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Energy-resolved supercurrent between two superconductors
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In this paper I study the energy-resolved supercurrent of a junction consisting of a dirty normal metal
between two superconductors. I also consider a cross geometry with two additional arms connecting the above
mentioned junction with two normal reservoirs at equal and opposite voltages. The dependence of the super-
current between the two superconductors on the applied voltages is studied.@S0163-1829~98!05833-0#
e

tio
ta
e
e
p
r

rie

e

r
y

i-

y
ha

in
o

c-

u

upa-
d as
on-

es.

cur-
of

de-
s due

ad-
n.

ion

f

at
The proximity effect between a normal metal and a sup
conductor has been discussed long ago.1 Often it is simply
described by a spatial-dependent pairing correlation func
C which decays from a superconductor to normal me
However, this description is too crude to provide a prop
understanding of the phenomena observed at low temp
tures in the mesoscopic systems which can nowadays be
pared in the laboratories. For example, the detailed desc
tion of the energy dependence of the effective bar
conductance and diffusion coefficient2–8 is crucial in under-
standing the behavior of the observed conductance betwe
normal metal (N) and a superconductor (S) at low voltages
and temperatures.9–12

In this paper we study the spectral current density13 ~see
also Ref. 14! of a quasi-one-dimensionalSNSjunction in the
dirty limit. This quantity ~or, more precisely, the angula
average of the one defined in Ref. 13! is defined as, at energ
e and positionx,

NJ~e,x!5^ p̂xN~ p̂,e,x!&, ~1!

whereN( p̂,e,x) is the density of states for momentum d
rection p̂ at energye and positionx. The angular brackets
denote angular average. This quantity is thus the densit
states weighted by a factor proportional to the current t
each state carries~in a certain direction, herex̂), and thus
may also be appropriately referred to as the current-carry
density of states. This is obviously a useful quantity. F
example at equilibrium, the~number! supercurrentJs can be
written as

Js522v fE de

2
NJ~e,x!h0~e! ~2!

whereh0(e)5tanh(e/2T) and v f is the fermi velocity. The
factor of 2 includes the contribution from the two spin dire
tions. One convenient way to interpret this formula14,13 ~see
also Refs. 15,16! is to rewriteh05(122n) wheren(e), the
occupation number, is given by the Fermi function at eq
librium. For example atT50 Eq. ~2! can be rewritten as
@using the symmetryNJ(e)52NJ(2e)]

Js52v fE
2`

0

deNJ~e! ~3!
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and thus can be interpreted as the current due to the occ
tion of negative energy states. This can also be regarde
the diamagnetic response of the superconductor if one c
siders theT50 state as one containing no quasiparticl
Similarly at finite temperature

Js~T!5Js~T50!

12v fE
2`

`

deNJ~e!@n~e,T!2n~e,T50!# ~4!

which can be interpreted as the sum of the diamagnetic
rent and the correction due to the thermal redistribution
quasiparticles. In particular an important source of the
crease of the supercurrent as the temperature increases i
to the thermal excitations of quasiparticles frome,0 to e
.0 states, which carry opposite current.

In the dirty limit, on which this paper will concentrate,NJ
can be obtained from~see the Appendix for details!

NJ~e,x!52
Nfl

6
Q~e,x!, ~5!

whereNf is the density of states in the normal state,l is the
mean free path, andQ is given by

Q[
1

4p2Tr@t3~ ĝR]ĝR2ĝA]ĝA!#. ~6!

Here ĝR,A are the angular averaged of the retarded and
vanced components of the quasiclassical Green’s functio]
represents spatial derivative. The equilibrium~number! su-
percurrent is thus given by

Js5
NfD

2 E deQh0~e!, ~7!

whereD[v f l /3 is the diffusion coefficient. For anSNSjunc-
tion with no electron-electron or electron-phonon interact
in theN region,Q is independent of the positionx along the
junction within that region.

The behavior ofQ is easiest to understand in the limit o
very short junction (ED[D/L2!D, hereL is the length of
the junction andD is the superconducting gap! and small
phase differencex. In this caseQ should be the same as th
5803 © 1998 The American Physical Society
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of a bulk superconductor under a small phase gradient.
response of a dirty superconductor to a phase gradient o
external vector potential is well known.17 In this case one
can show that the entire contribution to the supercurr
arises from states ate5D, i.e.,Q}d(e2D). In contrast, the
ordinary density of states is given byN(e)
5Nf ueu/Ae22D2. Under a small phase gradient, the gap
quasiparticle excitations persists and in particular there is
contribution toQ for energies within this gap.

An energy gapeg (,D) also exists in general in anSNS
junction ~except phase differencex5p). This gap has been
studied before in related situations.18–20 Associated with the
existence of this~phase-dependent! gap is a relatively rapid
change ofĝ as a function of energy~and phase difference!.
This has made the numerical calculation somewhat diffic
For convenience I will thus mostly concentrate on resu
where a small pair-breaking termg has been included in th
self-energy~see the Appendix!. g is usually chosen to be
0.05D, though occasionally results forg50 will also be
shown for comparison.

The behavior ofQ for a relatively short junction is as
shown in Fig. 1. At small phase differencesQ is large only
for e near D. If g were zero thenQ would vanish fore
below a minigapeg . As the phase difference increases, t
minigap decreases. Correspondingly the region of ene
whereQ is finite also moves down in energy, though it r
mains large in an energy region up to'D.

For longer junctions, i.e.L@AD/D or, equivalently,ED
!D, the behavior is somewhat different. At a given pha
difference, the main region of energy whereQ is significant

FIG. 1. Q ~in units of 1/L) for a short junction.ED51.0D.
g50.05D.

FIG. 2. Q for x5p/4 as a function of decreasingED .
g50.05D.
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is no longer of orderD. An example for this evolution as a
function of increasing length is as shown in Fig. 2. For
given phase difference, the energy whereQ peaks shifts
down in energy relative toD asL lengthens. This itself may
not be surprising, and can be understood by analogy with
behavior of energy levels under a change in boundary c
dition in the normal state.

The more interesting feature is that a negative dip inQ
appears at higher energies as the junction lengthens. For
long junctions, both the peak and the dip ofQ move to
energies of order~a few tens of times! ED , with almost no
features left nearD ~Fig. 3!. This negative dip has recentl
been speculated to exist.21

In the above I have assumed that the contacts between
normal metalN and the superconducting reservoirsS are
perfect. If potential barriers exist between theN and S re-
gions, thenQ decreases in magnitude, with a correspond
decrease in the energy whereQ peaks. The features dis
cussed above survives for moderate barrier resistanceRb be-
tween N and S. An example of howQ evolves asRb in-
creases is as shown in Fig. 4.

From the ideas presented above obviously one can a
the current flowing between the two superconducting res
voirs by changing the occupation of the quasiparticle sta
Temperature is an obvious candidate. This gives the w
known reduction of the supercurrent as a function of incre
ing temperature. An alternative way is to create a noneq
librium situation.21 Here I shall consider a steady sta
situation with the advantage that it is easy to analyze. T

FIG. 3. Q for a long junction.D5100ED . This result is for
g50.

FIG. 4. Q for x5p/4, D510ED as a function of increasingr b ,
the ratio of the barrier resistanceRb to that of the normal metal, i.e.
r b[Rb(2NfDS/L). HereS is the area.g50.05D.
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setup is shown schematically in Fig. 5. Geometries clos
related to this has been studied before22–27. However, these
references have concentrated on a different arrangeme
voltages and/or other measurable quantities. Here I cons
the case where the superconductors are at equal volta
chosen to be zero. The normal reservoirs are at equal
opposite voltagesVN56V. I shall study the dependence o
the current between the superconducting reservoirs as a f
tion of V.

First we should note that the presence of the side a
connected to the normal reservoirs affect the behavior oQ
via the proximity effect. In order to facilitate later discussio
I plotted the quantityQ for this spatial geometry for the cas
D510ED for two phase differences in Fig. 6. In this examp
I have assumed that the arms between the normal meta
the superconductor are symmetric and of equal lengthLx
5Ly5L in Fig. 5! and areaS. Q is finite only for thex arms
connecting the superconducting reservoirs, and is cons
along them. Compared with the case without the side a
~Fig. 2!, we see that the behavior ofQ is somewhat different
in the energy regione,ED . This is because there is now n
energy gap for quasiparticle excitations for any posit
within the N region on the cross, even forg50. However,
for e.ED the qualitative behavior ofQ is almost the same
as in the case without the side arms, except an overall re
tion in magnitude.28 In particular the sign change ofQ re-
mains.

FIG. 5. The cross geometry. All ‘‘wires’’ connecting the rese
voirs are assumed to be quasi-one dimensional.

FIG. 6. The quantityQ ~in units ofL21) for the cross geometry
of Fig. 5. D510ED . g50.05D. Results forg50 are also shown
for comparison.
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Obviously if V50 a supercurrentI s only flows between
the superconducting reservoirs, whereas there is no cur
flowing in or out of the normal reservoirs. AtVÞ0 current is
in general finite at any position on the two arms. I sh
denote the currents asI x and I y . NeitherI x nor I y are posi-
tion dependent; moreover, the current flowing in and out
the normal reservoirs are equal on the one hand and thos
the superconducting reservoirs equal on the other. One
therefore regard the currentI x (I y) as simply flowing be-
tween the superconducting~normal! reservoirs. I shall thus
continue to callI x the supercurrentI s . I shall consider how
this I s is modulated by the voltageV. All results presented
below are forT50.

I shall concentrate on an example in the most interes
regime, whereD;10ED . The result for dIs /dV at ED

50.1D is as shown in Fig. 7. In this parameter rangedIs /dV
at a voltageV is approximately equal to2(NfDS)Q at the
corresponding energye5eV. ~c.f. the correspondingQ in
Fig. 6! Also shown is the value ofI s at the valueV, obtained
by adding the integral ofdIs /dV to the equilibrium value of
I s . Note in particular that for largeV, the supercurrent actu
ally has an opposite sign than the equilibrium one, thus p
ducing a ‘‘p-junction.’’ ~See Refs. 22,27,29.!

To understanddIs /dV, it is necessary to know the behav
ior of the distribution functions for the quasiparticles.~see
the Appendix for the technical details!. I shall denote these
functions on thex ~y! arms ash0,3(x) @h0,3(y)# etc. Since
we are atT50, a small change of the voltage atV will affect
only the occupation numbers ate56eV. In Fig. 8 I have
plotted the change of the distribution functionsdh0,3 at a
relatively low energy whenV is increased from below to
aboveeV5e. At the S reservoirs (x56Lx/2) dh0,350 by
choice, whereas at the normal reservoirs (y56Ly/2) dh3
561 anddh0521. The behavior ofdh0,3 is easy to under-
stand in this low-energy limit, where one can ignore the
perflow (Q), the coupling between the diffusion of the tw
distribution functions (M0352M30 are small!, and where
the diffusivity for the particles (}M33) reduces to that of the
normal state. Thus@see Eq.~A5!# dh3(y) is linear iny and
dh3(x)'0. Since there is an energy gap at theS reservoir,
the effective diffusivity of the energy (}M00) is suppressed
near x56Lx/2. Thus dh0 only has small gradients an
hencedh0'21 everywhere except nearx56Lx/2. In the

FIG. 7. dIs /dV versusV for the cross geometry of Fig. 5.ED

50.1D, g50.05D. Also shown areI s as functions ofV. Energies
(eV) are in units ofED and I s is in units ofNfEDDSL21.
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language of the more familiar occupation numbern(e)5$1
2@h0(e)1h3(e)#%/2, in thise→0 limit dn(y) is linear iny
and thusdn51/2 at (x,y)5(0,0). dn(x) is almost constan
and'1/2 nearx'0 and only changes rapidly to 0 near th
S reservoirs. A finitee provides a correction to the abov
picture as can be also seen from Fig. 8.30 The values ofdn at
e52eV can be obtained by symmetry sincen(2e)5@1
1h0(e)2h3(e)#/2. At this energydn(y) changes from 0 a
y52Ly/2 to 21 aty5Ly/2 anddn(x)'21/2 near the cen-
ter of the cross.

If dn(x) were exactly61/2 at e56eV and if one ig-
nores the fact thatdn is actuallyx dependent, with Eq.~A6!
@or the equivalence of Eq.~4!# for the current it is obvious
thatdIs /dV will be equal to2NfDQS at the corresponding
energy. If this is the case then at largeV the currentI s would
be exactly zero. However, the actual current consists of b
the supercurrent and the contributions from the gradient
distribution functions@see Eq.~A6!#. Moreoverdn(x) is not
exactly61/2 even atx50 whene is finite. Thus the above
approximation becomes worse as the energy increases,
ing in general the magnitude ofdIs /dV somewhat smaller
than that of NfDQS. In particular the positive hump o
dIs /dV at largeV ~near 10ED in this particular example! is
smaller than the corresponding dip inQ near that energy
Hence at large voltagesI s becomes negative as note
above.31

In conclusion, in this paper I studied the current-carryi
density of states of a junction consisting of a dirty norm
metal between two superconductors. I have also consid
the dependence of the supercurrent between the two su
conductors on the applied voltages at the normal reserv
of a cross geometry.
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APPENDIX

In this appendix I summarize some basic equations
easy reference~see, e.g., Ref. 6! The basic equation to b
solved is the Usadel equation

@et3 ,ǧ#1
D

p
]m~ ǧ]mǧ!50 ~A1!

FIG. 8. The distribution functions ate50.24ED as functions of
x/L or y/L for the cross geometry with parameters as in the
figure.x5p/4.
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together with the normalization conditionǧ252p21̌ gov-
erning the angular averaged matrix Green’s functionǧ which
in turn hasĝR,A,K, the retarded, advanced, and Keldysh m
tix Green’s functions, as its components. Heree is the en-
ergy. The pair breaking mentioned in the text is simulated
e→e1 ig whereg.0.32

ĝR can be parametrized as 2 ip(cosut3

2sin u cosfs2t11sin u sin fs2t2). ĝA can be related to
ĝR by symmetry. The variablesu andf obey the differential
equations

2i ~e1 ig!sin u1D@]x
2u2sin u cosu~]f!2#50

~A2!

and

]~sin2u]f!50 ~A3!

with the boundary conditions that they assume their equi
rium values at the reservoirs. For a normal reservoiru50,
while at a superconducting reservoir cosu52 i (e1 ig)/D
whereD[AD22(e1 ig)2. (g→01 if pair breaking is not
included.!

Q, related to the current-carrying density of states as d
cussed in the text, is given by

Q52 Im@sin2u]f#. ~A4!

It is thus then position independent within any wire by E
~A3!, a result which can also be directly obtained from t
definition~6! for Q and by taking the appropriate trace of E
~A1!. Q obeys the symmetryQ(2e)52Q(e).

ĝK is expressed via the distribution functionĥ as ĝRĥ

2ĥĝA whereĥ can be chosen diagonal:ĥ5h0t̂01h3t̂3. The
distribution functions obey the equations

]@Qh01~M33]h31M30]h0!#50 ~A5!

and the equation with 0↔3. These two equations expres
respectively the conservation of particle and energy at e
individual energy~due to the absence of interactions!. The
~real! Mi j coefficients are defined by Mi j [d i j

1(1/4p2)Tr@ ĝAt i ĝ
Rt j #.

The distribution functions at the reservoirs are given
their equilibrium values. At voltageV, h0(e)5$tanh@(e
1eV)/2T#1tanh@(e2eV)/2T#%/2 and h3(e)5$tanh(e
2eV)/2T#% 2$tanh@(e1eV)/2T#%/2. Thus, atT50, when the
voltage sweeps through the corresponding energye5eV, the
distribution functions aty52Ly/2 change bydh0521 and
dh3521. At the point where the voltage is2V (y
5Ly/2), dh0521, anddh351 ~see Fig. 8!.

The total number current density is given by

JN5
NfD

2 E de@Qh01~M33]h31M30]h0!#. ~A6!

t
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The three terms represent, respectively, the contribut
from occupation of current-carrying states, ordinary diff
sion ~with a modified diffusion coefficient!, and an extra
contribution due to broken particle-hole symmetry.

If a potential barrier exists, there will be discontinuit
of the parametersu, f across the barrier. The appropria
s
-
boundary conditions are derived from33

~2NfDS!ǧ]mǧ5
1

2Rb
@ ǧ~xb2!,ǧ~xb1!# ~A7!

whereRb is the resistance of the barrier atxb .
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