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We study the tunneling density of states~DOS! in superconducting systems driven by a Zeeman splittingEZ

into the paramagnetic phase. We show that, even though the BCS gap disappears, superconducting fluctuations
cause a strong DOS singularity in the vicinity of energies2E* for electrons polarized along the magnetic field
andE* for the opposite polarization. The position of this singularityE* 5

1
2 (EZ1AEZ

22D2) ~whereD is BCS
gap atEZ50! is universal. We found analytically the shape of the DOS for different dimensionalities of the
system. For ultrasmall grains the singularity has the shape of a hard gap, while in higher dimensions it appears
as a significant though finite dip. Spin-orbit scattering, and an orbital magnetic field suppress the singularity.
Our results are qualitatively consistent with recent experiments in superconducting films.
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I. INTRODUCTION

It is well known that a magnetic fieldH suppresses supe
conductivity since it lifts time reversal symmetry~see, e.g.,
Ref. 1 for a general introduction!. In the absence of spin
orbit coupling, this effect can be separated into two mec
nisms:~i! the effect of the magnetic field on the orbital m
tion associated with an Aharonov-Bohm phase, and~ii ! the
Zeeman splitting of the states with the same spatial w
functions but opposite spin directions.

In bulk systems, the suppression of superconductivity
typically associated with the first mechanism. Indeed,
estimate for the critical fieldHc2

in this case is

Hc2
j2.f0 , ~1.1!

wheref05hc/2e is the superconducting flux quantum an

j5AD

D
~1.2!

is the coherence length for the dirty superconductors,D is
the BCS gap, andD is the diffusion coefficient. On the othe
hand, the magnetic field necessary to affect supercondu
ity by virtue of the spin mechanism is given by

gLmBHspin.D, ~1.3!

wheregL is the Lande´ g factor, andmB5e\/2mc is the Bohr
magneton. Comparing Eqs.~1.1! and ~1.3!, one finds that
Hspin is far in excess ofHc2

:
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Hspin

Hc2

.eFt@1, ~1.4!

whereeF is the Fermi energy andt is the elastic momentum
relaxation time. Condition~1.4! means that in bulk systems
the orbital effect of the magnetic field is always dominan

The situation may change in restricted geometries. C
sider, e.g., a superconducting film of thicknessa!j, placed
in a magnetic field parallel to the plane of the film. A Coop
pair in this case is restricted in the transverse direction by
film thicknessa. As a result, the geometrical area swept
this pair can be estimated asaj rather than asj2. Therefore,
Eq. ~1.1! should be changed to

Hc2

i ja.f0⇒Hc2

i .Hc2S j

aD . ~1.5!

On the other hand, the Zeeman splittingEZ5gLmBH is not
affected by geometrical restrictions. Accordingly, instead
Eq. ~1.4! the ratio of the two scales of magnetic field is give
by

Hspin

Hc2

i .~eFt!S a

j D . ~1.6!

Thus, for sufficiently thin films,a! j/eFt, the spin effects
become dominant. One can easily check that the same
mate~1.6! holds for other restricted systems, i.e., superc
ducting grains or wires. In these cases,a is the size of the
grain or the diameter of the wire, respectively. Quite gen
ally, a is determined by the minimal size of the sample in t
plane perpendicular to the magnetic field. In this paper
5757 © 1998 The American Physical Society
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consider such restricted geometries, and unless the opp
is stated, neglect orbital effects.

The transition from superconductor to paramagnet is
the first order:2 the superconducting state is the only sta
state atEZ<D; while at EZ>2D normal state is the only
stable state. Both phases are locally stable~i.e., stable with
respect to small perturbations! in the interval of magnetic
fields whereD,EZ,2D. The normal state becomes lowe
in energy and thus globally stable atEZ>A2D. From now
on, we will assume that this condition is fulfilled.

One of the most fundamental manifestations of superc
ductivity is the gap in the tunneling density of states~DOS!
around zero bias.1,3 One can expect that after the parama
netic transition not only the BCS order parameter vanis
but also the energy dependence of the tunneling DOS
comes similar to those in superconductors above the cri
temperatureTc . ~The latter dependence is discussed in
review article Ref. 4.!

In this paper, we demonstrate that, on the contrary, th
are clear observable superconducting effects in the nor
state even far from the transition region. We will show th
at the transition point there appears a dip in the DOS~a
schematic evolution of the DOS with the magnetic field
shown in Fig. 1!.

The shape and the width of this dip depend on dimens
ality of the system. However, its position is remarkably u
versal:

FIG. 1. Evolution of the tunneling DOS with the Zeeman sp
ting EZ for ~a! the superconducting state,EZ,A2D, see, e.g., Ref.
5, and~b! for the paramagnetic stateEZ.A2D. The usual zero-bias
anomaly in the paramagnetic state~b! is not shown for simplicity.
The shape of the singularity atE* corresponds to the zero
dimensional case.
ite
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E* 5
1

2
~EZ1AEZ

22D2!, ~1.7!

for the zero-dimensional~0D! ~grain!, 1D ~strip!, and 2D
~film! cases. Some of our conclusions already have b
briefly reported by two of us.6 Here we present detailed der
vations of the results of Ref. 6 and consider the relev
perturbations~spin-orbital coupling, orbital magnetic field
finite temperature, and energy relaxation! of the new tunnel-
ing anomaly.

The remainder of the paper is organized as follows. S
tion II presents the parametrically exact solution for the si
plest but instructive geometry of zero-dimensional syste
~ultra-small superconducting grains!. Section III deals with
the more involved problem of the tunneling anomaly in s
perconducting films and wires. Both sections required ap
cation of the diagrammatic technique on the level of at le
Ref. 7. For the benefit of the readers interested in phys
interpretation rather than in rigorous derivations, we pres
in Sec. IV the qualitative derivation which grasps all th
essential physics involved, even though it fails to give
completely quantitative description. Section V analyzes h
the tunneling anomaly is affected by spin-orbital couplin
orbital magnetic field, finite temperature, and energy rel
ation. We discuss the recent experiment8 on the Zeeman
splitting of the tunneling anomaly in Al films in Sec. VI. Ou
findings are summarized in the Conclusion.

II. ZERO-DIMENSIONAL SYSTEMS

Let us consider an isolated disordered superconduc
grain which is small so that the Zeeman splitting domina
over the orbital magnetic field effect~see, e.g, Refs. 9, 10 fo
recent experiments on such grains!. We assume that the siz
of the grain exceeds the electronic mean free pathl , and, at
the same time, is much smaller than the supercond
ing coherence lengthj. We also assume thatkFl @1. This
results in a large dimensionless conductance of the g
g (g;kF

2 la). Finally, we assume that the grain is alrea
driven into the paramagnetic state by the Zeeman splitt
Our goal is to find effects of the superconducting fluctuatio
on the DOS of the system.

The HamiltonianH of the system consists of a noninte
acting partH0 and an interacting oneH int . Using the basis of
the exact eigenstates ofH0 labeled by integersi and j , one
can write the Hamiltonian as

H5(
is

Eisais
† ais2ld̄(

i , j
ai↑

† ai↓
† aj↓aj↑ . ~2.1!

Here the operatorais
† (ais) creates~annihilates! an electron

in a statei with spin s5↑,↓, and energyEi↑(↓)5e i7EZ/2
wheree i is the orbital energy of thei th state.l!1 is the
dimensionless interaction constant, andd̄ is the average leve
spacing:

^e i 112e i&5 d̄. ~2.2!

Let us stop for a moment to discuss the approximat
made in Eq.~2.1!. We included in Eq.~2.1! only the matrix
elements of the interaction Hamiltonian responsible for
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superconductivity. We omitted two kinds of diagonal term
The term proportional toais1

† ais1
aj s2

† aj s2
represents the to

tal charging energy responsible for the Coulomb blockad11

It is not important for us because it does not lead to a
anomalies at energies of the order of Zeeman splitting, an
can be accounted for by a corresponding shift of the app
bias. Other diagonal terms such as the one proportiona
ais1

† ais2
aj s2

† aj s1
represent the spin exchange. It is not i

cluded because it leads only to a renormalization of
Landéfactor gL .

We also omitted off-diagonal terms, such asai↑
† aj↓

† ak↓al↑
with i , j , k, l not equal pairwise, corresponding to the mat
elements:

Mi j
kl5E drdr8V~r 2r 8!c i* ~r !c j* ~r 8!ck~r !c l~r 8!.

The wave functions are known to oscillate very fast, so
wave functions of different levels are very weakly correlate
We can restrict our consideration by a short-range inte
tion, V(r 2r 8)5 (l/n0) d(r 2r 8), wheren0 is the bare DOS.
One sees that the integrand@ uc i(r )u2uc j (r )u2# in the diago-
nal matrix elements is always positive while the produ
@c i* (r )c j* (r )ck(r )c l(r )# can be both positive and negativ
As a result, the off-diagonal matrix elements turn out to
smaller than diagonal ones. Straightforward calculations12,13

show that they are smaller by a factor 1/g.
In the paramagnetic state (EZ.A2D), the structure of the

ground state is similar to that without interaction, see Fig
The orbitals with e i,2EZ/2 are doubly occupied while
those with e i.EZ/2 are empty. The orbitals withue i u
,EZ/2 are spin polarized with spin up.

The Hamiltonian~2.1! does not affect the spin polarize
states, but mixes the doubly occupied and empty sta
Since those states are separated from each other by a
gapEZ , this mixing can be treated perturbatively. Thus, t
mixing does not change the ground state qualitatively.
contrast, the spectrum of the excitations, i.e., the tunne
DOS changes drastically due to the interaction. The esse
of this effect is that a spin-down electron tunneling into so

FIG. 2. Structure of the ground state of the supercondu
above paramagnetic limit. Electron tunneling onto the orbitale0,
creates a spin singlet state on this orbital. At some energye0 mixing
of this singlet with the empty states becomes resonant, see the
.
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orbital e0 already occupied by a spin-up electron creates
electron pair which can mix with the empty orbitals and th
interact with superconducting fluctuations. This mixing tur
out to be resonant at some energyE5E* and it leads to a
sharp singularity in the spectrum of one-electron excitatio

To evaluate the effect of superconducting fluctuations
the DOS of electrons in the paramagnetic state, we use
diagrammatic technique for the Green function~GF! at zero
temperature.7 The DOS can be expressed through the o
particle GF,Gis(v), of an electron on the orbitalj and with
spin s561[↑(↓):

ns~v!52
1

p
sgn~v!Im(

i
Gis~v!, ~2.3!

where

Gis
215Gis

0212S is . ~2.4!

Gis
0 is the GF for the noninteracting system

Gi↑~↓ !
0 5~v12e i6EZ/2!21, ~2.5!

andS is is the one particle self-energy.
The leading contribution to the self-energy is shown

Fig. 3~a!. The solid and curly lines denote the single-partic
GF and the propagator of superconducting fluctuations,
spectively. The latter can be obtained by summing the po
ization loops in the Cooper channel shown in Fig. 3~b!. The
single loop is given by

P~v!5
1

2d̄
lnS vc

2

EZ
22v1

2 D , ~2.6!

wherev15v1 i0 sgn(v) andvc is the high-energy cutoff.
Solving the Dyson equation@Fig. 3~b!#, we obtain the propa-
gator

L~v!5
ld̄

12ld̄P~v!
5

2d̄

ln@~EZ
22v1

2 !/D2#
, ~2.7!

r

xt.
FIG. 3. Diagrams for~a! self-energyS i ,↓(v) and~b! supercon-

ducting propagatorL(v).
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whereD5vcexp(21/l) is the BCS gap.
The propagator~2.7! has a pole atv56V,

V5AEZ
22D2. ~2.8!

This pole can be interpreted as a bound state of two qu
particles with energyV.

The analytic expression for the self-energy given by F
3~a!, has the form

S i↓~v!5 i E
2`

` dv1

2p
L~v1v1!Gi↑

0 ~v1!. ~2.9!

One can see that there are two contributions to the s
energy. One comes from the pole ofL and the other is due to
the branch cut of this propagator. The pole contribution gi
a singularity of the self-energy at certainv ande i while the
contribution of the branch cut is smooth. To find the sing
larity in the DOS, only the pole contribution toS may be
retained:

S i↓~v!5
d̄D2

V

1

v11e i2EZ/21V sgn~e i2EZ/2!
.

~2.10!

At certainv the pole of the self-energy coincides with th
pole of G0. This causes the singularity in the DOS. One c
check that the singularities of Eqs.~2.5! and~2.10! coincide
providede i5V/2 and

v5
EZ1V

2
5

EZ1AEZ
22D2

2
[E* . ~2.11!

Substituting Eq.~2.10! into Eq.~2.4! we obtain the GF for
the down-spin electron atv close toE* :

Gi↓~v!5
v11e i2EZ/22V

~v12e i2EZ/2!~v11e i2EZ/22V!2W0
2

,

~2.12!

where the energy scale of the singularity is given by

W05Ad̄D2

V
. ~2.13!

SinceEZ ,D@ d̄, one can neglect the fine structure of t
DOS on the scale ofd̄ and substitute the summation overi
by the integration overe i :

(
i

Gi↓5n0E de i

v11e i2EZ/22V/2

2e i
21~v12EZ/22V/2!2W0

2

52 in0p
v2E*

A~v2E* !22W0
2

. ~2.14!

Analogously, the GF for the up-spin electron can be o
tained by changing the signs ofEZ andV, so that the singu-
larity occurs atv52E* .

Substituting Eq.~2.14! into Eq. ~2.3!, we obtain the final
expression for the tunneling DOS in ultrasmall grains
si-

.

lf-

s

-

n

-

n↑~↓ !~v!5n0F0S v6E*

W0
D , F0~x!5ReS x2

x221
D 1/2

,

~2.15!

where n0 is the bare DOS per one spin, the energyE* is
defined by Eq.~1.7! and the width of the singularityW0 is
given by Eq.~2.13!. Equations~2.15! and~2.13! are the main
result of this section. They predict a hard gap in the sp
resolved density of states:ns(v) vanishes atuv1sE* u
,W0. The overall density of statesn↓1n↑ is suppressed by
a factor of 2 near the singularity.

In this calculation we neglected higher corrections to
self-energy, e.g., those shown in Figs. 4~a! and 4~b!. In order
to justify this approximation, we have to compare the con
butions shown in Figs. 4~a! and 4~b! with the reducible dia-
gram shown in Fig. 4~c! included in Eqs.~2.10! and ~2.12!.
The singular contribution originates from the pole ofL. It
means thatL carries frequencyV. The singularity in the
DOS atv5E* appears when the pole of the self-energy a
the pole ofG0 coincide. This happens when the GFG0 for
up-spin carries energyV2v. In Figs. 4~a!–4~c!, the inter-
mediateG0 for down-spin should carry energyv to give a
singularity to the DOS atE* . This condition cannot be sat
isfied for Figs. 4~a! and 4~b!. As a result, after the integratio
over the intermediate frequency, these higher-order cor
tions turn out to be smaller than the reducible contribut

~c! by small factorW0 /D.Ad̄/D!1.

III. DISORDERED INFINITE SYSTEMS

In this section, we will obtain quantitative results for th
tunneling anomaly in infinite systems. In Sec. III A we w
start from the perturbation theory and demonstrate that
lowest order perturbative results diverge algebraically at
ergies close toE* . In order to deal with this divergence, w
develop a nonperturbative approach in Sec. III B and obt
the analytic expressions for the shape of the singularities
all interesting cases. This machinery will be also used late
Sec. V.

A. Perturbative results

The analysis of a 0D system presented in the previ
subsection, is not directly applicable to superconduct
wires and films because one cannot approximate the inte
tion Hamiltonian

FIG. 4. Higher-order corrections to the self-energy~a! and ~b!,
which were neglected in comparison with reducible diagram~c!.
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Ĥ int52ln0
21E

2`

`

dra↑
†~r !a↓

†~r !a↓~r !a↑~r ! ~3.1!

by its diagonal matrix elements. Despite this complicati
we will still be able to show that the singularity persists a
remains at the same bias as that in 0D.

To describe this singularity we once again have to eva
ate the effect of the superconducting fluctuations on the
of electrons. First of all, we need to evaluate the propag
of superconducting fluctuationsL, see Fig. 5. In contras
with the 0D case, the superconducting fluctuations in
bulk system are inhomogeneous: the propagator for the
perconducting fluctuations depends on the wave vectorQ.
~We will omit the vector notation in the momenta, e.g.,Q

[QW .! Solving the Dyson equation shown in Fig. 5~a!, we
obtain the propagator

L~v,Q!5
2

n0ln$@EZ
22~ uvu1 iDQ2!2#/D2%

, ~3.2!

whereD is the diffusion coefficient. AtQ50, the propagator
~3.2! resembles the zero-dimensional expression~2.7!. We
see that the propagator has a singularity atv close toV
providedDQ2!V. As we will see shortly, it results in the
er
p-

ne
,

-
F

or

e
u-

singularity in the DOS developing at exactly the same ene
as in the 0D case,v5E* , given by Eq.~2.11!.

The next step is to consider the vertex function in t
particle-particle channel. The ladder approximation wh
gives the main contribution ateFt@1 ~t is the elastic mean
free time! is shown in Fig. 5~b!. Analytically, they are given
by

g6~v,Q!5t1I 6~v,Q!g6~v,Q!. ~3.3!

Here I 6(v,Q) stands for

FIG. 5. Diagrams for the~a! propagator of superconductin
fluctuationsL(v,Q) and ~b! the vertex functiong1(v,Q).
I 6~v,Q!5
1

2pn0tE ~dp!G↑~↓ !~v1v1 ,ep!G↓~↑ !~v1 ,e2p2Q!

5
1

2pn0tE ~dp!
1

@v1v12ep6EZ/21 ~ i /2t! sgn~v1v1!#@v12e2p1Q7EZ/21 ~ i /2t! sgn~v1!#

5$11t@ i „uvu6sgn~v!EZ…2DQ2#%u@2~v1v1!v#, ~3.4!
ne-
where (dp)5 ddp/(2p)d, and the GF’s are averaged ov
disorder.7,4 Here we used the conditions of the diffusion a
proximation,vt!1 andQl!1. We substitute Eq.~3.4! into
Eq. ~3.3! and we obtain

g6~v,Q!5tu@~v1v1!v#

1
u@2~v1v1!v#

2 i @ uvu6sgn~v!EZ#1DQ2
. ~3.5!

Now we can evaluate the first-order correction to the o
particle GF, Fig. 6:

dG↓
~1!~v,p!5

1

t2E ~dQ!E dv1

2p
G↓

2~v,p!L~v1v1 ,Q!

3G↑~v1 ,2p1Q!g2
2 ~v2v1 ,Q!. ~3.6!

The DOS is determined by the GF integrated overp:

n↑~↓ !~v!52
sgn~v!

p
ImE ~dp!G↑~↓ !~v,p!. ~3.7!
-

We substitute Eq.~3.5! into Eq. ~3.7! and perform the
integration overp andv1. For Ql!1 anduv2v1ut!1 in-
tegration over the momentump results in

E ~dp!G↓
2~v,p!G↑~v1 ,2p1Q!

5 i2pn0u~2vv1!t2sgn~v1!.

Performing the integration overv1 we take into account only
the pole contributions in the propagator~3.2! for DQ2!V:

FIG. 6. Diagrams for the lowest order corrections to the o
particle Green function.
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L~v,Q!'
D2

n0VS 1

V1v2 iDQ2
1

1

V2v2 iDQ2D ,

~3.8!

since the integrals along the branch cuts give only the c
rections which are smooth functions ofv. The main contri-
bution to the frequency integral results from the regi
where the real part of the pole of the propagatorL in Eq.
~3.7!, Rev152v6V, is close to that of the vertexg2 ,
Re v15v1sgn(v12v)EZ , and the imaginary parts o
those poles have different signs. The latter requi
v Re v1,0, v2.@Re v1#2. One can easily check that a
these conditions can be met only ifv is close toE* from Eq.
~1.7!.

Evaluating the integral overv1 in Eq. ~3.7! we obtain the
first-order correction to the DOS

dn↑~↓ !
~1! ~v!

n0
52

D2

2n0V
ReE ~dQ!C↑~↓ !

2 ~v,Q!, ~3.9!

whereC↑(↓)(v,Q) is the Cooperon given by

C↑~↓ !~v,Q!5
1

2 i uv6E* u1DQ2
. ~3.10!

@Calculation ofdn↑ requires an obvious modification of Eq
~3.7!.#

For the one-dimensional case~wire!, this correction ac-
quires the form

dn↑~↓ !
~1!

n0
~v!5

AD

8n0VA2D
S D

uv6E* u
D 3/2

. ~3.11!

It is possible to neglect higher-order corrections to the D
only provideduv6E* u is large. Forv→E* , the correction
~3.11! diverges. Therefore we need to sum up all the ord
of perturbation theory to describe the DOS in the vicinity
E* . Such a calculation is carried out in the next subsect

For two dimensions~films!, the first-order correction to
the DOS vanishes foruvuÞE* . However, this is nothing bu
an artifact of the first-order approximation and the seco
order correction is already finite. Diagrams for this corre
tion are shown in Fig. 7. The result can be written as

dn↑~↓ !
~2! ~v!

n0
522S D2

4n0V D 2 ]

]v
ImE ~dQ1!~dQ2!

3C↑~↓ !
2 ~v,Q1!C↑~↓ !~v,Q2!. ~3.12!

For the two-dimensional case Eq.~3.12! gives

dn↑~↓ !
~2!~v!

n0
52F D2

4gV~v6E* !
G 2

lnS V

uv6E* u
D 2

, ~3.13!

where g54pDn0@1 is the dimensionless conductance
the film in the normal state. Deriving Eq.~3.13!, we cut off
the logarithmic divergence at large momentaQ2 by the con-
dition DQ2

2&D, since it determines the applicability of
single pole approximation~3.8!.

As well as the 1D case, the perturbation theory fails
describe the DOS in the vicinity ofE* in two dimensions. It
is noteworthy that the singularity described by Eq.~3.13! is
r-

s

S

rs
f
.

-
-

f

o

much more pronounced than that of the normal metalT
.Tc) which arises due to the superconducting fluctuatio
and is of the order ofg21ln@ ln(v6EZ)#, see Ref. 4. The
enhancement of this singularity results directly from the is
lated pole in the propagator of the superconducting fluct
tions, see Eqs.~3.2! and ~3.8! rather than in the branch cut
of Ref. 4.

B. Nonperturbative results

1. Derivation of self-consistency equations

We start the summation of the perturbation theory ter
from the series of diagrams for the DOS presented in Fig
Such diagrams dominate in each order of the perturba
theory in comparison with those of the same order but

FIG. 7. Diagrams for the second-order corrections to the DO
Diagrams irreducible with respect to the curly lines, similar to Fi
4~a! and 4~b!, are negligible for the reason discussed in the end
Sec. II.

FIG. 8. Structure of thekth order perturbation theory. The ver
tical wiggly line on the upper Green function corresponds to cutt
this GF into two lines and fixing its frequencyv.
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cluding elements irreducible with respect to curly lines, sim
lar to Figs. 4~a! and 4~b!. The latter statement can be justifie
by arguments similar to the analysis of Figs. 4 presente
the end of Sec. II.

The diagram of thekth order of the perturbation theory
Fig. 8, containsk curly lines that stand for the fluctuatio
i

e
es

ce

n
h

d

th
a
-

-

in

propagatorL(v j ,Qj ) in Eq. ~3.2! (1< j <k). It also con-
tains (2k11) GF. Before averaging over disorder, each G
Gs(v;p,p8) depends on two momenta~initial p and final
p8! and on the direction of the spinss56[↑,↓. Contribu-
tion of this diagram to the DOS of↓ electronsdn↓(v) at
positive energyv.0 is
dn↓
~k!~v!52

sgn~v!

p
ImE dv1dv2•••dvk

~2p!k E ~dp1!~dp18!•••~dpk11!E ~dQ1!~dQ2!•••~dQk!

3G↓~v;pk11 ,p1!)
j 51

k

L~v j ,Qj !G↓~v;pj ,pj8!G↑~2v1v j ;2pj81Qj ,2pj 111Qj !. ~3.14!
.

tion

e

Disorder averaging of the product of the Green functions
Eq. ~3.14! and of the superconducting propagatorL can be
carried out independently, since their correlation gives ris
nonsingular corrections containing additional smalln
1/(eFt).

For the sake of convenience we introdu
GR(A)(v;p,p8): retarded~advanced! GF at EZ50. In the
absence of spin-orbit scattering the Green functio
GR(A)(v;p,p8) from Eq. ~3.14! can be presented throug
GR(A) as

Gs~v;p,p8!5H GR~v1sEZ/2;p,p8! v.0,

GA~v1sEZ/2;p,p8! v,0.
~3.15!

After substituting Eqs.~3.15! and ~3.8! into Eq. ~3.14!,
one can integrate over all intermediate frequenciesv j , be-
cause the fluctuation propagatorL(v j ,Qj ) has simple poles
at v j56V7 iDQ j

2 . According to Eq.~3.15!, G↓(v;p,p8)
in Eq. ~3.14! is retarded (v.0). In order to get the advance
GF from G↑(v j2v;2pj81Qj ,2pj 111Qj ) we choose the
pole in L(v j ;Qj ) with positive real part,v j5V2 iDQ j

2 .
~One can check that another pole leads to a product of
retarded functions, which vanish after the disorder aver
ing.! Using Eqs.~3.8! and ~2.8! and introducing the short
hand notation

vQj
[2v12E* 2 iDQ j

2 , ~3.16!

we can presentdn↓
(k)(v) at v.0 as

dn↓
~k!~v!52

1

p S D2

n0V D k

ImE ~dpk11!GR~v;pk11 ,p1!

3)
j 51

n

~dpj !~dpj8!~dQj !G
R~v;pj ,pj8!

3GA~vQj
;2pj81Q1 ,2pj 111Qj !. ~3.17!

Averaging Eq.~3.17! over disorder and using the identity
n

to
s

s

e
g-

E ~dp1!GR~v;p1 ,p18!GR~v;pk11 ,p1!

52
]

]v
GR~v;pk11 ,p18!, ~3.18!

we obtain

^dn↓
~k!~v!&52

1

p S D2

n0V D kS 1

2kD ]

]v

3ImK E )
j 51

k

~dQj !~dpj !~dpj8!GR~v;pj ,pj8!

3GA~vQj
;2pj81Qj ,2pj 111Qj !L . ~3.19!

The role of the factor 1/k in Eq. ~3.19! is to cancel the mul-
tiple counting: there arek retarded GF in Eq.~3.19!, and
application of the operator]v to any one of them leads to Eq
~3.17!. In addition, Eq.~3.19! includes terms like]GA/]v.
One can check that they give exactly the same contribu

FIG. 9. Structure ofg (k). Three points defining the vertex ar
denoted by thick dots.
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as terms which contain]GR/]v. The additional factor 1/2
takes these contributions into account.

Using a conventional trick 1/k5*0
1hkdh, ~see Ref. 7!,

one can present̂dn↓
(k)(v)& in a form

^dn↓
~k!~v!&52

1

2pt

D2

n0V
Im

]

]vE0

1

dhE ~dQ!~dp!

3^GR~v;p!&^GA~vQ ;2p1Q!& ~3.20!

where the short-hand notation

ṽQ5v2vQ52v22E* 1 iDQ2 ~3.21!

is used andvQ is defined in Eq.~3.16!. A similar equation
holds for spin up and negativev. In this case one should us
ṽQ522v22E* 1 iDQ2.

The vertexg (k) can be written using Fig. 9. The rules o
reading diagrams on Figs. 9 and 10 are slightly differ
from the conventional rules we used before:~i! to each curly
line corresponds factorhD2/(n0V); ~ii ! no summation over
the frequencies is implied: each retarded GF bears the
quencyv, each advanced GF bears the frequencyvQ given
by Eq. ~3.16!; ~iii ! each interaction with curly lines change
the retarded Green function to advanced and back. The
sulting expression reads

gv
~k!~ ṽQ ,Q!

5tS h
D2

n0V D k21K E )
j 51

k21

~dQj !~dpj !~dpj8!

3GR~v;pj ,pj8!GA~vQj
;2pj81Qj ,2pj 111Qj !

3GR~v;p18 ,p!GA~vQ ;2pk81Q,2p1Q!L . ~3.22!

Note that the averaged product of GF’s in the integrand
Eq. ~3.22! does not depend onp. We can thus perform in Eq
~3.20! the integration overp. As a result, Eq.~3.22! takes a
form

dn

n0
52

D2

n0V
Im

]

]vE0

1

dhE ~dQ!g~ṽQ ,Q!, ~3.23!

FIG. 10. Diagrammatic equation for the vertexgv(z,Q).
t

e-

e-

f

where

g~ṽQ ,Q!5 (
k51

`

g~k!~ ṽQ ,Q!. ~3.24!

Our goal is to evaluateg(ṽQ ,Q) self-consistently. The
difficulty is that the diagrammatic series forg contains other
elements exceptg itself, see Fig. 10.

These elements are known as Hikami boxes.14 The sim-
plest Hikami boxB(2), which appears already in the secon
order of the perturbation theory fordn, is the integral (dp)
of the sum of the three diagrams shown in Fig. 11

FIG. 11. Second-order Hikami boxB(2).

FIG. 12. Third-order Hikami boxB(3). Momenta and frequen-
cies in the Green functions are arranged similar to Fig. 11.
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B~2!~v1 ,v2 ,Q1 ,Q2!

5
1

~2pn0!3
@2 i ~v11v2!1D~Q1

21Q2
2!#.

~3.25!

The third-order Hikami box,B(3), is given by the momen-
tum integral (dp) of a sum of 16 diagrams of Fig. 12:
B~3!~v1 ,v2 ,v3 ;Q1 ,Q2 ,Q3!

52
2

~2pn0!5
@2 i ~v11v21v3!

1D~Q1
21Q2

21Q3
2!#. ~3.26!

The equation for the vertexg(ṽQ ,Q)[gv(z5ṽQ ,Q)
that determines the correction to the DOS@Eq. ~3.23!# is
t

cts,

m of the
1

t
gv~z,Q!511S 1

t
1 i z2DQ2Dgv~z,Q!1hS D2

n0V D E ~dQ1!~2pn0!3B~2!~ ṽQ ,ṽQ1
,Q,Q1!g2~1!gv~z,Q!

1h2S D2

n0V D 2E E ~dQ1!~dQ2!~2pn0!5B~3!~ ṽQ ,ṽQ1
,ṽQ2

,Q,Q1 ,Q2!g2~1!g2~2!gv~z,Q!1•••,

~3.27!

whereg( j )5gv(ṽQj
,Qj ) with ṽQj

determined by Eq.~3.21!. We introduced the extra variablez in order to separate the

external energyv and the integration variable in Eq.~3.27! and further.
The Hikami box of thekth orderB(k) is given by a sum of diagrams~of the type of Figs. 11 and 12! which contain 2k

vertices. Strictly speaking,B(k) depends on 2k21 sets of momentum and energy transfer (v,Q). However, in order to
evaluate the DOS correction given by Fig. 8, we can restrict ourselves by Hikami boxes that depend only onk sets (v j ,Qj ),
1< j <k: (v j ,Qj ) and (2v j ,2Qj ) characterize neighboring vertices. Equations~3.25! and~3.26! allow us to conjecture tha
B(k) at arbitraryk has a form

B~k!$v j ,Qj%5
Ck

~2pn0!2k21(j 51

k

~2 iv j1DQj
2!, ~3.28!

whereCk are numerical coefficients.
We are not going to determine coefficientsCk directly. An important feature of Hikami boxes is that they are local obje

determined by distances smaller or of the order of the mean free pathl . Therefore, the coefficientsCk in Eq. ~3.28! do not
depend on the dimensionality. Therefore, we can compare the exact solution of the 0D problem, Sec. II, with the su
perturbation theory series involving the coefficientsCk and thus find those coefficients.

Equation~3.27! can be rewritten in terms ofCk as

~2 i z1DQ2!gv~z,Q!511~2 i z1DQ2!gv~z,Q!(
k51

`

CkFh D2

n0VE ~dQ1!g~1!2Gk

1gv~z,Q!(
k51

`

kCk

3Fh D2

n0VE ~dQ1!gv~ṽQ1
,Q1!2Gk21E ~dQ2!~2 i ṽQ2

1DQ2
2!gv~ṽQ2

,Q2!2. ~3.29!
Introducing the functionf (x),

f ~x!52 (
k51

`

Ckx
k11, ~3.30!

we obtain a simple equation forgv(z,Q)

~2 i z1DQ2!gv~z,Q! f ~b0!1gv~z,Q!b1f 8~b0!51,
~3.31!

whereb0 andb1 are connected withg by
b0~v!5h
D

n0VE ~dQ!gv
2 ~ṽQ ,Q!,

b1~v!5h
D

n0VE ~dQ!gv
2 ~ṽQ ,Q!~2 i ṽQ1DQ2!.

~3.32!

One can use Eq.~3.31! to presentgv(z,Q) in the form

gv~z,Q!5
Z~v!

2 i z1DQ212m~v!
, ~3.33!

where the parametersZ andm are determined as
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Z~v!5
1

f „b0~v!…
, 2m~v!5b1~v!

f 8„b0~v!…

f „b0~v!…
.

~3.34!

It was already mentioned that the Hikami boxesB(n) and
thus coefficientsCn as well as the functionf (x) do not de-
pend on the number of dimensionsd. In contrast, thev
dependence of parametersb0, b1, and m are different at
different dimensions. Let us first consider the 0D case
order to determinef (x) explicitly. At d50 one has to abol-
ish integration overQ in Eq. ~3.32! and substitute the invers
mean level spacingd̄21 for n0 and 2(v2E* ) for ṽQ . The
vertexg can be determined straightforwardly

gv~z!5E de i

2p
Gi↓~v!Gi↑

0* ~v2EZ2z!, ~3.35!

where 0D GFGis andGis
0 are determined by Eq.~2.12! @Eq.

~2.13! for W0 should be multiplied byAh# and by Eq.~2.5!,
respectively. Substitution of Eqs.~2.12! and ~2.5! into Eq.
~3.35! gives after the integration overe i

gv~z!5
1

2FF0S v2E*

W0
D11G

3
1

2 i z1 i ~v2E* !$121/F0@~v2E* !/W0#%
,

~3.36!

where the functionF0(x) is given by Eq.~2.15!, E* is de-
termined by Eq.~1.7!, andW0

25hd̄D2/V. By comparing Eq.
~3.36! with Eq. ~3.33! we immediately obtainZ(v) and
m(v) for zero dimensions:

Z0~v!5
F0@~v2E* !/W0#11

2
, ~3.37!

m0~v!5 i ~v2E* !
F0@~v2E* !/W0#21

2F0@~v2E* !/W0#
. ~3.38!

On the other hand, from the zero-dimensional version of
~3.32! at z52v22E* we can determineb0 andb1:

b05
1

4F0
2

, b1522iv5
2 iv

F0
2

. ~3.39!

Now we are in a position to determine the functionf (x)
from Eq.~3.30!. We expressF0 throughb0, substitute it into
Eq. ~3.37! for Z0 and use the connection Eq.~3.34! between
Z0(v) and f (b0). As a result we have

f ~x!5
1

2x
2

1

F0~2x!
5

1

2x
2

A124x

2x
. ~3.40!

This functional dependence which remains the same a
dimensions, can be used to evaluatedn↓(v) for d51,2.

Equations~3.23!, ~3.32!–~3.34!, and ~3.40! constitute a
complete set allowing us to find the DOS in any dimensi
One has to substitute Eq.~3.33! into Eq. ~3.32!, and find
functionsZ(v) andm(v) self-consistently with the help o
n

.

ll

.

Eqs. ~3.34! and ~3.40!. The result should be substituted
Eq. ~3.23! which gives the final nonperturbative answer f
the DOS. In the following subsection, this program will b
carried out for 1D~wires! and 2D~films! systems.

2. Solution of self-consistency equations

We substitute Eq.~3.33! into Eqs.~3.32! and ~3.23! and
perform the integration over the wave vectorsQ. Equation
~3.23! acquires the form

dns

n0
522

]

]v
Im E

0

1

dh
Md@2 iv1m~v,h!#

f @b0~v,h!#
.

~3.41!

Here, we used Eq.~3.34! and introduced the dimensionles
frequency and mass

v→
v1sE*

Wd
, m→

m

Wd
. ~3.42!

The relevant energy scales, which, as we will see below,
the widths of the tunneling anomaly, are given by

W153S D2

16n1VAD
D 2/3

, W25
D2

4gV
, ~3.43!

whereV is given by Eq.~2.8!, D is the diffusion coefficient,
n15(mpFS)/(2p2) is the one-dimensional density of stat
per unit spin ~S is the cross section of the wire!, and
g54pn2D is the dimensionless conductance.15 The latter is
related to the normal-state resistance of the film asg
525.8kV/Rh .

Dimensionless functions in Eq.~3.41!, Md(x), are defined
as

M1~x!5
2

A3x
, M2~x!5 lnS 4g

x D . ~3.44!

To find M2 we cut off the logarithmic divergence at larg
momentaQ by the conditionDQ2&D, which determines the
applicability of the single pole approximation~3.8!, and ne-
glected the factorD/V.1 in the argument of the logarithm

Using the same notation, we obtain from Eqs.~3.32! and
~3.34!

b0~v,h!$ f @b0~v,h!#%2

52hMd8@2 iv1m~v,h!#, ~3.45a!

m$ f @b0~v,h!#%35h f 8@b0~v,h!#$Md@2 iv1m~v,h!#

1m~v,h!Md8@2 iv1m~v,h!#%.

~3.45b!

Equation~3.40! allows us to formally solve Eq.~3.45a!:

b052
hMd8~2 iv1m!

@12hMd8~2 iv1m!#2
, ~3.46a!

f ~b0!512hMd8~2 iv1m!, ~3.46b!
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f 8~b0!

@ f ~b0!#3
5

1

11hMd8~2 iv1m!
. ~3.46c!

We can now substitute Eq.~3.46c! into Eq. ~3.45b! and ob-
tain after simple algebra

m~v,h!5hMd@2 iv1m~v,h!#. ~3.47!

The further calculations are substantially simplified due
the fact that the integrand in Eq.~3.41! can be presented as
total derivative with respect toh. In order to demonstrate
this, we differentiate both sides of Eq.~3.47! with respect to
h:

]m

]h
5Md~2 iv1m!1hMd8~2 iv1m!

]m

]h
. ~3.48!

Finding ]m/]h from Eq. ~3.48!, we notice with the help of
Eq. ~3.46b! that it coincides with the integrand in Eq.~3.41!.
The integration in Eq.~3.41! can be immediately performe
and we obtain

dns

n0
522

]

]v
Im m~v,h51!. ~3.49!

Finally we puth51 in Eq.~3.47!, differentiate both sides
of this equation with respect tov, and substitute the resu
for ]m/]v into Eq. ~3.49!. After restoration of the origina
units forv according to Eq.~3.42!, we obtain for the density
of statesns(v)5n01dns(v) the following result:

ns~v!

n0
5FdS v1sE*

Wd
D , ~3.50!

where s561 corresponds to the spin-up and spin-do
densities of states, respectively, and the widths of the sin
larity Wd are defined in Eq.~3.43!. The dimensionless func
tion Fd(x) is given by

Fd~x!5Re
11z~x!

12z~x!
, ~3.51a!

where the functionz(x) is implicitly defined as the solution
of equations

z~x!5Md8@2 ix1y~x!#,

y~x!5Md@2 ix1y~x!#, ~3.51b!

with functions Md(x) being defined in Eq.~3.44!. If Eq.
~3.51b! has several solutions, one has to choose the one
producing the perturbation theory atx@1 and remaining on
the same sheet of the Riemann surface at smallx.

In the 1D case, Eq.~3.51b! can be rewritten as a cubi
equation and solved using the Cardano formula which yie
a universal~independent ofn1 and D) expression for the
shape of the singularity:

F1~x!512
2

3
Re$12 ix@A3 11y~x!1A3 12y~x!#%21,

y~x!5A11 ix3. ~3.52!
o

u-

re-

s

The functionsA3 z in Eq. ~3.52! are defined to the map com
plex plane2p,arg(z),p to 2 p/3,arg(z),p/3.

For the two-dimensional case, we obtain from Eqs.~3.51!
and ~3.44!:

F2~x!5Re
12z~x!

11z~x!
, ~3.53!

wherez(x) is the solution of the transcendental equation

z~x!5
1

2 ix1 ln@4gz~x!#
. ~3.54!

The shape of the singularity in this case depends on the
ductanceg and, thus, is not universal. However, this depe
dence is rather weak. Foruv6E* u@Wd , Eqs. ~3.52! and
~3.53! match the perturbative results, Eqs.~3.11! and~3.13!.
The found energy dependence of the density of state
shown in Fig. 13.

IV. QUALITATIVE DISCUSSION

In this section we will present a simple qualitative inte
pretation of the main results obtained in the previous s
tions. We believe that this simplified way of thinking pro
vides instructive physical intuition even though it fails
give a completely quantitative description.

It has been already emphasized in the beginning of s
tion Sec. II that the ground state of the system above
paramagnetic limit has a structure similar to that of a non

FIG. 13. Singularity in the DOS for spin-down polarized ele
trons for ~a! 1D and~b! 2D systems. The widths of the singularit
W1,2 are given by Eq.~3.43!, and the shape is defined by Eq
~3.50!, ~3.52!, and~3.53!.
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teracting system. All the mixing of the noninteracting sta
caused by the interaction part of the Hamiltonian~2.1! is
perturbative. We can neglect it completely in a rough a
proximation and consider the electrons occupying orbi
with orbital energiese i,2EZ/2, see Fig. 2, to be ‘‘frozen.’’
As soon as the spin down electron tunnels onto an orb
0,e0,EZ/2, see Fig. 2, the electron pair on this orbital
created. Due to the interaction, this pair can mix with all t
empty states,e i.EZ/2. It is this mixing which gives rise to
the singularity in the DOS. On the other hand, within t
same approximation, all the electrons on the orbitalse i,
2EZ/2 can still be considered as ‘‘frozen.’’~ This approxi-
mation is similar in spirit to the well-known Coope
procedure16.!

Thus, we arrive at the following recipe for the evaluati
of the energy of a one-electron excitation. First we have
find the eigenenergiesE(2)

j (e0) of the two-electron problem
within the Hilbert space consisting of the orbitale0 and of all
the orbitalse i.EZ/2, see Fig. 14.~This energy spectrum
naturally depends one0 as parameter.! Then, the energies
E↓

j (e0) of the one-particle excitation, corresponding to t
introduction of an electron onto the orbitale0 are

E↓
j ~e0!5E~2!

j ~e0!2S e02
EZ

2 D , ~4.1!

since the total energy of the electron which occupied t
orbital before the tunneling event wase02EZ/2, while the
state of the rest of the electrons did not change. Accordin
the density of states for spin-down electrons is given by

n↓~v!.(
j ,e0

d@v2E↓
j ~e0!#. ~4.2!

Now, we have to find the spectrum of two-electro
eigenenergiesE(2)

j (e0). Since the interaction in the Hamil
tonian involves only the spin-singlet orbitals, the wave fun

FIG. 14. Hilbert space for the solution of the two-electron pro
lem. All the orbitals~dotted lines! with e i,2EZ/2 are excluded
since they are occupied by ‘‘frozen’’ electron pairs and the orbit
2EZ/2,e i,EZ/2, e iÞe0 are excluded because singly-occupi
orbitals are not affected by the interaction~2.1!.
s

-
ls

al

o

s

y,

-

tion of the electron pairc can be labeled by one orbital inde
and it is governed by the Schro¨dinger equation:

E~2!
j c i52e ic i2ld̄(

j
c j . ~4.3!

The eigenenergiesE(2)
j can be determined from the follow

ing equation:

d̄

2e02E~2!
j

1 (
e i.EZ/2

d̄

2e i2E~2!
j

5
1

l
. ~4.4!

For low-lying eigenstatesE(2)
j ,EZ , one can substitute the

summation in Eq.~4.4! by an integration. Given the high
energy cutoffvc , it yields

2d̄

2e02E~2!
j

5 lnS 11
EZ2E~2!

j 2Db

Db
D , ~4.5!

whereDb5vcexp(22/l) is the binding energy of the Coo
per pair.

As we will see in a moment,u2e02E(2)
j u@ d̄, and, there-

fore, the logarithm in Eq.~4.5! should be also small and i
can be expanded in the Taylor series, ln(11x)'x, uxu!1.
Equation~4.5! is immediately simplified to

2d̄

2e02E~2!
j

5
EZ2Db2E~2!

j

Db
,

and we obtain the solution for the two relevant eigenen
gies:

E~2!
6 ~e0!5e01

Vb

2
6AS Vb

2
2e0D 2

12d̄Db. ~4.6!

All the other two-electron states have energies larger thanEZ
and they are not important for us. In Eq.~4.6!, the energy

Vb5EZ2Db ~4.7!

has the meaning of the energy of the bound state of
Cooper pair measured from the Fermi level. It plays the r
of the energyV from Eq. ~2.8! in the rigorous solution. We
will return to the discussion of the discrepancy between E
~4.7! and ~2.8! later.

Substituting Eq.~4.6! into Eq.~4.1!, we obtain the energy
of one-particle excitations

E↓
6~e0!5Eb* 6AS Vb

2
2e0D 2

12d̄Db, ~4.8!

where the position of the singularity

Eb* 5
EZ1Vb

2
~4.9!

is similar to the energyE* in the exact Eq.~2.11! up to the
substitutionV→Vb .

According to Eqs.~4.2! and Eq.~4.8!, the density of states
vanishesin the energy stripuE2Eb* u,(2d̄Db)1/2—a hard
gap in the DOS is formed, compared with the exact res
Eq. ~2.15!. The origin of this tunneling anomaly is th
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avoided crossing of the two-electron state formed by the t
neling electron~energy 2e0! with the bound state of the Coo
per pair~energyVb!.

It is also noteworthy that if a spin-up electron tunnels in
the grain, it never finds the pair for itself, and, therefore,
tunneling anomaly happens in this case. It means that
overall DOS does not vanish but rather shows the supp
sion by a factor of 2. However, for the spin-polarized ele
trons tunneling into the grain, we predict the complete s
pression of the tunneling DOS.

The same arguments allow to justify the similar singul
ity, when a spin-up electron with energy2EZ/2,E,0 tun-
nels out from the system, while the spin-down electrons t
neling from the system are not affected.

The qualitative consideration above grasps the cor
physics, however it fails to describe the effect quantitative
it predicts correctly neither the position nor the width of t
gap. This is similar to the discrepancy between the bind
energyDb in the original Cooper procedure and the corre
BCS gapD: all the electrons below the Fermi energy we
frozen. To remedy this drawback, one has to employ
parametrically exact procedure described in Secs. II and

Let us now discuss the results obtained for the disorde
bulk systems, Sec. III. They can be briefly summarized
follows: ~i! the singularity in the DOS persists;~ii ! its posi-
tion does not change;~iii ! the energy scale of the singularit
depends on both disorder and dimensionality, see Eq.~3.43!.

In order to understand the physics behind the singulari
in the bulk systems, let us recall the meaning of the ze
dimensional approximation. Strictly speaking, it implies th
during the timetE.\/E, ~whereE is the energy scale rel
evant for the problem!, a diffusively moving electron can
visit all of the system. The characteristic time of this diff
sion is .L2/D, ~L is the characteristic size of the system!
which means that the zero-dimensional approximation is
plicable provided that the energy scaleE does not exceed th
Thouless energyEc5\D/L2. In our problem the relevan
energy scale is the gap widthW0 from Eq. ~2.13!, and the
condition

1.
W0

Ec
}L22d/2 ~4.10!

is definitely violated for infinite systemsL→`, ~here d
51,2 is the dimensionality of the system!.

It is clear that as soon as the condition~4.10! breaks down
the geometrical size of the systemL as well as its mean leve
spacingd̄51/(n0Ld) is not relevant since the electron cann
diffuse during finite timetE5\/E over a distance larger tha
LE5ADtE. On the other hand, it effectively visits all th
space on the scale smaller thanLE . Therefore, the following
approximation holds: in order to understand the propertie
the diffusive system associated with the energy scaleE, we
can separate the system into smaller patches of the sizLE

5A\D/E, and, then, apply the zero-dimensional descript
to each patch independently,~assuming that different patche
do not ‘‘talk’’ to each other!.

Let us now apply this strategy to the problem at ha
First, we notice that the position of the singularity in the 0
grain Eq.~2.11! does not depend on the size of the grain a
therefore the singularity in each patch should be at the s
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energyE* as in zero-dimensional systems. Second, the le
spacingd̄ entering into the width of the singularity Eq.~2.13!
does depend on the size of the patch

d̄5
1

n0LE
d

. ~4.11!

In this formula, scaleLE is itself determined by the width o
the singularity,E.Wd , so that the scaleWd has to be de-
termined self-consistently. Substituting Eq.~4.11! into Eq.
~2.13!, we find

Wd.S D2

n0LW
d V

D 1/2

; LW.S D

Wd
D 1/2

. ~4.12!

Solving Eq.~4.12!, we obtain

Wd.DS Dd/2

n0VDd/2D 2/~42d!

, ~4.13!

which agrees with the rigorous results~3.43! for one- (d
51) and two- (d52) dimensional systems. However, th
quantitative description requires machinery like that used
Sec. III.

V. RELEVANT PERTURBATIONS

A. Spin-orbit scattering

In our previous consideration we assumed that electro
spin is a good quantum number, i.e., impurity scattering
electrons does not cause spin flips. There are two source
spin relaxation of conduction electrons: localized sp
~paramagnetic impurities! and spin-orbit~SO! scattering of
electrons by nonmagnetic disorder. The latter is charac
ized by the scattering amplitude

ivso~@pf3pi #•s!/pF
2 , ~5.1!

wherepf andpi are final and initial momenta of an electro
and s is the spin operators5(ŝx ,ŝy ,ŝz) whose compo-
nents are Pauli matrices. It acts on the spinor wave func
of the electron.

Let us discuss the effect of SO scattering first start
with the qualitative physical picture. In the absence of bo
SO interactions and magnetic field two-spin states, wh
belong to a given orbital, have the same energy. Magn
fields split this degeneracy. It was important for us that
splitting EZ is exactly the same for all of the orbital state
Now let us turn to the SO interaction. Without an extern
magnetic field the states are still doubly degenerate dueT
invariance~Kramers doublets17!. A magnetic field is well
known to split the Kramers doublets similar to how it spl
pure spin states in the absence of SO interactions. The m
difference is that this splitting is not exactly uniform an
more~see, e.g., Ref. 18!. It is this dispersion of splittings tha
smears the DOS singularity. The Zeeman splitting domina
the magnetic-field effect on superconductivity only provid
the SO interaction is weak. However the DOS singular
turns out to be sensitive even to a weak SO scattering, s
the characteristic SO energy~the dispersion in the splitting o
Kramers doublets! should be compared with the width of th
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singularity Wd rather than with the splittingEZ itself. The
DOS for finite SO scattering can be evaluated in a way si
lar to our calculation in Sec. III B.

The Cooperon~or vertex! is formed by two electron
Green functions. In the absence of external magnetic fie
is convenient to classify Cooper poles by the total spin
two electronsS15(s11s2)/2. Spin-orbit scattering doe
not affect the spin singlet part of the Cooperon (S1

2 50)
because the spin-orbit scattering preservesT invariance.
However, this scattering leads to total spin relaxation, i
the triplet (S1

2 52) component of the Cooperon decays~the
pole in thev plane is shifted from the real axis even f
Q50!.20

An external magnetic field is coupled with the differen
S25(s12s2)/2 of two electron spins, and as a result w
classified the Cooperon by the eigenvalue of the oper
S2•EZ . These eigenvalues forS2

2 52 areEZ ,0,2EZ corre-
sponding toS2

z 51,0,21 and 0 forS2
2 50. Neither of those

two classifications is exact when both a magnetic field a
SO scattering take place simultaneously: the operatorsS1

2

andS2
z do not commute. On the other hand, as it was alre

mentioned, we should assume that the SO effect is w
This allows us to evaluate the Cooperon perturbatively.

Summing the usual ladder diagrams and taking the a
tional scattering amplitude Eq.~5.1! into account, we end up
with an equation for the 434 matrix of the Cooperon which
we already discussed qualitatively:

F ~2 iv1DQ2! Î 1 iEZ•S21
2S1

2

3tso
GĈ5

Î

t
, ~5.2!

where tso51/(2pn0vso
2 ) is the time of the spin relaxation

by SO scattering, the matrixÎ is the direct productÎ 5
s0

s
^ s0

e , where the unit matrixs0
s is acting in the spin 2

32 space, ands0
e is the unit matrix in the 232 space of the

electron lines. OperatorsS6 are defined as 2S15(ss

1ns0
s) ^ s0

e and 2S25(ss2ns0
s) ^ sz

e , where n
5(1x,1y,1z) is the unit vector, andss5(sx

s ,sy
s ,sz

s) are the
Pauli matrices in the spin space.

Instead of diagonalizing Eq.~5.2!, we can just evaluate
the correction toC↑(↓)

21 ,

C↑
21[@C21#↑,↓

↑,↓ , C↓
21[@C21#↓,↑

↓,↑ ~5.3!

in the first order of perturbation theory in (EZtso)
21!1.

This correction turns out to be 2/(3tso). As a result, SO
scattering simply shifts the Cooper polesC↑(↓) :

C↑~↓ !~v,Q!5
1

2 iv7 iEZ1DQ21 2/3tso

. ~5.4!

From Eq.~5.4! one can guess that the all the interesti
results can be obtained from the results of Secs. II and III
substituting

v→v1 iG, ~5.5!

whereG is the spin-orbit rate

G5
2

3tso
, ~5.6!
i-

it
f

.,

or

d

y
k.

i-

y

so that the final result for the density of states is

n↑~↓ !~v!

n0
5ReFdS v6E* 1 iG

Wd
D ~5.7!

with Wd andE* determined by Eqs.~2.13!, ~3.43!, and~1.7!,
and dimensionless functionFd is given by Eqs.~2.15!,
~3.52!, and ~3.53!. We notice that the DOS singularity ge
smeared by SO scattering whenG*Wd . This is in contrast
to conventional superconductivity which is known to b
stable with respect to SO scattering since the latter does
violate T invariance.

This guess turns out to be correct. In order to demonst
it one has to show that not only the Cooperon but also
Hikami boxes from Sec. III B are modified according to th
rule ~5.5!. Taking into account the spin-orbit scattering E
~5.1! in impurity lines in Figs. 11 and 12, we obtain

B~2!~v1 ,v2 ,Q1 ,Q2!

5
1

~2pn0!3 F2 i ~v11v2!1D~Q1
21Q2

2!1
4

3tso
G ,

B~3!~v1 ,v2 ,v3 ;Q1 ,Q2 ,Q3!

52
2

~2pn0!5
@2 i ~v11v21v3!

1D~Q1
21Q2

21Q3
2!12tso#.

With the same rigor as in Sec. III B, we conjecture that

B~n!$v j ,Qj%

5
Cn

~2pn0!2n21(j 51

n S 2 iv j1DQj
21

2

3tso
D ,

therefore, rule~5.5! is satisfied which gives Eq.~5.7!.
Finally we emphasize that in Eq.~5.7! the complex argu-

ment of the functionFd(z) should be located on the physic
sheet:z5uzuexpiw and 2p,w,p. Thus, the functionsAd z
in Eqs. ~2.15! and ~3.52! are defined to map the comple
plane2p,arg(z),p to 2 p/d,arg(z),p/d.

B. Paramagnetic impurities, orbital effects
of the magnetic field

The derivation in the previous section suggests that
physical mechanism of violation of eitherT invariance or
conservation of spin will have a similar effect on the DO
singularity. Indeed, in the 0D and 1D cases in the presenc
magnetic fieldH and paramagnetic spins, Eq.~3.10! takes
the following form:4

C~v,Q!5
1

2 iv1DQ21 1/t tot

, ~5.8!

wheret tot is a combination of phase and spin-relaxation
fects

1

t tot
5

1

tw
1

1

ts
. ~5.9!
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Both SO scattering and spin exchange with paramagn
impurities (ts) lead to spin relaxation:

1

ts
5

2

3S 1

tso
1

1

ts
D . ~5.10!

The phase may relax either due to inelastic processes or
to the magnetic field’s effect on the orbital motion of th
electrons:

1

tw
5

1

tw
1

1

tH
. ~5.11!

When the transverse dimension of the wire~size of the
grain! a, exceeds the mean free pathl , tH can be estimated
as4,22

1

tH
5A

VH
2

ET
}DS aH

f0
D 2

. ~5.12!

Here f05hc/2e.231027 Gs cm2 is the superconductiv
ity magnetic flux,ET is the ‘‘transverse’’ Thouless energy
ET5D/a2, andVH is the Cooperon ‘‘cyclotron frequency’
~cyclotron frequency for a particle which mass and cha
equal to (2D)21 and 2e, respectively!:4

VH5
4DeH

\c
. ~5.13!

The numerical coefficientA is not universal: it depends o
the geometry of the superconductor, on the direction of m
netic field, etc.

Equations~5.8!–~5.13! are valid also for 2D films pro-
vided H is parallel to the film plane. In this case

1

tH
5

a2VH
2

48D
5

D~eHa!2

3c2\2
. ~5.14!

Now, we again conjecture that Eq.~3.28! for Hikami boxes
is still valid with the addition of 1/t tot to all DQj

2 . If so, Eq.
~5.7! for DOS is still valid, but instead of Eq.~5.6! we should
substitute

G5
1

t tot
. ~5.15!

The ratetw
21 in Eq. ~5.11! is the contribution of inelastic

collisions. This contribution will be estimated in the ne
section. The evolution of the density of states with the r
a5G/Wd for different dimensions is shown in Fig. 15.

C. Finite-temperature and inelastic processes

Our previous consideration, strictly speaking, applies o
when the temperatureT equals zero. Let us now discuss th
effects of finiteT.

Temperature manifests itself through a distribution
electrons in energy. This distribution substantially depe
on T only for energies of the order ofT. On the other hand
for tunneling anomalies at finite biaseV;E* , Eq.~1.7!, only
the low-temperature regionT!E* ~recall that the Zeeman
splitting EZ as well as superconducting gapD are normally
of the order ofE* ! is of interest. Indeed, thermal broadenin
tic

ue

e

g-

e

y

f
s

of the Fermi steps in the leads washes out any singularit
soon asT exceeds the widthW of this singularity. Since the
widths Wd , Eqs. ~2.13! and ~3.43!, are much smaller than
E* , there will be already no anomaly of the tunneling curre
at T;E* . On the other hand, atT!E* the equilibrium oc-
cupation number of a state with the energy of the order ofE*
is exponentially small and thus can be neglected. Theref
formally determined DOS, Eq.~3.50! is temperature inde-
pendent up to terms of the order of exp(2E* /T). However,
the observable, namely tunneling conductancesT(eV), de-
pends onT through the Fermi distributionnF(v/T) in the
leads. To evaluate the singular partdsT(eV) of the tunneling
conductance, one has to convolutedn(v) with the derivative
of the biased Fermi distribution:

dsT~eV!

sT
0

52E dv
]nF@~v2eV!/T#

]v

dn↑~v!1dn↓~v!

n0
.

~5.16!

Substitution of Eq.~3.50! into Eq. ~5.16! yields for sT

5sT
01dsT :

FIG. 15. Singularity in the DOS for spin-down polarized ele
trons for~a! 0D, ~b! 1D, and~c! 2D systems for different values o
the dimensionless ratea5G/Wd . The DOS in the two-dimensiona
case is plotted for conductanceg510.
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sT~eV!

sT
0

5E dv

4Tcosh2@~v2eV!/2T#

3 (
s561

ReFdS v1sE* 1 iG

Wd
D . ~5.17!

To complete this discussion, let us estimate the contri
tion of inelastic collisions of electrons, 1/tw Eq. ~5.11!, to G.
Since we are dealing with rather highly excited statesv
;E* @T), the relaxation rate 1/tw is determined by large
energy transfer (;E* ), and thus is temperature independe
In all interesting cases 1/tw simply coincides with the energ
relaxation rate 1/te . The latter~in metals, for reasonably low
energiesv) is determined by inelastic collisions betwee
electrons~see Ref. 4 for a review! and can be estimated as

1

tw
.

1

te
;

1

n0Lv
d

5
v

g~Lv!
, ~5.18!

whereLv5AD/v is the length of diffusion in timev21 and
g(L)5n0DLd22 is the conductance of thed-dimensional
sample with sizeL. For the zero-dimensional case inelas
processes of this type can be neglected completely sincetw

compares with the level spacing only at energiesE* of the
order of the Thouless energy.13,21

Using Eqs. ~4.13! we can estimate the dimensionle
productWdtw as

Wdtw;S D

V D 2/~42d!

g~j!~22d!/~42d!

;S D

V D 2/42d

3H g1/3~j! d51

lng~j! d52,
~5.19!

wherej5LD is the coherence length. SinceD;V, this es-
timate implies that as long as the localization lengthL loc
exceedsj, the width Wd is much bigger than 1/tw and in-
elastic collisions are irrelevant@L loc can be estimated from
the equationg(L loc);1#.

Together with Eqs.~2.13! and ~3.43! for Wd and Eqs.
~5.9!–~5.15! for G, Eq. ~5.17! completely describes the tun
neling anomalies ateV;6E* for Wd>T,G andd50,1. For
d52, Eq.~5.17! is valid only provided that the external mag
netic field is parallel to the plane. The orbital effect of th
perpendicular component on the tunneling anomaly is
cussed in the next section.

D. Magnetic field perpendicular to the film

It was already mentioned that for zero- and on
dimensional cases orbital effects of the magnetic field ma
fest themselves through the addition 1/tH from Eq.~5.12!, to
the parameterG, see Eqs.~5.6!, ~5.13!, and~5.15!. The same
is true in two dimensions provided the magnetic field is p
allel to the film plane.4 However, the effect of a componen
of the magnetic field perpendicular to the plane require
separate consideration.

Similarly to the usual calculation of the anomalo
magnetoresistance,22,4 we need to derive and to solve th
equation for the Cooperon in a perpendicular magnetic fi
rather than to take this field into account perturbatively. T
-

.

-

-
i-

-

a

ld
s

equation is well known to be a Schro¨dinger equation in
imaginary time for a particle with charge 2e and mass
1/(2D) in the magnetic fieldH. ForH50 the eigenfunctions
of this equation are plane waves. When this fieldH is finite
but parallel to the plane and weak enough@magnetic length
l H5(\c/eH)1/2 exceeds the film thicknessa, or VH of Eq.
~5.13! is smaller than the ‘‘perpendicular’’ Thouless ener
ET5D/a2#, it can be taken into account perturbatively. T
eigenfunctions remain plane waves, so that Cooperon ke
its form Eq.~5.8!, but the eigenvalues are shifted bytH

21 .
In contrast, even a weak perpendicular component oH

changes the eigenfunctions, and as a result the form of
Cooper pole is also modified. Each eigenfunction sho
be characterized by the number of its Landau bandn and by
one of the components of momentumQ ~one of the coordi-
nates of the guiding center! rather than by both componen
of the momentum. The corresponding eigenvalue equ
VH(n11/2), whereVH is given by Eq.~5.13!, i.e., it is
determined by the number of its Landau band, and it is
dependent of the location of the center.

As a result, in all previous calculationsDQj
2 should be

substituted by VH(n11/2), and instead of integrating
over (dQj ), we have to sum overn and divide the result by
4p l H

2 . At H50, the integration overdQ is limited from
above byDQ2&D, see the discussion after Eq.~3.44!. For
the same reason we sum overn from 1 till N.D/VH . In
order to evaluatedns(v), we have to perform a calculatio
similar to that of Sec. III with such changes.

Equation~3.23! for the DOS should be rewritten as

dns~v!

n0
52

D2

n0V
Im

]

]vE0

1

dh
1

4p l H
2 (

n51

N

gv~vns ,n!,

~5.20!

wheres561 corresponds to↑ and↓, respectively, and the
short-hand notation

vns52~v1sE* !1 iVHS n1
1

2D , ~5.21!

is introduced. After an obvious modification of Eq.~3.31!,
we obtain instead of Eq.~3.33!

gv~z,n!5
Z~v!

2 i z1VH~n1 1/2!12m~v!
, ~5.22!

whereZ(v) andm(v) can still be expressed throughb0 and
b1 according to Eq.~3.34!. Consequently, the function
b0(v) andb1(v) can be connected withgv(z,n) by equa-
tions similar to Eq.~3.32!:

bp~v!5h
D

n0V (
n51

N gv
2 ~vn ,n!

@2 ivn1VH~n1 1/2!#p
.

~5.23!

Equation~5.23! is valid for p50,1 and for both spin direc-
tions. We substitute Eq.~3.33! into Eqs.~5.20! and ~5.23!,
carry out the summation overn, and obtain Eqs.~3.41! and
~3.43!. The scale of the singularity coincides withW2 from
Eq. ~3.43!, while the dimensionless functionMd is replaced
with
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MH~x!5 lnS D

VH
D2cS 1

2
1

x

aH
D . ~5.24!

Here, the orbital effect of the magnetic field is characteriz
by dimensionless parameteraH5VH /W2 and c(x) is the
digamma function

c~x!5 (
n50

` S 1

n11
2

1

n1xD2C,

andC'0.577 . . . is the Euler constant. If the magnetic fie
is weakaH!1, we can use the asymptotic expansionc(x)
' lnx, x@1 and recover the two-dimensional resultM2 from
Eq. ~3.44!. Since the functionMH depends on the additiona
variableaH only, on a parameter we can use the solution
Sec. III B to obtain the density of states:

ns~v!

n0
5FHS v2sE* 1 iG

W2
D , ~5.25!

where the energy scaleW2 is given by Eq.~3.43!, we in-
cluded previously discussed broadening mechanisms acc
ing to rule ~5.5! with the rateG given by Eq.~5.15!. The
dimensionless functionFH(x) is given by

FH~x!5Re
aH2c8$1/21 @2 ix1y~x!#/aH%

aH1c8@1/21 @2 ix1y~x!#/aH%
, ~5.26!

where the functiony(x) is the solution of the equation

y~x!5 ln4g2 lnaH2cS 1

2
1

2 ix1y~x!

aH
D .
ire
.

-

Z
fi

pe

ce

en
d

f

rd-

The density of states in two-dimensional films for differe
values of the parameteraH is shown in Fig. 16.

Closing this subsection, we present the asymptotic beh
ior of FH(x) for two limiting cases. In weak fieldsaH!1 the
magnetic field slightly perturbs the two-dimensional res
~3.53!:

FH~x!5F2~x!1
1

12S VH

W2
D 2

Re
z3~x!

@11z~x!#2
, ~5.27!

where the dimensionless functionsF2(x) and z(x) are de-
fined in Eqs.~3.53! and ~3.54!, respectively.

In the opposite limitaH@max(1,G/W2) the depth of the
singularity is controlled solely by the cyclotron frequen
~5.13!

FIG. 16. The singularity in the DOS of two-dimensional film
for spin-down polarized electrons for different values of the dime
sionless magnetic fieldaH5VH /W2. The curves are plotted for a
conductance ofg510.
ns~v!

n0
5125

W2

VH

p2

cosh2@~v1sE* !/VH#
, uv1sE* u&VH ;

4p2
W2

VH
expS 22

v1sE*

VH
D1S W2

v1sE*
D 2

lnS V

v1sE*
D 2

, uv1sE* u@VH .

~5.28!
For
-

dis-
ly-

s, it
er

cal

nel-
d

VI. EXPERIMENTS ON Al FILMS

The theoretical study presented in this paper was insp
by the experimental work of Wu, Williams, and Adams8

These authors studied tunneling anomalies in ultrathin~about
4 nm thick! Al films, which were driven into the paramag
netic state by a parallel magnetic fieldH.H i.4.8 T. Both a
zero-bias anomaly and anomalies at biases close to the
man splittingEZ were observed. The authors attempted to
the experimental results by the theory of Ref. 4, develo
for normal metals and superconductors atT.Tc . The agree-
ment appeared to be reasonable with one important ex
tion: the positions of the satellite singularitiesE** were
lower in energies than that predicted by Ref. 4: experim
tally it was fitted as

E** .EZ2E0 ; E050.17 meV. ~6.1!
d

ee-
t
d

p-

-

In our theoryeVs5E* ,EZ , see Eq.~1.7!, and the dis-
crepancy is reduced even though it does not disappear.
instance, the minimal value ofE* corresponds to the phase
transition pointEZ5A2D and, according to Eq.~1.7!, equals
D(A211)/2.0.47 meV, sinceD.0.39 meV. The experi-
mental valueeVs.0.38 meV is about 20% smaller~rather
than 33% in comparison with Ref. 4!. We do not have
enough data to speculate about possible sources of this
crepancy. More experiments with serious quantitative ana
sis are needed to verify the present theory. Nevertheles
may be worthwhile to briefly discuss here how the oth
experimental findings of Ref. 8 compare with the theoreti
conclusions.

In Ref. 8, the authors presented and discussed the tun
ing conductanceG(V,H) as a function of bias voltage an
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magnetic field for two samples. Both samples were gran
Al films about 4 nm thick. Their sheet resistances were d
ferent:Rh

(1).4.2 kV, Rh
(2).2.0 kV. For both samples dips

of the tunneling conductance atV56Vs were observed. The
widths at half minimum~WHM! of these dips for both
samples were about 0.15– 0.2 meV, while the depths w
found to be quite different:udG/Gu(1).0.12 andudG/Gu(2)

.0.05.
One can interpret these experimental results in two dif

ent ways. The first interpretation is based on the assump
that the granular structure of the films is irrelevant, and th
can be approximated as homogeneous 2D objects. Given
superconducting gapD.0.39 meV, Zeeman splittingEZ
.0.57 meV at magnetic fieldH55 T, andRh , one can use
Eq. ~3.43! to determineW2: W2

(1).0.03 meV;W2
(2).0.015

meV. Since the WHM of the anomaly should be compa
with approximately 2W2, see Fig. 15~c!, we have not grea
but reasonable agreement, especially for the first sam
However the lawW2} ln(g)/g from Eqs. ~3.43! and ~3.53!
seems to contradict the experiment.

The alternative interpretation is based on the approxim
tion of weakly connected Al grains: in the first approxim
tion we neglect the coupling between the grains. This allo
us to use the 0D expression for the width of the singula
W0, see Eq.~2.13!. Given the electron concentration in Al o
n51.831023 cm23 and their Fermi energyEF511.8 eV,19

the bare DOS is estimated asn.231022 ~eV cm3)21. As-
suming that the grains in lateral directions have a typical s
b.30 nm,8 and that the film thickness isa.4 nm, we can
estimate the mean level spacingd̄.1/(ab2n).0.03 meV.
Substitution of this value ofd̄ into Eq. ~2.13! gives W0
.0.11 meV. This is in a good agreement with the expe
ment, since the WHM at zero dimensions according to F
15~a! should be compared with 2W0.0.22.

In order to understand the substantial difference in am
tudes of the tunneling anomalies for the two samples, le
discuss the effect of coupling between the grains. This c
pling results in a finite dwell timetdwell which an electron
spends in a given grain before tunneling into a neighbor
one. We can determinetdwell from D, the constant of the
diffusion at times bigger thantdwell , using the relationD
.b2/(2tdwell). Given the sheet resistanceRh

(1,2) , DOSn, and
the film thickness a, one can estimateD as D (1)

.0.2 cm2/sec,D (2).0.4 cm2/sec. As a result

\

tdwell
~1!

.0.05 meV,
\

tdwell
~2!

.0.1 meV.

Now we can explain the difference in the depths of t
anomalies in the two samples assuming that\/td contributes
to G from Eq. ~5.15!. One can see from Fig. 15a that the d
at G5W0/2 is approximately twice as deep as the one aG
5W0. At the same time, WHM’s in these two cases are clo
to each other.

Note that Eq.~5.7! with G5\/tdwell can be justified only
for tdwellWd.\. Theoretical investigation of the crossov
between 0D and 2D behavior in granular films goes bey
the framework of this paper, though such a study can
important for a quantitative discussion of experiments.
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From the perpendicular critical fieldHc'.1.5 T and the
dimensions of a grain one can estimate 1/tH and find that it
is irrelevant for the experiment.8 The same is correct fo
spin-orbit scattering. Recent studies of tunneling through
grains9 show that the difference of theg factor from 2 is very
small not only in average, but also for a given orbital as w
Both \/tH and \/tso are probably smaller than 0.01 me
and much smaller than\/tdwell .

Let us now return to the discussion of the dip locatio
Note that a dip in the DOS at the finite bias exists in both
superconducting and paramagnetic states. According to
idealized Fig. 1~a!, on the superconducting side of th
Clogston-Chandrasekhar phase transition, this anomaly is
cated ateV5D1EZ/2 ~line ‘‘a’’ in Fig. 17!. However, prob-
ably due to the smearing of the DOS singularities, expe
mentally the minimum was found in the middle between tw
peaks in the DOS, i.e., ateV.D ~line ‘‘c’’ in Fig. 17 !. As it
was already mentioned, the experimentally found position
the singularity is lower than our theoretical prediction~1.7!.
In fact, no jump inE* was observed at the point of th
first-order phase transition. This discrepancy may be du
the inhomogeneous broadening of the transition—differ
granulars may have slightly differentD. Another possibility
is illustrated in Fig. 17. In the interval of magnetic field
where the measurements were done the theoretical de
dence Eq.~1.7! ~line ‘‘b’’ in Fig. 17 ! can be approximated by

E* 'rEZ20.17 meV ~6.2!

with a numerical factorr .1.15 slightly larger than 1~line
‘‘e’’ in Fig. 17 !. Comparing Eq.~6.2! with the experimental
fit ~6.1!, we see that the theory would agree with experim
very well if we assume that the actualg factor is smaller than
its bare value, i.e.,gL52/r'1.72.

VII. CONCLUSION

This paper is devoted to the anomalies of the tunnel
density of states of low dimensional (d50,1,2) supercon-
ductors in an external magnetic field. We concentrated on
Clogston-Chandrasekhar~CC! phase transition, i.e., the de
struction of superconductivity by a magnetic field by virtu

FIG. 17. Position of the minimum in the DOS as the function
the Zeeman splittingEZ for D.0.4 meV:~a! Theoretical prediction
for the superconducting state~Ref. 5!, see Fig. 1~a!; ~b! Our theo-
retical prediction, Eq.~1.7! for the paramagnetic state;~c! Half
distance between maxima in the DOS in the superconducting s
~d! E* 5EZ law predicted for the normal metal~Ref. 4!; ~e! Ap-
proximation of Eq.~1.7! by a straight line.



et

he

c

iti
n

ou

re
in

ec
n
is
n

d

ie

t

a

ta

e-

o
um
ual
to

tion
s in

s
h a

r-
the
ga-

ua-
son
rity
at

nsi-
en
ec-
the
re-
rap-
ion
tate
ion.

c-
lft

PRB 58 5775THEORY OF TUNNELING ANOMALIES IN . . .
of the Zeeman splitting. As a result a normal paramagn
state of electrons is formed.

The main conclusion we can draw from our study of t
CC state is, that despite this state being normal~the mean-
field superconducting order parameter vanishes!, it is drasti-
cally different from a usual normal metal with some attra
tive interaction. The latter state appears, e.g., in
superconductor at temperatures higher than the trans
temperatureTc . The difference becomes apparent when o
studies excited states rather than those close to the gr
state.

Superconducting fluctuations in a usual normal disorde
metal were known to contribute to the zero-bias tunnel
anomaly as well as to Zeeman anomalies at a biaseV equal
to Zeeman splitting.4 However, these contributions@effects
of the interaction in the Cooper channel# are similar or
weaker than the effects of the Coulomb repulsion of el
trons, unless the system is anomalously close to the tra
tion, i.e., it is not in the Levanyuk-Ginzburg region. Th
means that the effects of superconducting fluctuations ca
taken into account perturbatively almost everywhere,~except
in the very vicinity of the transition temperature! if the sys-
tem is not too dirty. The perturbative approach~expansion in
inverse powers of the conductanceg) is valid as long as all
of the characteristic length scales involved in the problem
not exceed the localization lengthL loc .

The tunneling anomalies in the CC normal state stud
by us are quite different. First of all, its positioneV5E* , see
Eq. ~1.7!, is different from the Zeeman splittingEZ . How-
ever, what is more important, the perturbative corrections
the density of statesn(v) are much more singular atv close
to E* than corrections of the same order ing21 in usual
normal metals. Because of this, the perturbative appro
fails in a parametrically wider energy intervalueV2E* u
<Wd around the singular bias than that for the normal me
Using Eqs.~3.43!, one can check that the length scaleLW

which corresponds toWd is much less thanL loc
(d) , provided

L loc exceeds the superconducting coherence lengthj. Indeed,
since the localization length can be estimated asL loc

(1)

.Dn (1) and L loc
(2). l exp(Dn(2)), ~where l is the mean free

path, D is the diffusion coefficient, andn (d) is the
d-dimensional DOS! the characteristic spatial scale corr
sponding to the singularity,LWd

, can be written as
ic

-
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e
nd

d
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si-

be
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ch

l.

LW1

L loc
~1!

.S j

L loc
~1!D 2/3

,

LW2

L loc
~2!

.
j

L loc
~2!
AlnS L loc

l D .

The fact thatWd@D/L loc
2 makes it necessary and als

possible to go beyond perturbation theory—one has to s
only the most diverging terms, and one may neglect the us
weak localization and interaction corrections. It turns out
be possible to sum directly a whole series of the perturba
theory and thus determine the shapes of the singularitie
all dimensions.

The singularities are characterized by their widthsWd
given by Eqs.~2.13! and~3.43!. For zero-dimensional grain
our theory predicts a hard gap in the density of states wit
given spin direction, centered atv5E* . For one-
dimensional wires the shape becomes universal~independent
on n (1) andD) when energy is measured in units ofW1, see
Eq. ~3.52!. It means that the depth of the anomaly is unive
sal. In the case of the two-dimensional film the depth of
anomaly is not universal and behaves as the inverse lo
rithm of the conductance, see Eq.~3.53!.

The reason why the effects of superconducting fluct
tions in a CC metal are dramatically enhanced in compari
with the usual case is the presence of the polelike singula
in the correlation function of these fluctuations. This pole
a finite frequency appears due to the fact that the CC tra
tion is of the first order. In contrast, the temperature-driv
transition from superconductor to normal metal is of the s
ond order, and in a usual normal state the correlator of
superconducting fluctuations is a smooth function of the f
quency, i.e., any superconducting excitations decay very
idly. We believe that the strong anomalies of the excitat
spectrum at finite energies is a generic feature of any s
created as a result of a first-order quantum phase transit
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