example, from the data in Table I, E4%) and(8) give

of the energyEgpg for the cohesive energi in Eq. (18
yields

k=0.130, 0.353,-0.004, and 0.032 for Al, Cu, Na, and Mo,
respectively. However, as seen in Fig. 1, neither these values
nor k=0.05 consistently provides very good fits to the ex-
perimentalP-V data at very high pressures. On the other
hand, the respective valueslof 0.03, 0.06, 0.00, anet0.05
improve the appearance of tReV correspondences of these
The constantsg, E, Vo, andk are the lattice parameter, metals at high pressures, but these values do not satisfy the
magnitude of cohesive energy, volume per atom, and bullelastic-moduli relation§7) and(8). Thus, for modeling cubic
modulus, respectively, at the unstressed reference state. Theetals, the use of Rose’s E@®ithout modification to ob-
numerical value ok, which clearly influences the curvature tain good agreement witR-V data and the use of SOEM

of the theoreticaP-V relation, was set equal to 0.05 by Rose and TOEM to obtain good anisotropic elastic behavior are
et al? from thermal expansion data of Cu. In Ref. 2, we somewhat incompatible. In view of this consideration, we
determined values df based on the pressure derivative of have adopted a simple modification to the EOS that enables
the bulk modulusk’, evaluated from SOEM and TOEM the curvature of thé-V relation atP=0 to agree with Eq.

F<p>=EEos<a*)—%2j o(r)). (5)
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(8), while also yielding agreement with Rose’'s EOS at intermediate and large compressions and expansions. This modified

EOS is as follows:
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([ —E.(1+a* +ka*3)e @ for a/ag<0.95 or a/a,=1.05
a 2 a 3 4 a i+3
~ —Eeopt @1l —— 1| +awo| —1] +2, yi(——l for 0.95<a/ap<1
Eeog@)= 1 ao ag =1 "lag (9)
a 2 a 3 4 a i+3
—Eeorit 1| —— 1| +wy| ——1| +> ﬂi(——l) for 1<al/ay<1.05.
L 2N ch i=1 Qg
|
With this EOS, atP=0 (a/apg=1), and compared with experimental results. For each metal, the
value ofk that yields good agreement between theory and
o= @ (10 experiment at high pressures is selected. Gnée known,
9Vy' the parameters; and y; are fit to Rose’s EOS as described
and in the previous section.
While determining the fitting parameters in the second
Wy group, @ and B8 were initially treated as “free parameters,”
kK'=1— o’ (1)  and the values ob; andb, were computed from Eq$22)

SO (1)1:1.5\/0(C11+ 2C12) and (02:0.5\/0(C111+ 6C112
+2C1,9 + wq; these relations are used to compute and
w,, thus satisfying Eq(8). At high compressions and expan-
sions @/ay<0.95 anda/ay=1.05), Rose’s EOS is identi-
cally satisfieda* is as defined in Eq4) andk is chosen to

and(23) in Ref. 2. It was observed that the valuesachnd 8
were subject to certain restrictions, which result from the
requirement thap(a), as calculated from the lattice summa-
tion in Eqg. (1b), must be a single-valued function af This
requirement, which is evident from E(p), was found to be
satisfied for each metal, for a particular range of values.of

fit the P-V data. In order to ensure correspondence withThe size of this range varies inversely wighand the range
Rose’s EOS at intermediate lattice compressions and expafay vanish ag increases. From a computational viewpoint,

sions, the parameterg; and »; (i=1-4) are determined
from the requirement of continuity &gogand its first three

it is desirable forg to be sufficiently large to maké(r) a
short-ranged function, yielding rapid convergence of the lat-

derivatives at/a;=0.95 and 1.05; i.e., the series expansionsijce summations. A nonvanishing range of appropriatel-

used to specify the EOS in the range 699/ a,<<1.05 are
matched to Rose’s EOS atay=0.95 and 1.05. The embed-
ding functionF is then determined from

F(p>=EEos<a>—%; b(r)). (12

Ill. EAM MODEL PARAMETERS

In this section, the construction of the EAM models for
seven bcc metaléFe, K, Li, Mo, Na, Nb, and Rband five
fcc metals(Ag, Al, Au, Cu, and Nj is described in detail.
Three distinct groups of parameters are determined from s

oretical P-V and phonon-dispersion relations; these group
are the following. (1) The parameters ifEgqs arek, 7;,
and y; (i goes from 1-4 (2) The parameters ifi(r) are a,
B, by, andb,. (3) The parameters ig(r) arer,, A, andd,;
(i goes from 1-§ The construction of the EAM models is
simplified because the parameters in each group are indep

ues was found for each metal f@#=10; we thus settled
upon this value ofg. Initially, several values ofx were
“tried” for a number of metals. It was found that the nu-
merical value ofa did not influence the phonon-frequency
spectra or the mechanical response of the model strongly; so
we arbitrarily chosex to be a whole number in the range.
Finally, for selected values af,,, the remaining param-
eters ing(r) were determined uniquely from Eq24)—(30)
in Ref. 2. The main criteria employed in the selection of the
final values ofr,, were(i) the calculated differences between
the energies of the fcc and the bcc structurd&=Ej,
— Epce, Should be positive for the metals Fe, K, Mo, Nb, and

lutions of simultaneous equations and the quality of the thecin and negative for Ag, Al, Au, Cu, Li, Na, and Ni, at zero

ressure, in conformance with experimental information on
phase stability, andii) the theoretical phonon-dispersion
curves should be “optimal” when compared with experi-
ment. Additional criteria were set for the metals Fe, K, Na,
and Rb, which undergo phase transformations under

eplr_essuré.3 That is, for these metalgi) the theoretical fcc-

dent of those in the other two groups. In the manner of Ref2CC free-energy differenc G=AE+PAV (whereAV is
2, the input data used in the construction of the current EAMDE difference between the theoretical fcc and bec atomic
models are the lattice constant, the cohesive energy, the uMolumes at pressure), should change sign, with increasing
relaxed vacancy formation energy, the three second-orddifessure, from positive to negative for Fe, K, and Rb and

elastic moduli, and the six third-order elastic mod(dee
Table ). These quantities are fit identically to the models.

from negative to positive for Na, and) the theoretical val-
ues of pressure at which the respective valueA Gfvanish

In order to determine the parameters in the first groupshould be of the same order of magnitude as the experimen-
theoreticalP-V relations based on Rose’s EOS are computedally observed phase transition pressures.
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TABLE Il. Parameters of model EAM functions for 12 metals. The uniAds eV/A* and the unit ofd,, is A~".

Ag Al Au Cu
v1 (€V) 14 495.346 52 —3989.565 406 9445.865 571 —17 259.616 81
v5 (eV) 395 465.8578 —132139.8801 229 182.9206 —541 086.9574
v3 (eV) 5312 561.379 —1753510.429 3105 624.331 —7 195 460.939
¥4 (€V) 26 534 316.50 —8771590. 264 15 493 942.00 —35988 498.49
7 (€V) —12 046.123 28 4781.276 350 —6056.628 891 18 726.460 78
7, (eV) 395 472.2278 —132139.3587 229 190.6785 —541 085.045
73 (€V) —5304 003.255 1754 827.731 —3 095 343.756 7198 976.218
74 (€V) 26 536 845.88 —8771382.584 15 497 019.75 —35987 737.82
k 0.11 0.03 0.02 0.06
rm (A) 5.50 6.70 5.28 4.50
A 14.908 064 49 —0.3215381234 —60.069 286 29 25.046 204 27
dy —1.703 063 442 —1.971 137 745 —1.840 544 567 —2.098 826 585
d, 1.206 516 952 1.520 390 482 1.400 563 316 1.840 347 959
ds —0.454 778 800 8 —0.5953303100 —0.564 392 065 7 —0.860411 6108
d, 9.610 249 94% 102 0.125 730 889 2 0.127 1237191 0.225 611 227
ds —1.078 577 4% 10°? —1.36183563%10°2 —1.518 586 13% 102 —3.140 081 97% 10 2
dg 5.017 307 44 10 * 5914217 02%x 104 7.522 88193104 1.808 853 49& 103
B 10 10 10 10
a(A™Y 6 4 4 7
by 0.239827 3154 0.310473 8433 0.461 170 630 4 0.111 910 600 4
b, —7.281 818 26k 1072 0.487 991 625 4 0.197 522 660 9 0.245 285 818 2
Fe K Li Mo
v1 (eV) —3362.890 156 652.149 5759 —2496.393 012 —13576.835 45
v, (eV) —119 251.2897 18 463.193 62 —75600.013 99 —437 305.7752
v3 (eV) —1578535.082 246 553.7779 —1007 811.084 —5822 805.449
74 (€V) —7 897 739.845 1232713.383 —5039 077.496 —29107 989.53
7, (8V) 4533.986 271 —580.560 779 8 2542.685 291 15 534.391 49
7, (eV) —119 250.7307 18 463.186 31 —75600.015 72 —437 309.6601
73 (€V) 1580 216.932 —246 530.3939 1007 820.232 5821 667.794
74 (€V) —7897517.078 1232 710.480 —5039 078.186 —29109 527.37
k 0.00 -0.03 —-0.03 —-0.05
rm (A) 4.28 9.14 5.21 455
A 291.209 481 3 —2.859 062 64% 102 16.783 560 73 —606.3712120
d, —2.115 702 540 —1.134 902 214 —1.705 128 491 —2.054 768 934
d, 1.860 194 164 0.510 640 043 2 1.202 678 444 1.745 919 130
ds —0.869 886 607 8 —0.119 020 209 7 —0.448 345106 9 —0.784 664 821 8
d, 0.228 202 300 3 1.544 861 0520 2 9.299 515 02% 10 2 0.196 528 667 7
ds —3.185392 44X 10°? —1.069 924 10& 103 —1.015 649 28% 10?2 —2.597 366 10& 10?2
dg 1.849 148 428107 3.110 346 91610 ° 4551 740 97%10°* 1.412 876 41%10°°
B 10 10 10 10
a(Ah 13 8 16 12
by —0.194 840200 7 8.328 384 2430 2 3.285662 17X 10 2 —8.709 497 77% 102
b, 4.638911 78%10°2 3.705 566 88& 10 2 0.103 800 838 3 0.179414 316 9
Na Nb Ni Rb
71 (€V) 68.306 100 04 —30487.694 53 —205.057 080 3 649.849 283 7
v, (€V) 730.074 6290 —933 760.2020 —34354.644 27 18 460.710 49
v3 (€V) 10 327.208 74 —12 442 153.00 —435084.1284 246 548.8572
¥4 (€V) 51 451.807 57 —62212 159.16 —2188804.122 1232 649.268
7 (€V) 16.831 351 09 31724.570 69 1980.888 186 —582.806 865 3
7, (€V) 730.085 800 4 —933760.4790 —34352.41557 18 460.710 97
73 (€V) —10 262.669 88 12 442 751.74 439 300.9830 —246 513.6091
74 (€V) 51 456.267 44 —62 212 268.80 —2 187 917.470 1232 649.467
k 0.00 -0.03 0.07 -0.02
ro (A) 7.33 4.84 4.44 8.60
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TABLE Il. (Continued).
Na Nb Ni Rb
A —0.145 780 869 3 —1018.281 136 91.324 540 26 —0.364 586 132 9
d; —1.477 709 511 —1.896 433 957 —2.161 849 925 —1.093 150 118
d, 0.880 889 107 9 1.493 092 287 1.942 229 116 0.4933428051
ds —0.274 186 820 6 —0.624 518 355 7 —0.927 081 647 3 —0.117 933 044 2
dg 4.737 762 15% 10 2 0.146 315869 9 0.247 707 891 3 1.577 608 X9D 2
ds —4.319 465 23% 1073 —1.819 783 36% 1072 —3.510 205 726 102 —1.120569 87% 103
dg 1.622 819 24% 104 9.382 896 31610 4 2.059 803 1461073 3.307 376 50% 10 °
B 10 10 10 10
a(A7Y 7 10 7 6
b, —0.134 8882218 0.143 696 528 0 0.326 5732731 3.571 7352233
b, 2.007 174 856 102 —0.102 173022 2 0.224 0324704 —0.102 145 935 8

IV. NUMERICAL RESULTS AND DISCUSSION

from the formulas given by Ningsheng, Wenlan, and Ghen
are compared with experimental ddtan Fig. 4. There is

The EAM model parameters for the 12 metals are disyenerally good agreement between the theoretical and calcu-
played in Table II. In Figs. 1-3, the theoretical pressuréyaieq phonon spectra, which indicates that the EAM models
volume curves reproduced by the models are compared witigplay reasonable lattice dynamics behavior. Among the
the experimental data of Ref. 34. For fég. 3), these data metals represented, the bcc transition metals Mo and Nb
extend to only about 0.05 Mbar, so experimerRaV' data  have the most complex phonon spectra, and accordingly, the
from other source®] taken at higher pressure, are alsotheoretical phonon spectra of these metals tend to show the
shown, although no attempt was made to match the theoregreatest divergences from experiment. In both cases, how-
ical P-V relation for Fe to the higher-pressure data. ever, the theoretical curves do capture important experimen-

The theoretical phonon-frequency spectra, calculatedal features, although the fit is much better for Mo than for

1.2
(a) Al (c) Na 7
1.0 + 1 /
o Experimental 0.2 C] Experimental /'
s, 7
~ 08 1+ Theoretical y — Theoretical s
& —— (i) modified EOS, k =0.03 H] —— (i) modified EOS, k = 0.00 /
- (i) k=0.130 a || - (i) k=-0.004 Vs
= 0.6 T | —— (i) k=005 s — — (i)} k=0.05 y,
A d N
o o
1
T

6 6
(b) Cu (d) Mo
51 54
a Experimental 4 o Experimental
-4 T Theoretical 4 - 4+ Theoretical
E —- (i) modified EOS, k =0.06 E —— (i) modified EOS, k =-0.05
...... (iiy k=0.353 ceee (i) kK=0.032
g 3T —— i) k=005 g 3+ (ii)) k =0.05
A o’
o 0. 2
14
t Q T T T T T T T
0.5 1.0 0.9 0.8 0.7 0.6

VIV,

VIV,

FIG. 1. Experimental and theoretical compression data of the m@ja#d, (b) Cu, (c) Na, and(d) Mo. Experimental datdJ) are from
Ref. 34. The three theoretical curves are based on Rose’s equation of state inivtiehmodification described by E¢P) is employed
(solid line), (ii) Rose’s equation is unmodified, wikdetermined from Eqg7) and(8) (dotted ling, and(iii) Rose’s equation is unmodified,

with k=0.05 (dashed ling
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0.14
0.12
~ 0.10 T
3
2 0.08 T
g
o 0.06 T
0.04 +
0.02 +

0.00

P (Mbar)

1.4

121
1.0 1
0.8 1
0.6 1+

P (Mbar)

0.4+

Ni

Nb

0.0
1.0

FIG. 2. Compression behavidil, experimental; solid line,
theoretical. (a) Li, K, and Rb. (b) Ag and Au. (c) Nb and Ni.
Theoretical results employ the modified EOS described by(8q.

VN,

0.8

0.7

ratio (C{;—C49)/2C,,, when compared with other bcc
metals®

The theoretical volumes and energies of the bcc and fcc
structures of each metal at zero pressure are shown in Table
lll. These results are in accord with experimental phase sta-
bility observations. That is, among these metals, at zero pres-
sure, the theoretical bcc structure is preferred to fcc for Fe,
K, Mo, Nb, and Rb, and theoretically fcc is more favorable
than bcc for the remaining metals. At low temperatures, the
experimentally observed phases of the métatse bcc for
K, Fe, Mo, Nb, and Rb, fcc for Ag, Al, Au, Cu, and Ni, and
close-packed structures that are similar to fcc with periodic
stacking faults for Na and L{such close-packed structures
apparently differ little in energy from the fcc phasd@he
relative energetics of the EAM models for Li and Na, which
are constructed using low-temperature bcc data, also agree
with the prediction of pseudopotential mod&ls.

Under increasing pressure, Na transforms to a bcc struc-
ture, and Fe, K, and Rb transform to f&Table IV com-
pares the theoretical pressures, where the differences be-
tween the free energies of the bcc and fcc structures vanish,
and the experimental pressures, at which phase transitions
occur for these metals. If conditions of local phase staBility
are neglected, and the assumption is made that the transition
should occur whed G=0, then the result for Na is in best
agreement with experiment. The model for K underpredicts
the transition pressure by 27%, whereas the Fe and Rb mod-
els predict transition pressures that differ from experiment by
factors of about 2 and 3, respectively.

Some final comments on the rationale that led to the
present EAM models are perhaps in order. Characteristics
that make any model attractive philosophically and/or useful
practically include(i) simple analytic formulationsgji) few
empirical parameters(iii) computational tractability,(iv)
suitable theoretical foundations, afd good agreement be-
tween theory and experiment. However, the present “state of
the art” of modeling the elastic properties of metals gener-
ally precludes incorporating all of these features. For ex-
ample, pseudopotential models with but two empirical pa-
rameters can describe anisotropic, anharmonic, elastic
properties ofsimple metals reasonably wel?, but the ana-

Nb. The poorer agreement for Nb may be associated with dtic formulation is formidable and often unsuitable for use
high degree of directional bonding in that metal, which is notin molecular-dynamics simulations. Pseudopotential formu-
fully reflected in the EAM model; this directional bonding las for elastic moduli of even the second order, at finite
apparently also causes Nb to have a very high shear modulgérain, are complexsee Eqs(A21) and (A37) in Ref. 39

0.2

P (Mbar)

0.0

Fe

1.00

FIG. 3. Compression behavior for F&l, experimental(Ref.

0.90

34); A, experimentalRef. 39; and solid line, theoretical

and analytical expressions for the third-order moduli of
pseudopotential models at finite strain apparently are not
available. By contrast, these modyiwhich are central to
theories of stability and bifurcation in crystals under
load1149 are readily expressed analytically and computed
in the EAM framework. In principle, EAM functions can be
determined from first principle®, but in practice they are
invariably determined semiempirically; various forms and
fitting procedures have appeared in the literatdf®,*°al-
though with the exception of the present work and Ref. 2,
none has accurately modeled both the SOEM and the TOEM
of metals. A common procedure is to determine the function
parameters of some prespecified analytic forms by means of
an optimization schemdge.g., a nonlinear least-squares
method that minimizes the difference between calculated
and experimental values of predetermined physical proper-
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FIG. 4. Experimental and theoretical phonon-dispersion curves. Squares represent experimental data frortaR&g, 3) Al, (c) Au,
(d) Cu, (e) Fe, (f) K, (g) Li, (h) Mo, (i) Na, (j) Nb, (k) Ni, and () Rb.

ties. Such a procedure reduces the required number of inteequations. The latter procedure would be preferred if some
nal parameters; it was considered here, but not adopted, fdundamentally “superior” analytic form ok were known;

the following reasons. Since an intended use of the presemfiowever, lacking such information, little is loéh terms of
models is the exploration of finite strain elastic behavior, it issimplicity and utility) by approximatingg as a series to the
highly desirable that they yield appropriate values of thesixth power inr, with a cutoff employed to ensure rapid
SOEM and TOEM. As shown in Ref. 2, EAM models can convergence of the lattice summations and continuity of the
indeed exhibit accurate values for all of the SOEM andpair potential and its first three derivatives. As for the
TOEM of cubic metals, provided that the pair potential electron-density function, while a minimum of two empirical
satisfies six independent equatigfs|s.(24)—(29) in Ref. 2| parameters are needed in principlé;) must be oscillatory
and that the electron-density functidrsatisfies two addi- in generaf which suggests the use of a third, and a fourth is
tional independent equatiofggs. (22) and (23) in Ref. 2. introduced to ensure rapid convergence; thus, apparently
Since EAM functions are often used in defect studies, it isfour is a “practical” minimum number of parameters in
customary to incorporate empirical values of unrelaxed vaf(r). With regard to the EOS used to determine the embed-
cancy energy, which, in the present case, adds a seventling function, while Rose’s formulation, with but one adjust-
relation for the pair potential to satisfy. The construction of aable parametek, was found to provide reasonably good
pair potential could then proceed either by selecting an angressure-volume relations, improved comparisons with ex-
lytic form with a sufficient number of internal parameters periment can be obtained, without great loss of simplicity, by
(i.e., a minimum of severto satisfy the requisite fundamen- employing a power series EOS functional at the lower mag-
tal equations identically, or by selecting a form with fewer nitudes of pressure; no new data are required for this modi-
internal parameters, the values of which would be deterfication since this functional is matched to Rose’s equation at
mined from an optimization procedure based on these sevantermediate pressure values and is determined from the elas-
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FIG. 4. (Continued)

TABLE lIl. Theoretical lattice parametera}, atomic volumesY), and cohesive energies per atoB) (
of the unstressed bcc and fcc structures of Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb.

Efec— Ebee
Apce (A) Vbcc (AS) Ebcc (e\/) Aicc (A) Vfcc (AS) Efcc (eV) (eV)

Ag 3.255 17.24 —2.9297 4.100 17.23 —2.9500 —0.0203
Al 3.220 16.69 —3.2608 4.030 16.36 —3.3400 —0.0792
Au 3.253 17.21 —3.7635 4.090 17.10 —3.8100 —0.0465
Cu 2.856 11.64 —3.4688 3.600 11.66 —3.5000 —0.0312
Fe 2.870 11.82 —4.2900 3.613 11.79 —4.2221 0.0679
K 5.250 72.35 —0.9410 6.631 72.89 —0.9402 0.0008
Li 3.490 21.25 —1.6500 4.443 21.93 —1.6610 —0.0110
Mo 3.150 15.63 —6.8100 4.151 17.88 —6.5086 0.3014
Na 4.230 37.84 —1.1300 5.337 38.00 —1.1302 —0.0002
Nb 3.310 18.13 —7.4700 4.291 19.75 —7.3424 0.1276
Ni 2.776 10.70 —4.3959 3.520 10.90 —4.4500 —0.0541
Rb 5.620 88.75 —0.8520 7.083 88.84 —0.8512 0.0008
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TABLE IV. Comparison between the theoretical pressures In summary, the EAM models that are developed here
(Pieod Where the differences between the free energies of the fchave a number of desirable features, sucfi)ase linear and
and bcc structuresAG= Gy~ Gpcd Vanish and the approximate nonlinear elastic responses and the pressure-volume relations
experimental pressure® () (Ref. 33 at which phase transitions of the metals are accurately modeléidl) the quality of the
occeur. phonon spectra ranges from “very good” to “reasonably
good” (with the notable exception of Np(iii) the relative

Pineor (Mba) Pexpt (Mban energetics between the unstressed bcc and fcc structures cor-
Fe 0.23 0.11 responds with experiment, and for Fe, K, Na, and Rb, experi-
K 0.080 0.11 mentally observed phase transitions are indicatad, the
Na 1.5¢10°3 1.4%10°3 energy of the crystal and its derivatives are represented by
Rb 0.017 0.05 convenient analytical forms, an@) the lattice summations

converge rapidly(generally after third- or fourth-nearest-
neighbor interactions so applications are not computation-
ally intensive (the necessity of including at least third-

t!c moduli at_ zero pressure. Finally,_it is important to MeN-pearest-neighbor interactions has been rotekhe present
tion that, while this procedure does incorporate a substantigt An models are thus quite suitable for various purposes

number of empirical parameters, this in itself does not ensurg,cyding Monte Carlo or molecular-dynamics simulations.
an intrinsic ability to describe relevant physical phenomenaag mentioned earlier, we intend, in due course, to use these

(Consider, e.g., that central force atomic models of cubiGnggels in a variety of crystal mechanics studies; the first of
metals are unable to describe accurately even the thrggege appears in the following paper.

second-order elastic modull,;, C4,, andC,,, N0 matter
how many parameters are employed, owing to the condition
of Cauchy symmetryC,,=C,,4, inherent in the central force
approximation. Even the addition of a volume-dependent en-
ergy term to a central force model, while removing Cauchy We wish to acknowledge the support of the Campus
symmetry, still imposes physically unrealistic restrictions onLaboratory Collaborations Program of the University of
the third-order elastic moduff) California.

ACKNOWLEDGMENT

*Present address: King Mongkut's University of Technology *°R. A. McDonald, R. C. Shukla, and D. K. Kahaner, Phys. Rev. B

Thonburi, Bangkok 10140, Thailand. 29, 6489(1984).
IM. S. Daw, S. M. Foiles, and M. |. Baskes, Mater. Sci. Rep. 20R. Feder, Phys. Rev. B, 828(1970.

251(1993. 21K. Maier, M. Peo, B. Salile, H. E. Schaefer, and A. Seeger, Philos.
2S. Chantasiriwan and F. Milstein, Phys. Rev. 48, 14 080 Mag. A 40, 701(1979.

(1996. :

22R. Feder and H. Charbnau, Phys. R&49, 464 (1966.

3 - .
F. Milstein, Phys. Rev. B8, 1130(1971). ZW. Wycisk and M. Feller-Knipmeier, J. Nucl. Mate§9&70, 616

‘E. Esposito, A. E. Carlsson, D. D. Ling, H. Ehrenreich, and C. D.

Gelatt, Jr., Philos. Mag. A1, 251 (1980). 0 1978
SF. Milstein and B. Farber, Philos. Mag. 42, 19 (1980. R. A. McDonald, R. C. Shukla, and D. K. Kahaner, Phys. Rev. B
SR. Hill and F. Milstein, Phys. Rev. B5, 3087(1977. 29, 6489(1984.
7F. Milstein, inMechanics of Soligsedited by H. G. Hopkins and >>Charles Kittel, Introduction to Solid States Physjcgth ed.
M. J. Sewell(Pergamon, Oxford, 1982pp. 417—452. (Wiley, New York, 1973, p. 96.
8F. Milstein and D. J. Rasky, Phys. Rev.5, 7016(1996. 26Y. Hiki and A. V. Granato, Phys. Rew44, 411 (1966.
9F. Milstein and R. Hill, J. Mech. Phys. Soli®¥, 255 (1979. 273. F. Thomas, Phys. Re%75 955(1968.
10F, Milstein, J. Marschall, and H. E. Fang, Phys. Rev. Létt.  2®P. B. Powell and M. J. Skove, J. Appl. Phy&, 1548(1984.
2977(1995. 29R. Srinivasan, J. Phys. Chem. Solig 611 (1973.
E Milstein, H. E. Fang, X. Y. Gong, and D. J. Rasky, Solid State°F. F. Voronov, V. M. Prokhurov, E. L. Gromnitskaya, and G. G.
Commun.99, 807 (1996. llina, Fiz. Met. Metalloved45, 1263(1978 [ Phys. Met. Met-
123, H. Rose, J. R. Smith, F. Guinea, and J. Ferrante, Phys. Rev. B allogr. 45, 123(1978].
29, 2963(1984. 81, Graham, H. Nadler, and R. Chang, J. Appl. Ph§8, 3025
1335, M. Foiles, M. I. Baskes, and M. S. Daw, Phys. Red37983 (1968.
(1986. 32M. W. Riley and M. J. Skove, Phys. Rev. 8 466 (1973.
14p. B. Ghate, Phys. Re39 1666(1965. 33D, A. Young, Phase Diagrams of the ElementSniversity of

15G. simmons and H. Wangingle Crystal Elastic Constants and ~ California Press, Berkeley, 1991
Calculated Aggregate Properties: A HandbodKIT, Cam- 34American Institute of Physics Handbgdird ed.(McGraw-Hill,

bridge, 1971 New York, 1972.

16R. W. Balluffi, J. Nucl. Mater69&70, 240 (1978. 35H. K. Mao, B. A. William, and T. Takahashi, J. Appl. Phyas,

M. J. Fluss, L. C. Smedskjaer, M. K. Chason, D. G. Legnini, and 272 (196%; A. P. Jephcoat, H. K. Mao, and P. M. Bell, J. Geo-
R. W. Siegel, Phys. Rev. B7, 3444(1978. phys. Res91, 4677(1986.

18| . De Schepper, D. Segers, L. Dorikens-Vanpraet, M. Dorikens2®L. Ningsheng, X. Wenlan, and S. C. Chen, Solid State Commun.
G. Knuyt, L. M. Stals, and P. Moser, Phys. Rev.2B, 5257 69, 155(1989.

(1983. %"Metals: Phonon and Electron States, and Fermi SurfaGrsup



PRB 58 EMBEDDED-ATOM MODELS OF 12 CUBIC METAIS . .. 6005

Ill, Vol. 13a, Pt. a, edited by K. H. Hellwege and J. L. Olsen, 42M. W. Finnis and J. E. Sinclair, Philos. Mag. 30, 45 (1984.

Landolt-Banstein, New SerieéSpringer, Berlin, 1981 43R. A. Johnson, Phys. Rev. 87, 3924(1988.
38E. Milstein and J. Marschall, Acta Metall. Mated0, 1229  44R. A. Johnson and D. J. Oh, J. Mater. R4s1195(1989.
45J. B. Adams and S. M. Foiles, Phys. Rev4B 3316(1990.

(1992.
%p. J. Rasky and F. Milstein, Phys. Rev.3, 2765(1986. 46y. R. Wang and D. B. Boercker, J. Appl. Phyzs, 122 (1995.
40R. Hill, Proc. Math. Camb. Philos. So82, 167 (1982. 47C. S. G. Cousins and J. W. Martin, J. Phys8,R279(1978.

4IM. S. Daw, Phys. Rev. B9, 7441(1989.



