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We study the tunneling density of sta{@09) in superconducting systems driven by a Zeeman splifing
into the paramagnetic phase. We show that, even though the BCS gap disappears, superconducting fluctuations
cause a strong DOS singularity in the vicinity of energies* for electrons polarized along the magnetic field
andE* for the opposite polarization. The position of this singulafity= % (E,+ \/EZZ—AZ) (whereA is BCS
gap atE;=0) is universal. We found analytically the shape of the DOS for different dimensionalities of the
system. For ultrasmall grains the singularity has the shape of a hard gap, while in higher dimensions it appears
as a significant though finite dip. Spin-orbit scattering, and an orbital magnetic field suppress the singularity.
Our results are qualitatively consistent with recent experiments in superconducting films.
[S0163-18298)05529-5

I. INTRODUCTION Hspin

He

~err>1, (1.4)

It is well known that a magnetic field suppresses super- 2

conductivity since it lifts time reversal symmet(gee, €.9., \yheree, is the Fermi energy andis the elastic momentum
Ref. 1 for a general introductionin the absence of spin- rg|axation time. Conditiori1.4) means that in bulk systems,
orbit coupling, this effect can be separated into two mechagg grpjtal effect of the magnetic field is always dominant.
nisms:(i) the effect of the magnetic field on the orbital mo-  the sjtuation may change in restricted geometries. Con-
tion associated with an Aharonov-Bohm phase, éndthe  giger, e g., a superconducting film of thickness ¢, placed
zeeman splitting of the states with the same spatial wavg, 5 magnetic field parallel to the plane of the film. A Cooper
functions but opposite spin dlrectl_ons. _ .. pairin this case is restricted in the transverse direction by the
In bulk systems, the suppression of superconductivity igjim thicknessa. As a result, the geometrical area swept by

typically associated with the first mechanism. Indeed, thgp;q pair can be estimated ag rather than ag?. Therefore,
estimate for the critical fielclHC2 in this case is Eq. (1.2) should be changed to

3

a

He, &= ¢o, (1)

H, éa= po=H{ ~H

) )

. (1.5

where ¢y=hc/2e is the superconducting flux quantum and On the other hand, the Zeeman splittiig=g, ugH is not

affected by geometrical restrictions. Accordingly, instead of

D Eq. (1.4 the ratio of the two scales of magnetic field is given
&= K (1.2 by
is the coherence length for the dirty superconductarss Hspin a
the BCS gap, an® is the diffusion coefficient. On the other i =(€p7) € (1.6
hand, the magnetic field necessary to affect superconductiv- C2

ity by virtue of the spin mechanism is given by Thus, for sufficiently thin flmsa< &/ ez 7, the spin effects

become dominant. One can easily check that the same esti-
g seHspir=A, (1.3 mate(1.6) holds for other restricted systems, i.e., supercon-
ducting grains or wires. In these casasis the size of the
whereg, is the Landey factor, andug=e#/2mcis the Bohr  grain or the diameter of the wire, respectively. Quite gener-
magneton. Comparing Eg¢l.1) and (1.3), one finds that ally, a is determined by the minimal size of the sample in the
Hgpin is far in excess of—ICZ: plane perpendicular to the magnetic field. In this paper we
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E* :%(EZJF JVEZ—A?), 1.7

for the zero-dimensionalOD) (grain), 1D (strip), and 2D
(film) cases. Some of our conclusions already have been
y v briefly reported by two of u§ Here we present detailed deri-
vations of the results of Ref. 6 and consider the relevant
perturbations(spin-orbital coupling, orbital magnetic field,
"""""" : finite temperature, and energy relaxajiah the new tunnel-
L A o oo ing anomaly.
: : The remainder of the paper is organized as follows. Sec-
_A-Ez 0 A-F2  A4Ez w tion Il presents the parametrically exact solution for the sim-
plest but instructive geometry of zero-dimensional systems
(ultra-small superconducting grajnsSection Il deals with
v(w) . the more involved problem of the tunneling anomaly in su-
perconducting films and wires. Both sections required appli-
cation of the diagrammatic technique on the level of at least
Ref. 7. For the benefit of the readers interested in physical
interpretation rather than in rigorous derivations, we present
in Sec. IV the qualitative derivation which grasps all the
essential physics involved, even though it fails to give a
completely quantitative description. Section V analyzes how

R T the tunneling anomaly is affected by spin-orbital coupling,
: : orbital magnetic field, finite temperature, and energy relax-
: . : ) ation. We discuss the recent experinfenh the Zeeman

-E* 0 E* w splitting of the tunneling anomaly in Al films in Sec. VI. Our

FIG. 1. Evolution of the tunneling DOS with the Zeeman split- findings are summarized in the Conclusion.

ting E; for (a) the superconducting statg; < \2A, see, e.g., Ref.
5, and(b) for the paramagnetic stale, > J2A. The usual zero-bias Il. ZERO-DIMENSIONAL SYSTEMS

$2c;mgl1);|r;tk£ fﬁ;aging;ri St"ﬁk 'ch?rtezhg‘;l"gsfotrosmgl'Z'g;) Let us consider an isolated disordered superconducting
dimensiogal case 9 y P grain which is small so thgt the Zeeman splitting dominates
' over the orbital magnetic field effetdee, e.g, Refs. 9, 10 for
recent experiments on such grgind/e assume that the size
consider such restricted geometries, and unless the opposit¢ the grain exceeds the electronic mean free patnd, at
is stated, neglect orbital effects. the same time, is much smaller than the superconduct-
The transition from superconductor to paramagnet is ofng coherence lengtl§. We also assume th&i:1>1. This
the first ordef the superconducting state is the only stableresults in a large dimensionless conductance of the grain
state atEy;<A; while at E;=2A normal state is the only g (g~ kzla) Finally, we assume that the grain is already
stable state. Both phases are locally stgbke, stable with  driven into the paramagnetic state by the Zeeman splitting.
respect to small perturbationg the interval of magnetic Our goal is to find effects of the superconducting fluctuations
fields whereA <E,<2A. The normal state becomes lowest on the DOS of the system. _ _
in energy and thus globally stable By=\2A. From now The HamiltonianH of the system consists of a noninter-
on, we will assume that this condition is fulfilled. acting part, and an interacting onieljy . Using the basis of
One of the most fundamental manifestations of supercontn® €xact eigenstates bf, labeled by integers andj, one
ductivity is the gap in the tunneling density of statgs) ~ ¢an write the Hamiltonian as
around zero bias® One can expect that after the paramag-
netic transition not only the BCS order parameter vanishes H=2 E,al,a,— )\E awawa”a” (2.1)
but also the energy dependence of the tunneling DOS be- io

comes similar to those in superconductors above the critical

temperatureT, . (The latter dependence is discussed in thel1€r€ the operatoa;,(a;,) creates(annihilate$ an electron
review article Ref. 4. in a statei with spino=1,|, and energyE;; ()= €+ Ez/2

In this paper, we demonstrate that, on the contrary, therd’N€re €; is the orbital energy of theth state.A<1 is the
are clear observable superconducting effects in the normalimensionless interaction constant, ahis the average level
state even far from the transition region. We will show thatspacing:
at the transition point there appears a dip in the D@S o
schematic evolution of the DOS with the magnetic field is (€11~ €)=2F. (2.2
shown in Fig. 1.

The shape and the width of this dip depend on dimension- Let us stop for a moment to discuss the approximation
ality of the system. However, its position is remarkably uni-made in Eq(2.1). We included in Eq(2.1) only the matrix
versal: elements of the interaction Hamiltonian responsible for the
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FIG. 2. Structure of the ground state of the superconductor G, (w1)
above paramagnetic limit. Electron tunneling onto the orbétal
creates a spin singlet state on this orbital. At some enegayixing FIG. 3. Diagrams foa) self-energy3,; /(w) and(b) supercon-

of this singlet with the empty states becomes resonant, see the teXucting propagaton (o).

superconductivity. We omitted two kinds of diagonal terms.grhital €, already occupied by a spin-up electron creates an
The term proportional t@iTglai Ulajngaj -, 'epresents the to- electron pair which can mix with the empty orbitals and thus
tal charging energy responsible for the Coulomb blockdde. interact with superconducting fluctuations. This mixing turns
It is not important for us because it does not lead to anyout to be resonant at some enefgy-E* and it leads to a
anomalies at energies of the order of Zeeman splitting, and gharp singularity in the spectrum of one-electron excitation.
can be accounted for by a corresponding shift of the applied To evaluate the effect of superconducting fluctuations on
bias. Other diagonal terms such as the one proportional the DOS of electrons in the paramagnetic state, we use the
ai‘fglaiozaj’fazajgl represent the spin exchange. It is not in- diagrammatic technique for the Green functi@F) at zero
éemperaturé. The DOS can be expressed through the one-

cluded because it leads only to a renormalization of th ' . )
Landefactorg particle GF,G;,(w), of an electron on the orbitgland with
L spino=+1=1(]):

We also omitted off-diagonal terms, suchasa ay a;
with i, j, k, | not equal pairwise, corresponding to the matrix

1
elements: volw)=—— sgr(®)ImY, Gi,(w), 2.3
|
M!‘j'=f drdr' V(r=r" ) g (NP (r ) ) g (r'). where
The wave functions are known to oscillate very fast, so the G =G '-3,. (2.4

wave functions of different levels are very weakly correlated. o . . .
We can restrict our consideration by a short-range interacGiU is the GF for the noninteracting system
tion, V(r—r")= (Nvg) 6(r—r'), wherev, is the bare DOS. 0o _ 1
One sees that the integrapidy;(r)|?|#;(r)|?] in the diago- Gy = (0~ 6> B2, 25
nal matrix elements is always positive while the prOdUCtandEig is the one particle self-energy.
[ (1) ¢ (r) n(r) (r)] can be both positive and negative.  The leading contribution to the self-energy is shown in
As a result, the off-diagonal matrix elements turn out to berig. 3(a). The solid and curly lines denote the single-particle
smaller than diagonal ones. Straightforward calculaffohs  GF and the propagator of superconducting fluctuations, re-
show that they are smaller by a factogl/ spectively. The latter can be obtained by summing the polar-
In the paramagnetic stat&4>2A), the structure of the ization loops in the Cooper channel shown in Figp)3The
ground state is similar to that without interaction, see Fig. 2single loop is given by
The orbitals with e,<—E,/2 are doubly occupied while
those with ¢ >Ez/2 are empty. The orbitals witHe] 1 w?
<E/2 are spin polarized with spin up. (w)= =In| D—], (2.6
The Hamiltonian(2.1) does not affect the spin polarized 26 \Ez-ol
states, but mixes the doubly occupied and empty State%\'/herew+=w+i039n(w) andw, is the high-energy cutoff.

Since those states are separated from each other by a largg, i1+ the D tiOlEi b btain th |
gapE;, this mixing can be treated perturbatively. Thus, thegatglrng e Dyson equatiofiFig. 3(b)], we obtain the propa

mixing does not change the ground state qualitatively. In

contrast, the spectrum of the excitations, i.e., the tunneling - s
) ) ; NS 26

DOS changes drastically due to the interaction. The essence Aw)= _ = ————

of this effect is that a spin-down electron tunneling into some 1-\6ll(w) IN[(EZ—w%)/A7]

2.7
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whereA = w.exp(—1/\) is the BCS gap. (@) ®)
The propagatof2.7) has a pole atv=*(}, <O 00 03 0 D
- O » C/ @
- A2
Q=\E;—A". (2.9 " ! T + D +

This pole can be interpreted as a bound state of two quasi-
particles with energy).

The analytic expression for the self-energy given by Fig. (c)
3(a), has the form
i *® d(l)l 0
2 (w)=i fﬁxﬁA(wﬂL w1)Gjj(@q). (2.9 1 ’ 1

One can see that there are two contributions to the self- FIG. 4. Higher-order corrections to the self-enefgy and (b),
energy. One comes from the pole/dfand the other is due to which were neglected in comparison with reducible diagfam
the branch cut of this propagator. The pole contribution gives

a singularity of the self-energy at certainand ¢; while the +E* x2 |2
contribution of the branch cut is smooth. To find the singu- ~ ¥1(1)(@)= VoFo( W ) Fo(X)=Re — .
larity in the DOS, only the pole contribution t® may be 0 x—1 (2.19

retained:
— where v is the bare DOS per one spin, the enefgy is
S ()= ﬁ 1 defined by Eq(1.7) and the width of the singularityV, is
H Q w,+e6—Ezx2+Q sgne—Ez/2)" given by Eq.(2.13. Equationg2.15 and(2.13 are the main

(2.10 result of this section. They predict a hard gap in the spin-
resolved density of states:,(w) vanishes atjw+ oE*|

At certainw the pole of the self-energy coincides with the <W,. The overall density of states + v, is suppressed by
pole of G°. This causes the singularity in the DOS. One cang factor of 2 near the singularity.

check that the singularities of Eq@.5 and(2.10 coincide In this calculation we neglected higher corrections to the
providede;=(}/2 and self-energy, e.g., those shown in Figéa)dand 4b). In order
to justify this approximation, we have to compare the contri-
2
e Ez+Q Ez+ VEZ—A? . (2.1p  butions shown in Figs.(& and 4b) with the reducible dia-
2 2 ' ' gram shown in Fig. &) included in Eqs(2.10 and (2.12.

o ] ) The singular contribution originates from the pole A»f It
Substituting Eq(2.10 into Eq.(2.4) we obtain the GF for  means thatA carries frequency). The singularity in the

the down-spin electron ab close toE*: DOS atw=E* appears when the pole of the self-energy and
the pole ofG° coincide. This happens when the &® for
w,+€—Ez2—Q up-spin carries energ) — w. In Figs. 4a)—4(c), the inter-
Gj(w)= > mediateG° for down-spin should carry energy to give a
(0 —€—Ezf2) (0w, +€—EZ2=Q) =W singularity to the DOS aE*. This condition cannot be sat-

(2.12 isfied for Figs. 4a) and 4b). As a result, after the integration
over the intermediate frequency, these higher-order correc-

where the energy scale of the singularity is given by tions turn out to be smaller than the reducible contribution
’__5A2 (c) by small factorW, /A= 6/A<1.
W(): T (213)

Ill. DISORDERED INFINITE SYSTEMS

SinceEz,A> 6, one can neglect the fine structure of the  In this section, we will obtain quantitative results for the
DOS on the scale 08 and substitute the summation over tunneling anomaly in infinite systems. In Sec. Il A we will
by the integration ove; : start from the perturbation theory and demonstrate that the

lowest order perturbative results diverge algebraically at en-

w;+e—Ez2—Q[2 ergies close t&*. In order to deal with this divergence, we
develop a nonperturbative approach in Sec. Il B and obtain
€+ (0, ~E7l2-012) = W the anglytic exgressions for tphpe shape of the singularities for
w—E* all interesting cases. This machinery will be also used later in

=—ivr— 2.1 Sec. V.
=y (214

E Gil:VOf dEi

Analogously, the GF for the up-spin electron can be ob- A. Perturbative resuilts

tained by changing the signs Bf, and(}, so that the singu- The analysis of a 0D system presented in the previous
larity occurs atw=—E*. subsection, is not directly applicable to superconducting

Substituting Eq(2.14) into Eqg. (2.3, we obtain the final wires and films because one cannot approximate the interac-
expression for the tunneling DOS in ultrasmall grains tion Hamiltonian
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N * Aw,Q) o
Him:—>\vglf_mdra}(r)aj(r)al(r)aT(r) (3.1 wTOOoON = O+ [Om (@

by its diagonal matrix elements. Despite this complication,

we will still be able to show that the singularity persists and 1 prawtw,t
remains at the same bias as that in 0D. Q) !

To describe this singularity we once again have to evalu- > =1+ | (®
ate the effect of the superconducting fluctuations on the GF '
of electrons. First of all, we need to evaluate the propagator “Pend

of superconducting fluctuationd, see Fig. 5. In contrast .
with the OD case, the superconducting fluctuations in the 2« TW . !

. —_—— _ % 1
bulk system are inhomogeneous: the propagator for the su- —zGTu)(wa)—w_ﬁpiEZ/“sgn(w)# !

_27ruo‘r
perconducting fluctuations depends on the wave veQor
(We will omit the vector notation in the momenta, e.@, FIG. 5. Diagrams for the(a) propagator of superconducting
EQ_) Solving the Dyson equation shown in Figla we fluctuationsA (w,Q) and(b) the vertex functiony, (o,Q).
obtain the propagator singularity in the DOS developing at exactly the same energy
as in the 0D casep=E*, given by Eq.(2.11).
2 The next step is to consider the vertex function in the
Alw,Q)= > — o (3.2 particle-particle channel. The ladder approximation which
vol{[EZ— (Jw[+iDQ?)“]/A%} gives the main contribution a1 (7 is the elastic mean

free tim@ is shown in Fig. ). Analytically, they are given
whereD is the diffusion coefficient. AQ=0, the propagator by
(3.2 resembles the zero-dimensional expresgidn). We _
see that the propagator has a singularitywatlose to() Y+(0,.Q)=7+1+(0,Q)y:(w.Q). 3.3
providedDQ?< (). As we will see shortly, it results in the Herel.(w»,Q) stands for

1
l+(0,Q)= ZWOJ (dp)Gy()(0+ w1,6)G (1) (w1,€-p-0)
B 1 1
B ZWVOTJ (dp) [0+ w;— €, = EZ2+ (1/127) sgnw+ wq) [ w1~ € o+ EZ/2+ (i/27) sgnwq) ]
={1+i(lo|*sgnw)Ez)~DQ*]} 6] — (w+ wy) ], 3.9

where dp)= d%/(2m)% and the GF's are averaged over We substitute Eq(3.5 into Eq. (3.7) and perform the
disorder’* Here we used the conditions of the diffusion ap- integration ovep andw;. For Ql<1 and|w— w,|7<1 in-
proximation,ow7<<1 andQI<1. We substitute Eq3.4) into  tegration over the momentum results in

Eq. (3.3 and we obtain

Y+(0,Q)=70(0+ v o] J (dp)GF(w,p)Gi(w1,~p+Q)

O —(0+w))w] . (35 =i27mvef(— ww) T°SgN w;).
~i[|w|+ sgr@)E;]+ DQ?

Performing the integration oves; we take into account only
Now we can evaluate the first-order correction to the onethe pole contributions in the propagai@:2) for DQ*<(:
particle GF, Fig. 6:

w+w,Q
(1) 1 d(l)l 2
56" (w,p)= = | (dQ) | 5 “GHw.pA(0+1,Q)
XGy(w1,—p+Q) Y2 (0—0;1,Q). (3.6
The DOS is determined by the GF integrated oper ol PO ool
by 4} 1)~ ) by 4
sgn ) FIG. 6. Diagrams for the lowest order corrections to the one-
viay(@) == T ImJ (dp)Gy((@.p). (3.7 particle Green ?unction.
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~. -

AZ/ 1 . 1
10 0+w-iDQ? Q-w-iDQ?)’
(3.9

since the integrals along the branch cuts give only the cor-m M

Alw,Q)=~

rections which are smooth functions ef The main contri-
bution to the frequency integral results from the region
where the real part of the pole of the propagatoin Eg.
(3.7, Rew;=—w=x(}, is close to that of the vertex_,
Re w;=w+sgn(w;— w)E,, and the imaginary parts of
those poles have different signs. The latter requires
o Re w;<0, w?>>[Re w;]2. One can easily check that all
these conditions can be met onlyifis close toE* from Eqg.
1.7).

Evaluating the integral oven, in Eq. (3.7) we obtain the
first-order correction to the DOS

’
.
~ Prs

sviY (w) A?
1) =50 Ref (dQ)c%m(w,Q), (3.9

Vo

whereC; )(w,Q) is the Cooperon given by

CT(U(“’vQ): —ilw+tE*|+DO?’ (3.10 FIG. 7. Diagrams for the second-order corrections to the DOS.
I|w_ | Q Diagrams irreducible with respect to the curly lines, similar to Figs.
[Calculation of5v; requires an obvious modification of Eq. 4(a) and 4b), are negligible for the reason discussed in the end of
(3.7.] Sec. Il
For the one-dimensional caseire), this correction ac-
quires the form much more pronounced than that of the normal mefal (
) 2o >T.) which arises due to the superconducting fluctuations
sl VA / A and is of the order ofy lIn[In(w+E;)], see Ref. 4. The
,,—0 W)= 810 \/ﬁ\ |+ EX| . (311 enhancement of this singularity results directly from the iso-

lated pole in the propagator of the superconducting fluctua-
It is possible to neglect higher-order corrections to the DOSions, see Eqs(3.2) and(3.9) rather than in the branch cuts
only provided|w+E*| is large. Foro— E*, the correction of Ref. 4.
(3.11) diverges. Therefore we need to sum up all the orders
of perturbation theory to describe the DOS in the vicinity of
E*. Such a calculation is carried out in the next subsection.
For two dimensiongfilms), the first-order correction to 1. Derivation of self-consistency equations

the DOS vanishes fdiw|#E*. However, this is nothing but — \yg start the summation of the perturbation theory terms
an artifact of the first-order approximation and the seconds,;, the series of diagrams for the DOS presented in Fig. 8.

order correction is already finite. Diagrams for this correc-g oy giagrams dominate in each order of the perturbation
tion are shown in Fig. 7. The result can be written as theory in comparison with those of the same order but in-

B. Nonperturbative results

Wi &
—2—2(m> %lmj (dQl)(dQZ)

Vo

XCl)(@.QuC (0. Q). (312
For the two-dimensional case E@.12 gives
AZ

2 0 2
| , (31
49Q(w=E*) n(|wiE*|) (313

whereg=4m7Dvy>1 is the dimensionless conductance of
the film in the normal state. Deriving E¢3.13), we cut off
the logarithmic divergence at large momefiga by the con-
dition DQ%SA, since it determines the applicability of a
single pole approximatiof3.8).

As well as the 1D case, the perturbation theory fails to  FIG. 8. Structure of théth order perturbation theory. The ver-
describe the DOS in the vicinity &* in two dimensions. It tical wiggly line on the upper Green function corresponds to cutting
is noteworthy that the singularity described by E8.13 is  this GF into two lines and fixing its frequenay.

(2)(w)
v

Vo
wa, Q2

wj» Qj
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cluding elements irreducible with respect to curly lines, simi-propagatorA (w;,Q;) in Eq. (3.2) (1<j=Kk). It also con-
lar to Figs. 4a) and 4b). The latter statement can be justified tains (X+ 1) GF. Before averaging over disorder, each GF
by arguments similar to the analysis of Figs. 4 presented G (w;p,p’) depends on two momenidnitial p and final
the end of Sec. Il. p’) and on the direction of the spirs= +=1,|. Contribu-

The diagram of thekth order of the perturbation theory, tion of this diagram to the DOS of electronsév|(w) at
Fig. 8, containsk curly lines that stand for the fluctuation positive energyw>0 is

sgn w) J‘ dwldwz da)k
Im (2m

k
XGl(w;pk-Fl'pl)]l:[l A(w;, Q)G (@;p;,p] )G (—w+w;;—p{+Qj,—Pj+1+Q)). (3.19

ov{ (@)=~ [ @pcapp--@pei [ (@O0 (a0

w

Disorder averaging of the product of the Green functions in

Eq. (3.14 and of the superconducting propagatorcan be f (dpy)GR(@;p1,P1) G (@ Pks1,P1)

carried out independently, since their correlation gives rise to

nonsingular corrections containing additional smallness J _a . ,

1/(ep7). == 7,C (@;Pk+1,P1), (3.18
For the sake of convenience we introduce

GRA(w;p,p’): retarded(advanced GF at E;=0. In the We obtain

absence of spin-orbit scattering the Green functions

GRA(w;p,p’) from Eq. (3.14 can be presented through (5v0())= — = A? 1) 9
GR® as Ve m\voQd] \2k] dw

GR(w+0E,/2;p,p') >0,

GMNw+oEZ/2;p,p’) w<O.
(3.19

k
G, (w;p,p')= ><Im<fjl:[l (dQ))(dp))(dp))GR(w;p;,p;)

XGNwa;—p +Qi,—p; +Q-)>. (3.19
After substituting Egs(3.15 and (3.8) into Eg. (3.14), o P Pt
one can integrate over all intermediate frequeneies be- . .
cause the fluctuatlon propagatd(w; ,Q;) has simple poles 'I_'hle role Of_ th? fﬁCtor k/d:(n Eq. ((;3.39)(;?:'(_0 cgncgllthe ml:jl'
at w;= +Q+|DQ According to Eq. (3 15, G,(w;p,p’) tiple counting: there ard retarde in Eq(3.19, an

- application of the operatat,, to any one of them leads to Eq.
> w
in Bq.(3.14 is retar.ded,@ 0). In order to get the advanced (3.17). In addition, Eq.(3.19 includes terms likedG*/dw.
GF from G;(wj—w;—p; +Qj,—pj+1+Q;) we choose the . S
. ! IR ] One can check that they give exactly the same contribution
pole in A(w;;Q;) with positive real partw;= —|DQ

(One can check that another pole leads to a product of the
retarded functions, which vanish after the disorder averag-
ing.) Using EQgs.(3.8) and (2.8) and introducing the short-
hand notation

G*(w,p)

ijE—erZE*—iDQJ-Z, (3.1

we can presendr{(w) at >0 as
1 AZ k
5Vﬁ")(w)=—;(yo—ﬂ) Imf (dPes 1) GR(@; Pys1,P1)

n T, .
' L GMwg,,— )
x T (dp,)(dp))(dQ)GR(w;p; p]) G gy, mp+ i),

=1 @ 9
XGA(Q)Q];_pj’+Ql!_pj+1+Qj)- (3.17)

FIG. 9. Structure ofy(®. Three points defining the vertex are
Averaging Eq.(3.17) over disorder and using the identity  denoted by thick dots.

00000000000000008000$0000000000000000
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GRw,p+Q) (27rVr)4B(2)(w1,ug,Q1,Q2)

I
I
I
=1 + | +
I
I
|

G4w—¢,-p)

GAw—w1,—p+ Q1) G*(w,p)
) s N
G‘H(w,p\)\ /GA(W = wa, =p+ (Q2)

AN AN
NN T

FIG. 11. Second-order Hikami bd&®.

FIG. 10. Diagrammatic equation for the vertey(Z,Q).

where

as terms which contaitG™dw. The additional factor 1/2 %

takes these contributions into account. y(g,Q Q)= E 7,(k)@‘,Q Q). (3.24
Using a conventional trick k/:fénkdn, (see Ref. ¥, k=1

one can presents»{(w)) in a form

® B A? a (1 Our goal is to evaluate/(Z)Q,Q) self-consistently. The
(v (@)=~ omT VOQ”“%L dﬂf (dQ)(dp) difficulty is that the diagrammatic series fercontains other
elements excepy itself, see Fig. 10.
x(GR(w;p)>(GA(wQ;—p+ Q)) (3.20 These elements are known as Hikami bo¥e$he sim-

plest Hikami boxB(?), which appears already in the second
order of the perturbation theory faiv, is the integral ¢p)
(3.21 of the sum of the three diagrams shown in Fig. 11

where the short-hand notation

wo=w—wo=2w—2E* +iDQ?

is used andvg is defined in Eq(3.16. A similar equation (@2mvr)® BO) (wy, wa, ws, Q1, Oz, Qs) A

holds for spin up and negative. In this case one should use ——

~ * 1 2 R R

o= —20—2E* +iDQ2, 2 A X
The vertexy™ can be written using Fig. 9. The rules of 3 B = +

reading diagrams on Figs. 9 and 10 are slightly different

0%0%6 %% %
20205262528
SR

,l A\ /A

from the conventional rules we used befdfi¢to each curly

line corresponds factopA?/(vyQ)); (ii) no summation over = R'
the frequencies is implied: each retarded GF bears the fre-
quencyw, each advanced GF bears the frequeagygiven //'
by Eq.(3.16); (iii) each interaction with curly lines changes / K \ '
the retarded Green function to advanced and back. The re- )/ + 3 }:Octlaf}ons of the
sulting expression reads \’ / ashed ine
Y¥(0q.Q) —~
AZ k—1 k—1 ——
/
=7 » fH (dQ))(dp;)(dp;) '
VOQ) < =1 . . . / / //x 4 2 rotations of the
R A _ , / J/ dashed lines
xXG (w!pjipJ)G (iji_pj+le_pj+1+Qj) \ ,/ /
—d—
XGR(w;Di,D)GA(wQ;—DL+Q,—D+Q)>- (3.22
/7N
Note that the averaged product of GF’s in the integrand of / .
- ; 5 rotations of the
Eq. (3.22 does not depend gn. We can thus perform in Eq. L dashed lines
(3.20 the integration ovep. As a result, Eq(3.22) takes a \((,——--\/
form ——
ov A? J (1 ~ . I @)
R Im _f d f d .Q), (3.2 FIG. 12. Third-order Hikami boB'>. Momenta and frequen-
Vo o) dwJo 7] (dQ¥(we.Q). (3.23 cies in the Green functions are arranged similar to Fig. 11.
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B (w1,07,Q1,Q>) B®(w1,07,03;Q1,Q2,Q3)
- [~i(w1+ @)+ D(Q2+QI)]. 2 [ Ci(wtopt wy)
(27vg)° v - (2771/0)5[ w1+ wyt o
(329 +D(Q5+Q3+QY)]. (3.26
The third-order Hikami boxB®), is given by the momen-  The equation for the vertex(wq,Q)=17,({=wq,Q)
tum integral @ip) of a sum of 16 diagrams of Fig. 12: that determines the correction to the DOR). (3.23] Is

2

A ~ ~
m) f (dQu)(2710)°B? (g 0o,,Q.Q1) ¥(1) 7(£.Q)

1 1
~7(£,Q)=1+ ;+I§—DQ2)7w(§,Q)+7]

A2 2 ~ _ _
+ 7? VO_Q) ff(dQl)(dQZ)(Z’JTVO)SB(3)(wQ,a)Ql,wQZ,Q,Ql,QZ)72(1)72(2)7w(§,Q)+.“’

(3.27

where y(j) = yw(Z)Qj,QJ) with Z)QJ_ determined by Eq(3.21). We introduced the extra variablgin order to separate the
external energys and the integration variable in E¢3.27) and further.

The Hikami box of thekth orderB® is given by a sum of diagram®f the type of Figs. 11 and }2vhich contain X
vertices. Strictly speaking3¥ depends on R—1 sets of momentum and energy transfer,@). However, in order to
evaluate the DOS correction given by Fig. 8, we can restrict ourselves by Hikami boxes that dependlosBtop; ,Q;),

1sj=<k: (0;,Qj) and (- w;,—Q;) characterize neighboring vertices. Equati¢®25 and(3.26 allow us to conjecture that
B® at arbitraryk has a form

Ce <& ,
BY{w;,Q;}= W; (—iw;+DQ?), (3.28

whereC, are numerical coefficients.

We are not going to determine coefficie@g directly. An important feature of Hikami boxes is that they are local objects,
determined by distances smaller or of the order of the mean freel patierefore, the coefficientS, in Eq. (3.28 do not
depend on the dimensionality. Therefore, we can compare the exact solution of the 0D problem, Sec. I, with the sum of the
perturbation theory series involving the coefficie@sand thus find those coefficients.

Equation(3.27) can be rewritten in terms o, as

' -
+7u(£,Q) 2, KC

w A2
(—iZ+DQY)7,(£, Q=1+ (—if+ DQZ)M(LQ)gl Ck{ "%_Qf (dQy) ¥(1)?

X

A2 _ k—1 ~ B
nvO—Qf (dQl)')’w(lele)z} f(sz)(—inz-f—DQg)yw(szsz)z_ (3.29

Introducing the functiorf (x),

A )~
ﬁo(w)=77yo—ﬂf (dQ) v, (wq.Q),

f(x)=— D, Cuxk+1, 3.3 A ~ .~
(x) k§=:l I (339 ﬁl(w):UVO—QJ(dQ)Yf,(wQ,Q)(—le+DQ2)-

(3.32

we obtain a simple equation f ,
pie e % (4.Q) One can use E(3.3)) to presenty,(£,Q) in the form

(—iZ+DQ) (£, QF(Bo)+7u(£,Q)Baf ' (Bo) =1, (£.Q)= Z(w)
(3.3 Yl ) Q7 amw)

(3.33

where 8y and B, are connected with by where the paramete® andm are determined as
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1 ' (Bo(w)) Egs. (3.34 and (3.40. The result should be substituted in
Z(w)= TBo(@)’ 2m(w)=,31(w)w- Eq. (3.23 which gives the final nonperturbative answer for
0 0 (3.34 the DOS. In the following subsection, this program will be

carried out for 1D(wires) and 2D(films) systems.
It was already mentioned that the Hikami boX&§) and
thus coefficientsC,, as well as the functiori(x) do not de- 2. Solution of self-consistency equations
pend on the number of dimensioms In contrast, thew We substitute Eq(3.33 into Egs.(3.32 and (3.23 and

dependence of parametefy, B;, andm are different at perform the integration over the wave vect@s Equation
different dimensions. Let us first consider the 0D case iN3.23 acquires the form

order to determiné(x) explicitly. At d=0 one has to abol-

ish integration ovef in Eq.(3.32 and substitute the inverse Sv, d 1 Myl—-iwo+m(w,n)]

mean level spacing * for v, and 2@—E*) for wg. The o ~25,m JO d [ Bo(w,7)]

vertexy can be determined straightforwardly (3.41

de; ox Here, we used Eq.3.34 and introduced the dimensionless
Yol{)= j 5, Ci(@)Giy (0—Ez=0), (339  frequency and mass

where 0D GFG;, andG, are determined by E42.12) [Eq. w+ oE* m s
(2.13 for W, should be multiplied by/7] and by Eq.(2.5), 0= W, MWy (3.42
respectively. Substitution of Eq$2.12) and (2.5 into Eq. _ )
(3.35 gives after the integration oves The relevant energy scales, which, as we will see below, are
the widths of the tunneling anomaly, are given by
1t = w—E* 1 213
70)( 5) - E 0 WO + 2

2
A
W=3| ————| , Wo,=—F+, (3.43
. ! (161/10\/5 2490
YN e , where() is given by Eq(2.8), D is the diffusion coefficient,
1 (0= B{1=1F o[ (0=E*)/Wol} v1=(mpeS)/(27?) is the one-dimensional density of states
(3.369  per unit spin(S is the cross section of the wireand

where the functiorFo(x) is given by Eq.(2.15, E* is de- g=4mv,D is the dimensionless conductaricélhe latter is
0 o related to the normal-state resistance of the film gas

termined by Eq(1.7), andW3= n8A2/Q. By comparing Eq. - 25 8K)/R
(3.3 with Eqg. (3.33 we immediately obtainZ(w) and ' -
m(w) for zero dimensions:

Dimensionless functions in E3.41), M 4(x), are defined
as

Fol(w—E*)/Wo]+1
Zo(w)= ol(@ 2) ol 1 (3.37)

4_g> . (3.49

My (x)= X

M, (x)=In

2
Vax'
(3.39 To find M, we cut off the logarithmic divergence at large

momentaQ by the conditiorDQ?< A, which determines the

) ) . applicability of the single pole approximatia.8), and ne-
On the other hand, from the zero-dimensional version of qulected the factoA/Q =1 in the argument of the logarithm.

Fo[((])_ E*)/Wo]_ 1
2Fo[(w—E*)/Wo]

Mo(w)=i(w—E*)

(3.32 at {=2w—2E* we can determing, and 3: Using the same notation, we obtain from E(%32 and
(3.39
! Dip= —r (3.39
:_, = — 2] = . .
bomyr AT Bolw M Bo(w, 7)1}
Now we are in a position to determine the functibfx) =—yMg[—io+m(w,7)], (3.453

from Eq.(3.30. We expres$, throughB,, substitute it into

Eq. (3.37 for Z, and use the connection E@.34 between m{f[ Bo(w,7)1}3=nf'[ Bo(w, ) M —iw+mM(w,7)]

Zo(w) andf(Bgy). As a result we have .
+mM(w, 7MY —io+m(w,7)]}.

1 1 1 1-4x (3_4sb

0= o " Fy20 ~2x 2x (340

Equation(3.40 allows us to formally solve Eq3.453:
This functional dependence which remains the same at all
dimensions, can be used to evaludtg (w) for d=1,2. PM{(—iw+m)

Equations(3.23, (3.32—(3.34, and (3.40 constitute a Bo=— — 5 (3.463
complete set allowing us to find the DOS in any dimension. [1-7My(—To+m)]
One has to substitute E@3.33 into Eq. (3.32, and find )
functionsZ(w) andm(w) self-consistently with the help of f(Bo)=1—7My(—iw+m), (3.46H
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'(Bo) _ 1
[F(Bo)® 1+7M{(—iw+m)

We can now substitute E@3.469 into Eq. (3.45hH and ob-
tain after simple algebra

(3.469

M(w,7)=7M¢ —iw+m(w,7)]. (3.47)

The further calculations are substantially simplified due to

the fact that the integrand in E(B.41) can be presented as a
total derivative with respect tgy. In order to demonstrate
this, we differentiate both sides of E(®.47) with respect to

.

m_ M o+

(9—77— d( lw m)
Finding om/d#n from Eq. (3.48, we notice with the help of
Eq. (3.46D that it coincides with the integrand in E(.41).
The integration in Eq(3.41) can be immediately performed
and we obtain

+My(—iw+ )am (3.48
—lwo+m)—. .
My an

o

5v_

J
7 __Zﬁ_wlm mM(w,n=1).

(3.49

Finally we puty=1 in Eq.(3.47), differentiate both sides
of this equation with respect te, and substitute the result
for om/dw into Eq. (3.49. After restoration of the original
units for w according to Eq(3.42, we obtain for the density
of statesv,(w) = v+ v, (w) the following result:

|

w+oE*
Wy

Vo)

(3.50

Vo d
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FIG. 13. Singularity in the DOS for spin-down polarized elec-
trons for(a) 1D and(b) 2D systems. The widths of the singularity
W, , are given by Eq.(3.43, and the shape is defined by Egs.
(3.50, (3.52, and(3.53.

The functionsi/z in Eq. (3.52 are defined to the map com-

where o=*+1 corresponds to the spin-up and spin-downplex plane—w<arg(z)<w to — w/3<arg(z) < /3.
densities of states, respectively, and the widths of the singu- For the two-dimensional case, we obtain from E§s51)

larity Wy are defined in Eq(3.43. The dimensionless func-
tion F4(x) is given by

1+2z(x)
Fy(x)=Re———

00 (3.513

where the functiore(x) is implicitly defined as the solution
of equations

2(x)=Mg[ —ix+y(x)],

y(X)=Mg[ —ix+y(x)], (3.51h
with functions M4(x) being defined in Eq(3.49. If Eq.

(3.51b has several solutions, one has to choose the one r

producing the perturbation theory @1 and remaining on
the same sheet of the Riemann surface at small
In the 1D case, Eq(3.51bh can be rewritten as a cubic

and(3.44:

1-2(x)
1+z(x)’

Fa(x)=Re (3.53

wherez(x) is the solution of the transcendental equation

Z(x) (3.59

C —ix+In[4gz(x)]"
The shape of the singularity in this case depends on the con-
ductanceg and, thus, is not universal. However, this depen-
dence is rather weak. Fdw+E*|>W,, Egs.(3.52 and
(3.53 match the perturbative results, E¢38.11) and(3.13.

dhe found energy dependence of the density of states is
shown in Fig. 13.

IV. QUALITATIVE DISCUSSION

equation and solved using the Cardano formula which yields |, this section we will present a simple qualitative inter-

a universal(independent ofy; and D) expression for the
shape of the singularity:

F100=1- 5 Rel1-ix[THy (0 + Ty (01

y(x)=V1+ix>. (3.52

pretation of the main results obtained in the previous sec-
tions. We believe that this simplified way of thinking pro-
vides instructive physical intuition even though it fails to
give a completely quantitative description.

It has been already emphasized in the beginning of sec-
tion Sec. Il that the ground state of the system above the
paramagnetic limit has a structure similar to that of a nonin-
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€. A tion of the electron paig can be labeled by one orbital index
4 _ and it is governed by the Schiimger equation:
— Ely =264~ N2 . (43
E, j— !
2 7] SR The eigenenergieE{z) can be determined from the follow-
ing equation:
e € — _
o— 2e)~Elp) «*F226—Els M |
For low-lying eigenstateE{2)< E,, one can substitute the
U summation in Eq(4.4) by an integration. Given the high-
_ E_Z a RIPR energy cutoffw,, it yields
2 .
E,—EL —A
=Inl 1+ L)b) ' (4.5
260~ Ely) Ap

FIG. 14. Hilbert space for the solution of the two-electron prob-

lem. All the orbitals(dotted lines with ¢;<—Ez/2 are excluded \hereA,=w.exp(~2/\) is the binding energy of the Coo-
since they are occupied by “frozen” electron pairs and the orbitalsya, pair.
—E [2<€<E,I2, ¢+ €y are excluded because singly-occupied

. . _ ] ~ _
orbitals are not affected by the interacti¢h?). As we will see in a momen{2e E(2)|>5’ and, there

fore, the logarithm in Eq(4.5 should be also small and it

teracting system. All the mixing of the noninteracting statesc@" b.e EXpandgd in é_he ;I'ay!or ﬁ’friss’ thg~=x, [x<1.
caused by the interaction part of the Hamiltonighl) is Equation(4.5) is immediately simplified to
pertL_lrbat_lve. We can .neglect it completely in a rough ap- o EZ_Ab_Ej
proximation and consider the electrons occupying orbitals I (2
with orbital energies; < —E,/2, see Fig. 2, to be “frozen.” 2€p— E{Z) Ay
As soon as the spin down electron tunnels onto an orbital i i ,
0< e,<E,/2, see Fig. 2, the electron pair on this orbital is and we obtain the solution for the two relevant eigenener-
created. Due to the interaction, this pair can mix with all the9'€S:
empty statese;>E,/2. It is this mixing which gives rise to Q ) >
the singularity in the DOS. On the other hand, within the E(tz)(EO):eoJr_bi \/<_b_60) +25A,. (4.6
same approximation, all the electrons on the orbitals 2 2
—E,/2 can still be considered as “frozen('This approxi-
mation is similar in spirit to the well-known Cooper
proceduré®,)

Thus, we arrive at the following recipe for the evaluation Qp=E,— A, (4.7)
of the energy of a one-electron excitation. First we have to .
find the eigenenergieB], (eo) of the two-electron problem has the meaning of the energy of the bound state of the
within the Hilbert space consisting of the orbitgland of all ~ Cooper pair measured from the Fermi level. It plays the role
the orbitals ;>E/2, see Fig. 14(This energy spectrum Of the energy} from Eq.(2.8) in the rigorous solution. We
naturally depends or, as parameter.Then, the energies Will return to the discussion of the discrepancy between Egs.
El(eo) of the one-particle excitation, corresponding to the(4-7 and(2.8) later.

introduction of an electron onto the orbite} are Substitu';ing EQ(.4'6? into Eq.(4.1), we obtain the energy
of one-particle excitations

All the other two-electron states have energies larger Eyan
and they are not important for us. In E¢..6), the energy

Ejl(fo):EEZ)(fo)_(fo_ E), 4.9 + * Qp c =

2 E (e0)=Ep = - € +26A,, 4.8
since the total energy of the electron which occupied thi
orbital before the tunneling event wag—E,/2, while the

Swhere the position of the singularity

state of the rest of the electrons did not change. Accordingly, E,+Q,
the density of states for spin-down electrons is given by Ef = 5 4.9
_ . is similar to the energ§* in the exact Eq(2.11) up to the
v(@) ,-,250 do-El(e)] 4.2 substitutionQ) — Q.

According to Eqs(4.2) and Eq.(4.8), the density of states
Now, we have to find the spectrum of two-electron vanishesin the energy stripE—E}|<(25A,)*>—a hard
eigenenergiefj(z)(eo). Since the interaction in the Hamil- gap in the DOS is formed, compared with the exact result,
tonian involves only the spin-singlet orbitals, the wave func-Eq. (2.15. The origin of this tunneling anomaly is the
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avoided crossing of the two-electron state formed by the tunenergyE* as in zero-dimensional systems. Second, the level
neling electror(energy Z,) with the bound state of the Coo- spacings entering into the width of the singularity E(.13

per pair(energy()y). does depend on the size of the patch
It is also noteworthy that if a spin-up electron tunnels into
the grain, it never finds the pair for itself, and, therefore, no _ 1
tunneling anomaly happens in this case. It means that the o= —j3- (4.11
overall DOS does not vanish but rather shows the suppres- voLe

sion by a factor of 2. However, for the spin-polarized elec-|, this formula, scalé ¢ is itself determined by the width of

trons tunneling into the grain, we predict the complete supthe singularity, E~W,, so that the scalgV, has to be de-

pression of the tunneling DOS. o termined self-consistently. Substituting Eg.11) into Eq.
The same arguments allow to justify the similar singular-(2 13 we find

ity, when a spin-up electron with energyE,/2<E<O0 tun-
1/2

nels out from the system, while the spin-down electrons tun- A2 D \ 12

neling from the system are not affected. Wﬁ( g ; LWZ(VT) . (4.12
The qualitative consideration above grasps the correct vol w2 d

physics, however it fails to describe the effect quantitatively,50|ving Eq.(4.12), we obtain

it predicts correctly neither the position nor the width of the

gap. This is similar to the discrepancy between the binding Ad2 | 2HE-d)

energyA, in the original Cooper procedure and the correct WdzA(—d/Z , (4.13

BCS gapA: all the electrons below the Fermi energy were vo{dD

frozen. To remedy this drawback, one has to employ thg, - agrees with the rigorous result3.43 for one- (d
parametrically exact procedure described in Secs. Il and Ill_ 1) and two- €i=2) dimensional systems. However, the

Let us now discuss the results obtained for the disordereq, . nitative description requires machinery like that used in
bulk systems, Sec. lll. They can be briefly summarized a

follows: (i) the singularity in the DOS persist§i) its posi-
tion does not changsiii ) the energy scale of the singularity
depends on both disorder and dimensionality, seq&43).

In order to understand the physics behind the singularities A. Spin-orbit scattering
in the bulk systems, let us recall the meaning of the zero-
dimensional approximation. Strictly speaking, it implies that
during the timetge=#/E, (whereE is the energy scale rel-
evant for the problem a diffusively moving electron can
visit all of the system. The characteristic time of this diffu-
sion is=L?/D, (L is the characteristic size of the system
which means that the zero-dimensional approximation is a
plicable provided that the energy sc&laloes not exceed the

V. RELEVANT PERTURBATIONS

In our previous consideration we assumed that electronic
spin is a good quantum number, i.e., impurity scattering of
electrons does not cause spin flips. There are two sources of
spin relaxation of conduction electrons: localized spins
(paramagnetic impuritigsand spin-orbit(SO) scattering of
electrons by nonmagnetic disorder. The latter is character-
p.— . .

ized by the scattering amplitude

Thouless energf.=#D/L2. In our problem the relevant ivd[prXp]- o)/ p (5.1)
energy scale is the gap widiV, from Eq. (2.13, and the sALEr P '
condition wherep; andp; are final and initial momenta of an electron,
and o is the spin operator=(oy,0,,0,) whose compo-
1>%ML2—d/2 (4.10 ~ hentsare Pauli matrices. It acts on the spinor wave function
Ec of the electron.

Let us discuss the effect of SO scattering first starting
with the qualitative physical picture. In the absence of both,
- D SO interactions and magnetic field two-spin states, which

Itis clear that as soon as the conditi@nl0 breaks down  hojong to a given orbital, have the same energy. Magnetic
the geometrical size of the systdmas well as its mean level fig|gs ‘split this degeneracy. It was important for us that the
spacingd= 1/(v,L %) is not relevant since the electron cannot splitting E, is exactly the same for all of the orbital states.
diffuse during finite time.e=7%/E over a distance larger than Now let us turn to the SO interaction. Without an external
Lg=/Dtg. On the other hand, it effectively visits all the magnetic field the states are still doubly degenerate dde to
space on the scale smaller thap. Therefore, the following invariance (Kramers doubletd). A magnetic field is well
approximation holds: in order to understand the properties oknown to split the Kramers doublets similar to how it splits
the diffusive system associated with the energy sEaleve  pure spin states in the absence of SO interactions. The main
can separate the system into smaller patches of theLgize difference is that this splitting is not exactly uniform any
= AD/E, and, then, apply the zero-dimensional descriptionmore(see, e.g., Ref. 18It is this dispersion of splittings that
to each patch independentlassuming that different patches smears the DOS singularity. The Zeeman splitting dominates
do not “talk” to each othey. the magnetic-field effect on superconductivity only provided

Let us now apply this strategy to the problem at handthe SO interaction is weak. However the DOS singularity
First, we notice that the position of the singularity in the 0D turns out to be sensitive even to a weak SO scattering, since
grain Eq.(2.11) does not depend on the size of the grain andhe characteristic SO ener@ihe dispersion in the splitting of
therefore the singularity in each patch should be at the sami§ramers doublejsshould be compared with the width of the

is definitely violated for infinite system&—oo, (hered
=1,2 is the dimensionality of the systém
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singularity Wy rather than with the splittinde, itself. The  so that the final result for the density of states is
DOS for finite SO scattering can be evaluated in a way simi- .
lar to our calculation in Sec. Ill B. V(o) _ReF w*E* +il
The Cooperon(or verteX is formed by two electron Vo d Wy
Green functions. In the absence of external magnetic field it . .
is convenient to classify Cooper poles by the total spin ofW'th W_d andI_E* determlneq by E_q:{2;13), (3.43, and(1.7),
two electronsS, = (o, + 0,)/2. Spin-orbit scattering does and_dimensionless functiofq is given by Egs.(2.15,
not affect the spin singlet part of the CooperdﬁiéO) (3.52, and(3.53. we n(_)t|ce that the DO.S ;mgulanty gets
because the spin-orbit scattering preserdesnvariance. tsmea;e\:/d IE’,?I/ §O| scatt?rmg dth\r/ﬁW\!jv.hiTulsi 'Sll: (i/(v):trtaStb
However, this scattering leads to total spin relaxation, i.e. 0 conventional superconductivity ch 15 Kno o be

the triplet (5% = 2) component of the Cooperon deca Stable with respect to SO scattering since the latter does not

ole in the lane is shifted from the real axis even for violate T invariance.
(pQ:O)I o T P ' ' XIS ev This guess turns out to be correct. In order to demonstrate

A ¢ | tic field i led with the diff it one has to show that not only the Cooperon but also the
n external magnetic Tield Is coupled wi € CITTerence i ami boxes from Sec. Il B are modified according to the
S_=(oy,— 0,)/2 of two electron spins, and as a result we

- X rule (5.5). Taking into account the spin-orbit scattering Eq.
classified the Cooperon by the eigenvalue of the operato(rg 1)(in?mpuritly?irl1es in Figl;, 11 andp|12 w:e obtainl g =4
S_-E,. These eigenvalues f@& =2 areE,,0,— E; corre- ' ' ’

sponding toS* =1,0,—1 and 0 forS> =0. Neither of those  B®(w,,w,,Q;,Qs,)

two classifications is exact when both a magnetic field and

SO scattering take place simultaneously: the opera®irs . 1

andS’ do not commute. On the other hand, asitwas already — (2475,)3

mentioned, we should assume that the SO effect is weak.

This allows us to evaluate the Cooperon perturbatively. B3 (w;,w,,03;Q;,Q,,Q3)
Summing the usual ladder diagrams and taking the addi-

tional scattering amplitude E¢5.1) into account, we end up

with an equation for the % 4 matrix of the Cooperon which

(5.7)

~i(wy+wy) +D(QI+Q)) +

1
CY

[—i(w1t+ 0w+ w3)

PR

we already discussed qualitatively: (2mvo)

T +D(Qf+ Q3+ Q%) +27].
. ~ . + | A
(—iw+DQ?)I+iE;-S_+ 3. |C= 7 (5.2 with the same rigor as in Sec. Ill B, we conjecture that

SO.

where 7o,=1/(2mvqu2) is the time of the spin relaxation BM{w;,Q;}

by SO scattering, the matrix is the direct productl = c n

oa® o, where the unit matrixsg is acting in the spin 2 = ﬁz —iw;+DQ+ ol

X 2 space, and? is the unit matrix in the X 2 space of the (2mve) " N1 Tso

electgon Ilenes. Operatorss.  are Sef'”eed as 2,=(0"  therefore, rule5.5) is satisfied which gives Ed5.7).
+tnog)®o; and B =(6°—nog)®o,, Wwhere n Finally we emphasize that in E¢6.7) the complex argu-
=(1x1y.1,) is the unit vector, and*=(o3;,0y,07) are the  ment of the functiorF 4(z) should be located on the physical
Pauli matrices in the spin space. _ sheet:z=|z|exgp and — 7< @< . Thus, the functiond/z

Instead of dlagolnallzmg Eq5.2), we can just evaluate Egs. (2.15 and (3.52 are defined to map the complex
the correction taC, plane — m<arg(z)<w to — w/d<arg(z)</d.

cii=[cT}t, ct=[cThiy 5.3
! [ ]H l [ ]M .3 B. Paramagnetic impurities, orbital effects
in the first order of perturbation theory irEgrs) 1<1. of the magnetic field

This correction turns out to be 2/(3). As a result, SO

: . ) The derivation in the previous section suggests that an
scattering simply shifts the Cooper pol€s ) : ’ 99 y

physical mechanism of violation of eithdr invariance or
conservation of spin will have a similar effect on the DOS
1 _ (5.4) singularity. Indeed, in the 0D and 1D cases in the presence of
—iwFiE;+DQ?+ 2/3r, magnetic fieldH and paramagnetic spins, E@.10 takes
the following form#
From Eq.(5.4) one can guess that the all the interesting
results can be obtained from the results of Secs. Il and Il by
substituting C(w,Q)=

Ci)(@,Q)=

, 5.8)
—iw+DQ%+ 1ry (

w—otil, (5.5 where 7, is @ combination of phase and spin-relaxation ef-

wherel is the spin-orbit rate fects

2 1 1 1
(5.6 — =+ (5.9
ty s

= 1
37s Ttot

r



PRB 58 THEORY OF TUNNELING ANOMALIES IN ... 5771

Both SO scattering and spin exchange with paramagnetic fto)
impurities (r5) lead to spin relaxation: 0.4
1_2(1 1 61 o
8T ) (510 ’

-0.2
The phase may relax either due to inelastic processes or due
to the magnetic field’s effect on the orbital motion of the
electrons:

-04

-0.6

-0.8

1 1 1
—=— .
® Ttp TH

(5.11

When the transverse dimension of the wisize of the
grai2r21) a, exceeds the mean free pdthr, can be estimated
ag"

2

QZ
A . (5.12

! =A D
R

aH

®o

Here ¢pp=hc/2e=2x10"" Gscnf is the superconductiv-
ity magnetic flux,Ey is the “transverse” Thouless energy,
Er=D/a? and(Qy is the Cooperon “cyclotron frequency”
(cyclotron frequency for a particle which mass and charge
equal to (D) ! and 2, respectively*

_4DeH
™ he

(5.13

The numerical coefficienf is not universal: it depends on
the geometry of the superconductor, on the direction of mag-
netic field, etc.

Equations(5.8—(5.13 are valid also for 2D films pro-
vided H is parallel to the film plane. In this case

1 a%0f D(eHa)? 51
T 48 3c22 519

FIG. 15. Singularity in the DOS for spin-down polarized elec-

Now, we again conjecture that E(B.28 for Hikami boxes
is still valid with the addition of 1#,,; to all DQJ-Z. If so, Eq.
(5.7 for DOS is still valid, but instead of E¢5.6) we should
substitute

1
'=— (5.19

Ttot

The rater,*

trons for(a) 0D, (b) 1D, and(c) 2D systems for different values of
the dimensionless rate=1"/W,. The DOS in the two-dimensional
case is plotted for conductange= 10.

of the Fermi steps in the leads washes out any singularity as
soon asT exceeds the widthV of this singularity. Since the
widths Wy, Egs.(2.13 and (3.43, are much smaller than
E*, there will be already no anomaly of the tunneling current
at T~E*. On the other hand, &t<E* the equilibrium oc-

in Eq. (5.11) is the contribution of inelastic cupation number of a state with the energy of the ordét’of

collisions. This contribution will be estimated in the next js exponentially small and thus can be neglected. Therefore,
section. The evolution of the density of states with the ratgormally determined DOS, E3.50 is temperature inde-

a=T"/Wy for different dimensions is shown in Fig. 15.

C. Finite-temperature and inelastic processes

Our previous consideration, strictly speaking, applies onI)J
when the temperatur€ equals zero. Let us now discuss the

effects of finiteT.

pendent up to terms of the order of ex{*/T). However,
the observable, namely tunneling conductangéeV), de-
pends onT through the Fermi distributiomg(w/T) in the
eads. To evaluate the singular part(eV) of the tunneling
conductance, one has to convoléte( w) with the derivative
of the biased Fermi distribution:

Temperature manifests itself through a distribution of
electrons in energy. This distribution substantially depends ¢ 1(€V) :_f do INe[(w—eV)/T] dvi(w)+ v (w)
on T only for energies of the order Gf. On the other hand, g$ dw v '
for tunneling anomalies at finite bi@d/~E*, Eq.(1.7), only (5.16
the low-temperature regioM<E* (recall that the Zeeman
splitting E; as well as superconducting gapare normally Substitution of Eq.(3.50 into Eq. (5.16 yields for o
of the order ofE*) is of interest. Indeed, thermal broadening = o2+ o
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ar(eV) do equation is well known to be a Scliinger equation in
T = imaginary time for a particle with chargee2and mass
o7 4TcosH[(w—eV)/2T] 1/(2D) in the magnetic fieldd. ForH=0 the eigenfunctions
wt oE* il of this equation are plane waves. When this fidlds finite
X > ReFd(— (5.17  but parallel to the plane and weak enolygfagnetic length
o==1 Wq |y=(fcleH)Y? exceeds the film thickness or O of Eq.

(5.13 is smaller than the “perpendicular” Thouless energy
Er=D/a?], it can be taken into account perturbatively. The
eigenfunctions remain plane waves, so that Cooperon keeps
its form Eq.(5.8), but the eigenvalues are shifted bgl.

In contrast, even a weak perpendicular componerit of
changes the eigenfunctions, and as a result the form of the
Cooper pole is also modified. Each eigenfunction should
be characterized by the number of its Landau barzhd by
one of the components of momentugn(one of the coordi-
nates of the guiding centerather than by both components
of the momentum. The corresponding eigenvalue equals

=— (5.18  Qu(n+1/2), whereQy is given by Eq.(5.13, i.e., it is
Te Te pol9 9(Ly) determined by the number of its Landau band, and it is in-
dependent of the location of the center.

As a result, in all previous calculatiorBsz should be
substituted by Qy(n+1/2), and instead of integrating
over (dQ;), we have to sum over and divide the result by
4712, At H=0, the integration ovedQ is limited from
above byDQ?<A, see the discussion after E@.44). For
the same reason we sum owerfrom 1 till N=A/Q. In
order to evaluatév,(w), we have to perform a calculation
similar to that of Sec. Ill with such changes.

To complete this discussion, let us estimate the contribu
tion of inelastic collisions of electrons, 4/ Eq. (5.11), toT".
Since we are dealing with rather highly excited states (
~E*>T), the relaxation rate %/, is determined by large
energy transfer€ E*), and thus is temperature independent.
In all interesting cases t/ simply coincides with the energy
relaxation rate .. The latter(in metals, for reasonably low
energiesw) is determined by inelastic collisions between
electrons(see Ref. 4 for a reviewand can be estimated as

whereL ,= D/ w is the length of diffusion in time» ! and
g(L)=»o,DL% 2 is the conductance of thd-dimensional
sample with sizd_. For the zero-dimensional case inelastic
processes of this type can be neglected completely singe 1/
compares with the level spacing only at enerdi#sof the
order of the Thouless energy?!

Using Egs.(4.13 we can estimate the dimensionless
productWyr,, as

A\ 204=0) Equation(3.23 for the DOS should be rewritten as
Q ovolw) AP a1 EN)

(A)ZMdX gll?’(.f) d=1 (5 19 V—O__VO_Q m% 0 7]47T||2_‘n=1 ’}/w(wnavn)v
Q Ing(¢§) d=2, ' (5.20

whereé=L, is the coherence length. Sinde~ (), this es- Wwhereo=*1 corresponds t¢ and |, respectively, and the
timate implies that as long as the localization lengi, ~ short-hand notation

exceedst, the widthWy is much bigger than %/, and in-
elastic collisions are irrelevaifit.;,. can be estimated from
the equatiorg(L o)~ 1].

Together with Egs(2.13 and (3.43 for Wy and Egs.
(5.9)—9(,5.15) for T, E?q.gs.l%) comélet:?y descr?bes theclun- is introd_uc_ed. After an obvious modification of E@.31),
neling anomalies &V~ + E* for W,=T,T andd=0,1. For W€ obtain instead of Eq3.33
d=2, Eq.(5.17 is valid only provided that the external mag- Z(w)
netic field is parallel to the plane. The orbital effect of this Yo(Ln)=— . (5.22
perpendicular component on the tunneling anomaly is dis- —id+ Qu(n+ 1/2) +2m(w)
cussed in the next section.

wne=2(w+oE*)+iQy

1
n+ E) , (5.21)

whereZ(w) andm(w) can still be expressed through and
B, according to EQ.(3.34. Consequently, the functions
D. Magnetic field perpendicular to the film Bo(w) and B;(w) can be connected with,(¢,n) by equa-
It was already mentioned that for zero- and one-tions similar to Eq(3.32:
dimensional cases orbital effects of the magnetic field mani-

fest themselves through the additior1from Eq.(5.12, to A h Yf)(wn ,n)
the parameterl’, see Eqs(5.6), (5.13, and(5.15. The same Bp(w)=17 100 nzl [“iwt+Qu(nt 12T
is true in two dimensions provided the magnetic field is par- nooH (5.23

allel to the film plané However, the effect of a component

of the magnetic field perpendicular to the plane requires &quation(5.23 is valid for p=0,1 and for both spin direc-

separate consideration. tions. We substitute Eq3.33 into Egs.(5.20 and (5.23,
Similarly to the usual calculation of the anomalous carry out the summation over, and obtain Eqs(3.41) and

magnetoresistancd* we need to derive and to solve the (3.43. The scale of the singularity coincides witk, from

equation for the Cooperon in a perpendicular magnetic fieldq. (3.43), while the dimensionless functiad 4 is replaced

rather than to take this field into account perturbatively. Thiswith
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v(w)

(5.24) 0

-0.1

2

A 1
MH(X)=|n(Q—H)—¢ 5

Here, the orbital effect of the magnetic field is characterized
by dimensionless parametes;=Q,, /W, and (x) is the

digamma function -0.3
“ 1 0.4
l//(X):nZO R -C, s
andC~0.577... is the Euler constant. If the magnetic field 06 T
is weakay<1, we can use the asymptotic expansiffx) ® 64202 468 R

~|nx, x>1 and recover the two-dimensional resMl} from
Eq. (3.44). Since the functioM ; depends on the additional
variable o, only, on a parameter we can use the solution o
Sec. Il B to obtain the density of states:

FIG. 16. The singularity in the DOS of two-dimensional films
or spin-down polarized electrons for different values of the dimen-
sionless magnetic field,=Q /W,. The curves are plotted for a
conductance of=10.

w—ocE*+iT
W;

’ (5.25 The density of states in two-dimensional films for different
values of the parametery, is shown in Fig. 16.

. ) Closing this subsection, we present the asymptotic behav-

where the energy scal/, is given by Eq.(3.43, we in- o, ot £ (x) for two limiting cases. In weak fieldsy <1 the

cluded previously discussed broadening mechanisms accorghagnetic field slightly perturbs the two-dimensional result

ing to rule (5.5 with the ratel’ given by Eq.(5.15. The (3.53:

dimensionless functiof 4(x) is given by

an— 0 {12+ [—ix-+y(0 Vans) Fr(0=F <x>+i(%)2ree23(—x) (5.2
Fy(X)=Re— W (5.26 . 2T 120W,) 14202

ap+ ' [12+ [—ix+y(x) ] ay}
where the dimensionless functioks(x) and z(x) are de-
fined in Eqs.(3.53 and(3.54), respectively.

In the opposite limita,;>max(1]'/W,) the depth of the

where the functiory(x) is the solution of the equation

y(x)=|n4g—|naH—z,b<E+ _—ix+y(x) ) singularity is controlled solely by the cyclotron frequency

2 ay (5.13
W. 2
2 il ; |lo+0E*|=Qy;

vo(@) Oy cosH[(w+oE*)/Qy] 5.28
Vo W, w+ oE* w, |\ a \? . '
4m?—“expg —2 + In , |o+oE*[>Qy.
Qy Qy w+oE* w+ oE*
|
VI. EXPERIMENTS ON Al FILMS In our theoryeV,=E*<E,, see Eq(1.7), and the dis-

The theoretical study presented in this paper was inspiref’¢Pancy 1S reduced even though it does not disappear. For
by the experimental work of Wu, Williams, and Adafhs. nstance, the minimal value &* corresponds to the phase-

These authors studied tunneling anomalies in ultrafout ~ transition pointE, = y2A and, according to Ed1.7), equals

4 nm thick Al films, which were driven into the paramag- A(y2+1)/2=0.47 meV, sinceA=0.39 meV. The experi-
netic state by a parallel magnetic figttt>H =4.8 T. Botha mental valueeVs=0.38 meV is about 20% smallérather
zero-bias anomaly and anomalies at biases close to the Zegran 33% in comparison with Ref.)4We do not have
man splittingE; were observed. The authors attempted to fitanough data to speculate about possible sources of this dis-
:he exper:mentalll res(;:lts by thedtheory of Ref. ﬁ developedepancy. More experiments with serious quantitative analy-
or normal metals and superconductor§at T, . The agree- s ‘1o needed to verify the present theory. Nevertheless, it
ment appeared to be reasonable with one important eXce?ﬁay be worthwhile to briefly discuss here how the other

tion: the positions of the satellite singulariti€&™ were : A . :
lower in energies than that predicted by Ref. 4: experimen-eXper'memal findings of Ref. 8 compare with the theoretical

; . conclusions.
tally it was fitted as .
y In Ref. 8, the authors presented and discussed the tunnel-

E** ~E,—Ep; Ep=0.17 meV. (6.1)  ing conductancé&(V,H) as a function of bias voltage and
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magnetic field for two samples. Both samples were granular E*(meV) . .
Al films about 4 nm thick. Their sheet resistances were dif-
ferent:RY=4.2 Kk, R¥)=2.0 k). For both samples dips

of the tunneling conductance ¥t= = V¢ were observed. The 06 a
widths at half minimum(WHM) of these dips for both

0.8 -

samples were about 0.15-0.2 meV, while the depths were ~ *="* ¢ — 1
found to be quite different:6G/G|(Y)=0.12 and| 6G/G|® 02] ) ]
=0.05. - :

One can interpret these experimental results in two differ- 0 1
ent ways. The first interpretation is based on the assumption 02 b . . L .
that the granular structure of the films is irrelevant, and they 0 0.2 VaA 0.8 Ez(meV)

can be approximated as homogeneous 2D objects. Given the
iug ?‘__)r;?:éj\ljcgltnr?]a%?ﬁt; ?iglgi Lng \_1_’ ;r?;gq anoflre)“gg:lﬁzs e the Zeeman splitting, for A=0.4 meV:(a) Theoretical prediction

) . ! o for the superconducting statRef. 5, see Fig. 1a); (b) Our theo-
Eq. (3.43 to determineW,: WM=0.03 meV;W{)=0.015 : i -

A ' retical prediction, Eq.(1.7) for the paramagnetic statéc) Half
meV. Since the WHM of the anomaly should be comparedistance between maxima in the DOS in the superconducting state:
with approximately 2V,, see Fig. 1&c), we have not great (d) E*=E, law predicted for the normal metéRef. 4; (e) Ap-
but reasonable agreement, especially for the first samplgroximation of Eq.(1.7) by a straight line.

However the lawW,xIn(g)/g from Egs.(3.43 and (3.53
seems to contradict the experiment. From the perpendicular critical field,, =1.5 T and the
The alternative interpretation is based on the approximadimensions of a grain one can estimateyland find that it
tion of weakly connected Al grains: in the first approxima- s irrelevant for the experimefitThe same is correct for
tion we neglect the coupling between the grains. This allowspin-orbit scattering. Recent studies of tunneling through Al
us to use the OD expression for the width of the singularitygraing show that the difference of thefactor from 2 is very
W, see Eq(2.13. Given the electron concentration in Al of small not only in average, but also for a given orbital as well.
n=1.8<10° cm 2 and their Fermi energ§-=11.8 eV}®  Both #/7, and#/r, are probably smaller than 0.01 meV
the bare DOS is estimated as=2x 107 (eV cn®) 1. As-  and much smaller thaf/ 7y, .
suming that the grains in lateral directions have a typical size et us now return to the discussion of the dip location.
b=30 nm? and that the film thickness @=4 nm, we can  Note that a dip in the DOS at the finite bias exists in both the
estimate the mean level spacidg=1/(ab’»)=0.03 meV. superconducting and paramagnetic states. According to the
Substitution of this value o into Eq. (2.13 gives W, Idealized Fig. 1a), on the superconducting side of the
=~0.11 meV. This is in a good agreement with the experi-Clogston-Chandrasekhar phase transition, this anomaly is lo-
ment, since the WHM at zero dimensions according to Figcated aeV=A+E/2 (line “a” in Fig. 17). However, prob-
15(a) should be compared withVE,=0.22. ably due to the smearing of the DOS singularities, experi-
In order to understand the substantial difference in amplimentally the minimum was found in the middle between two
tudes of the tunneling anomalies for the two samples, let ug€aks in the DOS, i.e., &V=A (line “c” in Fig. 17). As it
discuss the effect of coupling between the grains. This couvas already mentioned, the experimentally found position of
pling results in a finite dwell timerg,e; Which an electron  the singularity is lower than our theoretical predictidn?).
spends in a given grain before tunneling into a neighboring{_n fact, no jump inE* was observed at the point of the
one. We can determiney,; from D, the constant of the first-order phase transition. This discrepancy may be due to
diffusion at times bigger thamyyey, using the relatiord  the inhomogeneous broadening of the transition—different
=b2/(274e) . Given the sheet resistan%"z), DOSyv, and granulars may have slightly differett. Another possibility

the film thickness a. one can estimateD as D® is illustrated in Fig. 17. In the interval of magnetic fields
~02 cri/sec D(2)2074 cri/sec. As a result where the measurements were done the theoretical depen-

dence Eq(1.7) (line “b” in Fig. 17) can be approximated by

FIG. 17. Position of the minimum in the DOS as the function of

h E*~rE;—0.17 meV (6.2
D =0.05 meV, (T)201 meV.
Tdwell Tdwell with a numerical factor=1.15 slightly larger than Xline
“e” in Fig. 17). Comparing Eq(6.2) with the experimental
Now we can explain the difference in the depths of thefit (6.1), we see that the theory would agree with experiment
anomalies in the two samples assuming fhiaty contributes  very well if we assume that the actugfactor is smaller than
to I from Eq.(5.15. One can see from Fig. 15a that the dip its bare value, i.eg, =2/r~1.72.

at I'=W,/2 is approximately twice as deep as the ond&’at

=W,. At the same time, WHM's in these two cases are close VIl. CONCLUSION
to each other.
Note that Eq(5.7) with I'=7%/74,e, Can be justified only This paper is devoted to the anomalies of the tunneling

for 7qweWq>%. Theoretical investigation of the crossover density of states of low dimensionati€0,1,2) supercon-
between OD and 2D behavior in granular films goes beyondluctors in an external magnetic field. We concentrated on the
the framework of this paper, though such a study can b&€logston-Chandrasekh&EC) phase transition, i.e., the de-
important for a quantitative discussion of experiments. struction of superconductivity by a magnetic field by virtue
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of the Zeeman splitting. As a result a normal paramagnetic Ly 23
state of electrons is formed. . i ,
The main conclusion we can draw from our study of the Ly L
CC state is, that despite this state being norfiteé@ mean-
field superconducting order parameter vanighiéss drasti- Lw ¢ L
. . 2 loc

cally different from a usual normal metal with some attrac- 2= 72\ / In(—).
tive interaction. The latter state appears, e.g., in a Lioc  Lioc !

superconductor at temperatures higher than the transition ’ ,
temperaturd .. The difference becomes apparent when one 1€ fact thatWy>D/Lj,; makes it necessary and also
studies excited states rather than those close to the groum@Ssible to go beyond perturbation theory—one has to sum
state. only the most diverging terms, and one may neglect the usual
Superconducting fluctuations in a usual normal disordered/€ak localization and interaction corrections. It turns out to
metal were known to contribute to the zero-bias tunneling®® Possible to sum directly a whole series of the perturbation
anomaly as well as to Zeeman anomalies at a bMequal theo_ry and_ thus determine the shapes of the singularities in
to Zeeman splitting. However, these contributiorfeffects ~ all dimensions. . o
of the interaction in the Cooper chanheire similar or ~_The singularities are characterized by their widig
weaker than the effects of the Coulomb repulsion of elecdiven by Eqs(2.13 and(3.43. For zero-dimensional grains
trons, unless the system is anomalously close to the transpur theory predicts a hard gap in the density of states with a
tion, i.e., it is not in the Levanyuk-Ginzburg region. This given spin direction, centered at»=E*. For one-
means that the effects of superconducting fluctuations can émensional wires the shape becomes univeisdependent
taken into account perturbatively almost everywhéegcept  On »*) andD) when energy is measured in units\f, see
in the very vicinity of the transition temperat(ré the sys- ~ Ed.(3.52. It means that the depth of the anomaly is univer-
tem is not too d"'ty The perturbative approe(dxpansion in sal. In the case of the two-dimensional film the depth of the
inverse powers of the conductanggis valid as long as all a@nomaly is not universal and behaves as the inverse loga-
of the characteristic length scales involved in the problem ddithm of the conductance, see Eg.53. _
not exceed the localization length,. ~ The reason why the effects of superconducting fluctua-
The tunneling anomalies in the CC normal state studiedions in @ CC metal are dramatically enhanced in comparison
by us are quite different. First of all, its positi@v=E*, see  With the usual case is the presence of the polelike singularity
Eq. (1.7), is different from the Zeeman splitting,. How- I the correlation function of these fluctuations. This pole at
ever, what is more important, the perturbative corrections té finite frequency appears due to the fact that the CC transi-
the density of states(w) are much more singular at close tion |_s_of the first order. In contrast, the temperature-drlven
to E* than corrections of the same ordergn® in usual transition from superconductor to normal metal is of the sec-

normal metals. Because of this, the perturbative approachnd order, and in a usual normal state the correlator of the
fails in a parametrically wider energy intervééV—E*| superconducting fluctuations is a smooth function of the fre-

<W, around the singular bias than that for the normal metal9U€ncy, i-e., any superconducting excitations decay very rap-

Using Eqgs.(3.43, one can check that the length scilg idly. We believe that the strong anomalies of the excitation

which corresponas t§V is much less thai(?) . provided spectrum at finite energies is a generic feature of any state

L .. exceeds the superconducting coherencg?ég‘lgmhdeed created as a result of a first-order quantum phase transition.
loc ,

since the localization length can be estimated L4g

=D»M) and L{2)=1 expO+@), (wherel is the mean free ACKNOWLEDGMENTS
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