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The Chern-Simons bosonization wit{1)X SU(2) gauge field is applied to the two-dimensional model
in the limit t>J, to study the normal-state properties of underdoped cuprate superconductors. We prove the
existence of an upper bound on the partition function for holons in a spinon background, and we find the
optimal spinon configuration saturating the upper bound on average—a coexisting flux phaseidrike
resonating-valence-bond state. After neglecting the feedback of holon fluctuations oriljhkeld B and
spinon fluctuations on the $P) field V, the holon field is a fermion and the spinon field is a hard-core boson.
Within this approximation we show that thfield produces ar flux phase for the holons, converting them
into Dirac-like fermions, while th&/ field, taking into account the feedback of holons produces a gap for the
spinons vanishing in the zero-doping limit. The nonlineamodel with a mass term describes the crossover
from the short-ranged antiferromagnetisF) state in doped samples to long-range AF order in reference
compounds. Moreover, we derive a low-energy effective action in terms of spinons, holons and a self-
generated (1) gauge field. Neglecting the gauge fluctuations, the holons are described by the Fermi-liquid
theory with a Fermi surface consisting of four “half-pockets” centered-at/2,+7/2) and one reproduces
the results for the electron spectral function obtained in the mean-field approximation, in agreement with the
photoemission data on underdoped cuprates. The gauge fluctuations are not confining due to coupling to
holons, but nevertheless yield an attractive interaction between spinons and holons leading to a bound state
with electron quantum numbers. The renormalization effects due to gauge fluctuations give rise to non-Fermi-
liquid behavior for the composite electron, in certain temperature range showing the liffesistivity. This
formalism provides a new interpretation of the spin gap in the underdoped superconduetioiy due to the
short-ranged AF ordg¢ind predicts that the minimal gap for the physical electron is proportional to the square
root of the doping concentration. Therefore the gap does not vanish in any direction. All these predictions can
be checked explicitly in experimer{iS0163-182¢08)01233-9

[. INTRODUCTION below certain characteristic temperatiie (Ref. 6 and sup-
pression of the specific heat compared with the lirnkar-
behavior’ This gap also shows up in transport properfies,

The proximity of superconductivitySC) to antiferromag-  neutron scatteringand NMR relaxation rafemeasurements.
netism(AF) in reference compounds is a distinct feature of The recent ARPES experimeHtson underdoped samples
the highT. superconductors. Upon doping the AF goesseem to indicate that the FS of these compounds is probably
away, giving rise to SC. At the same time, the Fermi surfacéhalf-pocket-like, i.e., a small pocket ne€&moint (7/2,7/2),

(FS is believed to develop from small pockets aroundbut lacking its outer part in the reduced Brillioun-zone
(+m/2,=m/2),! anticipated for a doped Mott insulator, to a scheme. These data show clear Fermi level crossing in the
large one aroundsm, ), expected from the electronic struc- (0,0) to (r,7) direction, but no such crossing was detected in
ture calculationsand confirmed by the angle-resolved pho-the (0,7) to (,m) direction® The observed pseudogap
toemission spectroscopARPES experiments. To under-  aboveT, is consistent wittd-wave symmetry. In this paper
stand this crossover is one of the key issues in resolving thee will be concerned with the normal-state properties of
high-T. puzzle. For this reason, the underdoped samplethese underdoped cuprate superconductors, focusing on the
present particular interest due to the strong interplay of S@mplications derived from the proximity of these systems to
with AF. the AF reference state.

There is a consensus now that these systems are strongly
anisotropic, and the fundamental issue is to understand the
behavior of strongly correlated electrons in the copper-
oxygen plané. A “spin gap” or “pseudogap” has been in- Theoretically there have been mainly two competing ap-
voked to explain the reduction of magnetic susceptibility ~ proaches: One starting from the Mott-Hubbard insulator, ad-

A. Physical issue to be addressed

B. A brief survey of related theoretical approaches
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vocated by Andersdi using the concept of spin liquid, or matter physic€®2° The key formula there is the Mandelstam

the resonating-valence-bon@®VB) state, while the other representatiofin field-theoretical jargons’’->°

starting from the more conventional Fermi liquiglL) point ,

of view. ,r/,a(x)We(i/\f?)f’ixdywy)*(*l)aiv“?(b(X)’ (1.3
One of the crucial concepts within the first approach is

“spin-charge separation” which can be intuitively imple- Wherey is the fermion operator, whilé is the boson opera-

mented by introducing “slave bosoné?’namew’ one re- tor, anda=1, 2.(Here we have omitted the normal ordering

writes the electron operator: of the operator$.A rigorous derivation of Eq(1.3) in terms
of path integrals was given in Ref. 31. This bosonization
wi,,zeini,,, procedure was generalized by Witten to the non-Abelian

case’ which reformulates the 4 1-dimensional relativistic
fermion problem with symmetry grou@® as theG-valued
nonlineare (NLo) model. That scheme has been exten-
sively used for the study of quantum spin systéfs.
eiTei + fiTo-fi(r: 1. (1.2) The Apelian _bosonization prpcgdure has been generalized
to 2+ 1-dimensional systemé.It is in some sense analogous
(Hereafter the repeated spin indices are summed )o@ere  to the Jordan-Wigner transformation. The typical relation is
can also interchange the role of boson and fermion operatorgjven as
i.e., to introduce a spinless fermion to describe the charge
degree of freedom, while “spinning” bosons to describe the w(x)~¢(x)eifyxAu(Y>dy", (1.9
spin degree of freedom. This is the *“slave-fermion”
approach®*The essential requirement for both approachegvhere ¢(x) is the fermion field operator, while(x) is the
is the “single occupancy” constraint which is very difficult Poson field operator, and the two are related by the QB U
to implement. In the mean-field approximatitMFA) which ~ gauge field operatoh, . The integration in the exponent is
satisfies the constraint(1.1) only on average, the taken overan arbitrary pat, in the 2D plane, running from
slave-bosof? and slave fermiol{:1® approaches gave very X10®. The path integral will contain an extra facter %.s.
different phase diagrams and each of them has its owwith the C-S action
difficulties!” There have been several attempts to improve
the situation'® but the basic difficulty still remains. s 1
Moreover, in decomposing the physical electron into a ¢S Aqi
product of fermion and boson, one increases the number of o
degrees of freedordof) by two. The constraintl.1) takes and the C-S coefficiertevel) k=1/(21+1),1=0,1,2.... For
care of one, but there is one extra dof which corresponds taanelat|V|st|c fermions the Q—S constraint can be solved ex-
the spinon-holon gauge field. In fact, the physical electrorPlicitly, and the transformatiofiL.4) become¥'
operator is invariant under the transformation:

wheree; is a charged spinlegslave boson operatotholon),
while f;, is a neutral, spin-1/2 fermion operat@pinon
satisfying constraint

3 v,
f d°xe*"PA,d,A,,

P(X)~ p(x)e'? +1)fd2y(9)(x—y)¢*(y)¢(y)' (1.5
el fj,—fef, 22/ d - -
where O (x—y)=arctaf(x*—y9)/(x*—y")]. An interesting
so one can “gauge-fix'¢; according to the choice. This is application of this formula is the analysis of the fractional
the starting point of the gauge-field approach to the stronglyjuantum Hall effect at fillingg=1/(21 +1) in terms of bo-
correlated electron systert$?° This approach has been sys- son liquids® The statistical transmutation, implemented by
tematically pursued by Lee and his collaborators first as thghe abelian C-S gauge field is a consequence of the
U(1) gauge tgeorﬁ,l and recently by considering the 8)  Aharonov-Bohm effect, and it is limited to Abelian fractional
gauge group’ statistics, characterized by the phase factard 2vith 6
From the FL point of view the interplay of AF with SC, <[0,1) 3¢ In particular, =0, 1/2 corresponds to boson and
and the evolvement of the FS with doping has been elabaermion, respectively, while=1/4 corresponds to the
rated by Kampt and Schriefféf,and by Chubukov and his “semion” case, advocated by Laughlin, as a constituent qua-
collaborators:* Very recently, Zhangf has proposed an in-  siparticle in high-temperature superconducdrs.

teresting S@) model to consider the AF-SC interplay. The 2D analog of the Jordan-Wigner formuia.4) and
(1.5) was originally derived as an operator identifyit was
C. Basic idea of Chern-Simong(C-S) bosonization later on justified in the path-integral form and generalized to

In this paper we will use the C-S bosonization as the basid’€ non-Abelian cagﬁ‘. That paper was further extended to
technical tool. The procedure of reformulating the fermioninclude the correlation functions, elaborated for the dase

— H 9
problem in terms of bosons was pioneered by the Jordari= Y(1)<SU(2) and applied to the-J modef* (see also Ref.

Wigner transformatio® 40). Readers are referred to those references for a detailed
presentation. To make the present paper more self-contained,
C"r:afrefi772|<jara| (12 We briefly outline here the basic idea of such a bosonization
| ] ! '
procedure.

wherec; is a fermion operator, whila; is a hard-core boson Consider a system dfl spin-1/2 fermiongor bosong in
operator on a linear chain. The Abelian bosonization for onetwo space dimensions, in an exterfi@belian gauge fieldA.
dimensional1D) fermions with linear dispersidhis similar ~ The canonical partition function in the first quantized path-
in spirit and has found extensive applications in condensedntegral representation is given Hy
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whereV is the Grassmann variable representing the fermion

Z(A)= dxg - dxy X (—1)7™ field, while @ is the complex variable representing the boson
aL-an m field.
N or(B) =X, L, ‘ There might be different choices @, k: In particular,
x 1 (f Do, ()" (M2Jer(n | gl A G=U(1), k=1 corresponds to the Abelian C-S boson-
r=1\Jor(0=x ization®* while G=U(1)xU(1), k=[6,(6+2)/(6+1)] cor-

(1.6)  responds to the “anyon” bosonizatidiwith ¢ as the sta-
tistics parameter. In this paper we will concentrate on the
caseG=U(1)xSU(2) with k= 2,1, respectively®3°

The relations for the correlation functions are given by

wherea;=1, 2 for j=1,2,...N are the spin indicesyp;(7)

represent “virtual trajectories” of particles going from
imaginary timer=0 to 7= 8=1/T, with T as the tempera-
ture (we set the Boltzmann constaky= 1) and reaching the V(x)—P(es)D(x), T*(x)—D*(x)P(e”/nY)

plane 7= 8 at the same set of points where they start-at (1.9
=0, the points being arbitrarily permuted. Due to the fer- _ o _ . o
mion statistics of the particles, there is a factor1()?(™, with y, as a straight line in the fixed time plane joining

associated with each permutatienwhereo(m) is the num-  with «. This is a non-Abelian generalization of the 2D for-
ber of exchanges in the permutatien These trajectories mula for the Abelian casél.4). It is important to notice the
have vanishing probability to intersect each other for a givernonlocal character of these relations.

. Each set of such trajectories appearing in the first quan- Here we have used the first-quantized form of the path
tized representation form a link, i.e., a set of possibly interdintegral to identify the relation between the fermion and bo-
laced loops, when the=0 andr= g planes are identified by Son systems, while the “working” formula for bosonization
periodicity in time. HerefwA=f(A|dw'+A0dr) is a line is given in the second-quantized form of the path-integral
integral in 2+ 1 dimensions|=1, 2. The partition function representation. This switching from first to second quantized
for the boson system would be the same, exceptdtatis  form and vice versa will be frequently used throughout this
replaced with 0. On the other hand, the facter1()?(™ isa  Paper.

topological invariant naturally associated with the link and,

according to a general theotyjt can be represented as the D. Outline of the paper content

expectation value of a “Wilson loop’(trace of a gauge i o
phase factgrsupported on that link in a gauge theory with a The U1}XSW2) C-S bosonization approach ha?. been
. ; successfully employed by us earfiéto calculate the critical
suitably chosen C-S action. d . . )
exponents of the correlation functions in the 8D model in
_ the limit t>J. Although, in principle, all bosonization
(—1)“(")=J DVe *&s(VIp(elloY), schemes should yield an exact identity between the correla-
. _ _ . tion functions of the original fermionic field and correspond-
whereV is a C-S gauge field with symmetry gro@ kis  ing bosonic correlation functions, the MFA, as mentioned
the C-S coefficientlevel), already defined in the Abelian earlier, gives different results in different bosonization
case,P(-) is the path ordering, identical to the time order- schemes. The (1) C-S bosonization has been shown to cor-

ing, if “time” is parametrizing the path, and respond essentially to the slave-boson and slave-fermion ap-
proaches(depending on the choice of the gauge fixing
S :i_ f d3x Tr 6,u.vp(v OV + E V V.V ” while the non-Abelian (1) XSU(2) C-S bosonization corre-
©S Qi R sponds to the slave-semion approagh=(L/4).3 We have

(1.7 showrf*that the “semion” spin-charge separation of spinon
0and holon is the correct one to reproduce the exact exponents
known from the Bethe ansatz solution and the Luttinger-

liquid—conformal field theory calculatiors.
We considered 1D fermion system on the background of a
Ze(A)= f DVZg(A+V)e ks, 2D U(1)XSU(2) C-S gauge field. The () field is related to
the charge, while the S1) field is related to the spin de-
The bosonization formula is written in the second-grees of freedom. Performing the dimensional reduction and
quantized form for the grand-canonical partition function: Using the freedom in gauge fixing, we could analyze the
original problem as an optimization process for the partition
B 2 ehrN ~ function of holons in a spinon background. We could find an
I T upper bound for the partition function and an exact way to
saturate this bound, without any approximations. Afterwards
and we used MFA to consider an “averaged” holon configura-
tion to compute the long-time, large distance behavior of the
EF(A):J DWYDW* e~ S¥.Y*A) correlation functions, reproducing_ the exact resqlts_. Th_e im-
portant lesson we learned there is that the statistseini-
onic) properties of the constituent particlespinons and ho-
=f DODD*DVe [SPP*A+V)+kS s (V)] lons due to gauge field fluctuations are crucial. In the
operator form, the original fermion operator can be decom-
(1.8  posed as

As a consequence, there is a boson-fermion relation f
the canonical partition function:

I
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J,=he w255 it h g 25 b bip, ], (1.10 tion obtained in MFA(for the coexistingr-flux andd-wave
RVB statd,*® in qualitative agreement with the ARPES

whereh, is a fermion, whileb, is a hard-core boson opera- datd® for underdoped cuprates. If the gauge field were
tor. However, onlyh, together with the attached “holon coupled to the spinons alone, it would be confining, since the
string” (the exponentiated operajaepresents a “physical” spinons are massive. However, due to coupling to the mass-
charged, spinless holon, wherehg together with the at- less branch of holonévhich are actually nonrelativistic be-
tached “spinon string” corresponds to the neutral, spin- cause of a finite FS gauge fluctuations areot confining,
spinon. Both of them satisfy the “semionic” equal-time but nevertheless yield an attractive interaction between
commutation relations: spinons and holons leading to a bound state in 2D with elec-
tron quantum numbers. This could explain why neglecting
. the “semionic” nature of spinons and holons is less danger-
fo)f(yh=e "2 (yHf(xh), xizyh, ous in 2D than in 1D. This means that the spin and charge
i , are not fully separatedike in 1D), showing up as bound
wheref represents fermiofboson operator along with the  giates in low-energy phenomena. The renormalization effects

attached string. This means that the “semionic” spinons angy,e 14 gauge fluctuations would lead to non-FL behavior for

holons are “deconfined,” and the spin and charge are fully, : : ; ;
. . o . the composite electron, in certain temperature range showin
separated. The dynamics of the spinon fitlgdis described b P g g

. . . PR . . '49’50 . _
by an Q3) NLo model. Due to the presence of the topologi-the _Ilnear |n_T re5|st|V|ty_d|scusseo_I earliét: Thls for
malism provides a new interpretation of the spin gap in the

cal term in 1D?®?% the spinons are massless, and they are nderdoped superconductdrsainly due to the short.ranged
“deconfined,” i.e., the spinons themselves, not their bound” ped super u iny au short-rang

states(the usual spin waves in higher dimensipase the AF ordet). and pred_icts that the minimal gap for the p.hysical
constituent quasiparticles. These results encourage us to €X€Ctron is proportional to the square root of the doping con-
plore the 2D case which is of much more physical impor_qentrat|on. Therefore _the gap does not vanish in any direc-
tance. We should, however, carefully distinguish which ardion. All these predictions can be checked explicitly in ex-
the generic features of the C-S gauge field theory under corR€riment.
sideration, and what is specific for the 1D case. The C-S gauge field approach has also been used by
In this paper we employ the (U)xSU(2) C-S bosoniza- Mavromatos and his collaboratétgo study the anyon su-
tion scheme to study the 2BJ model in the underdoped Perconductivity, advocated by Laughfih.To our under-
regime in the limitt>J. We will try to follow as much as standing, the basic aim of their work is to construct a model
possible the same procedure as in 1D. TH#&)lgauge field exhibiting semion superconductivity without breaking the
B is again related to the charge degree of freedom, while thtime-reversal and parity symmetry. In spite of some apparent
SU(2) gauge fielaV is related to the spin degree of freedom. similarities in formulas, the main issue considered and the
First we prove the existence of an upper bound of the partibasic physical assumptions in their work are very different
tion function for holons in a spinon background, and we findfrom ours. They have also discussed the normal-state
the optimal, holon-dependent spinon configuration whichproperties;? but the mechanism for a possible non-FL be-
saturates the upper bound in an average sense. The optiniavior in their paper differs from what we consider here. We
zation arguments suggest coexistence of a flux ffiagih  should also mention that the $2) gauge field considered in
ans+id-like RVB state?’ where the expectation value for their recent papergjuoted in Ref. 51corresponds to a gen-
the Affleck-Marston(AM) bond variable of spinons is close eralization of the local S(2) symmetry at half-filling, and is
to 1, while thes+id-RVB order parameter is much smaller not related to the spin rotational symmetry, as we discuss in
than 1. Then we make an approximation, neglecting the feedhis paper. Lee and his collaboratSréiave also been con-
back of holon fluctuations on the(l) field B and spinon sidering this(rather than the sp)nSU(2) group.
fluctuations on the S@) field V. Hence the holon field isa ~ The present paper is an extended version of the earlier
fermion and the spinon field a hard-core boson. Within thisshort communicatior® The rest of the paper is organized
approximation we show that thB field produces ar-flux ~ as follows. In Sec. Il we summarize the(1)XSU(2)
phase for the holons, converting them into Dirac-like fermi-bosonization in the context of 2DJ model; In Sec. Il we
ons, while theV field, taking into account the feedback of present the optimization problem for the spinon configura-
holons produces a gap for the spinons, minima(at/2,  tion; In Sec. IV we derive the spinon effective action; In Sec.
+7/2). The spinons are described by a Nimodel with a vV we consider the holon effective action; In Sec. VI we
mass term(gap =+/— & In 5, with & as the doping concen- make some concluding remarks. The proof of the bound
tration. This corresponds to a short-ranged AF ofderdis- employed in Sec. lll, is deferred to the Appendix.
ordered state in the jargons of MLmode) in doped
samples, which crosses over to the long-ranged AF order in
the prestine samples, when the gap vanishes. This is an at- 1. U (1)xSU(2) CHERN-SIMONS BOSONIZATION
tempt to include AF fluctuations self-consistently in the OF THE t-J MODEL
RVB-type approach. Moreover, we derive a low-energy ef-
fective action in terms of spinons, holons, and a self-
generated () gauge field. Neglecting the gauge fluctua- It is widely believed that the 2@-J model captures the
tions, the holons are described by the FL theory with a FSessential physical properties of the Cu-O planes characteriz-
consisting of four “half-pockets” centered at-#/2,* 7/2) ing a large class of high;, superconductors.The Hamil-
and one reproduces the results for the electron spectral funtenian of the model is given by

A. The model Hamiltonian
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tors, while the capital letters will denote the corresponding
H=PgX | —t(l,i;,+H.C) complex(or Grassmanrvariables in the path-integral repre-
(i sentation, unless otherwise specified.
+ Oap i Oys Using the Hubbard-Stratonovich transformation to intro-
+JIii, 2 big- by o ¥ijs|Pa, (2.1 duce a complex gauge fiel;;,, the grand-canonical parti-
tion function of thet-J model at temperaturé=1/8 and

where o, are the Pauli matrices;, is the annihilation  chemical potential. can be rewritten 48
operator of a spin-1/2 electron on sit®f a square lattice,

corresponding to creating a hole on the Cu site, Bgds the .o oox
Gutzwiller projection eliminating double occupation, model- Et-J(B,M)=f DXDX* DYDY * e~ %oV ¥ XXT)

ing the strong on-site Coulomb repulsion. To simplify nota- (2.2
tions, we introduce a two-component spin@r= (i ,4;).

Throughout this paper, the small letters will denote operawith

+ 2 Wldot Wi,

p 2
Sea(W, W% X X*) = | dx® D | = X Xy + [(—t+ X)) @+ H.c]
0 7\ J (i)

+i2j Ui,j‘I’ra‘I’j*,g‘I’jﬁ‘l’ia’- (2.3

where the two-body potential is given by 1 .
SC'S'(B):4_7Ti f d XG'U'VPBMﬁVB

p

(2.9
+ee =] 1 2
. _ Ses(V)= 71— f d3xTr eM”P(vMayvp+ §VMVVVPH,
uj=y 7 nearest neighbors (2.4
) whereV,=V30./2, a=1,2,3, u=0,1,2 with o, as Pauli
0 otherwise.

matrices.
In the fermion-boson transformation formul®.8) k=2
. , for the U(1) field B, andk=1 for the SU2) field V.3¥3°The
Hereafter we denote the Euclidean tmé=7 (do  correlation functions for the Grassmann fieNts,(W*) are
=d/d7) and its dependence of the fields is not explicitly g hstituted by the correlation functions of the gauge-

spelled out. invariant complex fieldsb ,(y,) [®* ()], defined as

il Bpaf,V
B. C-S bosonization Puly) =€ (PEND) apPp.

Comparing Egs(2.2), (2.3) with Eq. (1.8), we find that DR (y) =D} s(Pe InY)g,e7 18,
the C-S bosonization procedure, briefly introduced in Sec. IC
can be applied to rewrite the grand-canonical partition func- As mentioned earliery, is a straight line in the fixed-time
tion (2.2. However, there is an important difference, plane joining pointx with « [reaching a compensating cur-
namely, the consideration in Sec. IC was for the 2D con+ent at~ (Refs. 38 and 3§ andP is the path-ordering op-
tinuum, where the probability for two world lind8rownian  erator. In principle, we can choose other gauge grabie
pathg to intersect each other at a given time is zero. This ismplement the bosonization scheme, but the encouraging re-
not true for the lattice case we consider now, where the probsult for the 1Dt-J model, reproducing the known exact ex-
ability for two paths to cross each other at a given time is noponents of the correlation functidfsstrongly favors the
vanishing. On the other hand, the model we consider cond(1)XSU(2) choice.
tains a single-occupancy constraint, expressed in terms of the The bosonized action is obtained via substituting the time
Gutzwiller projection operatoP¢, or the infinite on-site re- derivative by the covariant time derivative and the spatial
pulsionu; ;, which excludes the intersection of paths. There-lattice derivative by the covariant spatial lattice derivative in
fore, we can still apply the C-S bosonization scheme, leavinghe U(1) XSU(2) bosonization
the C-S gauge fields in the continuum, while considering the

matter field on a discrete lattice. We will introduce an Abe- ‘P}*aao‘Pjaﬁ@fa[(&owLiBO(j))JH iVo(i)lap®Pjp.
lian U(1) gauge fieldB related to the charge degree of free- ' '
dom and a S(2) gauge fieldV related to the spin degrees of \Ifi*a‘lfja—@i’*ae'me(Pe'f<iJ>V)aB<I>J-B.

freedom. The Euclidean C-S actions for these fields are
given by We now decompose the bosonic field as follows:
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q)m:EXEXQ, o3 =E§E§ , (2.6  and the field>, is coupled to the S(2) gauge fielav and it
_ _ o~ : * _ describes the spin degrees of freedom of the original fer-
wherel is a unity matrix,E is a complex scalar field, ar¥l,  mion. In this description the nature of the groups associated

is a complex two-component spin-1/2 field satisfying thewith charge(U(1)) and spin(SU(2)) is explicitly exhibited
constraint and the coefficients of the C-S actions are such that the
S* s g 2.7 charged and spin-1/2 field operators recqnst_ructed from the
xamxa gauge invariant (Euclidean fields [E,e'/»® and
The gauge ambiguity involved in the decompositi@re) P(e'/%Y) .52xg] Obey semionic statistic§:**
will be discussed later. The fielH is coupled to the (1) In terms ofE and2 the W(1) X SU(2)-bosonized action of
gauge fieldB and it describes the charge degrees of freedonthe t-J model is given by

EE* S 3% xx* V)= | ax > 2k X —t+ Xy EXeliBE S * (PelinY), 3 s+ H
S[*J( ’ 14~y 1\ 1B ) X - <|J> <|J> [( <|]>) ]e I i Ia( e )QB iB .C.]
0 in \J

38

o Jl= ~, = o
ao+|BO(J)+,u+E)Ej+EfE,~2}*a[a01+|vo(J)]aﬁzjﬁ}

+EJ uj 7 EiETEj] +2S,4(B)+S.5(V) 2.9

with constraint(2.7) and Coulomb gauge fixing for the() X SU(2) field implemented?
It is convenient to describe the charge properties in terms of a holelikeHiglblon) and this can be achieved in this
formalism by substitutioe—H*, E* —H, with H,H* as Grassmann fields, and changing the sign of the C-S action for the

B field 3244 After integration over the auxiliary gauge fiel] the grand-canonical partition functid®(8,x) can be rewritten
as

E(ﬂ,ﬂ)zf DHDH* DS, D3 * DBDVe SHH" 23" BV g3 *5 1), (2.9

where the Euclidean action is given by

s(H,H*,E,E*,B,V)=fOBdXO(E [H}*[&o—iBo(J)—
J

J o o
pts Hj+iBo(j)+(1—HH)X},[d0l+1Vo(i)lap2is

+2

uy

. . J
[—tHJ-*e'f<ii>BHiEi*a(Pe'f<ij>V)aBEjﬁ+ H.c]+ 3 (L-=HH)(1-H{H)

X

) 1
|2i*a( Pe|f<ij>v)aﬁ2j[3|2_ E} } )_ ZSC.S.(B) + Sc.s.(v)- (2-10

In what follows we will denote the shifted chemical potential and an additional holon-spinom{s) gauge invariance aris-
' =pu+J3/2 by 8, proportional to the doping concentration. ing from the ambiguity in the decompositid.6):

C. Gauge fixings h/s: Hj—>Hjei§j, H]*—>Hj*e"§i,

The action(2.10 is invariant under the local gauge trans-
formations:

(2.12
Ejﬁz,-aeiii, ETQHEfae‘i{i, fieR.
U(1): Hj—H;e™D, Hf SHFETAD, It is important to remark that the theory in terms of
{H,H*,X,3* B,V} is equivalent to the original fermionic
theory only if theh/s gauge is fixed to respect(l) XSU(2)
B B +d,A(X), A R, . ; - . )
w0 = Bu(X)+ A (x) (x) e (2.1)  invariance. Théh/s gauge fixing will be discussed later.
_ . We first gauge fix the (1) symmetry imposing a Cou-
SU2): I—R'(j)T;, IF—3FR()), lomb condition onB (from now onu=1,2):

V,()—=RI(X)V,(x)R(x)+R(x)d,R(x), R(x)eSU?2), J*B,=0. (2.13
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To retain the bipartite lattice structure induced by the AF
interactions, we gauge fix the $2) symmetry by a “Nel
gauge” condition:

1
0

where|j|=j1+]j.. Then we split the integration ov&f into
an integration over a fielt(®), satisfying the Coulomb con-
dition:

zjzolxi( ) ¥ =100}, (2.14

ViP=0, (2.15

and its gauge transformations expressed in terms of an
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B,=B,+3B,, (SBM(x):EEj H¥H;9, argx—j),
(2.16

Wheregﬂ gives rise to ar-flux phase, i.e.g'/#8=—1 for
every plaquette.

Integrating oveiVy, we find

d, argx—j)o,,

11
(2.17

SU(2)-valued scalar fieldy (not a second-quantized opera- where o,, a=x, y, z are the Pauli matrices. After the

ton), i.e., Va=9'V{®g+g'd,9, a=0,1,2.
Integrating oveiB,, we obtain

U(1) X SU(2) field being gauge fixed, as discussed above, the
action(2.10 becomes

B ) )
s<H,H*,g>=fo dx°{2 [HF (do— &)H;+ (1—H*H))(allg* dogj0ll11]

i

+> {—tHJ*e‘f<ij>g+5BHi[aQ‘giT(Pe‘f<ij>V<°>)gja|X”]1l+ H.c}

(0

J . ) .
+3 2 (L-HIHDA=HTH)| [Logl (P g;00 o>~
1]

)

5 (2.18

Here the boundary terms are omitted and #i& R? to-
pology of the involved Euclidean space time imposes the
vanishing of the topological term Ty xr2(g'dg)3, where
D is a disk of radiusB.

Equation(2.18 is the starting point for our subsequent
analysis. InS(H,H* ,g) the charge degrees of freedddof)
are described byd,H* (2 dof) and the spin degrees of free-
dom byg (3 dof) subjected to a constraift-1 dof) coming
from theh/s gauge fixing, reproducing the correct counting
of degrees of freedom of the original fermionic fields, ,
W* (242 dof) in the Euclidean path-integral formalism.

IIl. OPTIMIZATION OF THE SPINON CONFIGURATION

To analyze Eq(2.18 we first recall the strategy adopted
for the 1D casé&* We noticed that one can find an upper
bound for the partition function of holons in a spinon back-
ground. Moreover, one can find explicitly the spinon con-
figuration, exactly saturating this bound. Then one can con-
sider the quantum fluctuations around this optimal
configuration to evaluate related physical quantities. Here we.
will follow a similar strategy, namely to search first for the
upper bound of the partition function for holons in a spinon
background. It turns out that such an upper bound exists.
However, unlike the 1D case, we cannot find a spinon con-
figuration exactly saturating this upper bound. Nevertheless,
we can find a holon-dependent spinon configuratigh

A. Auxiliary lattice gauge field and upper bound

To find the optimal configuration we introduce an auxil-

iary lattice gauge fieldA,U}, with AjeR (rea), Uj,eC
(compley, |Uj|=<1, and an actiors=S,+S,,

S;(H,H* A,U)= f:dx‘)[; [HF (do— O)H;
+i(1-HFH)A]

+ (_tHTU<|J>HJ+HC)},
ij)

<" 3.1)

B J
Sy(H,H*,U)= fo dx°<”_> > (L-HfH)(1-H{H)

X

1
2
Uiy —§>-

The action(3.1) equals Eq(2.18 if we make the identi-
ations

. i 'r i
|Aj~(0"x”gj aogjo-‘x”)lla 3.2

Ugj~e BB oligh pelinV)g;alil],,,

which is optimal, saturating the upper bound on average, antbut in the derivation of the following bound these identifi-
take it as the starting point to consider the spinon fluctuacations are not made
tions. Let
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B. Optimal spinon configuration

= _ * A—S(H,H* A U)
2(AU) f DPHDHe ’ In the last subsection we have stated a kind of “theorem”

(proven in Appendix A, now we will find out the conse-
quences of this theorem in our context, namely, assuming
Egs. (3.5 and (3.6) to hold, we attempt to find a holon-

we prove in Appendix A the following upper bound:

.o . dependent spinon configuratiog™) saturating the bound
|IE(AU)|< f DHDH* e~ [S1H.HT 00+ S,(HAT.0] (3.3, using the identification3.2).
(3.3 Following a strategy developed in 1 we introduce a

. first-quantized(Feynman-Kag representation of the holon
whereU is the time-independerd configuration maximiz-  partition function in the presence ofgabackground. As in
ing 1D, a key ingredient in the analysis is that, for a fixed link
(ij), in every holon configuration the term
(a‘x"g;rPeif«DV(c)gja‘xJ|)11 appears, in the first quantized for-
f DHDH* e [SuHHT 0 SHHZON, | (3.4  malism, either in the world lines of holons or in the Heisen-
berg term, but never simultaneously. This is the consequence
of the single-occupancy constraint and permits a separate
optimization ofS; andS,, as required in the boun@.3). It
turns out, however, that, contrary to the 1D results, we can-
not identify a specific configuratiog™ saturating the bound
exactly, but only approximatively, in an appropriate average
sense.

The whole procedure in 2D can then be justified in the
limit t>J because the effective mass of holes is very heavy,
as a result of the large number of soft spinon fluctuations
surrounding the hole in its motidhand in a sense our treat-
ment can be considered as a kind of Born-Oppenheimer ap-
. . - . proximation for the spinons in the presence of the holons.

Assumptions:(1) We consider negligible the density- = 0.0 \ve do not give details of the derivation, but rather
density interaction, .smce-the holon dens(gy is small; (2) introduce notations and quote the obtained results. Those in-
we assume translational invariancelbf . terested in further discussions are referred to Refs. 58, 38,

Remark:Assumption(2) appears to be reasonable in the 39 and 44.
light of the results of Ref. 54, where it has been shown that, | ot A denote the 2D lattice Laplacian defined on a scalar
the configuratiorlJ maximizing the determinant of the hop- |attice fieldf by
ping matrix of the above system is translation invariant.

By gauge invariancésee Appendix Athe result of opti-
mization depends only ofU;,| and arg{,,). As a conse- - S _
guence of the assumptiof2), F(U) is monotonically in- (Af )i_j:“,i‘zl fj—4fi;
creasing inU|, hence

To discuss the properties &f we first notice that the
guantity optimized byJ is the free energ¥ (U) of a gas of
spinless holes at temperatuFe= 3~ with chemical poten-
tial 6 (6=0 corresponding to half-fillingon a lattice, with
hopping parameter on the linfj) given byt|U |, in the
presence of a constarfbut not uniform magnetic field
where the flux through a plaquetfeis given by arg{,,)
and is subjected to an attractive nearest-neigh{dd)
density-density interaction with coupling constalié. We
consider the system at largeé and smallé and make the
following:

. letdu(w) denote the measure on the random wadken the
Uiyl =1. (3.5 2D lattice such that

It has been conjectured in Ref. 55 and proven in Ref. 56
that the ground-state energy @t=0 of the system under (&) _f
T

consideration is optimized in the magnetic field chosen as (0)=id'“(“’)’ p=0;

o(B)=]

argUzp)=m(1-9), (36 let Py be the group of permutations of elements and, for
which is the commensurability condition for the flux. It is 7e Py, let o() denote the number of exchangesrinthen
then natural to conjecture that this remains true for largehe partition functions of holonsH) in a giveng back-

enoughg. ground can be rewritten as
» BN
E(@=eMiA S S 3~
N=o N! 7Sp,
N
- OA — . BasO(U |2~
X 2 | wio=i, duon) TT tUgye et e Smne-oX2lodctiVay 12, (3.7)

lreIn =1y gy =0 (ihew
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where identification$3.2) are understood and, for a fixéd From Eq.(3.12 one immediately obtains
o={wq,...,0\} denote the worldlines of holon particles-

the components ofs perpendicular and»' parallel to the _m _

time axis, respectively. ¢j=%. Niz=0. (3.13
To saturate the boun(B.3 with a configurationg™(w)

we first impose Finally, let us try to impose the conditio(8.6). This

translation invariant condition cannot be exactly fulfilled
. . [unlike in 1D where a configuratiog™ exactly saturating the
iAjz(a‘X”g;raOgja‘X”)llz 0, jed. (3.8  bound analogous to E¢3.3 can be founyi However, we
notice that theB-dependent part of argJ(,,) has a translation
invariant mean satisfying the above conditipsee Eqs(3.3
and(2.16], hence it is natural to impod@n averagg

Equation(3.8) is satisfied choosing™ constant during the
period when no particle hops.

ImposingU ;,=0 in S, [see Eq(3.1)] corresponds in the
first quantized formalism to setting: (aﬂ‘g?e”ﬂwv(c)gjcr‘x”)n: 1, (ij)ew’. (3.14

(o)lgiPelaV gl =0, (ij)Nw=2. (3.9

Defining
In physical terms this means that tlse-id RVB order .
gz:;r051n|‘|\(/a)te‘¥7 is very small(see the discussion at the end of §j=exr< _ IE 2 (—1)'azargl -, (3.15
. V). 1#]

We notice that if .
and choosing

gj=cosf;l+i sin jo,, j¢w (3.10

. . [ g ee
for some angled; e[0,27), Eq. (3.9 is then satisfied. In 9i=\g5 (3.1

ga ' ] € w,
fact, sinceV(© depends only on sites where there are no _ : '_ _ _
holes[see Eq(2.17], from Eq.(3.10 it follows that corre- W€ can kill the fast fluctuating first term in E¢3.11). The

spondingly remaining term, denoted by
—lil — (—1)lil _
V(C)(x)=z (1-HfH) % d, argx—j)o,, V= —; Hi H; — dargx—j)o,
i
(3.11

for small hole concentration is a slowly varying field yield-

so thatgi‘rpeif<ij>v(°)gj has only diagonal components. ing a contributionO(8) to argU;,), with zero translational
This result shows that in the Wegauge, quite indepen- average. The flna}l resuIF is that we can assume for the opti-

dently of doping concentratiofsince the conditioty=0 in ~ Mizing configuration, using Eq¢3.13, (3.19), (3.16

S, does not depend on small doping assumptione should

expect that the physics is dominated\y?) only in the U1)

subgroup of S(P) related to the axis chosen in the éle

gi‘reif<ij>\/(0)gj _ eif<ij>V§j ~5= gi(T2) (ot oynyy)

and we immediately derive from Ed3.14 the condition

gauge. | N, =0, ny,=(— 1),
The conditionU ;)| =1 in S, [see Eq(3.1)] corresponds Notice that from these definitions:
to imposing

) ) Gioll=glilFL, 3.1
(ollglPelinV“giolh =1, (ij)ce’, (312 NPT 34

In view of the optimization discussed above it appears
natural to introduce a variabR; e SU(2) describing spinon
fluctuations around the optimizing configuration, through the
definition

which means in physical terms that the AM order
parameté¥ is of the order I(see the discussion at the end of
Sec. V.

To discuss Eq(3.12 we recall that the paths on which
du(w) is defined are left continuod so that at the jumping
time 7,0,(7)=lim. ow.(7+e€), or, in simpler terms, one (3.19
should think the holon at at the end of the jumping link, '
oriented according to the increasing world line time of thewith R; being represented i@ P! form as
holon. As a consequence, {ij)e o', eithericw or j

9;=0,RT;= e (12%14(- 1o, argl—j)Rjei(w/Z)(—l)ljhryHJ.*Hj

€ w, but never both. Let us assume w, then according to bj; b, .
the previous requirements Ri=| ] Bbi=1 (3.19
bj2 bil
giPelinV=cos Ol +i sin 0)y07, whereb;, is a two-component complex field. The optimal

configurationg™ is given byR=1.

Using Egs.(3.17 and the SW2) gauge invariance of the
(formal) measureDg to absorbg, the partition function of
the t-J model can be exactly rewritten in terms of the Eu-
for some unit vecton; and anglep; €[ 0,2m). clidean actionS=S;,+ S,

for some angle);j, [0,2m). We represent

gj=cos¢;+io-n; sing;,
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B . ) ) = . ) = )
Sy= fo dxo[; Hr[ao—(aL”R}aoRjaL”)u—5]Hj+<_2> {—tHJ*e_'f<ij>(B+‘SB)Hi[o;lR?Pe'fGJ)(W5V>R,—UL'|]11+H.C.}],
ij
(3.20

B ) ) J ) ) — ) 1
S= fo de[; <a‘x”Rj*aoRjo‘x”>n+<iEj> 5 (1=HIH)(1-HFH)) |<ox'R?Pe'f<”><v*ijo;')nlz—EH, (3.2

wheresV=V© -V, into a semion field operator. Retaining the fermionic nature

Let us remark again that in Eq®.20), (3.21) no approxi-  of ¥ is then inconsistent with neglectingv (which also
mations have been made. The point of the above analysis igtroduces a fictitious parity breakingnless we neglect also
that for large enougl® and small enougld we expect thaR 6B, responsible for the semionic nature of the gauge-
and 8V describe small fluctuations. invariant holon field operator reconstructed from the Euclid-

ean field
IV. SPINON EFFECTIVE ACTION _

] ) ] e_if71(8+5B)H- .
A. The main approximation !

To proceed further we make the followidgpproximation In 1D the proper account of the statistics of the holon and
(8V=56B=0): we assume that the spinon fluctuatiof ( spinon field operators was crucial for derivitfgithin the
are small enougtifor B large, 8, J/t small that we can C-S approachthe correct physical properties of the model,
neglect their back reaction on the gauge fieldi.e., we set known by Luttinger liquid and conformal field theory
8V=0. We expect that the main effect of the neglected fluctechnique$® However, in 2D we believe the statistics of
tuations ofV is to convert the gauge-invariant spinon field holons and spinons is less crucial because we expect that,
operator reconstructed from the Euclidean field contrary to 1D, they form a bound state, as will be discussed

later.

1) To derive the low-energy spinon action let us start com-
0

i1,V — @il (V+ VG R, ol
(Pelr)% =€ 9iR;ox puting the link variable

* *
RiTeifm)ij:( “<ij>bﬁb11+“<ii>bfzbj2 —a<ij>bﬁb?z+i<n>br2 i1 | @
—a<ij>bi2bj1+a<ij>bilbj2 a(ij)biZbJ*z'i_a(ij)bilbikl

wherea;;,=e’?/i)Vz. Looking back at Eq(3.21) we find that in the hopping term of holons only the diagonal elements of
Eq. (4.1) appear, a kind of gauge-invariant AM variaifayhereas in the Heisenberg term only the off-diagonal elements of
Eq. (4.1) appear, a kind of gauge-invariant RVB variaBleAccording to the optimization arguments given in the previous
section, the vacuum expectation value of the AM gauge variable is expectedstikbereal and close to [see Eq(3.14)],
while the RVB order parameter should be rather smsde Eq.(3.9]. These anticipations are fully confirmed by the
mean-field calculation&>°

B. Nonlinear-o model with mass term

We now derive a low-energy continuum effective action for spinons by rescaling the model to a lattice spatimmnd
neglecting higher-order terms i As it is standard in AF systenf§we assume

b%,0,,bj 5~ @+ (—1)leL;, (4.2)
with sz=fs1, Q-L=0, whereQ,L are defined on a sublattice, e.g!izﬂjﬁ(l,z),jz, Li=Lj + @2, j1=]j» mod 2 and

they describe the AF and ferromagnetic fluctuations, respectively. It is useful to réviitethe C P* form:

Q=7 0,425, Z,2,=f, 4.3

a

with z,, a=1,2 as a spirk-complex(hard-carg boson field. Consistently with the slowly varying naturevbfor small hole
concentration, we assume

_ o 2 o
e Ve 1~ e(—iV,)(j)+ % (—iIV)2(j)+O(e3). (4.4

On the rescaled lattice the Heisenberg term becomes
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i E |(o_LlelTe(l/Z)f(lJ)VRJ()'l)(”)ll|2—1/2:i E {E (QI_Q]
2.77) € 270 12

2 —_
+2L2HVI(DI(Q0%+ Q)% +0(e). (4.5

For the temporal term we obtain analogously 1 — 1
™ f d2XVZ(X)=— 7 aiak(A) (X, X)
IRt 5 R olil [Al Ja Al X
_(O'x] R]aoRjO'X] )11 XCA
1 019k
— j € 2 ~— —_ —
—2 (_1)|J|2Taaoz]a+§|_](QJD&()QJ)‘FO(G ) |A| % 20 In(|X| Xk|+6)'
xC
(4.6 (4.9
The first term in Eq(4.6) actually vanishes, since other- . _ .
wise it would produce a topologica# term which is known Equation (4.8) looks like the energy per unit volume
to be absent in 238 Ena(X) of a neutral two-component system Nfparticles

In treating the holon density terms in the spinon action inwith charges=*\/1/27 in a volume|A| interacting via 2D
MFA, we keep only the leading fluctuation terms and neglectCoulomb potential with ultraviolet cutofé. The average of
terms of the order o®(J48), O(5%). Then, integrating ouit En a(X) over the positions of the charges in the limit
and taking the continuum limit, from Eq$4.2—(4.6) we  |A| ”R? N 7« with fixed average density can be identi-
obtain the Nlo model effective action for spinor& + S, fied with the free energy of the above systempat1 and

chemical potentiald in the thermodynamic limit, and this
1 _ gives our estimate ofVZ). The behavior of the free energy
SEIJ d3% = [(9oQ)*+02(9,2)%+(Q)A(V,)?], can be obtained through a sine-Gordon transform&ftiand
9 for small §it is given by*

" 1 3y 2\/2 —
=75 f dxQ3V2, .0 (V3~—51n 6. (4.9
where the coupling constagtand the spin-wave velocity, o
are easily derived functions df 6, e. Hence in our crude approximatiofV2) acts as a mass

We now make thé\pproximation P:.we treat the terns, term increasing withs. If we assume that the scaling limit
as a perturbation. To understand the physics describ& by and perturbation expansion ihvi) commute with each
we first notice that ifv2 were absent, the Nimodel would ~ other, we find that its effect is to drive the MLmodel at
be in the symmetry broken phase, singés small (~J) at  large scale to the disordered massive regime with a mass gap
the lattice scale. For larger scalgs; then flows towards its  for  of the order ofm2(5)~ — & In 8. Within this approxi-
critical value, describing the large-distance properties of anation, for a more careful analysis one should consider the
NLo model with an insulating “Nel” ground state and renormalization-group equations fgrand A including the
spin-wave Goldstone excitatiof$To get an idea of the ef- perturbation(V2) term from the beginning. Then the value of
fect of V§ we replace the Niz model constrainQ?=f by a  m?(8) could be renormalized.
softened version, adding to the Lagrangian a tex(€)? A slightly better approximation is to consider the holons
—f )2, expected to produce the same low-energy behavio@s slowly moving randomly distributed impurities, creating a
and we replac&/2, a function of the holon positions, by its random potential and analyze the behavior of the spin-wave
statistical averagév2). By its definition, V2 is positive defi- £ in the presence of this potentidhis can again be justified

nite and we give a rough estimate(dtz) by first performing for.the I|_rn|t J/t<1 with a large geffectlve mass of hojeg\t
. i z ) a fixed time the random potential behaves as
a translational average at a fixed time over a fixed holon
configuration and then an average over holon configurations
with mean holon density. — (X—W)* (y—wW)~
In the first step lex={x;}!"_, denote the holon positions Va(w)~ > QyOx
and letq={q;}!\,, g;=(—1)l"1 and restrict the compu- xy
tation to a finite volumeA| and lattice cutofie. Let ard, J5, ,
A€ denote the angle function, the derivative in thalirec-  Hence it is positive and roughly falling like 2, wherer is
tion and the Laplacian in the lattice, respectively, then us- the distance to the closest impurity. This kind of systems

Ix=wl* |y—w[*"

ing the equality have been considered in Ref. 62 and it is expected to be in
the localized regime fof2, where(random averaged Green
€005 argf(x—y)=a;(Af)‘1(x—y), functions exhibit a mass gamp(5) roughly proportional to

the inverse mean free path. Hence up to Iogarithmﬁ(sé)
we immediately obtain ~ ¢ for small é.
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C. Crossover from short-range to long-range tions, which can be identified with a spin-wave figddthe
antiferromagnetic order ground state is then the insulating dlestate!* A MF treat-

All the above arguments strongly suggest that the spinor'inent with ans+id RVB order parameter yields an energy

. o . gap vanishing at=/2,=#/2) in the Brillouin zone, and an
system descrlqu by the ac'gcﬁi in Eq. (4.7 eXh.'b.'tS a expansion for low momenta around these four points shows
mass gapmg( ) increasing withd (at least for sufficiently

. o that the corresponding excitations are described by a two-
!arge, but, neverthelesd<1), vamsh_lng al= O thus Sh,ow' component massless field with relativistic dispersion relation
INg an ex_pe%ted crossover to the insulating Eetate ezlt which can be identified with a spinon fieid, .»* These ex-
Zero doping’® As a result ofm(8)>0, the constralm_Q_ citations are turned into massive ones in our approach by the
=f is relaxed at large scaf¥sand a Lagrange multiplier

field introduced in th ton 1o i th traint Idms(é) term. In some sense, our result in the dNimodel
lield introduced in the action 10 Impose the constraint wou corresponds to a kind of slave-fermion approach with a
just mediate short-range attractive interaction betwee

spinons with opposite spin, with strengtiinay(3)~2) rota auge-invariant RVB order parametet id-like and mini-
) 3 + + i -
tionally symmetric in spin spaceee Ref. 64 for the discus- mal gapmg(9) at (£ m/2, £ m/2). We should emphasize, how

) S : ever, that our approach is different from the slave-fermion
sion of an analogous situatiprAnother short-range interac- formalisnf® which considers long-range ordered AF state
tion, but uniaxial in the spin space, is introduced by the

. ) : 5 with gapless excitations, while we consider short-range or-
perturbation tern®; in Eq. (4.7), with strength @mZ(5)/9). dered AF state with gapful excitations.

We can summarize the above discussion by rlewrmng the T4 the best of our knowledge, the present formulation is
NLo model effective action for spinons in tHeP™ form, e first successful attempt to explicitly include the AF fluc-
neglecting short-range interactions, as tuations into the RVB-type scheme of treating the strong

1 correlation effects in a self-consistent manner. Upon doping
s;:f d3X—[|(ﬂo—ZZf9jZﬁ)Za|2 the long-range AF is destroyed, being replaced by short-
[0,8]xR? g ranged AF order, which is physically obvious. We have ob-
2 " 2, 2 * tained an explicit doping dependence of the gap value which
T0sl(0,= 250,202+ MS(9)Z,24]. (410 has the correct extrapolation at zero dopiggp vanishes®®

In the NLo model without mass term&=0) the con- The doping dependence of the AF correlation length
straintz;z,=f and the symmetry breaking condition, e.g., ~m71.~ 6%, expected from our calculation, agrees very
(2,)#0, lead to excitations described by a complex massles¥ell with the neutron-scattering daltaHere we also propose
field S=2z,(z%) with massless “relativistic” dispersion rela- @0 interpretation of the spin-gap effect in underdoped
tions, corresponding to spin waves. In the dmodel with ~ SuPerconductors—mainly due to the short-range AF order.
mass term the absence of symmetry breaking and the effedN® recent numerical simulatidtisseem to support our in-
tive softening of the constraint lead to excitations described€'Pretation.
by the spinj two-component fieldz,,, with massive “rela-
tivistic” dispersion relations. However, the self-generated
gauge fieldz* d,z,, a=0,1,2 would confine the spih-de- A. Holon-spinon coupling via self-generated gauge field

grees of freedom into composite spin-1 spin-wave fields. On Now turn to holons. We use a gauge choice of the ®ld
the other hand, as we shall see later, the coupling to the = '

holons will induce deconfinement of spinexcitations. such thate'/)® is purely imaginary and assume, following

To give a kind of “microscopic” interpretation of the EGS:(3.14—(3.17) that the gauge-invariant AM parameter is
above results using the slave-fermion picture in terms of thé=1, Which permits us to use the equalityee Eqs.(4.7),
hard-core bosonic fields, ,b% , we follow the approach of (3.19]

V. HOLON EFFECTIVE ACTION

Yoshioka!® First consider the casé=0; then a MF treat- b b+ a* bbby =1=b*bir+b%b .. (5.1
ment with ans-like RVB order parameter yields an energy ey Piabjat iy bizby2) bt bizbiz. (5.
gap vanishing at4/2,7/2), (— w/2,— w/2) in the Brillouin We obtain a low-energy continuum effective action for

zone and an expansion for low momenta around these twholons by rescaling the lattice spacingde1 and neglect-
points shows that the corresponding excitations are describaédg higher-order terms ire. Making use of Eq.(5.1) one
by a complex massless field with relativistic dispersion rela-obtains

5 _  —[H¥H{—H*H, Bjo—Dia
Sh:jo dXO(; H}k(ao_(b}\'a(?obja)#(ﬁ_B)Hj_i_E (_)telf<ij>B i IE j I—I—(HikHj—'_HJ*Hi)[b;ka( J - i )

(ij)
b* —b* #())
- (u) bja}

€

+0(e) ], (5.2

where #() denotes complex conjugation jifis even. Neglecting thé terms, the action(5.2) describes the usual two-
component Diraq‘staggered”) fermions of the flux phase, with vertices of the double-cone dispersion relations in the
reduced Brillouin zone, centergh the e=1 lattice) at (x7/2,=#/2) and chemical potentiab. To define a continuum
effective action, using the standard procedure for the flux pffase, first define four sublattice$i) for j;,j, even,(2) for
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j; odd,j, even,(3) for j, evenj, odd, (4) for j;,j, odd. They can be grouped into two “KE sublatticesA={(1),(4)},
B={(2),(3)}. The holon fieldH restricted to the sublattice # is denoted{). The holon action can then be written in the
continuum limit as a bilinear form il* andH with kernel:

09— ZhdpZe— 8, it(91+Z8d12,), —it(d+25drz,), 0

it(01—2Z5012,),  dotZhdoZe— 9, 0, it(d,— 2z dr2,)

—it(do— 25 d02,), 0, o+ 2 dgz,— 8,  1t(d,—Z5d12,), |’ ®3
0, it(d+25d,2,), it(01+2Z5d12,),  do—ZhdgZu— S

where we used the decomposition of carried out in the charge, the full continuum effective action can be rewritten
previous sectiofall ferromagnetic terms arg€ and so they introducing an auxiliary (1) gauge fieldA (over which one

do not appear in the continuum lim@.3)]. integrates in the path integyal
Setting
_ _ - 1
%070z, Vu= (0,00, A=Y,AL S*=f 2d3x[§[|(ao—Ao)za|2+vil(ﬁM—AM)ch2
0,81XR
PP e~ (T (D) 4 i (7l 4(4) o4 )
‘Plz \I,(lB) = ei(rr/4)H(3)+ei(7r/4)H(2))v

+m2(8)Z8z,]+ er W[ yo(do—€,Ac— )

<\If(2B) e—i(w/4)H(2)+ei(7T/4)H(3)

lI,2= (A= —i(mld)g(4) i(/4) (l))v

v e H™+e" ™ H Ft(h—e )]V, |. (5.6)
W=V}, (5.9

and assigning charge,=+1, eg=—1 to the fields corre- ma-[ig(ra\ actionS” is invariant under the (1) gauge transfor-

sponding toA andB sublattices, respectively, the continuum
effective action for holons can be rewritterPas _
> W, (x) e 0 (x),
SE:J d®x >, W[ yo(do— 5—€Z%doZ,) — , —
[08]xR? =1 P, (x)—e Ay (x), 5.7
+t(h—eztbz,) ]V, . (5.5
Z,(X)— €Mz, (x), ZF(x)—e ANZE (x),

Hence,S;; describes the coupling of the holon field to the
spinon-generated gauge fieltf 9,z, in a ‘“relativistic”
Dirac-like form, with opposite coupling for the two Nk
sublattices. From Eq(5.5) it is clear that(neglecting the
gauge terms the upper components df ; describe gapless Going backwards we recognize in E§.7) the continuum
excitations with small F§e-=0(6t)], whereas the lower limit of the h/s gauge invariancé.12) which is gauge-fixed
components describe massive excitations with a dopingimposing, e.g., a Coulomb gauge condition Ay.
dependent gapmh(é):z\/g. In terms of lattice fields we Remark:One easily finds that the lattice counterpart of
have excitations of the two bandgapless and gapfubup-  the A, gauge fixing is a gauge fixing for a@’(Péfzi/DEj)
ported in the reduced Brillouin zone due to the presence ofyhich is U1)xSU(2) gauge invariant as required in tie-
the Neel sublattices. This leads to a band mixing due to thenarkin Sec. 1.
nondiagonal structure of the matrices and this in turn In fact
yields a “shadow band” effect, i.e., a reduction of the spec-
tral weight for the outer part of the FS facig,), in agree-
ment with experimental dath and MF numerical
simulation?® The FS of underdoped superconductors has
also been considered in the @Ygauge-field theory® How-
ever, there are some differences between the results obtainetij1 . : .
there and the predictions of the present mdét®l details see where in thg l?fSt eq“‘i"'ty we ha\{e peglected a.quz.;\dratlc fer-
Ref. 48. mion term fictitiously introduced iI8* [compare it with Eq.

(5.5].

We can uses* to compute, as in Ref. 20, the gauge-field
propagator induced by the spinon and holon vacuum polar-

Neglecting the quartic fermion term, which would pro- izations. In the Coulomb gauge, denoting By (I1") the
duce a short-range repulsion between holons with oppositeansverselongitudina) polarizations, respectively, we have

A(X)—=ALX)+dA(X), A(X)eR.

arqzr Peif<ij>vzj)2arq C(<|J>b;klb]l+ azclnb;kzbjz)

=75d,2,~A,,

B. U(1) xSU(2) gauge invariance of the total action
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q,d, 1 decomposition and the correspondingauge-invariant
(A (0,A(—w,—q))= ( Ouv= =2 T (0.0)’ fields obey semionic statistics.
q s h)te.d To reiterate, we outline some of the distinct features of
w2 our present study:
)= (i) The short-range AF order is the main reason for the
(Aol Q)Ao( ~ .~ ) QAT+ (w,q) existence of the spinon gafat least in the underdoped

sampleg which can explain a variety of experimental obser-
Since the spinon is massive the vacuum polarization ofations.
the spinon system alone would be Maxwell-like in the ab- (ii) Neglecting gauge fluctuations the two-point correla-
sence of holons and it would induce a logarithmic confinetion function for the electron exhibits half-pocket FS in the
ment of spinons [I*=w?+q?, TI'=w? for small »,q). reduced Brillouin zone, with a pseudogap minimal on the
However, due to their gapless component the holons induceiagonal, “shadow band” effect and a quasiparticle peak
a transverse vacuum polarization with Reizer singul&@rity due to the holons. These features have been demonstrated in
(I} =|w/q|+ xg?) and a leading behavior ifil}~w»?/q>  the MF computation of Ref. 48, where a similar action for
for small w/q, leading to a short-rang8, propagator, so the system has been used, with a twist in holon-spinon sta-
that the full gauge interaction isot confining’® tistics, i.e., the spinons are fermions, while the holons are
As a result, holons and spinons are true dynamical debosons.
grees of freedom in the model. Nevertheless, since we are in (iii) The spin-wave persists even in the region without AF
2D, the attractive force mediated by the gauge field is exlong-range order, but as a short-ranged field.
pected to produce bound states with the quantum numbers of (iv) We expect(this is still under investigationthat the
the spin wave(see Ref. 64 for the discussion of a similar “composite electron” exhibits a non-Fermi-liquid behavior
problem) and presumablysee, e.g., Ref. Jlof the electron. due to the appearance of Reizer singularity, thanks to trans-
This could explain why neglecting thexpectedl semionic  verse gauge fluctuations, in the self-energy of its holon con-
nature of holons and spinon$\{= éB=0) can be justified stituent.
to some extent in 2D. On the contrary, in 1D the spinons and To conclude, the C-S bosonization approach, in spite of
holons are deconfined, and their statistical properties ais technical complications, is promising in providing a natu-
semions are crucial for a proper account of the spin-chargeal framework to describe the normal-state properties of un-
separation. derdoped superconductors. After having settled in this paper
our framework for a discussion of theJ model at smalls
VI. CONCLUSIONS andJ/t as a model for underdoped high-cuprates, in the
forthcoming paper we will compute correlation functions and
To summarize our results it is interesting to compare thecompare the results with experimental dta.
features appearing in tHanderdopep2D and 1Dt-J model

(for small 6, J/t) within the W1)XSU(2) gauge approach ACKNOWLEDGMENTS
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spin and charge degrees of freedom of the electron, and déhe work of P.M. was partially supported by TMR Pro-

scribe them in terms of spinorz) and holon(¥) fields. gramme ERBFMRX-CT96-0045.
(1) The low-energy properties of the spinons can be de-
scribed by a Nl model: in 2D it is massive, and the mass APPENDIX

gap (vanishing at6=0) is due to the coupling to holons )

mediated by a nonpure gauge @Yfield V; in 1D no such The proof of the bound3.3 uses techniques adapted
nontrivial gauge field exists and the spinons are massles§om the proof of the diamagnetic inequality given in Ref.
The self-generated spinon-gauge fief] {,z,) would con-
fine the spinons into spin waves, but this is prevented in 2D
by the coupling to holons, while in 1D by the presence of a
topological 6= 7 term in the NLo- model, which is absent in ¥
2D.

(2) The low-energy properties of holons are described in
2D by a Dirac action, inducing band mixing, whose appear-
ance is due to the presence of a nonpure gaugeBig&har-
acteristic of the flux phaggthe absence of such a field in 1D ) o
implies that holon are described in term of a spinless fermion (2) Reflection(O.S) positivity in the absence of gauge
action. fields: define an antilinear involutiodd on the holon fields

(3) Spinons and holons in 2D are coupled by the Spinong,uppp_rted i.n the positive-time latticghe time interval is
generated gauge field, carrying one degree of free@igtar  identified with[—3/2,5/2]) by
gauge fixing and this presumably induces binding; the
gauge fixing kills the degree of freedom of an analoguous O:H(1)—Hf (=7), H(1)—Hj(—7),
gauge field in 1D and as a consequence, spinons and holons
are free. The statistics is then dictated by th@)XSU(2) 6(AB)=6(B)6(A), ABeJ,,

The main ingredients are
(1) Invariance of the actiori3.1) under the gauge trans-
ormations:

A=A+ a0, U= Ugpe it A1)

Hj—>HjeiAJ', HJ*—>HrefiAj, A]-ER.

(A2)
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where 7, denotes the set of functions Bif, H* with support E(D = o= [ST(H,H* AT UTY) -5 (H,H*)]
on positive time. Reflection positivity is the following state- . ’ (AB)
ment:VF e 7, F= e [ST(HH* —rAl! FU3) =SS (HHY)]

(FGF)EJ DHDH*e SHHIEgF* =0, (A3) yvherer is reflection _With respect to the time-0 plane. Apply-
ing Eq. (A4) we derive the upper bound:

whereS(H,H*)=S(H,H*,0,1) [see Eq(3.1)].

The involution @ defines an inner produgt,-) on J, by |E€(AU)|= f DHDH* e~ SHHY AU = |(FLgr(LY)|
(-6-) and as a consequence, Schwartz inequality holds:
VF,GE j+ g<Fgl)ng_l)>l/2<F(Zl)aF(zl)>l/2-
[(F6G)|<(F 6F )X G 6G)""2. (A4) We now choose a time plane, different from the time-0

, EE plane, lying halfway between lattice planes, use the time
Although the proof of Eq(A3) is standard,’let us sketch  yangjational invariance dE (inherited from the antiperiod-

it for readers’ convenience and to set up a notation useful IReity in time of H,H*) to bring this plane to the position of
the proo_f of E_q.(3.3). o . _ . . the time-0 plane shifting the whole lattice and repeat the
We discretize tkle time interval introducing a time lattice ) . procedure both f6{Y9F (1) andF{Y6F, (which are
with spacinge=2"" and we choose the time-0 plane lying no more in the fornF 6F v&ith elreferredzto the new time-0
halfway between lattice planes. We denoteSy, SZ, and plang. As a result, we obtain, with obvious notations,

$+_ the terms qf the d|§cret|zed action existing in the p05|—F|(2) 1=1,2, and then iterate. Finally we derive the bound
tive, negative time lattice, and coupling the two, respec-
tively, then we have 2N

E<A=]T (FMorM™)? (A7)
€ — € € — € I=1
HT(E)HJ(T E)H?(T)
A close inspection shows that the gauge fields appearing
6 E in FMoF™ have the following propertiesA=0 andU is
5) 9Hj(£”- (A5)  time independent. Using a Hamiltonian transcription, with

obvious meaning of notations, looking at E8.1), we im-
prove the bound by means of the Golden-Thompson inequal-

SESESEEE
J

€

2

€

.

Let P, denote the set of functions d¢f,H* given by !
linear combinations with positive coefficients of elements of!Y:
the form FOF,Fe 7, . It is easy to see thaP, is closed <F(N)9F(N)>
under multiplication and summation with positive coeffi- ! :

-2

oH
J

o

cients and foz;c;F;0F, e P, we have =Tr e BllH1+Hx(U=0)]+[Ha—Ha(U=0)]} g = S[Ha—Ha(U=0)]
2 sTr e_B[H1+H2(U:0)]e_B[H2_HZ(UZO)]
f (DHDH*) >, ¢FiF =2 ¢ f (DHDH*) F;| =0,

i ‘ <Tr e AT Ha(U=0)], (A8)
where (DI_-lDH*)e denotes th¢formal) measure o, H* in  \here we used[H,—H,(U=0)]=0. Equation (A8) is
the path integral for the discretized time model. equivalent in the path-integral formalism to bounding the

From Eq. (A5) it follows that, for F  ghehand side of EqA7) setting everywher&) =0 in SS.
eJ,,e SHHIEGE P, | so that Let us define
f (DHDH*) e~ SMHIEgF=0 =1Y)
and taking the limite\,0 we obtain Eq(A3). EJ (DHDH*)ee_si(H‘H*'o’UHS;(H’H*’0)|a0u=o (A9)

We turn now to the proof of Eq(3.3). We work again -
with the discretized time lattice. First we use the gauge inand letU denote the gauge-field configuration maximizing
variance(Al) to setA=0 on the links inS, _. We denote =¢(U), then the right-hand side of EGA7), using Eq.(A8),
by {AD,UM) ((AD,UDM)) the restriction of the gauge is bounded by=¢(U) and taking the limite\,0 we recover
fields to the positivénegative time lattice and we set Eq. (3.3.
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