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Energy-resolved supercurrent between two superconductors
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In this paper | study the energy-resolved supercurrent of a junction consisting of a dirty normal metal
between two superconductors. | also consider a cross geometry with two additional arms connecting the above
mentioned junction with two normal reservoirs at equal and opposite voltages. The dependence of the super-
current between the two superconductors on the applied voltages is sfi#lid63-18208)05833-(

The proximity effect between a normal metal and a superand thus can be interpreted as the current due to the occupa-
conductor has been discussed long a@dften it is simply  tion of negative energy states. This can also be regarded as
described by a spatial-dependent pairing correlation functiothe diamagnetic response of the superconductor if one con-
¥ which decays from a superconductor to normal metalsiders theT=0 state as one containing no quasiparticles.
However, this description is too crude to provide a properSimilarly at finite temperature
understanding of the phenomena observed at low tempera-
tures in the mesoscopic systems which can nowadays be pre- J4(T)=J4(T=0)
pared in the laboratories. For example, the detailed descrip- .
tion of the energy dejpendenqe. <_)f.the effegtive barrier +2va deN;(e)[n(e, T)—n(e, T=0)] (4)
conductance and diffusion coefficiéfftis crucial in under- —
standing the behavior of the observed conductance between a . i .
normal metal N) and a superconductoS) at low voltages which can be mterpr_eted as the sum of the dlar_nagne'glc cur-
and temperatures.12 rent _and _the correctlo_n due to t_he thermal redistribution of

In this paper we study the spectral current defitgee quasiparticles. In particular an important source of the _de-
also Ref. 14 of a quasi-one-dimension&NSjunction in the ~ crease of the super_current as the tt_empgrature increases is due
dirty limit. This quantity (or, more precisely, the angular © the thermal excitations of quasiparticles fraw 0 to e

average of the one defined in Ref)i8defined as, at energy ~ 0 States, which carry opposite current.
€ and positionx, In the dirty limit, on which this paper will concentratid,

can be obtained frorsee the Appendix for detajls
Ny(ex)=(P:N(P,€.X)), (D)

N;¢l
) N3(€x) =~ —-Q(e), ®)
whereN(p,e,x) is the density of states for momentum di-
rectionp at energye and positionx. The angular brackets whereN; is the density of states in the normal stdtés the
denote angular average. This quantity is thus the density ahean free path, an@ is given by
states weighted by a factor proportional to the current that
each state carrieSn a certain direction, heré), and thus 1 AR.AR AA A
may also be appropriately referred to as the current-carrying Q= WTr[ (97097~ g"ag")]. ©®)
density of states. This is obviously a useful quantity. For
example at equilibrium, thénumbey supercurrenfg can be  Hereg®* are the angular averaged of the retarded and ad-
written as vanced components of the quasiclassical Green’s fundction.
represents spatial derivative. The equilibriynumbej su-

de ercurrent is thus given b
3= =20, | S Ny(exmo(e @ P Jwen By

wherehg(€) =tanh(e/2T) andv; is the fermi velocity. The Jf%J deQhg(e), (7)
factor of 2 includes the contribution from the two spin direc-

tions. One convenient way to interpret this fornidfe? (see  \whereD=y,1/3 is the diffusion coefficient. For aBNSjunc-
also Refs. 15,16is to rewritehy=(1—2n) wheren(e), the  tjon with no electron-electron or electron-phonon interaction

occupation number, is given by the Fermi function at equi-in the N region,Q is independent of the positionalong the
librium. For example aff=0 Eqg. (2) can be rewritten as junction within that region.

[using the symmetriN;(€) = —N;(—€)] The behavior ofQ is easiest to understand in the limit of
very short junction Ep=D/L?<A, hereL is the length of
0 the junction andA is the superconducting gaand small
Js=2v;| deNy(e) (3) junc _ p g 9@
—w phase differencg. In this caseQ should be the same as that
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y=0.
of a bulk superconductor under a small phase gradient. Th.
response of a dirty superconductor to a phase gradient or
external vector potential is well knowh.In this case one

can show that the entire contribution to the supercurren

arises from states at=A, i.e., Qx5(e—A). In contrast, the ¢ e surprising, and can be understood by analogy with the

ordinary _density of states is given DbyN(e)  penayior of energy levels under a change in boundary con-
=N; | €|/ e?—A?. Under a small phase gradient, the gap for gition in the normal state.

quasiparticle excitations persists and in particular there is N0 The more interesting feature is that a negative digin
contribution toQ for energies within this gap. appears at higher energies as the junction lengthens. For very
An energy gap, (<A) also exists in general in @8NS |51 junctions, both the peak and the dip ©f move to

junction (except phase difference= ). This gap has been gnergies of ordefa few tens of timesEp , with almost no
studied before in related situatioHs?° Associated with the  faarures left nean (Fig. 3. This negative dip has recently

existence of thigphase-dependengap is a relatively rapid paean speculated to extt.

change ofg as a function of energyand phase differenge In the above | have assumed that the contacts between the
This has made the numerical calculation somewhat difficultnormal metalN and the superconducting reservoBsare

For convenience | will thus mostly concentrate on resultsperfect. If potential barriers exist between tNeand S re-
where a small pair-breaking termhas been included in the gionsy therQ decreases in magnitude, with a corresponding
self-energy(see the Appendix y is usually chosen to be decrease in the energy whe peaks. The features dis-
0.0\, though occasionally results foy=0 will also be cussed above survives for moderate barrier resistRpdee-

8 no longer of orden. An example for this evolution as a
&lnction of increasing length is as shown in Fig. 2. For a
iven phase difference, the energy whé&pepeaks shifts
own in energy relative td asL lengthens. This itself may

shown for comparison. tweenN and S An example of howQ evolves asR, in-
The behavior ofQ for a relatively short junction is as creases is as shown in Fig. 4.
shown in Fig. 1. At small phase differenc€sis large only From the ideas presented above obviously one can affect

for € nearA. If y were zero therQ would vanish fore  the current flowing between the two superconducting reser-
below a minigapey. As the phase difference increases, thevoirs by changing the occupation of the quasiparticle states.
minigap decreases. Correspondingly the region of energ¥emperature is an obvious candidate. This gives the well-
whereQ is finite also moves down in energy, though it re- known reduction of the supercurrent as a function of increas-

mains large in an energy region up 4. ing temperature. An alternative way is to create a nonequi-
For longer junctions, i.eL>+/D/A or, equivalently,Ep librium situation?® Here | shall consider a steady state

<A, the behavior is somewhat different. At a given phasesituation with the advantage that it is easy to analyze. The

difference, the main region of energy whepeis significant
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FIG. 4. Q for y=m/4, A=10E as a function of increasing, ,
FIG. 2. Q for x=w/4 as a function of decreasingp . the ratio of the barrier resistan&g to that of the normal metal, i.e.,
v=0.0%A. r,=Rp(2N{DS/L). HereS is the areay=0.0%A.
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FIG. 5. The cross geometry. All “wires” connecting the reser- (eV) are in units ofEp and|, is in units of N;EpDSL L.

voirs are assumed to be quasi-one dimensional.

setup is shown schematically in Fig. 5. Geometries closely Obviously if V=0 a supercurrents only flows between
related to this has been studied beféré’. However, these the superconducting reservoirs, whereas there is no current
references have concentrated on a different arrangement fibwing in or out of the normal reservoirs. At#0 current is
voltages and/or other measurable quantities. Here | considéti general finite at any position on the two arms. | shall
the case where the superconductors are at equal voltagefenote the currents dg andl,. Neitherl, norl, are posi-
chosen to be zero. The normal reservoirs are at equal anfbn dependent; moreover, the current flowing in and out of
opposite voltage¥y= = V. | shall study the dependence of the normal reservoirs are equal on the one hand and those of
the current between the superconducting reservoirs as a funge superconducting reservoirs equal on the other. One can

tion of V. therefore regard the currenf (1,) as simply flowing be-

First we should note that the presence of the side armgyeen the superconductirigorma) reservoirs. | shall thus
connected to the normal reservoirs affect the behavidp of continue to calll, the supercurrent,.. | shall consider how
via the proximity effect. In order to facilitate Iaterdiscussion,thisI is modulaxted by the voltage. All results presented
| plotted the quantityQ for this spatial geometry for the case b S _ '

. g . elow are forT=0.
A=10E for two phase differences in Fig. 6. In this example : . .
| have assumed that the arms between the normal metal and I_shall concentrate on an example in the most interesting
the superconductor are symmetric and of equal length ( "€9'M€: whereA~10Ep . The result fordls/dV at Ep
=L,=L in Fig. 5 and are&. Q is finite only for thex arms =0.14 is as shown in Fig. 7. In this parameter rangje/dV
connecting the superconducting reservoirs, and is constaff & VoltageV is approximately equal te-(N;DS)Q at the
along them. Compared with the case without the side arm§orresponding energy=eV. (c.f. the corresponding in
(Fig. 2), we see that the behavior 6 is somewhat different  Fi9- 6 Also shown is the value df; at the valueV, obtained
in the energy regior<Ep . This is because there is now no by addlng the mtegral aflls/dV to the equilibrium value of
energy gap for quasiparticle excitations for any position's- Note in partlcu_lar t_hat for larg¥, the_ _supercurrent actu-
within the N region on the cross, even for=0. However, aIIy_has an o_pposlte sign than the equilibrium one, thus pro-
for e>Ep, the qualitative behavior o is almost the same ducing a “m-junction.” (See Refs. 22,27,29.
as in the case without the side arms, except an overall reduc- 10 understand|/dV, itis necessary to know the behav-

tion in magnitudé® In particular the sign change @ re-  '0f of the distribution functions for the quasiparticldsee
mains. the Appendix for the technical detaild shall denote these

functions on thex (y) arms ashg3(x) [ho«y)] etc. Since

40 : : we are aflf =0, a small change of the voltage\awill affect
only the occupation numbers at=*+eV. In Fig. 8 | have
plotted the change of the distribution functiodb ; at a
relatively low energy wherV is increased from below to
aboveeV=e. At the Sreservoirs k= *L,/2) hg3=0 by
choice, whereas at the normal reservoiys=(=L,/2) Jhs
==*1 andéhy=—1. The behavior obhg 3 is easy to under-
stand in this low-energy limit, where one can ignore the su-
perflow (Q), the coupling between the diffusion of the two
distribution functions M= —M3, are small, and where
the diffusivity for the particles¢M 33) reduces to that of the
normal state. Thufsee Eq.A5)] Shs(y) is linear iny and
6hz(x)=~0. Since there is an energy gap at Beeservoir,

FIG. 6. The quantityQ (in units of L %) for the cross geometry the effective diffusivity of the energy(Mq) is suppressed
of Fig. 5. A=10Ep. y=0.0%\. Results fory=0 are also shown near x==*L,/2. Thus éhy only has small gradients and
for comparison. henceshy~—1 everywhere except near=*L,/2. In the
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together with the normalization conditiog?= — w21 gov-
erning the angular averaged matrix Green’s funcgomhich
in turn hasg®* X, the retarded, advanced, and Keldysh mar-
tix Green’s functions, as its components. Herés the en-
ergy. The pair breaking mentioned in the text is simulated by
e—e+iy wherey>032

g? can be parametrized as —im(cosfrs
—sin 6 cos ¢o,7,+5sin 6 sin dpo,7,). g* can be related to

R T ve PPeS) : QR by symmetry. The variableg and ¢ obey the differential
Mose T  ms 0.00 Toes T s equations

FIG. 8. The distribution functions at=0.24E as functions of
x/L or y/L for the cross geometry with parameters as in the last 2i(e+iy)sin 6+ D[&zﬁ—sin 6 cos 0(¢9¢)2]=0
figure. y= /4. X (A2)

language of the more familiar occupation numbée) ={1
—[ho(€) +hs(€)1}/2, in thise—0 limit Sn(y) is linear iny
and thusén=1/2 at (x,y)=(0,0). én(x) is almost constant
and~1/2 nearx~0 and only changes rapidly to 0 near the
Sreservoirs. A finitee provides a correction to the above
picture as can be also seen from Fig°&he values ofsn at  with the boundary conditions that they assume their equilib-
e=—eV can be obtained by symmetry sincd—e)=[1  rium values at the reservoirs. For a normal reserési0,
+hg(€) —hs(e)]/2. At this energysn(y) changes from 0 at while at a superconducting reservoir ées—i(e+ivy)/D
y=—-L,/2to—1 aty=L/2 andon(x)~ —1/2 near the cen- where D= JAZ=(e+iy)2. (y—0, if pair breaking is not
ter of the cross. included)

If 6n(x) were exactly+=1/2 ate=*eV and if one ig- Q, related to the current-carrying density of states as dis-
nores the fact thaén is actuallyx dependent, with EqA6) cussed in the text, is given by
[or the equivalence of Ed4)] for the current it is obvious
thatdl¢/dV will be equal to—N;DQS at the corresponding Q=2 Im[sirt8d¢]. (A4)
energy. If this is the case then at largehe current ; would
be exactly zero. However, the actual current consists of botl
the supercurrent and the contributions from the gradients o?
distribution functiongsee Eq(A6)]. Moreoversn(x) is not

and

d(sirf0d¢)=0 (A3)

is thus then position independent within any wire by Eq.
A3), a result which can also be directly obtained from the

exactly £1/2 even ak=0 whene is finite. Thus the above definition (6) for Q and by taking the appropriate trace of q.

approximation becomes worse as the energy increases, ma(kp-‘l)l'(Q, obeys the syr.nmetrg@(' 6_)__ Q(e). R ~RE
ing in general the magnitude afl;/dV somewhat smaller 9 IS expressed via the distribution functionas g"h
than that of N;DQS. In particular the positive hump of —hg”" whereh can be chosen diagondl=hy7y+h;7s. The
dl /dV at largeV (near 1E&p, in this particular exampleis  distribution functions obey the equations

smaller than the corresponding dip @ near that energy.
Hence at large voltages; becomes negative as noted
above®!

In conclusion, in this paper | studied the current-carrying
density of states of a junction consisting of a dirty normaland the equation with ©:3. These two equations express
metal between two superconductors. | have also considerg@spectively the conservation of particle and energy at each
the dependence of the supercurrent between the two supépdividual energy(due to the absence of interactionghe
conductors on the applied voltages at the normal reservoirgea) M;;  coefficients are defined by Mj;=g;
of a cross geometry. + (1/4772)Tr[§ATi§]R7-j].

. . The distribution function he reservoirs are given
This research was supported by the NSF through the Sc heir eegusiltibt)ildx velljlugts(.) /itaf,ctmggg/s,e hc?('; j{?agr[(ee by

ence and Technology Center for Superconductivity, Gran+e\/)/2T]+tanr[(e—e\/)/2T]}/2 and  h(e)={tanhe

no. DMR 91-20000, Academy of Finland under research _ i
Grant No. 4385, and the Abo Akademi. eV)/2T]} —{tan(e+eW/2T]}/2. Thus, afT=0, when the

voltage sweeps through the corresponding energgV, the
distribution functions ay= —L,/2 change byshy,=—1 and
6hs=—1. At the point where the voltage is-V (y

. . . _ . =L,/2), sho=—1, andsh;=1 (see Fig. 8
In this appendix | summarize some basic equations for The total number current density is given by
easy referencésee, e.g., Ref.)6The basic equation to be

solved is the Usadel equation

d[Qhg+ (M 3zz9h3+ M3zedhg) |=0 (A5)

APPENDIX

N;D
D . . JN:TJdE[Qho+(M333h3+M300"ho)]- (AB)
[e73,9]+ —3,(99,9)=0 (A1)
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The three terms represent, respectively, the contributionsoundary conditions are derived frétn

from occupation of current-carrying states, ordinary diffu-

sion (with a modified diffusion coefficient and an extra .. 1 . .

contribution due to broken particle-hole symmetry. (2N{D9)gd,g= Z_Rb[g(xbf)ag(ber)]
If a potential barrier exists, there will be discontinuites

of the parameter9, ¢ across the barrier. The appropriate whereR,, is the resistance of the barriergf.
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