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Density of states and the energy gap in Andreev billiards
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We present numerical results for the local density of states in semiclassical Andreev billiards. We show that
the energy gap near the Fermi energy develops in a chaotic billiard. Using the same method, no gap is found
in similar square and circular billiardgS0163-182608)00333-9

I. INTRODUCTION curs, while at the straight linear parts Andreev reflection
takes place. The outward concave shape of the circular parts

The density of states in a normal metal in contact with amake the system highly chaotic. The special form chosen can
superconductor is affected by the superconductor, as a marfie considered as representative for any chaotic Andreev bil-
festation of the proximity effect or Andreev reflection. In the liard, which will be illustrated by results for some variations
ear|y days of Superconductivity’ this effect had been Ob_Of this SyStem. In order to show the marked difference with
Served in th|n f||ms Of norma| metal on a Superconductingrelated integrable Andl’eev bi||ial’dS, Ca|CU|ati0nS are dOI’le
substraté. It has been shown theoretically that for cleanalso for circular and square boundaries. These systems are
films the spectrum of quasiparticle excitations remainsdepicted schematically in Figs(td and Xc). The three sys-
gaples&at the Fermi energy, whereas a minigap develops fofems differ only as far as the specularly reflecting boundaries
dirty films3 The energy scale of this minigap is given by are concerned. Their Andreev reflecting boundaries are iden-
#lty, ty being a typical time spent by an electron in thetigal. Figure 1d) s_hows _the form of a quasi-one-dimensional
normal metal before it gets to the supercondugtor. diffusive system investigated as well.

Recent technological advances make it possible to study TO find the density of Andreev states, we solve the equa-
the effect in more complicated geometries, in diffusive me-fions for the quasiclassical Green’s function along each clas-
tallic wires? and in a two-dimensional electron gas wheresical trajectory. The solution depends explicitly on the length
electron transport is almost ballisficRecent theoretical L of the trajectory considered, and gives a set of energy
developmenfs’ suggested a new interpretation of old eigenvalues=Ave/L. Then, for each given point, we calcu-
results> The existence of a minigap has been related to théate numerically all possible classical trajectories and sum up
chaoticcharacter of the electron motion in the normal part oftheir contributions to the density of states.
the system. It makes no qualitative difference whether the TO state our results briefly, for the chaotic system we do
electron transport is diffusive, as in dirty films, or chaotically observe the formation of a minigap near the Fermi level.
ballistic, as in clean billiard& The absence of the gap in the Long, truly chaotic trajectories appear to take an exponen-
deGennes spectrum follows from the fact that a clean film idially small fraction of the phase volume and therefore do not
a specific case of a System with a Separab|e geometry. |¢pntribute to the resulting denSity of states. The relevant
such a System the motion is not chaotic. These Conc|usior%quati0ﬂs are given in Sec. Il. Results are discussed in Sec.
have been confirmed by quantum-mechanical calculafions. !ll. Conclusions are formulated in Sec. IV.

This interpretation is rather difficult to comprehend in
semiclassical terms. That was the motivation of the present
research. The problem is as follows. The electron motion
becomes truly chaotitergodig only for trajectories that are
very long in comparison with the system size. As we show in  An expression for the local density of state,r) in the
detail below, long electron trajectories correspond to An-clean, ballistic systems to be considered will be derived by
dreev levels with energies very close to the Fermi energytaking the imaginary part of the local Green’s function
Therefore, in contrast to the interpretation in question, ones(e+id,v,r). The quasiclassical Green’'s function
may argue that the presence of a minigap shows that theg(iw,,v,r) to be used will be a solution of the matrix
areno long trajectories in the system. Consequently, it mayequatiori**?
not be chaotic.

To resolve this sophistry, we have calculated the density
of states for several Andreev billiards, chaotic and noncha- v-VG+i[H,G]=0. (1)
otic, depicted in Figs. (), 1(b), and Xc). Such billiards
combine Andreet? and specular reflection boundarfesig-
ure 1(a) shows the form of the chaotic billiard investigated. The velocityv is taken at the Fermi surface, the matrxis
At the circular parts of the boundary specular reflection oc-given by

II. THE EQUATION FOR THE LOCAL DENSITY
OF STATES
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(-3,-3)

FIG. 1. Panels to c show the three clean billiards investigated. The specific points looked at are indicated in the chaotic billiard. The
four normal/superconducting interfaces are labeled in the circular billiard. The specular reflection boundaries are drawn boldly. Panel
shows the form of a quasi-1D diffusive system investigated as well.

oy A(r) 1
H= —A*(r) —j ) (2) 55:2—2
@n 2\wh+|A]
where w,, are the Matsubara frequencies aadr) is the A% 2712
superconducting gap function, to be taken constant in the 14 wnt Vo +]A]
superconducting regions and zero in the central normal part X A* ~ > - )
of the system. Equatiofi) can be solved analytically for any Ty @nTVent Al 1A
trajectory. By accounting for all trajectories going through a
given point, the complete local solution can be found. We (©)

will show this by first writing Eq.(1) in the following form:  while Dg= Bg. This solution is most easily obtained in two
5 steps. First, Eq(3) is solved for the normal system, taking
UFEG‘Fi[H,G]:O, 3) A(r)=0 in the matrixH. One finds

GN(' wn,|)= C4AN+ C5BNeZ(o””vF+ CGD N87 2wn|/U|:, (7)
by which ther dependence is represented by the length P&y ith matrices
rameterl along a trajectory.

Suppressing the dependence, the general solution can 1 0 1
be written in the form An=lg _q| a@dBn=|4 4l 8
Ga(iwn,l)=CiAst CZBSe[Z\/wﬁHA\z/vF]I while DN_ZBL . Since Eq.(3) is a homogeneous equation,
the solution(7) is complete apart from an overall constant, to
+caDee” [2\/wﬁ+\A|2/uF]l1 (4) be determined_ by the req_uirement, th_at_ the ma@r,lgdimes
that constant is the solution of the original equation for the
in which the matriced\g andBg are given by Green’s function of a bulk system, still havingsafunction

at the right-hand side. This will merely lead to the proper

-i [liw, A normalizatiod! of the expression for the density of states to
AS= oo _Ax 5 pe derived below
JoZ+ A2 —A*  —iw, e derived below. o .
n ) In the second step, the full matrit is diagonalized by
and the unitary matrix

wp iA wq,
1 \/(“«w%mm) Al (1 ¢<wﬁ+|A|2>)

u= : o
ﬁﬂ\/(l——w” ) \/(1+—w” ) °
A \/(wn+|A|2) V(wn+|A|2)

The correspondingly transformed E®) has the same form The solution of Eq(3) for a trajectory in inhomogeneous

as the equation for the normal system, the decay length beirgystems, as depicted in Fig. 1, is obtained as follows. Con-
replaced by;F/\/(wszr |A]?). Consequently, the full solution sider an arbitrary trajectory, hitting some point at one of the
Eq. (4) of Eq. (3) now can be obtained by the unitary trans- superconducting/normal interfaces, at which point an An-
formationUG\UT of the matrix given by Eq(7), and sub- dreev reflection takes place, and follow the trajectory inside
stituting the proper decay length. the normal region by accounting for all specular reflections
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at the boundaries until it hits a superconducting/normal in- 5
terface again. If the length parametds taken 0 at the initial —

3 |- _ n 4
hitting point and equal th at the second hit, standing for Egz L I ]
the total length of the trajectory, the form of the solutions in s ADM LMM Wﬂ”ﬂ’m R

the different regions is clear from Eg&}) and (7). For | 0

=<0 andl =L, the solution(4) is to be used. Since the dimen- i a 6 gl 14 ]
sions of the superconducting regions are supposed to be =, b I I i
large, behaving effectively as bulk superconductors, the co- "% | |
efficient of the matrixAg can be taken to be equal to 1. >t WMMH}%&JMJWJTMJ HFWHW li
Further, forl <0 the coefficientc; has to be 0, while fot 0
>L the Bg term blows up and the corresponding coefficient b ' ' alll113 df7ilisls
has to be 0. The normal region is supposed to have mesos- =3[ ¢ T
copic dimensions, and the full solutidby(i w,,!) has to be T2 L .
used. Equation(3) being a first-order differential equation, Scls AWWMM mm ﬂ -
the only requirement is continuity at the interfaces. By that %20 05 0 15 20
one finds forc, the following expression: M=Energy in Ve/Ly,sen, for point 1 in FIG. 1

system ?

FIG. 2. From top to bottom the local density of states for the

@n square, circular, and chaotic billiards, respectively, at pbintFig.

Ca= ‘/w?n+|A|2 1, for a ¢ grid with d¢==/20000. In the upper panel, for the
square billiard, the result correspondingd¢ = 7/2000 is also dis-
|A|2tan w,L/v ) played.

. (10
2 2 2 2
wn AP+ o (ot AP ant oL /og) which LgysemsStands for the length dimension of the system.

Now everything is ready for the local density of states inBy th_at, and denot!ng the relative density of states, now de-
the normal region. First of all, since we are after studying theoendmg on the_ variablg, by the same symbol, we end up
development of a gap just above the Fermi energy and of gt the expression
width much smaller thahA|, it is sufficient to focus on the

coefficientc, in the limit |w,|<|A|, so that v(g,r)= fwdqbz 5( 7 L(¢) —(n+H=|. 19
0 n Lsystem
L L . : .
c4=tanth. (11 Note that in this final expression the length of a trajectory is
UF present in a relative way, and has become dimensionless as
. . well.
Second, only the left upper matrix element®@f(i w,,!)
is required for the density of states, so only theterm in
Eq. (7) contributes. After the substitutionw,— e+i 8, one ll. RESULTS AND DISCUSSION
finds the contribution of a trajectory of length through a Because Eq. (14) contains the relative quantity
chosen point to the density of states at that point to be PrOL (¢)/Lgysemonly, the physical size of the system does not
portional to enter. However, in actual calculations a choice has to be
. . made. We have chosén.n,to be equal to 6. In all systems
lim Im i tanh(eJ.rlﬁ)L — lim Im ta1(6+|5)L depicted in Fig. 1, the origin lies in the center of the billiard.
60 Vg 60 Uf The corners of the square billiard then lie at,=3). The
length of the S/N interfaces is chosen to be equal to 2. The
N i—(n+l) specific pointsl to 5 to be looked at have the coordinates
. 2)T | 1=(-2.2,0.3, 2=(-1.7,1.94, 3=(-1.2,1.1, 4=(—0.5,0.2,
and5=(—0.5,0.2.

(12 In Fig. 2 the density of states is shown for poinin the

in which the summation runs over integervalues. For a three billiards under consideration, for & grid with
given point in the interior region of a two-dimensior@@D) ~ d¢=m/20000. For comparison, in Fig(d, for the square
system, all trajectories through that point have to be takemilliard, the result according td¢=7/2000 is displayed as
into account. This leads to the following expression for thewell. Although the results for the two meshes are hardly
dimensionless local density of statege,r), defined by distinguishable, for security all other histograms to be shown
are obtained using the findib= 77/20000 mesh. The density
n(e,r) eL(¢) . of states for the chaotic billiard shows a clear gap at the
v(er=— :fo dg> 5(0—_(n+5)77 : Fermi energy, which corresponds ip=0. No gap is seen
N A F 13) for the square billiard, only a reduction of the density of
states near the Fermi energy, in agreement with recent other
in which ny is the constant density of states of a 2D normalwork? Since the density of stategquard 7) is quite similar
system, andp is the slope angle of a trajectory with length for the different points, and no particular features show up,
L(¢). In presenting the results, it is most convenient to shiftwe further concentrate on the circular and chaotic billiards. A
to the dimensionless energy variablg= el gysienfvE, N peak structure is observed, to which we return below. The
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5 i ' jectories are rare, irrespective of the point considered. While
’E; - point2 ] for the square and circular billiards, trajectories with over
Tl I ] 2000 times the system size are easily found, for the chaotic
51 ,.MNMM ﬂﬂ rwﬂmmm billiard it is hard to find trajectories longer than 20 times the

0 system size. This is illustrated in Table I. The data given are

j T ' ' ] obtained as follows. First, for 50 points the longest trajectory
=, [ POINt2 ] was calculated, using for each point & grid of
ngz L WM h ﬂﬂm d¢=m/2000. The longest of the 100 000 trajectories consid-
S (P 1 ered this way was found for poirft-1.2, 0.9 at the angle

0 Jmﬂmw given in the first line of the table in column 1. In addition to

Z [ ' (7.6 ] its length of 71.8, its relative length is given. In the last three
=y PO I | columns the number of specular reflections and the labels of
B . the S/N interfaces of both ends of the trajectory, called exits,
>%; i /mﬂmﬂmmhﬂ MMLW are given. The meaning of these labels is shown for the cir-

0.0 0.5 1.0 15 20 cular billiard in the middle of Fig. 1. After that, the angle

n=Energy inv./L ., d¢ = /20000

was specified finer and finer, using 10 angle values on both
sides of the angle considered. Progressively, the angle giving
the longest of the 21 lengths calculated that way was picked
out for further subdivision. At the end, at one angle a length
of 19.08 times the system size was found, but then the bor-
derline of our(double precision was reached. The sensitivity
to the initial condition is illustrated by the results on the 5th

. ; : d 8th line from the bottom, because they hold for the same
nearn=0 are due to trajectories, which are long compare

. . . : le. Thi I tedi lightly diff t i
to the system size. For the circular billiard such long trajec- ngle. This angle was generated in a slightly different way in

. . . ; . the subsequent subdivision. We conclude that long trajecto-
tories contribute only if the line through a chosen point and

the center of the circle hits a normal, specularly reflectin
boundary. This requirement is not fulfilled for poihtAt the
top of Fig. 3 a similar plot is given, but for poig} for which
such trajectories certainly contribute. Now no gap is seen fo
the circular billiard. The gap for the chaotic billiard is mani-
festly present in the middle of this figure, for po@tand at
the bottom, for point3. The gap in the histogram for the
circular billiard depends critically on the precise location of
the point. This is shown in Fig. 4, displaying results for the
points4 and 5. While point4 does not support long trajec-

:l)tr;%su’ %oiltnltigsd\c/):rs. r::eoarrttr(])e gt;ﬂ?rv\?glgégcveﬂ?:ﬂigodrosrid'doubles the deviation angle. Using the relatidd), we es-
9 y P 9 timate v=2~ ™27, This shows that the density of states is

for the chaotic billiard at one of these points only, becauseex onentially suppressed at small With our numerical
not much difference is seen for this latter system. b y supp

: . . ethod, having a finite grid¢, we can only access energies
For the chaotic system the gap is present for all points. I{:;z —logy(S8¢). The states with smaller energies are not seen.

appears to be an intrinsic property of this system. Long tra:l'he good convergence of our numerical data, even at rela-
tively small 5, proves that the gap develops rather quickly,

IEX: 1 "elf] 6[[ll2s "] giving rise to an abrupt change of the density of states.

] It is interesting to note that quantum-mechanical effects
] can also be estimated in this way. Due to diffraction of the

LAl [ ik electron waves in a billiard geometry, the best angle resolu-

tion is limited by 6¢; = 1/\VKeL sysem Ke beING the electron

I8 e[ [ 23 8| 1 wave vector at the Fermi energy. This implies that no An-

rpoint 5 ] dreev states exists below the threshold energy 1/

L JJM»L{'?M’HJ’ me : IogZ(kFLsySten) :
M h Although it is not the primary aim of the present paper, it

. . is interesting to discuss the structure seen in the histograms.
ooint 4 5.2 1)|||] 24 ] The peaks are certainly due to the fact that special classes of

] trajectories contribute more than an average trajectory. Con-
r ] sidering theL(¢) dependence of the local density of states
— expression14) for a given point, and in an arbitrary direc-

neEnergyinval 20 tion, this function will contain a term linear ig. But there
’ are exceptions. The length( ¢) for trajectories through the
FIG. 4. The local density of states for the circular billiard at pointsl, 4, and5 in Fig. 1 behaves quadratically i around
points4 and5, and for the chaotic billiard at point 4. ¢ =0, while for the latter two points, in addition, a quadratic

FIG. 3. The local density of states for the circular billiard at
point 2, and for the chaotic billiard at poin®and3 in Fig. 1.

heights of the high peaks have been given explicitly.
The gap for the circular billiard is certainly typical for the
point chosen. This becomes clear if one realizes that stat

ries are rare, although, theoretically they are supposed to
Yexist. For example, comparing the trajectories illustrated by
the third and fourth line, there must be an anglgin be-
tween, at which the shift occurs from the first exit to the
Second one. This critical angle would support an infinitely
long trajectory.

To give some qualitative estimations, we consider the
contribution of the trajectories nearing that critical angle
The length at p— ¢y can be estimated ad ()=
— Lsystent0Ga(|¢— ¢b]). This estimation follows from the fact
that each bounce between concave boundaries approximately

Voiree(T)
W a0 o 2"V s o
b
=

Ny

vcircle (ﬂ)

Vohaosth)

o =+ N W s~ O =

=3
=3
o
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TABLE I. lllustration of the fact that long trajectories are rare in the chaotic billiard. From top to bottom
increasing length& (¢) are found for an increasingly precisely chosen angleThe data are for a point
somewhat below poir8, with coordinateg—1.2, 0.9.

¢ in radians L(¢) L(#)/Lsystem No. reflections Exit 1 Exit 2
—0.92677083000000 71.8 11.96 19 1 3
—0.92677083600000 75.5 12.59 21 1 1
—0.92677083700000 92.4 15.40 25 1 1
—0.92677083800000 70.8 11.80 20 1 2
—0.92677083690000 82.5 13.76 23 1 4
—0.92677083700000 92.4 15.40 25 1 1
—0.92677083710000 77.3 12.88 21 1 4
—0.92677083700000 92.4 15.40 25 1 1
—0.92677083701000 96.5 16.09 27 1 1
—0.92677083702000 77.8 12.97 22 1 4
—0.92677083700000 92.4 15.40 25 1 1
—0.92677083700100 110.3 18.39 30 1 3
—0.92677083700200 84.2 14.04 24 1 1
—0.92677083700090 88.9 14.82 25 1 4
—0.92677083700100 107.2 17.86 30 1 4
—0.92677083700110 91.0 15.16 25 1 3
—0.92677083700096 98.0 16.33 27 1 4
—0.92677083700097 1145 19.08 32 1 2
—0.92677083700098 94.2 15.69 26 1 2

behavior in¢— 7/2 around¢= /2 holds. Then the argu-
ment of theé function in Eq.(14) behaves quadratically in through point2 perpendicular to the circles centered 2it3)
¢ around¢=0, giving rise to asquare-root singularityin
the density of states. This singularity produces a series gfanel of Fig. 3.

equidistant peaks in the histogram with peak energies Finally, we want to point at even another type of extremal
counted by the integar. At ¢=0, the lengthL(¢) is equal

t0 Lgyseemm SO the lowest peak, fan=0, is expected to be
seen atp= m/2=1.57. This peak is easily recognized in Figs.
2 and 4. Another type of trajectory in a directign, around
which L(¢) behaves quadratically imh— ¢, is, for ex-
ample, the one through poiBtin Fig. 1 with ¢y~ 7/4, hit-
ting the exitsl and4. Since the line from the origin to point
3 has a slope that is slightly smaller thanl, ¢, is not
precisely equal tow/4. The correspondind-(¢g)=>5.23,
leading to a peak ay=1.8, which is clearly present in the
lower panel of Fig. 3. The corresponding peak for pdnt
lies too much to the right to be seen, namelyyat 2.3. We
point to another class of trajectories giving rise to quadratiof 7, which lie too high to be seen. We just mention the
behavior, namely, for example, the one through p@&iind
perpendicular to any outward concave circle. The correwhich is expected to give a step at=0.77, and the trajec-
sponding line connects poi® and the center of the circle. tory through point3 touching the circle around-3, —3),
Although L (¢) behaves quadratic as far as the contributioncorresponding to a step gt=1.35. Both steps can be recog-
towards the circle is concerned only, possible linear contrinized in the middle and lower panel, respectively, of Fig. 3.
butions from the backward part of the trajectory will lead to
a shift of the extremep,. We calculated the corresponding the clean 2D chaotic billiard, depicted by Figaland for
lengths, and, just as an illustration, we mention the peaks fathe present purpose to be denoted by Ch4, with the local
a few points. The trajectory through poihiperpendicular to  density of states at a central poifstand a pointB closer to

the circle centered 48, 3) leads to a peak at 0.97, which is the S/Ninterface in thedirty 1D Andreev billiard depicted in

clearly seen in the lower panel of Fig. 2. The trajectories

and (3, —3) lead to peaks at 0.97 and 0.49 in the middle

trajectory, namely, a trajectory through a point and touching
a circle. Consider the trajectory through poltin an up-
ward direction touching the circle centered(at3, 3). The
length has a minimum value at the touching angje but the

¢ dependence remains linear. Still, an effect can be ex-
pected, because the coefficient b= ¢— ¢, for positive

A ¢ can be different from the coefficient for negatiep.
This leads to atepin the evaluation of the function in the
expression for the local density of states, becadd®\ ¢)

= 5(A ¢)/|b|. In analyzing the different touching trajectories
for the different points in the chaotic billiard, not all possible
steps are clearly recognized, and others correspond to values

trajectory through poing touching the circle aroun3, 3),

We conclude by comparing the results for some point in
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liards, Figs. 1b) and Xc), respectively. The results are the
dashed and thin lines.

Despite that the gap occurs in all cases, it is seen that the
behavior of the density of states is quite different for diffu-
sive and ballistic cases. Consequently, this behavior is not
universal and depends on details of the geometry and the
scattering within the billiard. This fact strongly reduces the
applicability of random matrix theory methods, which are
based on the assumption of universality of chaotic behavior.
We note that the absence of universality can be understood
from the fact that long and truly chaotic trajectories do not
contribute to the density of states. Therefore, it is determined
by nonergodic, nonuniversal trajectories.

e e ==

T
[

Density of States (dimensionless)

IV. CONCLUSIONS AND PROSPECTS

scaled 1 = e/g,

Our results prove that a gap is formed in the density of
FIG. 5. The local density of states at poi=andB in the 1D States of a chaotic Andreev billiard even in the semiclassical
dirty system depicted in Fig.(d), compared with results for poig  limit. This is despite the fact that in the semiclassical limit
in three 2D clean chaotic systems indicated by Ch4, Ch3C and\ndreev states could have a very small energy being gener-
Ch3S. System Ch4 is the one depicted in Fig).lin the systems ated by very long trajectories. It turns out that the density of
Ch3C and Ch3S, the upper right outward concave circle of systerstates of a chaotic billiard exhibits an abrupt drop at energies
Ch4 has been replaced by the circular and square boundary of treeveral times smaller than/L e Below this energy, the
circular and square billiards, respectively. density of states is exponentially suppressed. We believe that
quantum-mechanical effects will lead to the complete ex-
Fig. 1(d). The results for the dirty system are obtained byhausting of the density of states at energies below
numerical integration of the Usadel equatidid.he curves UE/[Lsystet09(KeL systent 1. Comparison of the density of
A andB in Fig. 5 show the dimensionless density of statesstates in chaotic billiards and in the diffusive system clearly
for the two points in the dirty 1D system, while the bold shows the absence of even an approximate universality.
stair-step Ch4 line holds for poiBtof the clean Ch4 system,  For comparison, a square and a circular Andreev billiard
therefore being equivalent to the lower energy part of thenave been considered. In the square system long trajectories
bottom panel of Fig. 3. Mind, that the scale of the gap energyre always present, and no gap develops. Interestingly, al-
E, is different in the ballistic and diffusive case: for a bal- though in roughly 70% of the volume of the circular system
listic systemE =fivg/Lgsem Whereas for a diffusive sys- no gap is visible in the local density of states, in the remain-
tem it is strongly reducedE,=%ve/VILgysem | being the ing part of the volume there is also a gap developing. This
mean free path. With a view to comparison of the results, thossibly can be explained by the fact that the billiard is not
curves and the stair step lines are rescaled to a contfgon ideally circular and may be slightly chaotic.
Further, in order to test the sensitivity of the results to the All three billiards exhibit geometrically induced features
specific form of the boundaries, calculations are made alsin the density of states. Trajectories that traverse a billiard
for the Ch3C and Ch3S variations to the Ch4 system. In th@erpendicular to the superconducting boundaries, without re-
Ch3C and Ch3S systems the upper right outward concaviéection, generate a sequence of equidistant square-root sin-
circle of system Ch4 has been replaced by the correspondirgularities. Trajectories that touch concave boundaries lead to
circular and square boundary of the circular and square bilsteps in the density of states.
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