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Embedded-atom models of 12 cubic metals incorporating second- and third-order
elastic-moduli data

Somchart Chantasiriwan* and Frederick Milstein
Departments of Materials and Mechanical Engineering, University of California, Santa Barbara, California 93106

~Received 7 October 1997!

An embeded-atom method~EAM! formulation that can reproduce identically the empirically determined
second-order and third-order elastic moduli is employed in constructing the EAM models of 12 cubic metals
~Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb!. The models yield phase stabilities, pressure-volume
curves, and phonon-frequency spectra that are in generally good agreement with experiments.
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I. INTRODUCTION

The embedded-atom method~EAM! has been widely
used in the study of condensed matter; Ref. 1 contain
comprehensive review. Chantasiriwan and Milstein2 recently
examined the higher-order elasticity of cubic metals in
framework of the EAM. They developed formulas for com
puting the third-order elastic moduli~TOEM! in general
EAM formulations and showed that appropriate groupings
the elastic moduli depend solely on either the electr
density function or the pair-potential function. Their aim,
part, was to develop a convenient method of construc
EAM models that incorporate experimental values of b
the second-order elastic moduli~SOEM! and the TOEM;
such models thereby display accurately the harmonic
anharmonic, anisotropic, elastic behavior of the parent c
tal. As examples of the efficacy of that approach, spec
EAM models were constructed for four metals~i.e., alumi-
num, copper, sodium, and molybdenum!. These models iden
tically reproduced the respective second- and third-or
elastic moduli, as well as the binding energy, atomic volum
unrelaxed vacancy formation energy, and Rose’s unive
equation of state. They also provided reasonable phon
frequency spectra and structural energy differences.

In the present paper we modify the EAM formulation
Ref. 2 in order to improve the fit between the theoretical a
experimental pressure-volume relations. In addition, the
mulation is used to construct specific EAM models for
metals~Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb!.
All of the SOEM (C11, C12, and C44) and TOEM (C111,
C112, C123, C144, C166, andC456) of each model are iden
tical with those empirically determined for the metal itse
~all elastic-moduli data are experimental with the exceptio
of the TOEM of the alkali metals Li, Na, K, and Rb, whic
were taken from pseudopotential calculations because
perimental values of these TOEM were not found in the
erature!. The theoretical and experimental pressure-volu
(P-V) and phonon-dispersion relations of each metal
also compared; there is excellent agreement among the
spectiveP-V relations and, as in Ref. 2, reasonably go
agreement among the phonon relations.

It is our intention, in due course, to use these EAM mo
els to explore the theoretical elastic response of metal
PRB 580163-1829/98/58~10!/5996~10!/$15.00
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finite strain, including theoretical strengths,3–5 elastic stabil-
ity under load,5–8 and bifurcations leading from primary t
secondary crystallographic configurations under prescri
modes of loading.9–11An accompanying paper uses the mo
els to examine and compare the theoretical responses o
metals to uniaxial loading.

II. MODIFIED EQUATION OF STATE

In the EAM format, the cohesive energy per atomE of a
homogeneous monatomic crystal can be written as

E5F~r!1 1
2 (

j
f~r j !, ~1a!

with

r5(
j

f ~r j !, ~1b!

where the summations are performed over all atoms ex
the reference atom in the crystal, andr j is the distance be-
tween the reference atom and a surrounding atomj. Here, we
use the same forms for the pair potentialf(r ) and the
electron-density functionf (r ) as in Ref. 2; these are repeate
below as Eqs.~2! and ~3!;

f~r !5A~r 2r m!4@11d1r 1d2r 2

1d3r 31d4r 41d5r 51d6r 6#, ~2!

wherer m is the cutoff distance@i.e.,f(r )[0 for r>r m#, and
A and thedi are fitting parameters that are determined fro
empirical values of the atomic volumeV0 at zero pressure
the unrelaxed vacancy formation energyEIV , and the com-
binations of elastic moduliC112C12, C44, C11123C112
12C123, C1442C166, and C456;2 the analytic expression
for these quantities are given in Eqs.~24!–~30! in Ref. 2. The
cutoff distancer m must be greater than the third-neare
neighbor distance in order to avoid artificial restrictions
the calculated values of theCi jk , e.g., C1445C166 for bcc
and C45650 for fcc.2 With regard to f (r ), Chantasiriwan
and Milstein have demonstrated theoretically the importa
of selecting an oscillatory form; the following was found
be suitable:
5996 © 1998 The American Physical Society
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TABLE I. The physical constants of Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb used as input parameters for EAM m
construction. Data for the elastic moduli and the lattice constants are for room temperature, except for K, Li, Na, and Rb, which ar
temperature.

Ag Al Au Cu Fe K Li Mo Na Nb Ni Rb

a0 ~Å!a 4.10 4.03 4.09 3.60 2.87 5.25 3.49 3.15 4.23 3.31 3.52 5.6
EIV ~eV! 1.1b 0.66c 0.9b 1.28b 1.79d 0.42e 0.34f 3.1g 0.42h 2.75g 1.6i 0.312j

Ecoh ~eV!k 2.95 3.34 3.81 3.50 4.29 0.941 1.65 6.81 1.13 7.47 4.45 0.8
C11 ~Mbar!a 1.222 1.143 1.929 1.762 2.26 0.0416 0.148 4.696 0.0821 2.465 2.508 0.
C12 ~Mbar!a 0.907 0.6192 1.638 1.2494 1.40 0.0341 0.125 1.676 0.0683 1.333 1.500 0
C44 ~Mbar!a 0.454 0.3162 0.415 0.8177 1.16 0.0286 0.108 1.068 0.0577 0.284 1.235 0
C111 ~Mbar! 28.43l 214.27m 217.30l 220.0l 227.2n 20.387o 22.70o 235.57p 20.935o 225.64q 220.4r 20.274o

C112 ~Mbar! 25.29 24.08 29.22 212.2 26.08 20.057 20.386 213.33 20.144 211.40 210.3 20.041
C123 ~Mbar! 1.89 0.32 22.33 25.0 25.78 20.091 20.693 26.17 20.230 24.67 22.1 20.059
C144 ~Mbar! 0.56 20.85 20.13 21.32 28.36 20.114 20.944 22.69 20.298 23.43 21.4 20.075
C166 ~Mbar! 26.37 23.96 26.48 27.05 25.3 20.058 20.590 28.93 20.172 21.677 29.2 20.035
C456 ~Mbar! 0.83 20.42 20.12 0.25 27.2 20.097 20.733 25.55 20.248 1.366 20.7 20.069

aReference 15.
bReference 16.
cReference 17.
dReference 18.
eReference 19.
fReference 20.
gReference 21.
hReference 22.
iReference 23.

jReference 24.
kReference 25.
lReference 26.
mReference 27.
nReference 28.
oReference 29.
pReference 30.
qReference 31.
rReference 32.
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f ~r !5
11b1 cos~ar !1b2 sin~ar !

r b , ~3!

wherea and b are positive parameters, andb1 and b2 are
fitting parameters that are chosen to satisfy the express
for the elastic-moduli ratios (C122C44)/(C1442C456) and
(C122C44)/(2C1441C1122C1662C1232C456) @see Eqs.
~22! and ~23! in Ref. 2#.

The primary difference between the EAM formulatio
used here and that of Ref. 2 lies in the embedding func
F(r). Previously, we used Rose’s universal equation
state12 to determine F(r), following the suggestion of
Foiles, Baskes, and Daw.13 For a cubic crystal with lattice
parametera, Rose’s equation of state~EOS! is

EEOS~a* !52Ecoh~11a* 1ka* 3!e2a* ~4!

with a* 5(a2a0)/a0l and l5AEcoh/9V0k. Substitution
of the energyEEOS for the cohesive energyE in Eq. ~1a!
yields

F~r!5EEOS~a* !2 1
2 (

j
f~r j !. ~5!

The constantsa0 , Ecoh, V0 , andk are the lattice paramete
magnitude of cohesive energy, volume per atom, and b
modulus, respectively, at the unstressed reference state
numerical value ofk, which clearly influences the curvatur
of the theoreticalP-V relation, was set equal to 0.05 by Ro
et al.12 from thermal expansion data of Cu. In Ref. 2, w
determined values ofk based on the pressure derivative
the bulk modulusk8, evaluated from SOEM and TOEM
ns

n
f

lk
he

data, as discussed below.@We refer to Eq.~4! as ‘‘Rose’s
EOS’’ regardless of the value ofk.# SinceP52dE/dV and
k5V d2E/dV2,

k85
dk

dP
5

dk/dV

dP/dV
5

2V d3E/dV3

d2E/dV2 21, ~6!

where the derivatives are taken atP50. Evaluation of Eq.
~6! using Eq.~4! yields

k5
l~k821!

2
2

1

3
, ~7!

whereink8 is computed from14

k852
C11116C11212C123

3~C1112C12!
. ~8!

For example, from the data in Table I, Eqs.~7! and~8! give
k50.130, 0.353,20.004, and 0.032 for Al, Cu, Na, and Mo
respectively. However, as seen in Fig. 1, neither these va
nor k50.05 consistently provides very good fits to the e
perimentalP-V data at very high pressures. On the oth
hand, the respective values ofk50.03, 0.06, 0.00, and20.05
improve the appearance of theP-V correspondences of thes
metals at high pressures, but these values do not satisfy
elastic-moduli relations~7! and~8!. Thus, for modeling cubic
metals, the use of Rose’s EOS~without modification! to ob-
tain good agreement withP-V data and the use of SOEM
and TOEM to obtain good anisotropic elastic behavior
somewhat incompatible. In view of this consideration, w
have adopted a simple modification to the EOS that ena
the curvature of theP-V relation atP50 to agree with Eq.
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~8!, while also yielding agreement with Rose’s EOS at intermediate and large compressions and expansions. This
EOS is as follows:

ẼEOS~a!55
2Ecoh~11a* 1ka* 3!e2a* for a/a0<0.95 or a/a0>1.05

2Ecoh1v1S a

a0
21D 2

1v2S a

a0
21D 3

1(
i 51

4

g i S a

a0
21D i 13

for 0.95,a/a0<1

2Ecoh1v1S a

a0
21D 2

1v2S a

a0
21D 3

1(
i 51

4

h i S a

a0
21D i 13

for 1,a/a0,1.05 .

~9!
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With this EOS, atP50 (a/a051),

k5
2v1

9V0
, ~10!

and

k8512
v2

v1
, ~11!

so v151.5V0(C1112C12) and v250.5V0(C11116C112
12C123)1v1 ; these relations are used to computev1 and
v2 , thus satisfying Eq.~8!. At high compressions and expan
sions (a/a0<0.95 anda/a0>1.05), Rose’s EOS is identi
cally satisfied;a* is as defined in Eq.~4! andk is chosen to
fit the P-V data. In order to ensure correspondence w
Rose’s EOS at intermediate lattice compressions and ex
sions, the parametersg i and h i ( i 51 – 4) are determined
from the requirement of continuity ofẼEOS and its first three
derivatives ata/a050.95 and 1.05; i.e., the series expansio
used to specify the EOS in the range 0.95,a/a0,1.05 are
matched to Rose’s EOS ata/a050.95 and 1.05. The embed
ding functionF is then determined from

F~r!5ẼEOS~a!2 1
2 (

j
f~r j !. ~12!

III. EAM MODEL PARAMETERS

In this section, the construction of the EAM models f
seven bcc metals~Fe, K, Li, Mo, Na, Nb, and Rb! and five
fcc metals~Ag, Al, Au, Cu, and Ni! is described in detail.
Three distinct groups of parameters are determined from
lutions of simultaneous equations and the quality of the t
oretical P-V and phonon-dispersion relations; these grou
are the following. ~1! The parameters inẼEOS are k, h i ,
andg i ~i goes from 1–4!. ~2! The parameters inf (r ) area,
b, b1 , andb2 . ~3! The parameters inf(r ) arer m , A, anddi
~i goes from 1–6!. The construction of the EAM models i
simplified because the parameters in each group are inde
dent of those in the other two groups. In the manner of R
2, the input data used in the construction of the current EA
models are the lattice constant, the cohesive energy, the
relaxed vacancy formation energy, the three second-o
elastic moduli, and the six third-order elastic moduli~see
Table I!. These quantities are fit identically to the models

In order to determine the parameters in the first gro
theoreticalP-V relations based on Rose’s EOS are compu
h
n-

s

o-
-
s

en-
f.

n-
er

,
d

and compared with experimental results. For each metal,
value of k that yields good agreement between theory a
experiment at high pressures is selected. Oncek is known,
the parametersh j andg j are fit to Rose’s EOS as describe
in the previous section.

While determining the fitting parameters in the seco
group,a andb were initially treated as ‘‘free parameters,
and the values ofb1 andb2 were computed from Eqs.~22!
and~23! in Ref. 2. It was observed that the values ofa andb
were subject to certain restrictions, which result from t
requirement thatr(a), as calculated from the lattice summ
tion in Eq. ~1b!, must be a single-valued function ofa. This
requirement, which is evident from Eq.~5!, was found to be
satisfied for each metal, for a particular range of values oa.
The size of this range varies inversely withb, and the range
may vanish asb increases. From a computational viewpoin
it is desirable forb to be sufficiently large to makef (r ) a
short-ranged function, yielding rapid convergence of the
tice summations. A nonvanishing range of appropriatea val-
ues was found for each metal forb510; we thus settled
upon this value ofb. Initially, several values ofa were
‘‘tried’’ for a number of metals. It was found that the nu
merical value ofa did not influence the phonon-frequenc
spectra or the mechanical response of the model strongly
we arbitrarily chosea to be a whole number in the range.

Finally, for selected values ofr m , the remaining param-
eters inf(r ) were determined uniquely from Eqs.~24!–~30!
in Ref. 2. The main criteria employed in the selection of t
final values ofr m were~i! the calculated differences betwee
the energies of the fcc and the bcc structures,DE5Efcc

2Ebcc, should be positive for the metals Fe, K, Mo, Nb, a
Rb and negative for Ag, Al, Au, Cu, Li, Na, and Ni, at zer
pressure, in conformance with experimental information
phase stability, and~ii ! the theoretical phonon-dispersio
curves should be ‘‘optimal’’ when compared with expe
ment. Additional criteria were set for the metals Fe, K, N
and Rb, which undergo phase transformations un
pressure.33 That is, for these metals,~i! the theoretical fcc-
bcc free-energy difference,DG5DE1PDV ~whereDV is
the difference between the theoretical fcc and bcc ato
volumes at pressureP!, should change sign, with increasin
pressure, from positive to negative for Fe, K, and Rb a
from negative to positive for Na, and~ii ! the theoretical val-
ues of pressure at which the respective values ofDG vanish
should be of the same order of magnitude as the experim
tally observed phase transition pressures.
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TABLE II. Parameters of model EAM functions for 12 metals. The unit ofA is eV/Å4 and the unit ofdn is Å2n.

Ag Al Au Cu

g1 ~eV! 14 495.346 52 23989.565 406 9445.865 571 217 259.616 81
g2 ~eV! 395 465.8578 2132 139.8801 229 182.9206 2541 086.9574
g3 ~eV! 5 312 561.379 21 753 510.429 3 105 624.331 27 195 460.939
g4 ~eV! 26 534 316.50 28 771 590. 264 15 493 942.00 235 988 498.49
h1 ~eV! 212 046.123 28 4781.276 350 26056.628 891 18 726.460 78
h2 ~eV! 395 472.2278 2132 139.3587 229 190.6785 2541 085.045
h3 ~eV! 25 304 003.255 1 754 827.731 23 095 343.756 7 198 976.218
h4 ~eV! 26 536 845.88 28 771 382.584 15 497 019.75 235 987 737.82
k 0.11 0.03 0.02 0.06
r m ~Å! 5.50 6.70 5.28 4.50
A 14.908 064 49 20.321 538 123 4 260.069 286 29 25.046 204 27
d1 21.703 063 442 21.971 137 745 21.840 544 567 22.098 826 585
d2 1.206 516 952 1.520 390 482 1.400 563 316 1.840 347 959
d3 20.454 778 800 8 20.595 330 310 0 20.564 392 065 7 20.860 411 610 8
d4 9.610 249 94431022 0.125 730 889 2 0.127 123 719 1 0.225 611 227
d5 21.078 577 4731022 21.361 835 63731022 21.518 586 13931022 23.140 081 97531022

d6 5.017 307 44031024 5.914 217 02731024 7.522 881 93231024 1.808 853 49831023

b 10 10 10 10
a (Å 21) 6 4 4 7
b1 0.239 827 315 4 0.310 473 843 3 0.461 170 630 4 0.111 910 600 4
b2 27.281 818 26131022 0.487 991 625 4 0.197 522 660 9 0.245 285 818 2

Fe K Li Mo

g1 ~eV! 23362.890 156 652.149 575 9 22496.393 012 213 576.835 45
g2 ~eV! 2119 251.2897 18 463.193 62 275 600.013 99 2437 305.7752
g3 ~eV! 21 578 535.082 246 553.7779 21 007 811.084 25 822 805.449
g4 ~eV! 27 897 739.845 1 232 713.383 25 039 077.496 229 107 989.53
h1 ~eV! 4533.986 271 2580.560 779 8 2542.685 291 15 534.391 49
h2 ~eV! 2119 250.7307 18 463.186 31 275 600.015 72 2437 309.6601
h3 ~eV! 1 580 216.932 2246 530.3939 1 007 820.232 5 821 667.794
h4 ~eV! 27 897 517.078 1 232 710.480 25 039 078.186 229 109 527.37
k 0.00 20.03 20.03 20.05
r m ~Å! 4.28 9.14 5.21 4.55
A 291.209 481 3 22.859 062 64431022 16.783 560 73 2606.371 212 0
d1 22.115 702 540 21.134 902 214 21.705 128 491 22.054 768 934
d2 1.860 194 164 0.510 640 043 2 1.202 678 444 1.745 919 130
d3 20.869 886 607 8 20.119 020 209 7 20.448 345 106 9 20.784 664 821 8
d4 0.228 202 300 3 1.544 861 05231022 9.299 515 02731022 0.196 528 667 7
d5 23.185 392 44231022 21.069 924 10831023 21.015 649 28531022 22.597 366 10831022

d6 1.849 148 42831023 3.110 346 91031025 4.551 740 97431024 1.412 876 41931023

b 10 10 10 10
a (Å 21) 13 8 16 12
b1 20.194 840 200 7 8.328 384 24331022 3.285 662 17231022 28.709 497 77331022

b2 4.638 911 78331022 3.705 566 88631022 0.103 800 838 3 0.179 414 316 9

Na Nb Ni Rb

g1 ~eV! 68.306 100 04 230 487.694 53 2205.057 080 3 649.849 283 7
g2 ~eV! 730.074 629 0 2933 760.2020 234 354.644 27 18 460.710 49
g3 ~eV! 10 327.208 74 212 442 153.00 2435 084.1284 246 548.8572
g4 ~eV! 51 451.807 57 262 212 159.16 22 188 804.122 1 232 649.268
h1 ~eV! 16.831 351 09 31 724.570 69 1980.888 186 2582.806 865 3
h2 ~eV! 730.085 800 4 2933 760.4790 234 352.415 57 18 460.710 97
h3 ~eV! 210 262.669 88 12 442 751.74 439 300.9830 2246 513.6091
h4 ~eV! 51 456.267 44 262 212 268.80 22 187 917.470 1 232 649.467
k 0.00 20.03 0.07 20.02
r m ~Å! 7.33 4.84 4.44 8.60
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TABLE II. ~Continued.!

Na Nb Ni Rb

A 20.145 780 869 3 21018.281 136 91.324 540 26 20.364 586 132 9
d1 21.477 709 511 21.896 433 957 22.161 849 925 21.093 150 118
d2 0.880 889 107 9 1.493 092 287 1.942 229 116 0.493 342 805 1
d3 20.274 186 820 6 20.624 518 355 7 20.927 081 647 3 20.117 933 044 2
d4 4.737 762 15731022 0.146 315 869 9 0.247 707 891 3 1.577 608 79731022

d5 24.319 465 23731023 21.819 783 36431022 23.510 205 72031022 21.120 569 87931023

d6 1.622 819 24931024 9.382 896 31631024 2.059 803 14631023 3.307 376 50731025

b 10 10 10 10
a (Å 21) 7 10 7 6
b1 20.134 888 221 8 0.143 696 528 0 0.326 573 273 1 3.571 735 22331023

b2 2.007 174 85631022 20.102 173 022 2 0.224 032 470 4 20.102 145 935 8
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IV. NUMERICAL RESULTS AND DISCUSSION

The EAM model parameters for the 12 metals are d
played in Table II. In Figs. 1–3, the theoretical pressu
volume curves reproduced by the models are compared
the experimental data of Ref. 34. For Fe~Fig. 3!, these data
extend to only about 0.05 Mbar, so experimentalP-V data
from other sources,35 taken at higher pressure, are al
shown, although no attempt was made to match the theo
ical P-V relation for Fe to the higher-pressure data.

The theoretical phonon-frequency spectra, calcula
-
-
ith

et-

d

from the formulas given by Ningsheng, Wenlan, and Che36

are compared with experimental data37 in Fig. 4. There is
generally good agreement between the theoretical and ca
lated phonon spectra, which indicates that the EAM mod
display reasonable lattice dynamics behavior. Among
metals represented, the bcc transition metals Mo and
have the most complex phonon spectra, and accordingly,
theoretical phonon spectra of these metals tend to show
greatest divergences from experiment. In both cases, h
ever, the theoretical curves do capture important experim
tal features, although the fit is much better for Mo than
,

FIG. 1. Experimental and theoretical compression data of the metals~a! Al, ~b! Cu, ~c! Na, and~d! Mo. Experimental data~h! are from
Ref. 34. The three theoretical curves are based on Rose’s equation of state in which~i! the modification described by Eq.~9! is employed
~solid line!, ~ii ! Rose’s equation is unmodified, withk determined from Eqs.~7! and~8! ~dotted line!, and~iii ! Rose’s equation is unmodified
with k50.05 ~dashed line!.
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Nb. The poorer agreement for Nb may be associated wi
high degree of directional bonding in that metal, which is n
fully reflected in the EAM model; this directional bondin
apparently also causes Nb to have a very high shear mod

FIG. 2. Compression behavior~h, experimental; solid line,
theoretical!. ~a! Li, K, and Rb. ~b! Ag and Au. ~c! Nb and Ni.
Theoretical results employ the modified EOS described by Eq.~9!.

FIG. 3. Compression behavior for Fe@h, experimental~Ref.
34!; n, experimental~Ref. 35!; and solid line, theoretical#.
a
t

lus

ratio (C112C12)/2C44, when compared with other bc
metals.38

The theoretical volumes and energies of the bcc and
structures of each metal at zero pressure are shown in T
III. These results are in accord with experimental phase
bility observations. That is, among these metals, at zero p
sure, the theoretical bcc structure is preferred to fcc for
K, Mo, Nb, and Rb, and theoretically fcc is more favorab
than bcc for the remaining metals. At low temperatures,
experimentally observed phases of the metals33 are bcc for
K, Fe, Mo, Nb, and Rb, fcc for Ag, Al, Au, Cu, and Ni, an
close-packed structures that are similar to fcc with perio
stacking faults for Na and Li~such close-packed structure
apparently differ little in energy from the fcc phase!. The
relative energetics of the EAM models for Li and Na, whic
are constructed using low-temperature bcc data, also a
with the prediction of pseudopotential models.8

Under increasing pressure, Na transforms to a bcc st
ture, and Fe, K, and Rb transform to fcc.33 Table IV com-
pares the theoretical pressures, where the differences
tween the free energies of the bcc and fcc structures van
and the experimental pressures, at which phase transit
occur for these metals. If conditions of local phase stabili8

are neglected, and the assumption is made that the trans
should occur whenDG50, then the result for Na is in bes
agreement with experiment. The model for K underpredi
the transition pressure by 27%, whereas the Fe and Rb m
els predict transition pressures that differ from experiment
factors of about 2 and 3, respectively.

Some final comments on the rationale that led to
present EAM models are perhaps in order. Characteris
that make any model attractive philosophically and/or use
practically include~i! simple analytic formulations,~ii ! few
empirical parameters,~iii ! computational tractability,~iv!
suitable theoretical foundations, and~v! good agreement be
tween theory and experiment. However, the present ‘‘stat
the art’’ of modeling the elastic properties of metals gen
ally precludes incorporating all of these features. For
ample, pseudopotential models with but two empirical p
rameters can describe anisotropic, anharmonic, ela
properties ofsimplemetals reasonably well,39 but the ana-
lytic formulation is formidable and often unsuitable for u
in molecular-dynamics simulations. Pseudopotential form
las for elastic moduli of even the second order, at fin
strain, are complex@see Eqs.~A21! and ~A37! in Ref. 39#
and analytical expressions for the third-order moduli
pseudopotential models at finite strain apparently are
available. By contrast, these moduli~which are central to
theories of stability and bifurcation in crystals und
load6–11,40! are readily expressed analytically and compu
in the EAM framework. In principle, EAM functions can b
determined from first principles,41 but in practice they are
invariably determined semiempirically; various forms a
fitting procedures have appeared in the literature,13,42–46al-
though with the exception of the present work and Ref.
none has accurately modeled both the SOEM and the TO
of metals. A common procedure is to determine the funct
parameters of some prespecified analytic forms by mean
an optimization scheme~e.g., a nonlinear least-square
method! that minimizes the difference between calculat
and experimental values of predetermined physical prop
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FIG. 4. Experimental and theoretical phonon-dispersion curves. Squares represent experimental data from Ref. 37;~a! Ag, ~b! Al, ~c! Au,
~d! Cu, ~e! Fe, ~f! K, ~g! Li, ~h! Mo, ~i! Na, ~j! Nb, ~k! Ni, and ~l! Rb.
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ties. Such a procedure reduces the required number of in
nal parameters; it was considered here, but not adopted
the following reasons. Since an intended use of the pre
models is the exploration of finite strain elastic behavior, i
highly desirable that they yield appropriate values of
SOEM and TOEM. As shown in Ref. 2, EAM models ca
indeed exhibit accurate values for all of the SOEM a
TOEM of cubic metals, provided that the pair potentialf
satisfies six independent equations@Eqs.~24!–~29! in Ref. 2#
and that the electron-density functionf satisfies two addi-
tional independent equations@Eqs. ~22! and ~23! in Ref. 2#.
Since EAM functions are often used in defect studies, i
customary to incorporate empirical values of unrelaxed
cancy energy, which, in the present case, adds a sev
relation for the pair potential to satisfy. The construction o
pair potential could then proceed either by selecting an a
lytic form with a sufficient number of internal paramete
~i.e., a minimum of seven! to satisfy the requisite fundamen
tal equations identically, or by selecting a form with few
internal parameters, the values of which would be de
mined from an optimization procedure based on these se
er-
for
nt

s
e

s
-

nth

a-

r-
en

equations. The latter procedure would be preferred if so
fundamentally ‘‘superior’’ analytic form off were known;
however, lacking such information, little is lost~in terms of
simplicity and utility! by approximatingf as a series to the
sixth power in r, with a cutoff employed to ensure rapi
convergence of the lattice summations and continuity of
pair potential and its first three derivatives. As for th
electron-density function, while a minimum of two empiric
parameters are needed in principle,f (r ) must be oscillatory
in general,2 which suggests the use of a third, and a fourth
introduced to ensure rapid convergence; thus, appare
four is a ‘‘practical’’ minimum number of parameters i
f (r ). With regard to the EOS used to determine the emb
ding function, while Rose’s formulation, with but one adjus
able parameterk, was found2 to provide reasonably good
pressure-volume relations, improved comparisons with
periment can be obtained, without great loss of simplicity,
employing a power series EOS functional at the lower m
nitudes of pressure; no new data are required for this m
fication since this functional is matched to Rose’s equation
intermediate pressure values and is determined from the e
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TABLE III. Theoretical lattice parameters (a), atomic volumes (V), and cohesive energies per atom (E)
of the unstressed bcc and fcc structures of Ag, Al, Au, Cu, Fe, K, Li, Mo, Na, Nb, Ni, and Rb.

abcc ~Å! Vbcc (Å 3) Ebcc ~eV! afcc ~Å! Vfcc (Å 3) Efcc ~eV!
Efcc2Ebcc

~eV!

Ag 3.255 17.24 22.9297 4.100 17.23 22.9500 20.0203
Al 3.220 16.69 23.2608 4.030 16.36 23.3400 20.0792
Au 3.253 17.21 23.7635 4.090 17.10 23.8100 20.0465
Cu 2.856 11.64 23.4688 3.600 11.66 23.5000 20.0312
Fe 2.870 11.82 24.2900 3.613 11.79 24.2221 0.0679
K 5.250 72.35 20.9410 6.631 72.89 20.9402 0.0008
Li 3.490 21.25 21.6500 4.443 21.93 21.6610 20.0110
Mo 3.150 15.63 26.8100 4.151 17.88 26.5086 0.3014
Na 4.230 37.84 21.1300 5.337 38.00 21.1302 20.0002
Nb 3.310 18.13 27.4700 4.291 19.75 27.3424 0.1276
Ni 2.776 10.70 24.3959 3.520 10.90 24.4500 20.0541
Rb 5.620 88.75 20.8520 7.083 88.84 20.8512 0.0008

FIG. 4. ~Continued.!



n
t
u
na
bi
hr

tio

e
h
on

ere

tions

ly

cor-
eri-

by

t-
-
-

es,
s.
ese

t of

us
of

re
fc

e
s

6004 PRB 58SOMCHART CHANTASIRIWAN AND FREDERICK MILSTEIN
tic moduli at zero pressure. Finally, it is important to me
tion that, while this procedure does incorporate a substan
number of empirical parameters, this in itself does not ens
an intrinsic ability to describe relevant physical phenome
~Consider, e.g., that central force atomic models of cu
metals are unable to describe accurately even the t
second-order elastic moduliC11, C12, and C44, no matter
how many parameters are employed, owing to the condi
of Cauchy symmetry,C125C44, inherent in the central force
approximation. Even the addition of a volume-dependent
ergy term to a central force model, while removing Cauc
symmetry, still imposes physically unrealistic restrictions
the third-order elastic moduli.47!

TABLE IV. Comparison between the theoretical pressu
(Ptheor) where the differences between the free energies of the
and bcc structures (DG5Gfcc2Gbcc) vanish and the approximat
experimental pressures (Pexpt) ~Ref. 33! at which phase transition
occur.

Ptheor ~Mbar! Pexpt ~Mbar!

Fe 0.23 0.11
K 0.080 0.11
Na 1.531023 1.431023

Rb 0.017 0.05
D

t

v

n

-
ial
re
.

c
ee

n

n-
y

In summary, the EAM models that are developed h
have a number of desirable features, such as~i! the linear and
nonlinear elastic responses and the pressure-volume rela
of the metals are accurately modeled,~ii ! the quality of the
phonon spectra ranges from ‘‘very good’’ to ‘‘reasonab
good’’ ~with the notable exception of Nb!, ~iii ! the relative
energetics between the unstressed bcc and fcc structures
responds with experiment, and for Fe, K, Na, and Rb, exp
mentally observed phase transitions are indicated,~iv! the
energy of the crystal and its derivatives are represented
convenient analytical forms, and~v! the lattice summations
converge rapidly~generally after third- or fourth-neares
neighbor interactions!, so applications are not computation
ally intensive ~the necessity of including at least third
nearest-neighbor interactions has been noted2!. The present
EAM models are thus quite suitable for various purpos
including Monte Carlo or molecular-dynamics simulation
As mentioned earlier, we intend, in due course, to use th
models in a variety of crystal mechanics studies; the firs
these appears in the following paper.
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