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The Chern-Simons bosonization with U~1!3SU~2! gauge field is applied to the two-dimensionalt-J model
in the limit t@J, to study the normal-state properties of underdoped cuprate superconductors. We prove the
existence of an upper bound on the partition function for holons in a spinon background, and we find the
optimal spinon configuration saturating the upper bound on average—a coexisting flux phase ands1 id-like
resonating-valence-bond state. After neglecting the feedback of holon fluctuations on the U~1! field B and
spinon fluctuations on the SU~2! field V, the holon field is a fermion and the spinon field is a hard-core boson.
Within this approximation we show that theB field produces ap flux phase for the holons, converting them
into Dirac-like fermions, while theV field, taking into account the feedback of holons produces a gap for the
spinons vanishing in the zero-doping limit. The nonlinear-s model with a mass term describes the crossover
from the short-ranged antiferromagnetic~AF! state in doped samples to long-range AF order in reference
compounds. Moreover, we derive a low-energy effective action in terms of spinons, holons and a self-
generated U~1! gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi-liquid
theory with a Fermi surface consisting of four ‘‘half-pockets’’ centered at~6p/2,6p/2! and one reproduces
the results for the electron spectral function obtained in the mean-field approximation, in agreement with the
photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to
holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state
with electron quantum numbers. The renormalization effects due to gauge fluctuations give rise to non-Fermi-
liquid behavior for the composite electron, in certain temperature range showing the linear inT resistivity. This
formalism provides a new interpretation of the spin gap in the underdoped superconductors~mainly due to the
short-ranged AF order! and predicts that the minimal gap for the physical electron is proportional to the square
root of the doping concentration. Therefore the gap does not vanish in any direction. All these predictions can
be checked explicitly in experiment.@S0163-1829~98!01233-8#
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I. INTRODUCTION

A. Physical issue to be addressed

The proximity of superconductivity~SC! to antiferromag-
netism~AF! in reference compounds is a distinct feature
the high-Tc superconductors. Upon doping the AF go
away, giving rise to SC. At the same time, the Fermi surfa
~FS! is believed to develop from small pockets arou
~6p/2,6p/2!,1 anticipated for a doped Mott insulator, to
large one around~p,p!, expected from the electronic struc
ture calculations2 and confirmed by the angle-resolved ph
toemission spectroscopy~ARPES! experiments.3 To under-
stand this crossover is one of the key issues in resolving
high-Tc puzzle. For this reason, the underdoped samp
present particular interest due to the strong interplay of
with AF.

There is a consensus now that these systems are stro
anisotropic, and the fundamental issue is to understand
behavior of strongly correlated electrons in the copp
oxygen plane.4 A ‘‘spin gap’’ or ‘‘pseudogap’’ has been in-
voked to explain5 the reduction of magnetic susceptibilityx
PRB 580163-1829/98/58~9!/5808~17!/$15.00
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below certain characteristic temperatureT* ~Ref. 6! and sup-
pression of the specific heat compared with the lineaT
behavior.7 This gap also shows up in transport propertie8

neutron scattering,9 and NMR relaxation rate6 measurements
The recent ARPES experiments10 on underdoped sample
seem to indicate that the FS of these compounds is prob
half-pocket-like, i.e., a small pocket nearS point (p/2,p/2),
but lacking its outer part in the reduced Brillioun-zon
scheme. These data show clear Fermi level crossing in
~0,0! to ~p,p! direction, but no such crossing was detected
the ~0,p! to ~p,p! direction.10 The observed pseudoga
aboveTc is consistent withd-wave symmetry. In this pape
we will be concerned with the normal-state properties
these underdoped cuprate superconductors, focusing on
implications derived from the proximity of these systems
the AF reference state.

B. A brief survey of related theoretical approaches

Theoretically there have been mainly two competing a
proaches: One starting from the Mott-Hubbard insulator,
5808 © 1998 The American Physical Society



r

i
-

to
rg
he
’’
e

lt

y
w
v

r

s
ro

s
g
s-
th

,
b

-

s
on
a

ne

e

m

-
g

on
ian

n-

ized
s
is

s

ex-

al

by
the

al

d

ua-

to
to

iled
ined,
tion

th-

PRB 58 5809U~1!3SU~2! CHERN-SIMONS GAUGE THEORY OF . . .
vocated by Anderson11,4 using the concept of spin liquid, o
the resonating-valence-bond~RVB! state, while the other
starting from the more conventional Fermi liquid~FL! point
of view.

One of the crucial concepts within the first approach
‘‘spin-charge separation’’ which can be intuitively imple
mented by introducing ‘‘slave bosons,’’12 namely, one re-
writes the electron operator:

c is5ei
†f is ,

whereei is a charged spinless~slave! boson operator~holon!,
while f is is a neutral, spin-1/2 fermion operator~spinon!
satisfying constraint

ei
†ei1 f is

† f is51. ~1.1!

~Hereafter the repeated spin indices are summed over.! One
can also interchange the role of boson and fermion opera
i.e., to introduce a spinless fermion to describe the cha
degree of freedom, while ‘‘spinning’’ bosons to describe t
spin degree of freedom. This is the ‘‘slave-fermion
approach.13,14 The essential requirement for both approach
is the ‘‘single occupancy’’ constraint which is very difficu
to implement. In the mean-field approximation~MFA! which
satisfies the constraint~1.1! only on average, the
slave-boson15 and slave fermion14,16 approaches gave ver
different phase diagrams and each of them has its o
difficulties.17 There have been several attempts to impro
the situation,18 but the basic difficulty still remains.

Moreover, in decomposing the physical electron into
product of fermion and boson, one increases the numbe
degrees of freedom~dof! by two. The constraint~1.1! takes
care of one, but there is one extra dof which correspond
the spinon-holon gauge field. In fact, the physical elect
operator is invariant under the transformation:

ej→eje
i j j , f j s→ f j sei j j ,

so one can ‘‘gauge-fix’’j j according to the choice. This i
the starting point of the gauge-field approach to the stron
correlated electron systems.19,20 This approach has been sy
tematically pursued by Lee and his collaborators first as
U~1! gauge theory,21 and recently by considering the SU~2!
gauge group.22

From the FL point of view the interplay of AF with SC
and the evolvement of the FS with doping has been ela
rated by Kampt and Schrieffer,23 and by Chubukov and his
collaborators.24 Very recently, Zhang25 has proposed an in
teresting SO~5! model to consider the AF-SC interplay.

C. Basic idea of Chern-Simons„C-S… bosonization

In this paper we will use the C-S bosonization as the ba
technical tool. The procedure of reformulating the fermi
problem in terms of bosons was pioneered by the Jord
Wigner transformation26

cj
†5aj

†e2 ipS l , j al
†al, ~1.2!

wherecj is a fermion operator, whileaj is a hard-core boson
operator on a linear chain. The Abelian bosonization for o
dimensional~1D! fermions with linear dispersion27 is similar
in spirit and has found extensive applications in condens
s
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matter physics.28,29The key formula there is the Mandelsta
representation~in field-theoretical jargons!:27,30

ca~x!;e~ i /Ap!*2`
x dyḟ~y!2~21!a iApf~x!, ~1.3!

wherec is the fermion operator, whilef is the boson opera
tor, anda51, 2. ~Here we have omitted the normal orderin
of the operators.! A rigorous derivation of Eq.~1.3! in terms
of path integrals was given in Ref. 31. This bosonizati
procedure was generalized by Witten to the non-Abel
case,32 which reformulates the 111-dimensional relativistic
fermion problem with symmetry groupG as theG-valued
nonlinear-s (NLs) model. That scheme has been exte
sively used for the study of quantum spin systems.33

The Abelian bosonization procedure has been general
to 211-dimensional systems.34 It is in some sense analogou
to the Jordan-Wigner transformation. The typical relation
given as

c~x!;f~x!ei *gx
Am~y!dym

, ~1.4!

wherec(x) is the fermion field operator, whilef(x) is the
boson field operator, and the two are related by the C-S U~1!
gauge field operatorAm . The integration in the exponent i
taken over an arbitrary pathgx in the 2D plane, running from
x to `. The path integral will contain an extra factore2kSc.s.

with the C-S action

Sc.s.5
1

4p i E d3xemnrAm]nAr ,

and the C-S coefficient~level! k51/(2l 11), l 50,1,2... . For
nonrelativistic fermions the C-S constraint can be solved
plicitly, and the transformation~1.4! becomes34

c~x!;f~x!ei ~2l 11!*d2yQ~x2y!f†~y!f~y!, ~1.5!

where Q(x2y)5arctan@(x22y2)/(x12y1)#. An interesting
application of this formula is the analysis of the fraction
quantum Hall effect at fillingn51/(2l 11) in terms of bo-
son liquids.35 The statistical transmutation, implemented
the abelian C-S gauge field is a consequence of
Aharonov-Bohm effect, and it is limited to Abelian fraction
statistics, characterized by the phase factor 2pu with u
P@0,1).36 In particular,u50, 1/2 corresponds to boson an
fermion, respectively, whileu51/4 corresponds to the
‘‘semion’’ case, advocated by Laughlin, as a constituent q
siparticle in high-temperature superconductors.37

The 2D analog of the Jordan-Wigner formula~1.4! and
~1.5! was originally derived as an operator identity.34 It was
later on justified in the path-integral form and generalized
the non-Abelian case.38 That paper was further extended
include the correlation functions, elaborated for the caseG
5U~1!3SU~2! and applied to thet-J model39 ~see also Ref.
40!. Readers are referred to those references for a deta
presentation. To make the present paper more self-conta
we briefly outline here the basic idea of such a bosoniza
procedure.

Consider a system ofN spin-1/2 fermions~or bosons! in
two space dimensions, in an external~Abelian! gauge fieldA.
The canonical partition function in the first quantized pa
integral representation is given by41
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Z~A!5 (
a1 ,...,aN

E dx1 •••dxN(
p

~21!s~p!

3)
r 51

N S E
vr ~0!5xr

vr ~b!5xp~r !
Dv r~t!e2~m/2!*v̇r

2
~t!D ei *vI A,

~1.6!

wherea j51, 2 for j 51,2,...,N are the spin indices,v j (t)
represent ‘‘virtual trajectories’’ of particles going from
imaginary timet50 to t5b51/T, with T as the tempera
ture ~we set the Boltzmann constantkB51! and reaching the
planet5b at the same set of points where they start at
50, the points being arbitrarily permuted. Due to the f
mion statistics of the particles, there is a factor (21)s(p),
associated with each permutationp, wheres~p! is the num-
ber of exchanges in the permutationp. These trajectories
have vanishing probability to intersect each other for a giv
t. Each set of such trajectories appearing in the first qu
tized representation form a link, i.e., a set of possibly int
laced loops, when thet50 andt5b planes are identified by
periodicity in time. Here*vI A5*(Aldv l1A0dt) is a line
integral in 211 dimensions,l 51, 2. The partition function
for the boson system would be the same, except thats~p! is
replaced with 0. On the other hand, the factor (21)s(p) is a
topological invariant naturally associated with the link an
according to a general theory,42 it can be represented as th
expectation value of a ‘‘Wilson loop’’~trace of a gauge
phase factor! supported on that link in a gauge theory with
suitably chosen C-S action.

~21!s~p!5E DVe2kSc.s.~V!P~ei *vI V!,

whereV is a C-S gauge field with symmetry groupG, k is
the C-S coefficient~level!, already defined in the Abelian
case,P(•) is the path ordering, identical to the time orde
ing, if ‘‘time’’ is parametrizing the path, and

Sc.s.5
1

4p i E d3x TrFemnrS Vm]nVr1
2

3
VmVnVrD G .

~1.7!

As a consequence, there is a boson-fermion relation
the canonical partition function:

ZF~A!5E DVZB~A1V!e2kSc.s.~V!.

The bosonization formula is written in the secon
quantized form for the grand-canonical partition function:

J5(
N

ebmN

N!
ZN ,

and

JF~A!5E DCDC* e2S~C,C* ,A!

5E DFDF* DVe2@S~F,F* ,A1V!1kSc.s.~V!#,

~1.8!
-

n
n-
-

,

or

whereC is the Grassmann variable representing the ferm
field, whileF is the complex variable representing the bos
field.

There might be different choices ofG, k: In particular,
G5U(1), k51 corresponds to the Abelian C-S boso
ization,34 while G5U~1!3U~1!, k5@u,(u12)/(u11)# cor-
responds to the ‘‘anyon’’ bosonization,43 with u as the sta-
tistics parameter. In this paper we will concentrate on
caseG5U~1!3SU~2! with k52,1, respectively.38,39

The relations for the correlation functions are given by

C~x!→P~ei *gx
V!F~x!, C* ~x!→F* ~x!P~e2 i *gx

V!
~1.9!

with gx as a straight line in the fixed time plane joiningx
with `. This is a non-Abelian generalization of the 2D fo
mula for the Abelian case~1.4!. It is important to notice the
nonlocal character of these relations.

Here we have used the first-quantized form of the p
integral to identify the relation between the fermion and b
son systems, while the ‘‘working’’ formula for bosonizatio
is given in the second-quantized form of the path-integ
representation. This switching from first to second quantiz
form and vice versa will be frequently used throughout t
paper.

D. Outline of the paper content

The U~1!3SU~2! C-S bosonization approach has be
successfully employed by us earlier44 to calculate the critical
exponents of the correlation functions in the 1Dt-J model in
the limit t@J. Although, in principle, all bosonization
schemes should yield an exact identity between the corr
tion functions of the original fermionic field and correspon
ing bosonic correlation functions, the MFA, as mention
earlier, gives different results in different bosonizatio
schemes. The U~1! C-S bosonization has been shown to co
respond essentially to the slave-boson and slave-fermion
proaches~depending on the choice of the gauge fixing!;
while the non-Abelian U~1!3SU~2! C-S bosonization corre
sponds to the slave-semion approach (u51/4).38 We have
shown44 that the ‘‘semion’’ spin-charge separation of spino
and holon is the correct one to reproduce the exact expon
known from the Bethe ansatz solution and the Lutting
liquid–conformal field theory calculations.45

We considered 1D fermion system on the background o
2D U~1!3SU~2! C-S gauge field. The U~1! field is related to
the charge, while the SU~2! field is related to the spin de
grees of freedom. Performing the dimensional reduction
using the freedom in gauge fixing, we could analyze
original problem as an optimization process for the partit
function of holons in a spinon background. We could find
upper bound for the partition function and an exact way
saturate this bound, without any approximations. Afterwa
we used MFA to consider an ‘‘averaged’’ holon configur
tion to compute the long-time, large distance behavior of
correlation functions, reproducing the exact results. The
portant lesson we learned there is that the statistical~semi-
onic! properties of the constituent particles~spinons and ho-
lons! due to gauge field fluctuations are crucial. In t
operator form, the original fermion operator can be deco
posed as
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cx5hxe
i p/2( l .xhl* hl@ei p/2( l ,xbl* blbx#, ~1.10!

wherehx is a fermion, whilebx is a hard-core boson opera
tor. However, onlyhx together with the attached ‘‘holon
string’’ ~the exponentiated operator! represents a ‘‘physical’’
charged, spinless holon, whereasbx together with the at-
tached ‘‘spinon string’’ corresponds to the neutral, spin1

2

spinon. Both of them satisfy the ‘‘semionic’’ equal-tim
commutation relations:

f ~x1! f ~y1!5e6 ip/2f ~y1! f ~x1!, x1:y1,

where f represents fermion~boson! operator along with the
attached string. This means that the ‘‘semionic’’ spinons a
holons are ‘‘deconfined,’’ and the spin and charge are fu
separated. The dynamics of the spinon filedbx is described
by an O~3! NLs model. Due to the presence of the topolog
cal term in 1D,28,29 the spinons are massless, and they
‘‘deconfined,’’ i.e., the spinons themselves, not their bou
states~the usual spin waves in higher dimensions! are the
constituent quasiparticles. These results encourage us to
plore the 2D case which is of much more physical imp
tance. We should, however, carefully distinguish which
the generic features of the C-S gauge field theory under c
sideration, and what is specific for the 1D case.

In this paper we employ the U~1!3SU~2! C-S bosoniza-
tion scheme to study the 2Dt-J model in the underdoped
regime in the limitt@J. We will try to follow as much as
possible the same procedure as in 1D. The U~1! gauge field
B is again related to the charge degree of freedom, while
SU~2! gauge fieldV is related to the spin degree of freedom
First we prove the existence of an upper bound of the pa
tion function for holons in a spinon background, and we fi
the optimal, holon-dependent spinon configuration wh
saturates the upper bound in an average sense. The op
zation arguments suggest coexistence of a flux phase46 with
an s1 id-like RVB state,47 where the expectation value fo
the Affleck-Marston~AM ! bond variable of spinons is clos
to 1, while thes1 id-RVB order parameter is much smalle
than 1. Then we make an approximation, neglecting the fe
back of holon fluctuations on the U~1! field B and spinon
fluctuations on the SU~2! field V. Hence the holon field is a
fermion and the spinon field a hard-core boson. Within t
approximation we show that theB field produces ap-flux
phase for the holons, converting them into Dirac-like ferm
ons, while theV field, taking into account the feedback o
holons produces a gap for the spinons, minimal at~6p/2,
6p/2!. The spinons are described by a NLs model with a
mass term~gap! .A2d ln d, with d as the doping concen
tration. This corresponds to a short-ranged AF order~or dis-
ordered state in the jargons of NLs model! in doped
samples, which crosses over to the long-ranged AF orde
the prestine samples, when the gap vanishes. This is a
tempt to include AF fluctuations self-consistently in t
RVB-type approach. Moreover, we derive a low-energy
fective action in terms of spinons, holons, and a se
generated U~1! gauge field. Neglecting the gauge fluctu
tions, the holons are described by the FL theory with a
consisting of four ‘‘half-pockets’’ centered at~6p/2,6p/2!
and one reproduces the results for the electron spectral f
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tion obtained in MFA~for the coexistingp-flux andd-wave
RVB state!,48 in qualitative agreement with the ARPE
data10 for underdoped cuprates. If the gauge field we
coupled to the spinons alone, it would be confining, since
spinons are massive. However, due to coupling to the m
less branch of holons~which are actually nonrelativistic be
cause of a finite FS!, gauge fluctuations arenot confining,
but nevertheless yield an attractive interaction betwe
spinons and holons leading to a bound state in 2D with e
tron quantum numbers. This could explain why neglect
the ‘‘semionic’’ nature of spinons and holons is less dang
ous in 2D than in 1D. This means that the spin and cha
are not fully separated~like in 1D!, showing up as bound
states in low-energy phenomena. The renormalization eff
due to gauge fluctuations would lead to non-FL behavior
the composite electron, in certain temperature range show
the linear inT resistivity discussed earlier.21,49,50 This for-
malism provides a new interpretation of the spin gap in
underdoped superconductors~mainly due to the short-range
AF order! and predicts that the minimal gap for the physic
electron is proportional to the square root of the doping c
centration. Therefore the gap does not vanish in any dir
tion. All these predictions can be checked explicitly in e
periment.

The C-S gauge field approach has also been used
Mavromatos and his collaborators51 to study the anyon su
perconductivity, advocated by Laughlin.37 To our under-
standing, the basic aim of their work is to construct a mo
exhibiting semion superconductivity without breaking t
time-reversal and parity symmetry. In spite of some appar
similarities in formulas, the main issue considered and
basic physical assumptions in their work are very differe
from ours. They have also discussed the normal-s
properties,52 but the mechanism for a possible non-FL b
havior in their paper differs from what we consider here. W
should also mention that the SU~2! gauge field considered in
their recent papers~quoted in Ref. 51! corresponds to a gen
eralization of the local SU~2! symmetry at half-filling, and is
not related to the spin rotational symmetry, as we discus
this paper. Lee and his collaborators22 have also been con
sidering this~rather than the spin! SU~2! group.

The present paper is an extended version of the ea
short communication.53 The rest of the paper is organize
as follows. In Sec. II we summarize the U~1!3SU~2!
bosonization in the context of 2Dt-J model; In Sec. III we
present the optimization problem for the spinon configu
tion; In Sec. IV we derive the spinon effective action; In Se
V we consider the holon effective action; In Sec. VI w
make some concluding remarks. The proof of the bou
employed in Sec. III, is deferred to the Appendix.

II. U „1…3SU„2… CHERN-SIMONS BOSONIZATION
OF THE t-J MODEL

A. The model Hamiltonian

It is widely believed that the 2Dt-J model captures the
essential physical properties of the Cu-O planes characte
ing a large class of high-Tc superconductors.4 The Hamil-
tonian of the model is given by



l-
ta

ra

ing
-

o-
-

5812 PRB 58P. A. MARCHETTI, ZHAO-BIN SU, AND LU YU
H5PG(̂
i j &

F2t~c ia
† c j a1H.c.!

1Jc ia
† sab

2
c ib•c j g

† sgd

2
c j dGPG , ~2.1!

where sab are the Pauli matrices,c ia is the annihilation
operator of a spin-1/2 electron on sitei of a square lattice,
corresponding to creating a hole on the Cu site, andPG is the
Gutzwiller projection eliminating double occupation, mode
ing the strong on-site Coulomb repulsion. To simplify no
tions, we introduce a two-component spinorc i5(c i↑ ,c i↓).
Throughout this paper, the small letters will denote ope
tly
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tors, while the capital letters will denote the correspond
complex~or Grassmann! variables in the path-integral repre
sentation, unless otherwise specified.

Using the Hubbard-Stratonovich transformation to intr
duce a complex gauge fieldX^ i j & , the grand-canonical parti
tion function of thet-J model at temperatureT51/b and
chemical potentialm can be rewritten as46

J t-J~b,m!5E DXDX*DCDC* e2St-J~C,C* ,X,X* !

~2.2!

with
St-J~C,C* ,X,X* !5E
0

b

dx0H (̂
i j &

S 2

J
X^ i j &

* X^ i j &1@~2t1X^ i j &!C ia* C j a1H.c.# D1(
i

C ia* ~]01m!C ia

1(
i , j

ui , jC ia* C j b* C j bC iaJ , ~2.3!
e-

r-

re-
x-

me
tial
in
where the two-body potential is given by

ui , j5H 1` i 5 j

2
J

4
i , j nearest neighbors

0 otherwise.

~2.4!

Hereafter we denote the Euclidean timex0[t (]0
[]/]t) and its dependence of the fields is not explici
spelled out.

B. C-S bosonization

Comparing Eqs.~2.2!, ~2.3! with Eq. ~1.8!, we find that
the C-S bosonization procedure, briefly introduced in Sec
can be applied to rewrite the grand-canonical partition fu
tion ~2.2!. However, there is an important differenc
namely, the consideration in Sec. IC was for the 2D c
tinuum, where the probability for two world lines~Brownian
paths! to intersect each other at a given time is zero. This
not true for the lattice case we consider now, where the pr
ability for two paths to cross each other at a given time is
vanishing. On the other hand, the model we consider c
tains a single-occupancy constraint, expressed in terms o
Gutzwiller projection operatorPG , or the infinite on-site re-
pulsionui ,i , which excludes the intersection of paths. The
fore, we can still apply the C-S bosonization scheme, leav
the C-S gauge fields in the continuum, while considering
matter field on a discrete lattice. We will introduce an Ab
lian U~1! gauge fieldB related to the charge degree of fre
dom and a SU~2! gauge fieldV related to the spin degrees o
freedom. The Euclidean C-S actions for these fields
given by
C
-

-

s
b-
t

n-
he

-
g
e
-

re

Sc.s.~B!5
1

4p i E d3xemnrBm]nBr ,
~2.5!

Sc.s.~V!5
1

4p i E d3xTrFemnrS Vm]nVr1
2

3
VmVnVrD G ,

where Vm5Vm
a sa/2, a51,2,3, m50,1,2 with sa as Pauli

matrices.
In the fermion-boson transformation formula~1.8! k52

for the U~1! field B, andk51 for the SU~2! field V.38,39 The
correlation functions for the Grassmann fieldsCa(Ca* ) are
substituted by the correlation functions of the gaug
invariant complex fieldsFa(gx) @Fa* (gx)#, defined as

Fa~gx!5ei *gx
B~Pei *gx

V!abFxb ,

Fa* ~gx!5Fxb* ~Pe2 i *gx
V!bae2 i *gx

B.

As mentioned earlier,gx is a straight line in the fixed-time
plane joining pointx with ` @reaching a compensating cu
rent at` ~Refs. 38 and 39!# and P is the path-ordering op-
erator. In principle, we can choose other gauge groupsG to
implement the bosonization scheme, but the encouraging
sult for the 1Dt-J model, reproducing the known exact e
ponents of the correlation functions44 strongly favors the
U~1!3SU~2! choice.

The bosonized action is obtained via substituting the ti
derivative by the covariant time derivative and the spa
lattice derivative by the covariant spatial lattice derivative
the U~1!3SU~2! bosonization

C j a* ]0C j a→F j a* @~]01 iB0~ j !!11 iV0~ j !#abF j b ,

C ia* C j a→F ia* ei *^ i j &B~Pei *^ i j &V!abF j b .

We now decompose the bosonic field as follows:
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Fxa5ẼxSxa , Fxa* 5Ẽx* Sxa* , ~2.6!

where1 is a unity matrix,Ẽ is a complex scalar field, andSa
is a complex two-component spin-1/2 field satisfying t
constraint

Sxa* Sxa51. ~2.7!

The gauge ambiguity involved in the decomposition~2.6!
will be discussed later. The fieldẼ is coupled to the U~1!
gauge fieldB and it describes the charge degrees of freed
ia
n.

s-
,

and the fieldSa is coupled to the SU~2! gauge fieldV and it
describes the spin degrees of freedom of the original
mion. In this description the nature of the groups associa
with charge„U~1!… and spin„SU~2!… is explicitly exhibited
and the coefficients of the C-S actions are such that
charged and spin-1/2 field operators reconstructed from
gauge invariant ~Euclidean! fields @Ẽxe

i *gx
B and

P(ei *gx
V)abSxb# obey semionic statistics.38,44

In terms ofẼ andS the U~1!3SU~2!-bosonized action of
the t-J model is given by
is
r the
St2J~Ẽ,Ẽ* ,S,S* ,X,X* ,B,V!5E
0

b

dx0H (̂
i j &

S 2

J
X^ i j &

* X^ i j &1@~2t1X^ i j &!Ẽj* ei *^ i j &BẼiS ia* ~Pei *^ i j &V!abS j b1H.c.# D
1(

j
F Ẽj* S ]01 iB0~ j !1m1

J

2D Ẽj1Ẽj* ẼjS j a* @]011 iV0~ j !#abS j bG
1(

i , j
ui , j Ẽi* Ẽi Ẽj* Ẽj J 12Sc.s.~B!1Sc.s.~V! ~2.8!

with constraint~2.7! and Coulomb gauge fixing for the U~1!3SU~2! field implemented.44

It is convenient to describe the charge properties in terms of a holelike fieldH ~holon! and this can be achieved in th
formalism by substitutionẼ→H* , Ẽ*→H, with H,H* as Grassmann fields, and changing the sign of the C-S action fo
B field.39,44 After integration over the auxiliary gauge fieldX, the grand-canonical partition functionJ~b,m! can be rewritten
as

J~b,m!5E DHDH*DSaDSa*DBDVe2S~H,H* ,S,S* ,B,V!d~S* S21!, ~2.9!

where the Euclidean action is given by

S~H,H* ,S,S* ,B,V!5E
0

b

dx0X(
j

H H j* F]02 iB0~ j !2S m1
J

2D GH j1 iB0~ j !1~12H j* H j !S j a* @]011 iV0~ j !#abS j bJ
1(̂

i j &
H @2tH j* ei *^ i j &BHiS ia* ~Pei *^ i j &V!abS j b1H.c.#1

J

2
~12H j* H j !~12Hi* Hi !

3F uS ia* ~Pei *^ i j &V!abS j bu22
1

2G J C22Sc.s.~B!1Sc.s.~V!. ~2.10!
-

of

-

In what follows we will denote the shifted chemical potent
m85m1J/2 by d, proportional to the doping concentratio

C. Gauge fixings

The action~2.10! is invariant under the local gauge tran
formations:

U~1!: H j→H je
iL~ j !, H j*→H j* E2 iL~ j !,

Bm~x!→Bm~x!1]mL~x!, L~x!PR,
~2.11!

SU~2!: S j→R†~ j !S j , S j*→S j* R~ j !,

Vm~x!→R†~x!Vm~x!R~x!1R†~x!]mR~x!, R~x!PSU~2!,
l and an additional holon-spinon (h/s) gauge invariance aris
ing from the ambiguity in the decomposition~2.6!:

h/s: H j→H je
i z j , H j*→H j* e2 i z j ,

~2.12!

S j a→S j aei z j , S j a* →S j a* e2 i z j , z jPR.

It is important to remark that the theory in terms
$H,H* ,S,S* ,B,V% is equivalent to the original fermionic
theory only if theh/s gauge is fixed to respect U~1!3SU~2!
invariance. Theh/s gauge fixing will be discussed later.

We first gauge fix the U~1! symmetry imposing a Cou
lomb condition onB ~from now onm51,2!:

]mBm50. ~2.13!
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To retain the bipartite lattice structure induced by the
interactions, we gauge fix the SU~2! symmetry by a ‘‘Néel
gauge’’ condition:

S j5sx
u j uS 1

0D , S j* 5~1,0!sx
u j u , ~2.14!

whereu j u5 j 11 j 2 . Then we split the integration overV into
an integration over a fieldV(c), satisfying the Coulomb con
dition:

]mVm
~c!50, ~2.15!

and its gauge transformations expressed in terms of
SU~2!-valued scalar fieldg ~not a second-quantized oper
tor!, i.e., Va5g†Va

(c)g1g†]ag, a50,1,2.
Integrating overB0 , we obtain
th
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Bm5B̄m1dBm , dBm~x!5
1

2 (
j

H j* H j]m arg~x2 j !,

~2.16!

whereB̄m gives rise to ap-flux phase, i.e.,ei *]pB̄521 for
every plaquettep.

Integrating overV0 , we find

Vm
~c!5(

j
~12H j* H j !S sx

u j ugj
† sa

2
gjsx

u j u D
11

]m arg~x2 j !sa ,

~2.17!

where sa , a5x, y, z are the Pauli matrices. After th
U~1!3SU~2! field being gauge fixed, as discussed above,
action ~2.10! becomes
S~H,H* ,g!5E
0

b

dx0H(
j

@H j* ~]02d!H j1~12H j* H j !~sx
u j ugj* ]0gjsx

u j u!11#

1(̂
i j &

$2tH j* ei *^ i j &B̄1dBHi@sx
u i ugi

†~Pei *^ i j &V~c!!gjsx
u j u#111H.c.%

1
J

2 (̂
i j &

~12Hi* Hi !~12H j* H j !F u@sx
u i ugi

†~Pei *^ i j &V
~c!

!gjsx
u j u#11u22

1

2G J . ~2.18!
il-

fi-
Here the boundary terms are omitted and theS13R2 to-
pology of the involved Euclidean space time imposes
vanishing of the topological term Tr*D3R2(g†dg)3, where
D is a disk of radiusb.

Equation~2.18! is the starting point for our subseque
analysis. InS(H,H* ,g) the charge degrees of freedom~dof!
are described byH,H* ~2 dof! and the spin degrees of free
dom byg ~3 dof! subjected to a constraint~21 dof! coming
from theh/s gauge fixing, reproducing the correct countin
of degrees of freedom of the original fermionic fieldsCa ,
Ca* (212 dof) in the Euclidean path-integral formalism.

III. OPTIMIZATION OF THE SPINON CONFIGURATION

To analyze Eq.~2.18! we first recall the strategy adopte
for the 1D case.44 We noticed that one can find an upp
bound for the partition function of holons in a spinon bac
ground. Moreover, one can find explicitly the spinon co
figuration, exactly saturating this bound. Then one can c
sider the quantum fluctuations around this optim
configuration to evaluate related physical quantities. Here
will follow a similar strategy, namely to search first for th
upper bound of the partition function for holons in a spin
background. It turns out that such an upper bound ex
However, unlike the 1D case, we cannot find a spinon c
figuration exactly saturating this upper bound. Neverthele
we can find a holon-dependent spinon configurationgm

which is optimal, saturating the upper bound on average,
take it as the starting point to consider the spinon fluct
tions.
e

-
-
-
l
e

s.
-
s,

d
-

A. Auxiliary lattice gauge field and upper bound

To find the optimal configuration we introduce an aux
iary lattice gauge field$A,U%, with AjPR ~real!, U ^ i j &PC
~complex!, uU ^ i j &u<1, and an actionS5S11S2 ,

S1~H,H* ,A,U !5E
0

b

dx0H(
j

@H j* ~]02d!H j

1 i ~12H j* H j !Aj #

1(̂
i j &

~2tHi* U ^ i j &H j1H.c.!J ,

~3.1!

S2~H,H* ,U !5E
0

b

dx0(̂
i j &

J

2
~12Hi* Hi !~12H j* H j !

3S uU ^ i j &u
22

1

2D .

The action~3.1! equals Eq.~2.18! if we make the identi-
fications

iA j;~sx
u j ugj

†]0gjsx
u j u!11,

~3.2!

U ^ i j &;e2 i *^ i j &~B̄1dB!@sx
u i ugi

†~Pei *^ i j &V
~c!

!gjsx
u j u#11,

~but in the derivation of the following bound these identi
cations are not made!.

Let
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J~A,U !5E DHDH* e2S~H,H* ,A,U !,

we prove in Appendix A the following upper bound:

uJ~A,U !u<E DHDH* e2@S1~H,H* ,0,Û !1S2~H,H* ,0!#,

~3.3!

whereÛ is the time-independentU configuration maximiz-
ing

E DHDH* e2@S1~H,H* ,0,U !1S2~H,H* ,0!#u]0U50 . ~3.4!

To discuss the properties ofÛ we first notice that the
quantity optimized byÛ is the free energyF(U) of a gas of
spinless holes at temperatureT5b21 with chemical poten-
tial d (d50 corresponding to half-filling! on a lattice, with
hopping parameter on the link̂i j & given by tuU ^ i j &u, in the
presence of a constant~but not uniform! magnetic field
where the flux through a plaquettep is given by arg (U]p)
and is subjected to an attractive nearest-neighbor~NN!
density-density interaction with coupling constantJ/4. We
consider the system at largeb, and smalld and make the
following:

Assumptions:~1! We consider negligible the density
density interaction, since the holon density~d! is small; ~2!
we assume translational invariance ofÛ.

Remark:Assumption~2! appears to be reasonable in t
light of the results of Ref. 54, where it has been shown th
the configurationU maximizing the determinant of the hop
ping matrix of the above system is translation invariant.

By gauge invariance~see Appendix A! the result of opti-
mization depends only onuÛ ^ i j &u and arg(Û]p). As a conse-
quence of the assumption~2!, F(U) is monotonically in-
creasing inuUu, hence

uÛ ^ i j &u51. ~3.5!

It has been conjectured in Ref. 55 and proven in Ref.
that the ground-state energy atT50 of the system unde
consideration is optimized in the magnetic field chosen a

arg~Û]p!5p~12d!, ~3.6!

which is the commensurability condition for the flux. It
then natural to conjecture that this remains true for la
enoughb.
t,

6

e

B. Optimal spinon configuration

In the last subsection we have stated a kind of ‘‘theorem
~proven in Appendix A!, now we will find out the conse-
quences of this theorem in our context, namely, assum
Eqs. ~3.5! and ~3.6! to hold, we attempt to find a holon
dependent spinon configuration (gm) saturating the bound
~3.3!, using the identifications~3.2!.

Following a strategy developed in 1D,44 we introduce a
first-quantized~Feynman-Kac! representation of the holon
partition function in the presence of ag background. As in
1D, a key ingredient in the analysis is that, for a fixed li
^ i j &, in every holon configuration the term

(sx
u i ugi

†Pei *^ i j &V
(c)

gjsx
u j u)11 appears, in the first quantized fo

malism, either in the world lines of holons or in the Heise
berg term, but never simultaneously. This is the conseque
of the single-occupancy constraint and permits a sepa
optimization ofS1 andS2 , as required in the bound~3.3!. It
turns out, however, that, contrary to the 1D results, we c
not identify a specific configurationgm saturating the bound
exactly, but only approximatively, in an appropriate avera
sense.

The whole procedure in 2D can then be justified in t
limit t@J because the effective mass of holes is very hea
as a result of the large number of soft spinon fluctuatio
surrounding the hole in its motion57 and in a sense our trea
ment can be considered as a kind of Born-Oppenheimer
proximation for the spinons in the presence of the holons

Here we do not give details of the derivation, but rath
introduce notations and quote the obtained results. Those
terested in further discussions are referred to Refs. 58,
39, and 44.

Let D denote the 2D lattice Laplacian defined on a sca
lattice field f by

~D f ! i5 (
j :u j 2 i u51

f j24 f i ;

let dm(v) denote the measure on the random walksv on the
2D lattice such that

~ebD! i j 5Ev~0!5 i
v~b!5 j

dm~v!, b.0;

let PN be the group of permutations ofN elements and, for
pPPN , let s~p! denote the number of exchanges inp, then
the partition functions of holons (H) in a given g back-
ground can be rewritten as
J~g!5eiS j*0
bdx0Aj (

N50

`
ebdN

N! (
pPPN

~21!s~p!

3 (
j 1¯ j N

)
r 51

N E vr ~0!5 j r
gr ~b!5 j p~r !

dm~v r ! )
^ i j &PvI '

tU ^ i j &e
2 i *vI idx0Ae2S^ i j &ùvI 5BJ/2*0

bdx0~ uU^ i j &u
221/2!, ~3.7!
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where identifications~3.2! are understood and, for a fixedN,
vI 5$v1 ,...,vN% denote the worldlines of holon particles,vI '

the components ofvI perpendicular andvI i parallel to the
time axis, respectively.

To saturate the bound~3.3! with a configurationgm(vI )
we first impose

iA j5~sx
u j ugj

†]0gjsx
u j u!1150, j PvI i. ~3.8!

Equation~3.8! is satisfied choosinggm constant during the
period when no particle hops.

ImposingU ^ i j &50 in S2 @see Eq.~3.1!# corresponds in the
first quantized formalism to setting:

~sx
u i ugi

†Pei *^ i j &V
~c!

gjsx
u j u!1150, ^ i j &ùvI 5B. ~3.9!

In physical terms this means that thes1 id RVB order
parameter47 is very small~see the discussion at the end
Sec. IV!.

We notice that if

gj5cosu j11 i sin u jsz , j ¹vI ~3.10!

for some angleu jP@0,2p), Eq. ~3.9! is then satisfied. In
fact, sinceV(c) depends only on sites where there are
holes@see Eq.~2.17!#, from Eq. ~3.10! it follows that corre-
spondingly

V~c!~x!5(
j

~12H j* H j !
~21! u j u

2
]m arg~x2 j !sz ,

~3.11!

so thatgi
†Pei *^ i j &V

(c)
gj has only diagonal components.

This result shows that in the Ne´el gauge, quite indepen
dently of doping concentration~since the conditionU50 in
S2 does not depend on small doping assumption!, one should
expect that the physics is dominated byV(c) only in the U~1!
subgroup of SU~2! related to the axis chosen in the Ne´el
gauge.

The conditionuÛ ^ i j &u51 in S1 @see Eq.~3.1!# corresponds
to imposing

u~sx
u i ugi

†Pei *^ i j &V
~c!

gjsx
u j u!11u51, ^ i j &PvI ', ~3.12!

which means in physical terms that the AM ord
parameter46 is of the order 1~see the discussion at the end
Sec. IV!.

To discuss Eq.~3.12! we recall that the paths on whic
dm(v) is defined are left continuous,44 so that at the jumping
time t,v r(t)5 lime↘0v r(t1e), or, in simpler terms, one
should think the holon att at the end of the jumping link
oriented according to the increasing world line time of t
holon. As a consequence, if^ i j &PvI ', either i PvI or j
PvI , but never both. Let us assumej PvI , then according to
the previous requirements

gi
†Pei *^ i j &V

~c!
5cosu^ i j &11 i sin u^ i j &sz ,

for some angleu^ i j &P@0,2p). We represent

gj5cosw j1 i s•nj sin w j ,

for some unit vectornj and anglew jP@0,2p).
o

From Eq.~3.12! one immediately obtains

w j5
p

2
, njz50. ~3.13!

Finally, let us try to impose the condition~3.6!. This
translation invariant condition cannot be exactly fulfille
@unlike in 1D where a configurationgm exactly saturating the
bound analogous to Eq.~3.3! can be found#. However, we
notice that theB-dependent part of arg (U]p) has a translation
invariant mean satisfying the above condition,@see Eqs.~3.3!
and ~2.16!#, hence it is natural to impose~on average!:

~sx
u i ugi

†ei *^ i j &V
~c!

gjsx
u j u!11.1, ^ i j &PvI '. ~3.14!

Defining

ḡ j5expS 2
i

2 (
lÞ j

~21! lszarg~ l 2 j ! D , ~3.15!

and choosing

gj5 H ḡ j , j ¹vI
ḡ j g̃ j , j PvI , ~3.16!

we can kill the fast fluctuating first term in Eq.~3.11!. The
remaining term, denoted by

V̄52(
j

H j* H j

~21! u j u

2
]marg~x2 j !sz ,

for small hole concentration is a slowly varying field yield
ing a contributionO(d) to arg(U^ij &), with zero translational
average. The final result is that we can assume for the o
mizing configuration, using Eqs.~3.13!, ~3.15!, ~3.16!

gi
†ei *^ i j &V

~c!
gj5ei *^ i j &V̄g̃ j.g̃ j5ei ~p/2!~sxnjx1synjy !,

and we immediately derive from Eq.~3.14! the condition
njx50, njy5(21)u j u.

Notice that from these definitions:

g̃ jsx
u j u5sx

u j u11. ~3.17!

In view of the optimization discussed above it appe
natural to introduce a variableRjPSU(2) describing spinon
fluctuations around the optimizing configuration, through t
definition

gj5ḡ jRj g̃j5e2~ i /2!( lÞ j ~21! lsz arg~ l 2 j !Rje
i ~p/2!~21!u j usyH j* H j

~3.18!

with Rj being represented inCP1 form as

Rj5S bj 1 bj 2*

bj 2 bj 1*
D , bj a* bj a51, ~3.19!

wherebj a is a two-component complex field. The optim
configurationgm is given byR51.

Using Eqs.~3.17! and the SU~2! gauge invariance of the
~formal! measureDg to absorbḡ, the partition function of
the t-J model can be exactly rewritten in terms of the E
clidean actionS5Sh1Ss ,
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Sh5E
0

b

dx0H(
j

H j* @]02~sx
u j uRj

†]0Rjsx
u j u!112d#H j1(̂

i j &
$2tH j* e2 i *^ i j &~B̄1dB!Hi@sx

u i uRi
†Pei *^ i j &~V̄1dV!Rjsx

u i u#111H.c.%J ,

~3.20!

Ss5E
0

b

dx0H(
j

~sx
u j uRj

†]0Rjsx
u j u!111(̂

i j &

J

2
~12Hi* Hi !~12H j* H j !F u~sx

u i uRi
†Pei *^ i j &~V̄1dV!Rjsx

u j u!11u22
1

2G J , ~3.21!
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Let us remark again that in Eqs.~3.20!, ~3.21! no approxi-

mations have been made. The point of the above analys
that for large enoughb and small enoughd we expect thatR
anddV describe small fluctuations.

IV. SPINON EFFECTIVE ACTION

A. The main approximation

To proceed further we make the followingApproximation
(dV5dB50): we assume that the spinon fluctuations (R)
are small enough~for b large, d, J/t small! that we can
neglect their back reaction on the gauge fieldV, i.e., we set
dV50. We expect that the main effect of the neglected fl
tuations ofV is to convert the gauge-invariant spinon fie
operator reconstructed from the Euclidean field

~Pei *g j
V!S j5ei *g j

~V̄1dV!ḡ jRjsx
u j uS 1

0D
is

-

into a semion field operator. Retaining the fermionic natu
of C is then inconsistent with neglectingdV ~which also
introduces a fictitious parity breaking! unless we neglect also
dB, responsible for the semionic nature of the gaug
invariant holon field operator reconstructed from the Eucl
ean field

e2 i *g j
~B̄1dB!H j .

In 1D the proper account of the statistics of the holon a
spinon field operators was crucial for deriving~within the
C-S approach! the correct physical properties of the mode
known by Luttinger liquid and conformal field theor
techniques.45 However, in 2D we believe the statistics o
holons and spinons is less crucial because we expect
contrary to 1D, they form a bound state, as will be discus
later.

To derive the low-energy spinon action let us start co
puting the link variable
s of
s of
us

e

Ri
†ei *^ i j &V̄Rj5S a^ i j &bi1* bj 11a^ i j &

* bi2* bj 2 2a^ i j &bi1* bj 2* 1a^ i j &
* bi2* bj 1*

2a^ i j &bi2bj 11a^ i j &
* bi1bj 2 a^ i j &bi2bj 2* 1a^ i j &

* bi1bj 1*
D , ~4.1!

wherea^ i j &5e( i /2)*^ i j &V̄z. Looking back at Eq.~3.21! we find that in the hopping term of holons only the diagonal element
Eq. ~4.1! appear, a kind of gauge-invariant AM variable,46 whereas in the Heisenberg term only the off-diagonal element
Eq. ~4.1! appear, a kind of gauge-invariant RVB variable.47 According to the optimization arguments given in the previo
section, the vacuum expectation value of the AM gauge variable is expected to bes like, real and close to 1@see Eq.~3.14!#,
while the RVB order parameter should be rather small@see Eq.~3.9!#. These anticipations are fully confirmed by th
mean-field calculations.48,59

B. Nonlinear-s model with mass term

We now derive a low-energy continuum effective action for spinons by rescaling the model to a lattice spacinge!1 and
neglecting higher-order terms ine. As it is standard in AF systems,28 we assume

bj a* sarbj b;Vj1~21! u j ueL j , ~4.2!

with Vj
25 f &1, V•L50, whereQ,L are defined on a sublattice, e.g.,Vj[Vj 11(1/2),j 2

, L j[L j 11(1/2),j 2
, j 15 j 2 mod 2 and

they describe the AF and ferromagnetic fluctuations, respectively. It is useful to rewriteV in the CP1 form:

V5zj* sabzb , za* za5 f , ~4.3!

with za , a51,2 as a spin-12 complex~hard-care! boson field. Consistently with the slowly varying nature ofV̄ for small hole
concentration, we assume

e2 i *^ j l &V̄z21;e~2 iV̄z!~ j !1
e2

2
~2 iV̄z!

2~ j !1O~e3!. ~4.4!

On the rescaled lattice the Heisenberg term becomes
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J

2 (̂
i j &

u~sx
uxuRi

†e~ i /2!*^ i j &V̄Rjsx
u j u!11u221/2

e2 5
J

2 (̂
i j &

H 1

2 S Vi2Vj

e D 2

12L j
21V̄z

2~ j !@~V jx!21~V jy!2#J 1O~e!. ~4.5!
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For the temporal term we obtain analogously

2~sx
u j uRj

†]0Rjsx
u j u!11

5(
j

~21! u j uzj a* ]0zj a1
e

2
L j•~Vj∧]0Vj !1O~e2!.

~4.6!

The first term in Eq.~4.6! actually vanishes, since othe
wise it would produce a topologicalu term which is known
to be absent in 2D.28

In treating the holon density terms in the spinon action
MFA, we keep only the leading fluctuation terms and negl
terms of the order ofO(Jd), O(d2). Then, integrating outL
and taking the continuum limit, from Eqs.~4.2!–~4.6! we
obtain the NLs model effective action for spinonsSs

!1Ss8 ,

Ss
!5E d3x

1

g
@~]0V!21vs

2~]mV!21~V!2~V̄z!
2#,

Ss852
1

g E d3xVz
2V̄z

2, ~4.7!

where the coupling constantg and the spin-wave velocityvs
are easily derived functions ofJ, d, e.

We now make theApproximation P:we treat the termSs8
as a perturbation. To understand the physics described bSs

!

we first notice that ifV̄z
2 were absent, the NLs model would

be in the symmetry broken phase, sinceg is small (;J) at
the lattice scale. For larger scalesgeff then flows towards its
critical value, describing the large-distance properties o
NLs model with an insulating ‘‘Ne´el’’ ground state and
spin-wave Goldstone excitations.28 To get an idea of the ef
fect of V̄z

2 we replace the NLs model constraintV25 f by a
softened version, adding to the Lagrangian a terml(V2

2 f )2, expected to produce the same low-energy behav
and we replaceV̄z

2, a function of the holon positions, by it
statistical averagêV̄z

2&. By its definition,V̄z
2 is positive defi-

nite and we give a rough estimate of^V̄z
2& by first performing

a translational average at a fixed time over a fixed ho
configuration and then an average over holon configurat
with mean holon densityd.

In the first step letxI 5$xi% i 51
N denote the holon position

and letq5$qi% i 51
N , qi5(21)uxi u11 and restrict the compu

tation to a finite volumeuLu and lattice cutoffe. Let arge, ]m
e ,

De denote the angle function, the derivative in them direc-
tion and the Laplacian in thee lattice, respectively, then us
ing the equality

emn]n
e arge~x2y!5]m

e ~De!21~x2y!,

we immediately obtain
t

a

r,

n
s

1

uLu EL
d2xV̄z

2~x!52
1

uLu (
l ,k

xI ,L

qlqk~De!21~xl ,xk!

.2
1

uLu (
l ,k

xI ,L

qlqk

2p
ln~ uxl2xku1e!.

~4.8!

Equation ~4.8! looks like the energy per unit volum
EN,L(xI ) of a neutral two-component system ofN particles
with charges6A1/2p in a volume uLu interacting via 2D
Coulomb potential with ultraviolet cutoffe. The average of
EN,L(xI ) over the positions of the charges in the lim
uLu↗R2, N↗` with fixed average densityd can be identi-
fied with the free energy of the above system atb51 and
chemical potentiald in the thermodynamic limit, and this
gives our estimate of̂V̄z

2&. The behavior of the free energ
can be obtained through a sine-Gordon transformation60 and
for small d it is given by61

^V̄z
2&;2d ln d. ~4.9!

Hence in our crude approximation̂V̄z
2& acts as a mass

term increasing withd. If we assume that the scaling lim
and perturbation expansion in̂Vz

2& commute with each
other, we find that its effect is to drive the NLs model at
large scale to the disordered massive regime with a mass
for V of the order ofms

2(d);2d ln d. Within this approxi-
mation, for a more careful analysis one should consider
renormalization-group equations forg and l including the
perturbation̂ V̄z

2& term from the beginning. Then the value o
m2(d) could be renormalized.

A slightly better approximation is to consider the holo
as slowly moving randomly distributed impurities, creating
random potential and analyze the behavior of the spin-w
V in the presence of this potential~this can again be justified
for the limit J/t!1 with a large effective mass of holes!. At
a fixed time the random potential behaves as

V̄z
2~w!;(

xI ,yI
qyqx

~x2w!m

ux2wu2

~y2w!m

uy2wu2
.

Hence it is positive and roughly falling liker 22, wherer is
the distance to the closest impurity. This kind of syste
have been considered in Ref. 62 and it is expected to b
the localized regime forV, where~random! averaged Green
functions exhibit a mass gapm(d) roughly proportional to
the inverse mean free path. Hence up to logarithmsms

2(d)
;d for small d.
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C. Crossover from short-range to long-range
antiferromagnetic order

All the above arguments strongly suggest that the spi
system described by the actionSs

! in Eq. ~4.7! exhibits a
mass gapms(d) increasing withd ~at least for sufficiently
large, but, neverthelessd!1!, vanishing atd50, thus show-
ing an expected crossover to the insulating ‘‘Ne´el state’’ at
zero doping.63 As a result ofm(d).0, the constraintV2

5 f is relaxed at large scales28 and a Lagrange multiplie
field introduced in the action to impose the constraint wo
just mediate short-range attractive interaction betw
spinons with opposite spin, with strength 0„ms(d)22

… rota-
tionally symmetric in spin space~see Ref. 64 for the discus
sion of an analogous situation!. Another short-range interac
tion, but uniaxial in the spin space, is introduced by t
perturbation termSs8 in Eq. ~4.7!, with strength 0„ms

2(d)/g….
We can summarize the above discussion by rewriting

NLs model effective action for spinons in theCP1 form,
neglecting short-range interactions, as

Ss
!5E

@0,b#3R2
d3x

1

g
@ u~]02zb* ] j zb!zau2

1vs
2u~]m2zb* ]mzb!zau21ms

2~d!za* za#. ~4.10!

In the NLs model without mass term (d50) the con-
straint za* za5 f and the symmetry breaking condition, e.g
^z2&Þ0, lead to excitations described by a complex mass
field S.z1^z2* & with massless ‘‘relativistic’’ dispersion rela
tions, corresponding to spin waves. In the NLs model with
mass term the absence of symmetry breaking and the e
tive softening of the constraint lead to excitations describ
by the spin-12 two-component fieldza , with massive ‘‘rela-
tivistic’’ dispersion relations. However, the self-generat
gauge fieldza* ]aza , a50,1,2 would confine the spin-1

2 de-
grees of freedom into composite spin-1 spin-wave fields.
the other hand, as we shall see later, the coupling to
holons will induce deconfinement of spin-1

2 excitations.
To give a kind of ‘‘microscopic’’ interpretation of the

above results using the slave-fermion picture in terms of
hard-core bosonic fieldsba ,ba* , we follow the approach of
Yoshioka.13 First consider the cased50; then a MF treat-
ment with ans-like RVB order parameter yields an energ
gap vanishing at (p/2,p/2), (2p/2,2p/2) in the Brillouin
zone and an expansion for low momenta around these
points shows that the corresponding excitations are descr
by a complex massless field with relativistic dispersion re
n

d
n

e

ss

c-
d

n
e

e

o
ed
-

tions, which can be identified with a spin-wave fieldS; the
ground state is then the insulating Ne´el state.13 A MF treat-
ment with ans1 id RVB order parameter yields an energ
gap vanishing at~6p/2,6p/2! in the Brillouin zone, and an
expansion for low momenta around these four points sho
that the corresponding excitations are described by a t
component massless field with relativistic dispersion relat
which can be identified with a spinon fieldza .13 These ex-
citations are turned into massive ones in our approach by
ms(d) term. In some sense, our result in the NLs model
corresponds to a kind of slave-fermion approach with
gauge-invariant RVB order parameters1 id-like and mini-
mal gapms(d) at ~6p/2,6p/2!. We should emphasize, how
ever, that our approach is different from the slave-ferm
formalism65 which considers long-range ordered AF sta
with gapless excitations, while we consider short-range
dered AF state with gapful excitations.

To the best of our knowledge, the present formulation
the first successful attempt to explicitly include the AF flu
tuations into the RVB-type scheme of treating the stro
correlation effects in a self-consistent manner. Upon dop
the long-range AF is destroyed, being replaced by sh
ranged AF order, which is physically obvious. We have o
tained an explicit doping dependence of the gap value wh
has the correct extrapolation at zero doping~gap vanishes!.66

The doping dependence of the AF correlation lengthj
;m21;d21/2, expected from our calculation, agrees ve
well with the neutron-scattering data.67 Here we also propose
an interpretation of the spin-gap effect in underdop
superconductors—mainly due to the short-range AF ord
The recent numerical simulations68 seem to support our in
terpretation.

V. HOLON EFFECTIVE ACTION

A. Holon-spinon coupling via self-generated gauge field

Now turn to holons. We use a gauge choice of the fieldB̄

such thatei *^ i j &B̄ is purely imaginary and assume, followin
Eqs.~3.14!–~3.17! that the gauge-invariant AM parameter
.1, which permits us to use the equality@see Eqs.~4.7!,
~3.19!#

^a^ i j &bi1* bj 11a^ i j &
* bi2bj 2&.15bi1* bi11bi2* bi2 . ~5.1!

We obtain a low-energy continuum effective action f
holons by rescaling the lattice spacing toe!1 and neglect-
ing higher-order terms ine. Making use of Eq.~5.1! one
obtains
-
the
Sh5E
0

b

dx0X(
j

H j* ~]02~bj a* ]0bj a!#~ j !2d!H j1(̂
i j &

~2 !tei *^ i j &B̄H Hi* H j2H j* Hi

e
1~Hi* H j1H j* Hi !Fbia* S bj a2bia

e D
2S bia* 2bj a*

e Dbj aG#~ j !J 1O~e!C, ~5.2!

where #(j ) denotes complex conjugation ifj is even. Neglecting theb terms, the action~5.2! describes the usual two
component Dirac~‘‘staggered’’! fermions of the flux phase, with vertices of the double-cone dispersion relations in
reduced Brillouin zone, centered~in the e51 lattice! at ~6p/2,6p/2! and chemical potentiald. To define a continuum
effective action, using the standard procedure for the flux phase,28 we first define four sublattices:~1! for j 1 , j 2 even,~2! for
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j 1 odd, j 2 even,~3! for j 1 even j 2 odd, ~4! for j 1 , j 2 odd. They can be grouped into two ‘‘Ne´el’’ sublatticesA5$(1),(4)%,
B5$(2),(3)%. The holon fieldH restricted to the sublattice # is denoted byH (#). The holon action can then be written in th
continuum limit as a bilinear form inH* andH with kernel:

S ]02za* ]0za2d, i t ~]11za* ]1za!, 2 i t ~]21za* ]2za!, 0

i t ~]12za* ]1za!, ]01za* ]0za2d, 0, i t ~]22za* ]2za!

2 i t ~]22za* ]2za!, 0, ]01za* ]0za2d, i t ~]12za* ]1za!,

0, i t ~]21za* ]2za!, i t ~]11za* ]1za!, ]02za* ]0za2d

D , ~5.3!
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where we used the decomposition ofba carried out in the
previous section@all ferromagnetic terms are 0~e! and so they
do not appear in the continuum limit~5.3!#.

Setting

g05sz , gm5~sy ,sx!, A” 5gmAm ,

C15S C1
~A!

C1
~B!D 5S e2 i ~p/4!H ~1!1ei ~p/4!H ~4!

e2 i ~p/4!H ~3!1ei ~p/4!H ~2!D ,

C25S C2
~B!

C2
~A!D 5S e2 i ~p/4!H ~2!1ei ~p/4!H ~3!

e2 i ~p/4!H ~4!1ei ~p/4!H ~1!D ,

C̄#5g0C#
† , ~5.4!

and assigning chargeeA511, eB521 to the fields corre-
sponding toA andB sublattices, respectively, the continuu
effective action for holons can be rewritten as69

Sh
!5E

@0,b#3R2
d3x(

r 51

2

C̄r@g0~]02d2erza* ]0za!

1t~]”2erza* ]”za!#C r . ~5.5!

Hence,Sh
! describes the coupling of the holon field to th

spinon-generated gauge fieldza* ]aza in a ‘‘relativistic’’
Dirac-like form, with opposite coupling for the two Ne´el
sublattices. From Eq.~5.5! it is clear that~neglecting the
gauge terms!, the upper components ofC# describe gapless
excitations with small FS@eF.0(dt)#, whereas the lower
components describe massive excitations with a dop
dependent gapmh(d).2Ad. In terms of lattice fields we
have excitations of the two bands~gapless and gapful! sup-
ported in the reduced Brillouin zone due to the presence
the Néel sublattices. This leads to a band mixing due to
nondiagonal structure of theg matrices and this in turn
yields a ‘‘shadow band’’ effect, i.e., a reduction of the spe
tral weight for the outer part of the FS facing~p,p!, in agree-
ment with experimental data10 and MF numerical
simulation.48 The FS of underdoped superconductors h
also been considered in the SU~2! gauge-field theory.22 How-
ever, there are some differences between the results obta
there and the predictions of the present model~for details see
Ref. 48!.

B. U„1…3SU„2… gauge invariance of the total action

Neglecting the quartic fermion term, which would pr
duce a short-range repulsion between holons with oppo
g-

of
e

-

s

ed

ite

charge, the full continuum effective action can be rewritt
introducing an auxiliary U~1! gauge fieldA ~over which one
integrates in the path integral!:

S!5E
@0,b#3R2

d3xH 1

g
@ u~]02A0!zau21vs

2u~]m2Am!zau2

1ms
2~d!za* za#1(

r 51

2

C̄r@g0~]02erA02d!

1t~]”2erA” !#C rJ . ~5.6!

The actionS! is invariant under the U~1! gauge transfor-
mation

C r~x!→eierL~x!C~x!,

C̄r~x!→e2 ierL~x!C̄~x!,
~5.7!

za~x!→eiL~x!za~x!, za* ~x!→e2 iL~x!za* ~x!,

Aa~x!→Aa~x!1]aL~x!, L~x!PR.

Going backwards we recognize in Eq.~5.7! the continuum
limit of the h/s gauge invariance~2.12! which is gauge-fixed
imposing, e.g., a Coulomb gauge condition onAa .

Remark:One easily finds that the lattice counterpart

the Am gauge fixing is a gauge fixing for arg(Si*Pei*^ij &
V

Sj)
which is U~1!3SU~2! gauge invariant as required in theRe-
mark in Sec. II.

In fact

arg~S i* Pei *^ i j &VS j !.arg~a^ i j &bi1* bj 11a^ i j &
* bi2* bj 2!

.za* ]mza.Am ,

where in the last equality we have neglected a quadratic
mion term fictitiously introduced inS! @compare it with Eq.
~5.5!#.

We can useS! to compute, as in Ref. 20, the gauge-fie
propagator induced by the spinon and holon vacuum po
izations. In the Coulomb gauge, denoting byP'(P i) the
transverse~longitudinal! polarizations, respectively, we hav
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^Am~v,q!An~2v,2q!&5S dmn2
qmqn

q2 D 1

~Ps
'1Ph

'!~v,q!
,

^A0~v,q!A0~2v,2q!&5
v2

q2~Ps
i
1Ph

i
!~v,q!

.

Since the spinon is massive the vacuum polarization
the spinon system alone would be Maxwell-like in the a
sence of holons and it would induce a logarithmic confin
ment of spinons (P'.v21q2, P i.v2 for small v,q!.
However, due to their gapless component the holons ind
a transverse vacuum polarization with Reizer singularit21

(Ph
'.uv/qu1xq2) and a leading behavior inPh

i .v2/q2

for small v/q, leading to a short-rangeA0 propagator, so
that the full gauge interaction isnot confining.70

As a result, holons and spinons are true dynamical
grees of freedom in the model. Nevertheless, since we a
2D, the attractive force mediated by the gauge field is
pected to produce bound states with the quantum numbe
the spin wave~see Ref. 64 for the discussion of a simil
problem! and presumably~see, e.g., Ref. 71! of the electron.
This could explain why neglecting the~expected! semionic
nature of holons and spinons (dV5dB50) can be justified
to some extent in 2D. On the contrary, in 1D the spinons
holons are deconfined, and their statistical properties
semions are crucial for a proper account of the spin-cha
separation.

VI. CONCLUSIONS

To summarize our results it is interesting to compare
features appearing in the~underdoped! 2D and 1Dt-J model
~for small d, J/t! within the U~1!3SU~2! gauge approach
followed here and in Ref. 44.

In both cases, applying to thet-J model the U~1!3SU~2!
C-S bosonization in terms of gauge fieldsB, V, we separate
spin and charge degrees of freedom of the electron, and
scribe them in terms of spinon (z) and holon~C! fields.

~1! The low-energy properties of the spinons can be
scribed by a NLs model: in 2D it is massive, and the ma
gap ~vanishing atd50! is due to the coupling to holon
mediated by a nonpure gauge SU~2! field V̄; in 1D no such
nontrivial gauge field exists and the spinons are massl
The self-generated spinon-gauge field (za* ]aza) would con-
fine the spinons into spin waves, but this is prevented in
by the coupling to holons, while in 1D by the presence o
topologicalu5p term in the NLs model, which is absent in
2D.

~2! The low-energy properties of holons are described
2D by a Dirac action, inducing band mixing, whose appe
ance is due to the presence of a nonpure gauge fieldB̄ ~char-
acteristic of the flux phase!; the absence of such a field in 1
implies that holon are described in term of a spinless ferm
action.

~3! Spinons and holons in 2D are coupled by the spin
generated gauge field, carrying one degree of freedom~after
gauge fixing! and this presumably induces binding; th
gauge fixing kills the degree of freedom of an analoguo
gauge field in 1D and as a consequence, spinons and ho
are free. The statistics is then dictated by the U~1!3SU~2!
f
-
-

ce

e-
in
-
of

d
as
e

e

e-

-

s.

D
a

n
-

n

-

s
ns

decomposition and the corresponding~gauge-invariant!
fields obey semionic statistics.

To reiterate, we outline some of the distinct features
our present study:

~i! The short-range AF order is the main reason for
existence of the spinon gap~at least in the underdope
samples! which can explain a variety of experimental obse
vations.

~ii ! Neglecting gauge fluctuations the two-point corre
tion function for the electron exhibits half-pocket FS in th
reduced Brillouin zone, with a pseudogap minimal on t
diagonal, ‘‘shadow band’’ effect and a quasiparticle pe
due to the holons. These features have been demonstrat
the MF computation of Ref. 48, where a similar action f
the system has been used, with a twist in holon-spinon
tistics, i.e., the spinons are fermions, while the holons
bosons.

~iii ! The spin-wave persists even in the region without A
long-range order, but as a short-ranged field.

~iv! We expect~this is still under investigation! that the
‘‘composite electron’’ exhibits a non-Fermi-liquid behavio
due to the appearance of Reizer singularity, thanks to tra
verse gauge fluctuations, in the self-energy of its holon c
stituent.

To conclude, the C-S bosonization approach, in spite
its technical complications, is promising in providing a nat
ral framework to describe the normal-state properties of
derdoped superconductors. After having settled in this pa
our framework for a discussion of thet-J model at smalld
andJ/t as a model for underdoped high-Tc cuprates, in the
forthcoming paper we will compute correlation functions a
compare the results with experimental data.50
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APPENDIX

The proof of the bound~3.3! uses techniques adapte
from the proof of the diamagnetic inequality given in Re
72.

The main ingredients are
~1! Invariance of the action~3.1! under the gauge trans

formations:

Aj→Aj1]0L j , U ^ i j &→U ^ i j &e
i ~L i2L j !,

~A1!

H j→H je
iL j , H j*→H j* e2 iL j , L jPR.

~2! Reflection ~O.S.! positivity in the absence of gaug
fields: define an antilinear involutionu on the holon fields
supported in the positive-time lattice~the time interval is
identified with @2b/2,b/2#! by

u:H j~t!→H j* ~2t!, H j* ~t!→H j~2t!,
~A2!

u~AB!5u~B!u~A!, A,BPJ1 ,
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whereJ1 denotes the set of functions ofH,H* with support
on positive time. Reflection positivity is the following stat
ment:;FPJ1

^FuF&[E DHDH* e2S~H,H* !FuF* >0, ~A3!

whereS(H,H* )[S(H,H* ,0,1) @see Eq.~3.1!#.
The involutionu defines an inner product~•,•! on J1 by

^•u•& and as a consequence, Schwartz inequality ho
;F,GPJ1

u^FuG&u<^FuF&1/2^GuG&1/2. ~A4!

Although the proof of Eq.~A3! is standard,73 let us sketch
it for readers’ convenience and to set up a notation usefu
the proof of Eq.~3.3!.

We discretize the time interval introducing a time latti
with spacinge5b22N and we choose the time-0 plane lyin
halfway between lattice planes. We denote byS1

e , S2
e , and

S12
e the terms of the discretized action existing in the po

tive, negative time lattice, and coupling the two, resp
tively, then we have

S2
e 5uS1

e S12
e 52(

j
FH j* S e

2DH j S 2e

2 D1H j S e

2DH j* S 2e

2 D G
52(

j
FH j* S e

2D uH j* S e

2D1H j S e

2D uH j S e

2D G . ~A5!

Let P1 denote the set of functions ofH,H* given by
linear combinations with positive coefficients of elements
the form FuF,FeJ1 . It is easy to see thatP1 is closed
under multiplication and summation with positive coef
cients and for( iciFiuFiPP1 we have

E ~DHDH* !e(
i

ciFiuFi5(
i

ciU E ~DHDH* !eFiU2

>0,

where (DHDH* )e denotes the~formal! measure onH,H* in
the path integral for the discretized time model.

From Eq. ~A5! it follows that, for F

PJ1 ,e2Se(H,H* )FuFPP1 , so that

E ~DHDH* !ee
2Se~H,H* !FuF>0

and taking the limite↘0 we obtain Eq.~A3!.
We turn now to the proof of Eq.~3.3!. We work again

with the discretized time lattice. First we use the gauge
variance~A1! to setA50 on the links inS12 . We denote
by $A1

(1) ,U1
(1)% ($A2

(1) ,U2
(1)%) the restriction of the gauge

fields to the positive~negative! time lattice and we set
s:

in

-
-

f

-

F1
~1!5e2@S1

e
~H,H* ,A1

~1! ,U1
~1!

!2S1
e

~H,H* !#,
~A6!

F2
~1!5e2@S1

e
~H,H* ,2rA2

~1! ,rU 2* !2S1
e

~H,H* !#,

wherer is reflection with respect to the time-0 plane. Appl
ing Eq. ~A4! we derive the upper bound:

uJe~A,U !u[U E DHDH* e2Se~H,H* ,A,U !U5u^F1
~1!uF2

~1!&u

<^F1
~1!uF1

~1!&1/2^F2
~1!uF2

~1!&1/2.

We now choose a time plane, different from the time
plane, lying halfway between lattice planes, use the ti
translational invariance ofJ ~inherited from the antiperiod-
icity in time of H,H* ! to bring this plane to the position o
the time-0 plane shifting the whole lattice and repeat
above procedure both forF1

(1)uF1
(1) andF2

(1)uF2 ~which are
no more in the formFuF with u referred to the new time-0
plane!. As a result, we obtain, with obvious notation
Fl

(2) ,l 51,22, and then iterate. Finally we derive the boun

uJe~A,U !u<)
l 51

2N

^Fl
~N!uFl

~N!&22N
. ~A7!

A close inspection shows that the gauge fields appea
in Fl

(N)uFl
(N) have the following properties:A50 andU is

time independent. Using a Hamiltonian transcription, w
obvious meaning of notations, looking at Eq.~3.1!, we im-
prove the bound by means of the Golden-Thompson ineq
ity:

^Fl
~N!uFl

~N!&

5Tr e2b$@H11H2~U50!#1@H22H2~U50!#%e2b@H22H2~U50!#

<Tr e2b@H11H2~U50!#e2b@H22H2~U50!#

<Tr e2b@H11H2~U50!#, ~A8!

where we used@H22H2(U50)#>0. Equation ~A8! is
equivalent in the path-integral formalism to bounding t
right-hand side of Eq.~A7! setting everywhereU50 in S2

e .
Let us define

Ĵe~U !

[E ~DHDH* !ee
2S1

e
~H,H* ,0,U !1S2

e
~H,H* ,0!u]0U50 ~A9!

and let Û denote the gauge-field configuration maximizin
Ĵe(U), then the right-hand side of Eq.~A7!, using Eq.~A8!,
is bounded byĴe(Û) and taking the limite↘0 we recover
Eq. ~3.3!.
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31J. Fröhlich and P. A. Marchetti, Commun. Math. Phys.116, 127

~1988!.
32E. Witten, Commun. Math. Phys.92, 455 ~1984!.
33I. Affleck, Nucl. Phys. B265, 409 ~1986!.
34E. Mele, Phys. Scr.T27, 82 ~1988!; G. W. Seme¨noff, Phys. Rev.

Lett. 61, 517~1988!; E. Fradkin,ibid. 63, 322~1989!; G. Baska-
ran, in Two-dimensional Strongly Correlated Electron System,
edited by Z. Z. Gan and Z. B. Su~Gordon and Breach, New
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