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Vortex configurations in a Pb/Cu microdot with a 2x 2 antidot cluster
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We present a detailed study of the transport properties of a superconducting Pb/Cu microdot wigh a 2
antidot cluster. The superconducting-norrt@&iN) phase boundary, critical currents, and current-voltage char-
acteristics of this structure have been measured. The S/N phase boundary as a functionBof Tig(B) ]
reveals an oscillatory structure caused by the limited number of possible vortex configurations that can be
realized in these small clusters of pinning cenfarstidot3. We have analyzed the stability of these configu-
rations and discussed the possible dissipation mechanisms using the critical €ag(@&)t and voltage-
current[ V(1) ] characteristics data. A comparison of the experimental dafa (@) andJ.(B) with calcula-
tions in the London limit of the Ginzburg-Landau theory confirms that vortices can indeed be pinned by the
antidots forming a cluster and that the ground-state configurations of the vortices are noticeably modified by
sending current through the structure. The possibility of generating phase slips as well as motion of the vortices
in the 2X2 antidot cluster will also be discussed.
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I. INTRODUCTION Taking into account the vortex-vortex interactions in
samples with~10° antidots is, however, not a simple exer-
Laterally modulated superconductors have been inteneise due to the very large number of the interacting vortices.
sively studied during the past few yeafor reviews, see From this point of viewa microdot with an antidot cluster
Refs. 1 and 2 The interest towards these materials was(2x 2, 3x 3, etc) with a small number of interacting vorti-
stimulated by the advances in the microfabrication techges is a very promising “intermediate” system between a
niques that enabled the production of submicron structuregingle superconducting loop with a finite strip width and a
with the relevant dimensions of the order of the SUpercongnerconducting film with a huge array of antidots. At the
ducting coherence lengtij(T) and penetration depth(T). — same time, using finite microdots with four antidétise an-
These microstructures impose certain constraints on the begqt cjystey, we still keep the most essential features of the
havior of the superconducting order parameter by confining,, 1o, \ortex interactions in the presence of antidots. The

;hrieessu?ne(:ﬁi%?r?uiﬂggec?r?t?:gj?; \;Vr:trg'g tk?elaf:rrglplneaig;lrﬁc_éduced number of interacting vortices simplifies exact cal-
S 9 ; . 9 -~ “culations that can also be extrapolated for the analysis of the
turing. Superconducting wire networks and Josephson junc- L ; .
tion arrays (JJA'S are some examples of the laterally vortex pehawor in substantially larger antidot arrays.
modulated films, where the applied magnetic field provides a In this paper, we ;tudy t_he transport p“’p.ef“es of such a
continuously changing length scale that can explore comModel superconducting microsquare containing four anti-
mensurability between the lattice of vortices and the underdots- Further on, for simplicity, we shall call this structure a
lying artificially introduced lateral lattic&:® “2 X2 _antldot cluster.” This system can be can|dered as
In networks, fluxoid quantization governs the propertiesfour unit cells of the regular square lattice of antidots and the
and defines the allowed quantum states. Circular currentditial simplicity makes the X 2 antidot cluster a good can-
(vortice9 are induced around the cells forming the structure didate for achieving an insight into the stable vortex configu-
thus defining sets of specific vortex configurations. rations expected for larger systems. Only a very limited
Recently, a new class of superconducting systems wasumber of vortex configurations are allowed for thx 2
introduced, consisting of a regular pinning array formed by aantidot cluster, and therefore both the experimental results
lattice of antidots(i.e., submicron holésmade in a type-ll are less difficult to be interpreted and a computational analy-
superconducting filnf.” At temperatures close t6, super-  sis is also easier to perform. Additionally, the limited number
conductors with an antidot lattice behave like weaklyof vortex configurations also makes these structures interest-
coupled wire network8 where vortex depinning dominates ing for flux logic applications?
the dissipatiori> Well below the transition temperature, In this paper, we focus on measurements of the
where the fluxoid quantization condition implies flux quan- superconducting/normaS/N) phase boundary, the magne-
tization at the antidots, features appear in thetoresistance, the critical currents, and Y@) characteristics
magnetizatio?;® critical currents® and S/N phase of a superconducting microsquare with four antidots. These
boundarie§ that have been attributed to the formation of experimental results have been compared with calculations
multiquanta vortices at the antidots. in the London limit of the Ginzburg-Landau theory and in
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of a reference sample that consists of g&88bnm)/Cu(17
nm) microsquare of X 2 wm? without antidots.

The top Cu layer of 17 nm, evaporated onto the Pb film,
was used to protect the Pb film from oxidation and to enable
electrical connection to the experimental apparatus using a
wire bonding technique through the 18@50 um? electrical
pads of the sample. Besides that, the Cu layer also changes
the coherence length and the penetration depth of the Pb
layer. We discuss the influence of this Cu layer on the su-
perconducting properties of the Pb/Cu bilayers in terms of

FIG. 1. Atomic force microscopy picture ¢d) the 2x2 antidot  hroximity induced superconductivity in the next section.
cluster andb) the reference sample without antidots. The electrical transport properties were measuredie

cryostat using the four-probe technique. The magnetic field

was applied perpendicular to the film surface and the tem-
the framework of the de Gennes-Alexander mddeThe  perature stabilization was better than 0.4 mK. Since the me-
comparison h_as demonstr_ated tha; several well-defined VOEpscopic samples are very sensitive and easily destroyed by
tex configurations can be induced in these samples by propsectrostatic charges, all necessary grounding precautions
erly tuning the magnetic field and the temperature. At Very o o taren and 1.2(k resistors were connected in series

low tranqurt currents, only four of these configurations ar&yith each lead to damp parasitic voltage peaks. The resis-
stable. By increasing the transport current, however, other

; . tance measurements were performed using an ac-resistance
flux phases, which are unstable without transport current, caB : L "
be realized. Based on th&(1) characteristics data, we also ridge whereas th¥/(1) c'haracterlsfucs and critical current
consider how the occupation of antidots by vortices infly-measurements were carried out using a dc power supply.and
ences the onset of dissipation. a nanov_oltmeter. The_S/N phase bound_ary was determln_e_d
The paper is organized as follows. Section Il describes th@utomatically by keeping the sample resistance at a specific
sample preparation, the experimental techniques, and chardixed value(usually at 10% of the normal-state resistance
dot cluster. In Sec. Ill A, we present the results on the S/Nhe critical current measurements as function of field were
phase boundaryl(B) for the 2x2 antidot cluster and a Performed by keeping the sample at a certain fixed voltage
reference superconducting microsquare without antidots. Thand varying the applied current and magnetic field.
calculation of the S/N phase boundary for th& 2 antidot
cluster in the London limit and in the framework of the de _ _
Gennes-Alexander mod8lis described and compared with B. Superconducting parameters of the Pb/Cu bilayer
the experimental data. The discussion of possible effects of | order to study the RBO nm/Cu(17 nm bilayer that
dlsqrder is also presented_..Sectlon I B comprises the Xy as used for the 2 antidot clusters, we also prepared a
p(te'r|me_r|]rt1al\;((els)ulés tOf the cnnc:ltcu(rjretnts avid )thchzr.ac'ter-t' single P50 nm and Cy17 nm film and measured their
istics. The ata are used to determine the dissipation ;
relatod to the vortex motion in thexe2 antidot cluster p properties. Below, we present the summary of these results.
: Comparing the resistivity due to electron-phonon scatter-
ing, for the P50 nm) film, p3g9 k—p7 k=27.8u) cm and

. o with the published bulk values of 210 cm and 1.7 cm,
A. Sample preparation and characterization respectively:* we conclude that the resistivity of the Pb film

The 2x 2 antidot clusters consisting of microsquares of@Pproaches the bulk value whereas the resistivity of the Cu
2x 2 um? with four antidots(i.e., submicron holes of 0.53 film is enhanced with respect to the bulk value due to the
x0.53um? and center-to-center distance of 4m) were finite-size effect® The mean-free pathst & K determined
written by e-beam lithography in positive polymethyl- from the resistivity values arelpp=33nm and lc,
metacrylate (PMMA) resist onto Si@ substrates. After- =7.2hm, respectively. Thus, both single films, (6 nm
wards, a bilayer consisting of 50-nm-thick Pb and 17-nm-and Cu(17 nm), are in the dirty limit sincelp,<¢, and
thick Cu was evaporated in one single run in a molecularAcy™>1,'° respectively, wherg,=83 nm is the BCS coher-
beam epitaxy apparatus at pressures &f15 8 Torr. The ence length of the Pb(Ref. 17 and Ac,=(%ivg)/

SiO, substrates were Ncooled during evaporation, which (27 Tlcyks) =38 at 7 K is adimensionless impurity param-
decreased the film roughness down to 1.4 nm and suppressetr-

the interdiffusion at the Pb/Cu interfatAtfter the lift-off The superconducting properties of the S layer are charac-
processing, the samples were characterized by x-ray, atomt€rized by two important lengths, the temperature-dependent
force microscopyAFM), and scanning electron microscopy. coherence lengthés(T)=0.85 &gl py/ V1—T/T, and the
The x-ray results show that the Pb/Cu bilayers are polycryspenetration depthyg(T) =0.66\ V& /lpp/V1—T/Te, in the
talline with a preferential growth of the Pb and Cu in thedirty limit. Here \, is the London penetration depthFor
(111) direction. An AFM picture of the X2 antidot cluster the Pb(50 nm) film at T=0 K, these two quantities take the
of Pb/Cu with four leads attached for electrical connection isvalues £p,(0)=45 nm and A p,(0)=39 nm, respectively.
shown in Fig. 1a). Also shown[Fig. 1(b)] is the AFM image = Experimentally, we can also determigg,(0) from the re-
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lation between the perpendicular second critical figlgs in

a S layer and its in-plane superconducting coherence length
£5(0) given by

Bezs(0)= 5= 572 2.1

where®,=h/2e is the flux quantum. The coherence length
obtained in this way i$p,(0)=36 nm. Now, we can deter-

mine the Ginzburg-Landau parametes,=\p,(0)/&p,(0) FIG. 2. Schematic representation of the spatial dependence of
=1.08, and sincep,>0.7, we conclude that the single Pb the superconducting order parameter at the interface between the
layer is a type-ll superconductor. superconductofS) and the normal materi@N) of the Pb/Cu bilay-

By covering the Pb with a Cu layer, a superconductingers studied in this paper. The two characteristic parameters for
Pb/Cu bilayer is obtained with different characteristic param-roximity induced superconductivity, i.e., the coherence length in
eters than those of the single Pb film. We therefore define ththe normal layegy and the extrapolation length are indicated.
effective superconducting parameters as the ones that can be
determined from measurements on a Pb/Cu bilayer. into a normal metal. Not only the order parameter in the

The Pb/Cu antidot clusters had a superconducting transpuperconductor decays when approaching the S/N interface
tion temperature, T, =6.05 K, whereas the reference from the superconducting size, but also a nonvanishing su-
sample(i.e., square of X2 um? without antidoty had a perconducting order parameter nucleates in the N layer close

T. .=5.55 K. The systematic difference in critical tempera—t0 t.h(.a interface. T.hL.’S’ one of the most important parameters
NS , efining the proximity effect between two layers is the so-
ture between the perforated and reference sample is probably ;a4 coherence length of the normal laygy, which de-

related to a difference of the electrical properties of the in'termines the length in the normal metal over which Cooper
terface between the Pb and Cu layers. The possibility for aBairs can diffusésee Fig. 2. In the dirty limit and for our Cu
oxidation at the Pb/Cu interface is higher in perforatedparametersfc = (fivel o /6mksT) V2= 28 nm at 6 K, where

u u 3

samples. This results in a smaller proximity coupling and,vF is the Fermi velocity of Cu. Note thafe,>dc, where

possibly, a higher effective critical temperature. Neverthe-d —17 nm is the Cu thickness. which means that the super-
less, it is obvious that in both cases the top Cu layer de: ! ! b

- conducting order parameter is finite over the full thickness of
crea.se.sTch belo;/v theT.=7.2 K of the bulk Pb due to the the Cu layer in the temperature interval at which experiments
proximity effect!

on the Pb/Cu antidot cluster were performed (8K
From the measured critical fields of the(B0 nm/Cu(1l7  <g k).
nm) bilayer, we determined an effective superconducting co- - Another very interesting parameter in proximity induced
herence length a8pcy(0)=39 nm, using Eq(2.1). superconductivity is the extrapolation lendth, b
One may expect that an effective penetration depth for the- yécu(T)coth@de,/&T)=98 nm at 6 K in the dirty limit
(NS bilayer)\Ns(.O) could also'be defined. Especially,_since (see Fig. 2, wherey=pc,/ppy. This parameteb is a mea-
there should exist a penetration deptR(0), determining  gyre of the unfavorable influence of the N layer on the su-
the decay of the magnetic field in the normal layer with perconductivity of the S layer. Ib<é«(T), the effects of
proximity coupl'in'g', which should be differgnt fromg(0). proximity coupling are important, whereastit> £(T), the
The exact definition of these two quantitiesy(0) and  syperconducting order parameter at the interface is almost
Ans(0), is not obvious. Since we know thahys(0)  not changed and the effects of proximity coupling are negli-
>Ns(0), we will estimate a lower limit forAys(0) as  gible. In our case at 6 Kg=98 nm, £p,(6K) = 108 nm, thus
App(0)=39 nm. Further in the papesee Sec. IlIB2 a  the proximity effect has an intermediate strength in thésBb

more accurate estimate fagg(0) will be given. nm)/Cu(17 nm bilayer.
With this information, we can determine a lower limit for We can C|assify our Samp|es as being in the Cooper
the effective  Ginzburg-Landau  parameterkppcy  |limit'® since they fulfill the constraintslc,< &c, and dpy,

=Npwicu(0)/Eprcu(0) as 1 for the PO nm/Cu(l7 nm < ¢, In this limit, A(X) can be taken as a constant over the
bilayer. Sincexpycy>0.7, the Pb/Cu bilayer is a type-Il individual layers and discontinuous at the interface. The per-
superconductor.  As shown above, by covering Pb with gendicular second critical fielB, s, for a (NS) bilayer of
thin Cu layer, we are not only protecting the former againsthijckness ¢+ ds), can then be determined from the second
OXidation, but we are also Changing, in certain I|m|tS, thecritica| field of the Single Superconducting |aﬁg2vs by the

effective £ and\. . . _ dirty limit expressiont®
Pb/Cu bilayers are good candidates for studying proxim-
ity coupling effects® between a superconduct¢®) and a Bc2s(0)
normal metal(N) since interdiffusion hardly exists at the Bcz,Ns(0)=m, (2.2

interface of these materials, especially when they are evapo-

rated at low temperature. Therefore, each material remainghere n=ps/py for a specular scattering at the interface.

within its own boundaries. This expression is in good agreement with our experimental
The proximity effect® refers to the induction of supercon- results on bilayers with different Cu thicknesses. In particu-

ductivity in a contacting normal metal by the decay of thelar, for the bilayer P60 nm/Cu(17 nm used for the fabri-

superconducting order parametérfrom a superconductor cation of the antidot cluster, Eq2.2) reduces tdB.,ns(0)
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FIG. 4. Experimental S/N phase boundary of the reference
B (G) sample determined with a criterium of 10% of the normal-state

resistance. The inset shows four magnetoresistance curves mea-
FIG. 3. Experimental S/N phase boundary of the2 antidot ~ Sured atT=5.503, 5.482, 5.462,_a_md 5.443 K T_he ac measuring
cluster determined with a criterium of 10% of the normal-state re-Current was 1uA. The second critical magnetic fields for the 1D
sistance. Two typical magnetoresistance curves are shown in tHgansition 8¢7), the 2D transition Bcz), and the transition of the

. . H DOT:
inset. The ac measuring current wag.A. microsquare B¢, ') are shown.

=aB.,5(0) with «=0.91. Experimentally, we have ob- cluster measured with the criterium of 10% of the normal-
tained «=0.86, which is in agreement with the calculated state resistance. Pronounced periodic oscillation3 $B)
value within 5%. Taking into account that the scattering atare observed every 26 G. Defining a flux quantum per antidot
the interface is probably not completely specular, the obas®,=h/2e=B-S, whereS is an effective area per antidot
tained agreement is quite good. (S=0.8 um?), the oscillations with periodicity of 26 G can

Combining Egs(2.1) and(2.2), one can obtain the ratio be correlated with a magnetic flux per antiddi=nd,,
between the superconducting coherence length for ti80Pb wheren is an integer number. In each of these 26 G periods,
nm) layer and that of the RBO nm/Cu(17 nm bilayer,  smaller dips appear at approximately 7.5, 13, and 18 G. The
épbicu(0)/€pp(0)=1.05. Using the valugg(0)=36 nm for  smaller dips correspond to approximatehy/®,=0.3, 0.5,
the Pi§50 nm film, we expect, according to this relation, that and 0.7.
éppicu=1.055(0)=38 nm for the PO nm/Cu(17 nm bi- Superimposed with these oscillations, a parabolic back-
layer film, which is within 5% agreement with the “experi- ground is observed, reflecting ti&(T) dependence of the
mental” value determined from the measured second criticaéecond critical field of the quasi-one-dimensional stripes
fields of bilayers of that specific thicknesgppcy(0)  constituting the antidot clusteB:5 = (v12do)/[27WE(T)]
=39 nm. (Ref. 20 wherew is the width of the stripe. From this for-

In summary, from the anaIySiS of the SUpercondUCting'nL”a, an effective coherence |engfhs(0):35 nm is ob-
properties of the Pb/Cu bilayer we can conclude thathe  tained for this particular sample wiff,=6.05 K. Above 52
Pb(50 nm/Cu(17 nm bilayer shows proximity induced su- G, deviations from the main 26 G periodicity and intermedi-
perconductivity of an intermediate strengtii) the proxim-  ate substructure are observed.
ity induced superconductivity penetrates through the whole |5 the inset of Fig. 3, two magnetoresistance curves,
thickness of the Cu layer; andi) the effective parameters R(B), measured atT;=6.009K and T,=5.972K, are
Bcons(0), éns(0), andiyg(0) for the bilayer films have  shown. AtT, only minima atn x 26 G are distinctly ob-

been determined from the experimental results. served. AtT, an additional substructure appears in each pe-
riod. The magnetoresistance results confirm the features ob-
1Il. RESULTS AND DISCUSSION served mTc(B) A cut of the TC(B) boundary at hlgh
temperaturdi.e., T~T,) reveals only the main 26 G oscil-
A. The S/N phase boundary lations, whereas a cut at lower temperatures results in the full
substructure.

1. Experimental results Figure 4 shows the(S/N) phase boundaryAT(B)

Figure 3 shows the(S/N) phase boundaryAT.(B) =T,0)—T«B), of the reference samplee., a superconduct-
=T, (0)—T«B) of the P50 nm/Cu(17 nm 2x2 antidot ing microsquare without antidofsee Fig. 1)] measured at
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10% of the normal-state resistance. In this case, oscillations 400 nm 350 nm
are also observed, however they are clearly different from
those presented in Fig. 3. The first oscillation AB;

~16 G is followed by quasiperiodic oscillations with de-
creasingAB (AB,=9.9 G,AB;=8.2 G,AB,=7.5 G, AB

=7.1 G). In addition, the superimposed background of Fig.
4 follows a linear relation instead of the parabolic depen-
dence seen in Fig. 3. The oscillations are caused by the con-
finement of the superconducting condensate in the dot as FIG. 5. Schematic representation of thex2 antidot cluster
revealed by other studiés?* The remark must be made that it average dimensions indicated. The network approximation
the first two periods are noticeably larger than those preused in the one-dimensional model is drawn with a dashed line. The
dicted in Ref. 22. The other periods correspond to the calcudots denote the nine nodes considered in the model.

lations within 15%. The linear background observed in Fig.

4 is related to the second critical field of a two-dimensionalappear in the magnetoresistance due to the dot geometry.
(2D) system BZD, given by the expressionBZ,  These dips are responsible for the oscillations observed in
=d,/27w&(T)2. From this linear background an effective co- the T.(B) curve. Similar two-stepR(B) transitions have
herence lengthéys(0)=41 nm, is determined for this spe- been observed by Chi al,? who studied narrow 1D super-
cific sample withT,=5.55 K. conducting wires connected to large 2D contact pads. In their
In the inset of Fig. 4, the magnetoresistance curves for thease, the proximity coupling between the 1D wires with a
reference sample are shown at four different temperaturetarge critical field and the 2D pads with a small critical field
For any of thesd®(B) curves, two large drops of resistance gave rise to a two-step behavior comparable to our results.
are observed when decreasing the magnetic field. In addition, We have to note that the expression used to calculate the
for each curve and at low fields, one single small dip apB2D values corresponds only to the linedg(B) back-
pears. This dip shifts to higher magnetic fields when decreasyround; the periodic oscillations superimposed with it are not
ing the temperature and is responsible for the oscillationgonsidered in this expression and, thus, it is not surprising
observed inT¢(B). On the contrary, the two drops of resis- that the calculated values f&25 (see the open circles in the
tance may be explained by the influence of the four narrownset of Fig. 4 do not lie on one horizontal line. However, if
superconducting leads that are attached to the microsquayg determine the critical magnetic field values from the mea-
(two for sending the transport current and two to measure thgurements off .(B) (see Fig. 4 where both the background
voltage. These leads are quasi-one-dimensional wires angind oscillations due to the dot geometry are considered at a
therefore they become superconducting below the 88l criterium of 10%, we obtain the open triangles shown in the
= (V12d,)/2rwé(T). However, the dot itself has a second inset. Their position agrees with all the expectations, i.e., the
critical field transition given byB22=®,/[27&(T)?], as triangles lie on a horizontal line which is at 10% of the

mentioned above. normal-state resistance.
Taking into account that the transition to the supercon-
ducting state takes place at higher magnetic fields for the 1D 2. Calculations of theT,(B) phase boundary

system (i.e., lead$ than for the 2D system(i.e., mi-
crosquarg one expects to attain the following situation:
When decreasing the magnetic field, starting from the norm

state, a first resistive drop is observed, caused by a transiti ; . . . .
b y tgonductlng wires with a widthv and a lengtH (see Fig. 5.

to the superconducting state of the narrow current and volt="" desi(i led b d d
age leads. The fact that the resistance of the microsquare fsdjacent nodesi(j) are coupled by a supercurrent depend-

affected by this transition, does not mean that the “four-"9 On the gauge-invariant phase differengg between the

point” resistance measurement contains a portion of th&©des

leads, but arises from those parts of the cluster that become

superconducting due to their proximity to the leads. The the- 20 (i

oretical critical field values for the leads, as calculated from Yij= b~ i+ > f A-dl, (3.9

the above formula foBlY using the effective coherence o Ji

length ¢y obtained from the linear background of(B),

are marked by the open squares in the inset of Fig. 4. Th@here ¢, is the phase of the superconducting order param-

first resistance drop of the dot takes place at slightly lowekter at sitei, ®,=h/2e is the flux quantumA is the mag-

fields than the N/S transition of the leads, since they are onlyetic vector potential, andl is a segment along the wire.

in proximity coupling with the dot. Therefore, the squaresFirst of all, we have used the approximation developed for

indicating BéQD fall on a horizontal straight line above the weakly coupled wire networks>?*1the “interacting loop-

onset of the resistance drop, and not in the middle of theurrent (ILC) model,” which neglects the variation of the

transition. order parameter along the superconducting wires of the net-
Further decreasing the magnetic field, we cross the lingvork and only considers the phase variations. This simplifi-

B§2D at which the microsquare becomes superconducting anchtion is therefore equivalent to the London limit of the

a second resistance drop is initiatese the open circles in Ginzburg-Landau theory, and leads to a linear current-phase

the inset of Fig. 4 In this part of the curve, small dips relation

In order to calculate the S/N phase boundary of the
a:FXZ antidot cluster, we have approximated the cluster ge-
etry by a square network of quasi-one-dimensional super-
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®owd 10

|ij:m2T7ij:|o7’ija (3.2

wherel;; is the supercurrent fromto j, d is the wire thick- o
ness, and is the superconducting penetration depth of the £
material. The resulting kinetic energy for each wirg) can 0
be expressed as

E _M 2 3.3
= 42 gon 2 Vi (3.3 0

2
and is a quadratic function of phase differences. The prefac- 5 1or
tor in Eq. (3.3 defines the coupling strength between the 5
adjacent nodes and is denoted as

0
(©)
E owd _ | 3.4 <.
3= Aruh 2610 G4 £
52
To obtain the possible energy states of the cluster, all phase B 0 , ,
differencesy;; have to be determined. This is done by im- 00 02 0.4 06 08 1.0
posing current conservation at each node .
2 Iij=lie”, (3.5 FIG. 6. (8 Theoretical phase boundatyT(®/®d,) obtained
]

in the London limit of the Ginzburg-Landau thedispolid line). The
total energy for the six vortex configurations is shown by a dotted
line. The dashed line indicates the nonstable “parallel vortex con-
figuration.” The schematic representation of the vortex states in
each parabolic branch is also sketched by means of the correspond-
ing n, quantum numbergb) First period of the experimental phase
(3.6) boundary shown in Fig. 3 after subtraction of the parabolic back-
ground (4.=1 uA). (c) same agh) but for | ,.=3 uA.

wherel £ is the transport current fed into nodg,(and by
applying the fluxoid quantization condition to each indi-

vidual loop,

> ¥ij=2 ( >
=2 ne——/,
& Yij k D,

where the sum is taken over the wires of #th cell, n, (k
=1,...,4) is the flux quantum number of tkih cell, and® is
the magnetic flux. An estimation of the self-inductance for
an individual cell of the antidot cluster givés=2 pH. Since
most of the results are obtained closeTig the flux gener- 872N 2£(0)2T
ated by the circulating currents is negligibly small. As a con- AT (D)= Ko 5 S min (E), (3.9
sequence we have not taken the self- and mutual-inductance DoV ny
effects into account in our theoretical analysis dnis con-
sidered to be equal to the external magnetic flux. By solvingvhereV is the total volume of the structurg, is the critical
Egs.(3.5) and(3.6) for the y;;’s at a given magnetic field and temperature at zero field, ag@D) is the coherence length at
summing the corresponding energigs over all branches T=0. The phase boundary is therefore composed of five
(i,j) of the system, we obtain the total kinetic energy of thebranches and has three minimadat®,=0, 0.5, 1 and four
2X 2 antidot cluster: cusps atb/d,=0.3, 0.37, 0.63, 0.Tsee Fig. 6a)]. At the
first branch, aroundb=0, all then,=0 (k=1,...,4) and a
1 ) screening current is present only at the edge of the structure.
E= 2 (% Eavii- (3.7 When @ increases, the fourfold degenerate state with one
' vortex at one of the cells becomes more stable. The transition
Since the phase differences are found from Hs5) and  occurs at®/®,=0.3. At ®/d,=0.37, a doubly degenerate
(3.6), the total energ¥ for each set of quantum numbers  diagonal state becomes favorable, where two vortices occupy
(k=1,...,4) becomes dependent on the magnetic fluxone of the diagonals of the cell. Note that this stathich is
through the cells. In Fig. (@) the total energyE is plotted as  the analog of the “checkerboard” vortex configuration in
a function of the magnetic flux for the casel§f'=0 and for  antidot lattice®’) has a lower energy than the configuration
all wires with identical lengths and widths. We have omittedwhere two adjacent cells are occupied by vortiGearallel
the parabolic contribution arising from the finite width of the statg. The diagonal state could be of interest for flux quan-
wires. Since the energy is periodic i with a period®,, tum logic applications? In higher fields, a third vortex en-
we have only plotted the first period. Each setmf (k  ters the cluster a®/®,=0.7 and finally aroundb/®,=1
=1,...,4) values corresponds to a different vortex configuraall the cells are filled and only an edge current is flowing,
tion and gives rise to an energy branch that is quadratic witmow counterclockwise.
the magnetic flux. Due to the symmetry of the structure, It is interesting to note that Eq&3.2)—(3.7) are similar to
most of the branches are degenerate and only six principahe equations describing the supercurrent and the energy in

parabolas can be distinguished. The S/N phase boundary is
given by the branch that has the lowest energy for a given
value of the flux’
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& eh Sin( ¢a_ ¢b_ 'yab)
Jab:mm’aﬂ‘l’d in( |ab) . (3.10
Al &T)
oo R Applying the standard boundary conditions at a nadgves
3l [ R rise to the Alexander node equations
g/ i ; Ian e_iVan
8] 4 — — |+ = .
= af 3 [ vaeod g oSy | =0 o9
- sin
—= A-Yij &)
R A I = Asin(y,) ) _ .
B ! which express the current conservation at nadgmilar to
"""""" dG-A Kirchhoff's current law for resistor networks. The sum is
. . taken over all nodes that are nearest neighbors of noale
n | L | n 1 1 " . . . . . .
0.0 02 0.4 05 0.5 10 (see Fig. 5. If this equation is written for all nodes in the

/D network, this leads to a characteristic determinant that must
o be zero for the existence of a nontrivial solution. We obtain

FIG. 7. Comparison of the theoretical phase boundaries obtained
for the London(dashed ling Josephson junction arrdgolid line),

277 2| ab
and de Gennes-Alexandéiotted ling approaches. 1+2cos —3cos

®y &)

Josephson-junction arraydn JJA’'s however, the current- X|1+2 COS@‘FS" cosﬁ)
phase relation is sinusoidal and only the phase differences Do &(T)
over the Josephson junctions have to be considered. It turns 2, 27D
out that the differences between the linear and the “JJA” X|1+3 cosﬁ—Z sin Ty )

models are not very important when the static properties in a
magnetic field are considered. For comparison, we show in 2l 4 - 27d
Fig. 7 theE(®d) curve for a JJA together with the one ob- x{1+3 COS@WLZ S'”T) =0, 312
tained for the linear relation. Nearly identical energy 0

branches are indeed found, caused by the obvious fact thhered is the flux of the applied magnetic field per antidot.
the sinusoidal current-phase relation can be approximated Byquating the first factor to zero, one obtains a curve defining
a linear one for small phase differences. the first and the fifth branch of th&.(B) phase boundary.

_ For completeness, we also show in Fig. 7 the curve preg jkewise, the middle three branches are determined by the
dicted by the linearized de Gennes-Alexartéiéormalism  qther three factorésee Fig. 7.

for strong-coupling one-dimensional wire networks, which  This linearized approach is valid only close T. At

incorporates phase and amplitude variations of the order pggwer temperatures, the nonlinear version of this model
rameter along the wires of the network. This formalism as-hould be applied®?’

sumes that the diameter of the superconducting strands that The qualitative agreement between the ILC mofse

constitute the network is smaller than both the coherencqtig_ 6(a)] and the experimental curves of Figgbpand &c),
length and penetration depth. In that way, the problem begnere the parabolic background has been subtracted, is fairly
comes 1D, and the order parametie at a positions on a  good. The measurement of cur{® was performed with an
wire connecting two adjacent nodasandb (see Fig. 5can ¢ current of 1uA, the one in(c) with 3 wA. The five

be expressed as follows: parabolas corresponding to the different states are found
back in the experimental plots. An important difference is,
however, that two maxima appear in the experimental phase

V- e'vas ¥ _sinl lap—las +, e i Yabsin las boundaries atb/®,=0.2 and 0.8 that are not reproduced in
S a &) b &M the calculations. ThAT (®) dependence for the states with
sin &) all n,=0, or alln,=1, thus seems steeper than predicted by

(3.9 the theoretical model and it also has a larger amplitude.

Strangely, the agreement with the theoretical curve, which is

calculated for zero transport current, is better in cufge
whereW¥, and ¥, are the order parameters at the nodes where the highest transport current was used. In addition,
andb, |, is the distance between poirgsandb, andy,,is  the experimentaA T (P) (see Fig. 3 shows a considerable
the line integral of the vector potential multiplied by parabolic background, some distortions, and a disappearance
27/®,. From the second Ginzburg-Landau equation it isof the substructure abovels, .
possible to determine the supercurrent density through the As was mentioned previously, the parabolic background
branch. It depends sinusoidally on the phase difference bé-diamagnetic shift”) is due to the penetration of the mag-
tween the nodes andb, similar to the current through a netic field in the volume of the wiré$® and can be taken
Josephson junction into account by adding the term
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boundary in wire network8?°where it was shown that areal
disorder can lead to a decay of the oscillation amplitudes and
in some cases even to beatings in the envelope. Measure-
ments on Josephson-junction clustef&IC'y (Ref. 30
- showed that coupling disorder coming from an unavoidable
spread in junction parameters is not averaged out as in large
arrays, leaving a clear trace in the transport properties.
Curve (c) in Fig. 8 shows the influence of areal disorder
on the theoretical phase boundary of the antidot cluster. The
areal disorder was introduced by allowing the coordinates of
the nodes to vary randomly within a circle of radius @uh
- around the node position for the ordered network. In this way
a random distribution of lengths; and cell areas is gener-
ated that lifts the degeneracy of the possible states and
changes the relative positions of the different parabolic en-
ergy branches. For small fieldse., the first periog the
deviations with respect to curb) are not very pronounced,
and it is still possible to identify all five parabola forming the

AT (mK)

0 . ' : ' . ' . T.(B) phase boundary. As the field increases, the oscillation
0 ! 2 3 *  amplitude gets smaller and the positions of the different
/D, branches shift, making the identification of the states less

FIG. 8. (a Theoretical ph boundary for an ideal on straightforward. From this analysis it is clear that disorder
. L _ neoretical pnase boundary 1or an 10€al one- .5, indeed cause a shift of the peaks with increasing mag-
dimensional antidot clusteftb) Theoretical phase boundary for an e L . . .
netic field, as it is observed experimentally. Finally, in curve

antidot cluster considering the effects coming from the magnetic . S .
field penetration in the quasi-one-dimensional witesTheoretical (d) we have included the contributions of the parabolic back-

phase boundary for an antidot cluster taking into account the effectgro_und[curve(b)] and Fhe areal d|so_rd<§curve(c)]. A Com'
induced by areal disorde(d) Theoretical phase boundary where the parison of curve(d) with the experimental data of Fig. 3

contributions shown irfb) and (c) are both considered. shows that certainly these two contributions are playing a
role in our measurements. Nevertheless, even by including
1 2B212w2 these two effects in the model, it is still not possible to simu-
= 2 Ey——7— (3.13 late the experimental curves completely. This is probably
ZX ) 1205 due to the fact that we have used a one-dimensional ap-

to the right-hand side of Eq3.7). The effect of this back- proach, which cannot take into account the 2D character of
ground is shown in Fig. 8. Curvés) showsAT(®) ob-  the structure.
tained from Eqs(3.7) and(3.8) for the antidot cluster. Curve
(b) considers the case of a finite linewidtqg. (3.13] with
w=0.35um for wires at the edges of the network and
=0.4 um for the wires connecting the edges with the central So far we have considered the effects of the vortex con-
node (see Fig. 5 Note in curve(b) that as the field is in- finement by the X2 antidot cluster on the S/N phase
creased, tha T, amplitude due to fluxoid quantization in the boundaryT¢(B). In order to demonstrate that the unique
structure becomes quite small with respect to the shift causeeroperties of the Pb/Cu’22 antidot cluster are not restricted
by the background, and the amplitude of the oscillationdo the S/N phase transition, we present below the critical
gradually decreases. current results and theé(1) characteristics measured at tem-
After discussing in detail the first period of the phaseperatures 400 mKT.—T<100 mK. We will show that at
boundaryT.(®/®,), we would like to analyze briefly the these temperatures the quantized states are still present and
possible reasons for the shift of tiig(®/®,) minima in the that the most stable ones at the S/N phase boundary do not
higher periods of the S/N phase boundary, i.e., foralways correspond to the states carrying the highest currents.
1<d/d,<2, etc.(Fig. 3. Taking into account the “soft- In addition, we will demonstrate that a transport currgnt
ness” of the current loops in a real structure, which, strictly#0 is able to lift some of the degeneracies of the vortex
speaking, is not a one-dimensional network, the presence epnfigurations af=0. TheV(l) characteristics will be used
disorder in these loops is quite probable. Therefore, one maip give a qualitative picture of the flux-line transport in these
assume that one of the reasons for the variation of th@anostructures in terms of phase-slip processes.
T.(P/D,) peaks from period to period can be related to an It is known that the dynamics of 1D wirés*?and arrays
areal disorder of “soft” current loops in the>22 antidot of 1D wires’ are mostly governed by phase-slip processes
cluster. when currents close to the depairing critical current are sent
Another important factor is the disorder arising from through the wires. Thus, one may also expect that signatures
width inhomogeneity, structural defects, and nonidenticalf these processes should also be present iV ¢hg charac-
electrical properties of each wire, which can lead to a moditeristics of the 22 antidot cluster. In such a phase-slip pro-
fication of the critical current of the individual wires and to a cess, the energy of the system is reduced by bringing a small
distribution of the effective area per cell. The importance ofspot of the 1D wirgof the order of the quasiparticle diffu-
areal disorder was already stressed in studies of the phaseon Iength,)\gzg(T)] momentarily to the normal state.

B. Critical currents and V(I) characteristics
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4.5x10% - X - 120 1. Critical currents: Experimental results and comparison
‘ : with the model

s : . The critical current density versus magnetic fiéldB) of
3.7x407 e ! R ;0o the 2x 2 antidot cluster was determined with a criterium of 3
’ an: : % mV, as explained in Sec. Il A. Then, at specific values of the
magnetic field and temperature, tél) characteristics were
measured to confirm thé&,(B) results and study the vortex
dynamics in the antidot cluster.

Figure 9 shows thd.(B) curves measured at four tem-
peratures. Note that clear maxima are observeady and
(n+0.5)d,, and smaller inflections are detected around (
+0.3)®, and (+0.7)d [see Figs. ) and 9c)]. Initially,
the magnitude of the oscillations increases by decreasing the
temperaturdFigs. 9a) and 9b)] but they disappear almost
completely when further decreasing the temperdtsee Fig.
9(d)]. A parabolic background caused by the magnetic-field
penetration in the elementary wires is again observed at all
temperatures.

-1 -0 1 2 The magnetic-field values at which specific features ap-
/0, pear inJ.(B) (Fig. 9 andT.(B) (Fig. 3 are the same. Thus
one may assume that the maxima observed inJtliB) of
the 2x2 antidot cluster are related to certain stable vortex
states revealed in th&,(B) oscillations. However, the rela-
tive amplitude of these maxima in one period®j is dif-
ferent for J.(B) than for T,(B). In T,(B), large minima
During this process, the phase of the superconducting ordavere observed at®, and three smaller minima of the same
parameter in that spot is changed by.2To preserve the energy were obtained at around-0.3)d,, (n+0.5)®,
superconductivity in the sample in the presence of a largand (n+0.7)®,. On the contrary, inJ.(B) the maxima at
current, the phase-slip process repeats in time and the averd, are followed in magnitude by the maxima ah (
age periodr between phase slips is related to the voltaget+ 0.5)®,, whereas the features appearing at+Q.3)®
measured between the two ends of the wire through the J&nd (n+0.7)®, have almost completely lost their amplitude.
sephson relatiory = (#%/2e) 2/ r. The points where the or- To estimate the field dependence of the critical current
der parameter becomes zero and its phase shows jumps T@poretically and compare it with the experimental observa-
21, are known as phase-slip centé®SC'9. Obviously, if ~ tions, we have used the model described in Sec. lll A2 and
the wire already has some weak superconducting points, thePlved Egs(3.5 and (3.6 for the case where the external
PSC’s will be localized at these spots. transport current enters the structure at noalednd leaves
Several mechanisms of PSC formation have been redt the opposite sidesee Fig. 5. The current-phase relation,

ported. First, PSC’s can nucleate when the current excee@®Ven by Eq.(3.2), has slightly been ’_“Od!f'ed to take into
the depairing critical current of the 1D wire, as described byahccount the. ortljer-pararr:]eger d(_apressmnglqn theh strands (;Nhen
the theory of Skocpol, Beasley, and Tinkhahin this case, :hg fglgﬁg:]'s close to the depairing curréntve have use

the formation of 1,2,.n PSC’s gives rise to a stepliké(l)

characteristic. ’

PSC'’s can also be formed as a result of thermodynamic . :Io(ﬂ)[l— 1 (ﬂ)
fluctuations that take place with a probability proportional to N Ye 317
exp(—S8F/kgT), where §F=wv2E; I/3£(T) is the free- S _
energy barrier between the state before and after the pha¥dich is linear for small phase differences and becomes
slip. The theoretical description of PSC’s was developed byparabolic neary;;=y., where y.=1/(v3¢) is the critical
Langer and Ambegoakda?.Taking into account the exponen- Phase difference at which a phase-slip process occurs and
tial decrease of the phase-slip probability with temperaturelo¥c=1gep is the Ginzburg-Landau depairing current. Note
their model is only applicable in a very narrow temperaturethat Eq.(3.14) is identical to the current-phase relation ob-
interval nearT.. tained for a long ideal weak link in the depairing linft.

A third mechanism has recently been reported by Giroud The set of nonlinear equations for the unknown phase
et al? for arrays of 1D wires with localized vortices. They differencesy;;, obtained from Eqgs(3.5 and (3.6), was
consider the possibility that when a current close to the desolved numerically using the standard Newton-Raphson
pairing critical current is reached in one of the wires, themethod® The critical current at a magnetic fluk and a
vortex feels a “Lorentz-like” force perpendicular to the fixed staten, (k=1,...,4) was obtained as follows: First, the
transport current, which tends to move the vortex to the next;;’'s were initialized to zerol¢'was fixed at a certain value
cell where the process is repeated. This model assumes thad the corresponding phases were determined. Next, the
nucleation of a phase slip in a 1D wire each time that aexternal current was slowly ramped up and the same proce-
vortex crosses the 1D wire. dure was repeated until the current was too high to find any

3.0x10°

2.2x10%

Jo (Arem?)

1.5x10%

7.5x10%
©

0.0

FIG. 9. Critical current density of the>2 antidot cluster as
function of the reduced flux®/®, at four temperaturesia T
=5.899 K, (b) T=5.808 K, (c) T=5.715 K, and(d) T=5.656 K.

: (3.19
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1 T T T leads to a state of parallel vortex rows that can move coher-
ently (driven vortex lattices over the underlying periodic
array.

Curve(b) in Fig. 10 shows the static calculation for a JJC
having a sinusoidal current-phase relation for comparison.
Besides some minor differences concerning the exact posi-
tions of minima and maximfcompare curvega) and(b) in
) . . Fig. 10|, the same states can be identified in kh@b) plot.
T T T T Note, however, that in this case the normalizing curtgsts

GL

16 ] the Josephson critical current and not the depairing current.
9 If in the case of the antidot clustgcurve (a)], y.> 7/2,
= r 1 the overall shape of the calculatdd(®) curve slightly
- 14l i changes and the difference with the JJC curve is more im-
' (b) portant, although the same states still carry the largest super-
.. 1. current. If we compare the theoretical curt@® with the
1.00 ST T first period of the experimental data shown without the back-
s ground forT=5.808 K in Fig. 1@c), we note that the curves
=5 075 L | are qualitatively similar. The same five states are clearly
~, I ] present. The state a/®,=0.5 has a highet. than the
- states around/®,=0.3 and 0.7, though it does not reach
0.50 - | . | o (O the same current value as predicted in the calculation, except
60 0z 02  os  os 1o for temperatures below approximately 5.715 K.

Below this temperatureT(=5.715 K), the peaks ai®,
flatten and the amplitude of the modulations of the critical
current decreases with decreasing temperature. It seems that
the intrinsicl .(®) behavior of the structure is cut off by a
h%uperlmposed paraboli¢(®) backgroundsee the full line

DD,

FIG. 10. Critical current versus the reduced flux per cell(®r
the current-phase relation given by H&.14) and (b) for a sinu-
soidal current-phase relation. The vortex states generated in t

2% 2 antidot cluster at high transport currents are shaignEx- N Fig. 9). The disappearance of the substructure with de-
perimental critical current versus reduced flux per cell Tat ~Creasing temperature was also observed in wire net\{?/orks
=5.808 K with the background subtracted. and attributed to an increase of the energy barrier required to

cross the superconducting wires.

solution for the set of equations. The external current, above In our case however, it looks more like a cutoff rather
which no static solution exists, has been taken as the intrinsiian a continuous decrease. Therefore, we believe that the
critical current of the structure. The self-field induced by theeffect could be caused by the propagation of heat generated
transport current was estimated to be not higher than 0.1% the current leads. Since the antidot structure can be con-
and was therefore neglected in the analysis. sidered as a kind of parallel circuit having a critical current

Curve(a) in Fig. 10 shows the theoretichl(®) obtained that is a factor approximately 1.7 times higher than the de-
with Eq.(3.14 andy,= m/2. Only the states with the highest pairing current (55 of a single wire[see Fig. 1(8)], the
critical current at that particula® are shown, and we have current lead is probably in a resistive state while the structure
restricted ourselves to the first period without considerings still not. We measured the voltage between the nodgs (
any disorder. Because of the current injection at n@lghe and () (see Fig. 3, thus the voltages appearing over the
symmetry is broken and the resulting vortex configurationsurrent leads should not have influenced the results. How-
differ from the ground-state configurations at zero appliedever, at lower temperaturéahenl . is rather high, the ac-
current, discussed in Sec. Il A 2. tual heating due to this current cannot be excluded. If such

The possible states are displayed schematically in Figheat propagates towards the antidot cluster, it could trigger a
10(a). Only two states with one vortex in the structure aretransition to a dissipative state earlier than expected. In that
possible, instead of the fourfold degenerate ground state olzase, thel .(P) dependence would show a “cutoff’ gov-
tained for the case dff*'=0. Near® =3®d,, the supercur- erned by the parabolic critical current dependence of the cur-
rent is carried by a state where the vortices occupy the secent leads] /(D).
ond row of the clustefparallel statginstead of being located Besides this influence of the current leads at high current
on the diagonalscheckerboard configuratign levels, care should also be taken not to overestimate the lim-

The reason for the substantial modification of the stabléts of validity of the static simulation itself. Unlike the case
vortex configurations is of course that the external current i®f JJA’s where the dynamics can relatively easy be taken
added to the circular currents that flow to satisfy the fluxoidinto account by using the resistively shunted Josephson junc-
quantization. The total amount of current that can be injectetion model in combination with the Josephson voltage
before the structure depairs is higher if the transport andelation®’ it is not so straightforward to describe the dynam-
circular shielding currents are subtracted. For the case d€s in wire networks where resistive PSC’s nucleate and can
large weakly coupled wire networksind inductive JJA's be activated throughout the structure. The present model
(Ref. 30, it was already predicted that large transport cur-does not take into account any dynamic effects such as vor-
rents make the checkerboard ground state unstable. Thisx motion or propagating PSC’s and, therefore, the critical
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FIG. 11. V(I) characteristics of the 22 antidot cluster mea- 0.92 0.94 0.96 0.98 1.00

sured aff =5.715 K for zero applied magnetic field and a magnetic T,
field of 3 and 12 G. In all the curves similar characteristic steps can -
be distinguished. FIG. 13. Temperature dependence of the critical current mea-

sured atB=0 showing the same behavior as the depairing critical

currents obtained by the static simulation should be consigeurrent of 1D wires.
ered as an estimate of the upper limit rather than an accurate

determination. ®owd

3V3muoh(0)%£(0)

Figure 11 shows thre&/(1) curves measured al wherew and d are the width and thickness of the wires,
respectively, an@d(0) and\(0) were determined in Sec. Il B.

=5.715K for three magnetic fields as representative dat ; . : ; )
Note that in all the curves, several steps are observed th"jgﬂS shown in the previous secti¢aee Fig. %], the depair

cthe ey 1 Gl Ay —
depend on the applied magnetic field. However, an enlargé[]g. C“ffe”‘ of the structure' 'Btc (0).~1'6|dep(0)_72 mA.’
ment of the lower part of th&(l) characteristic§see Fig. which is one _order of magnitude higher than the experimen-
12) shows that a quasilinear dissipative foot is clearly ob-t@l value obtained. It should, however, be noted that we have
served for the cases df#n®. Note that this foot strongly underesﬂmated the value pfO) .by equating it to that of the
depends on the magnetic field. In Fig. 12 we show thre ingle Pb layem.p,(0), while, in fact, we Sh_OUId usans
curves corresponding tob=d,, ®=0.37b,, and ® >\py (see Sec. Il B From the above analysis, we can esti-
0.5, for T—5.808 K andT—oé 715 K Ind(i)(;ated by a Mate an effective penetration depth for the Pb/Cu bilayer

. o L : Ans(0)=3Np,(0).
?hoenlz?g?lgo;tizdgne 's the AV criterion used to determine When® #=®,, we believe that the field-dependent linear
c . 9.

When®=n®,, no foot is observed at any temperature.fogt th"g atl)ppear\]rs at I(I).W currents in NISII) charact_enistlcsbls h
Figure 13 shows the linear dependence of the critical curre pauced by phase-siip pfocesseg- ore precisely, by the
mechanism reported by Girowed al” for arrays of 1D wires

12% of the Pb/Cu X 2 antidot cluster versu¥/T, for the hat claims th . ¢ o the oth
measurements performed at zero magnetic fieldollows that claims that vortices may move irom one cell to the other
in a direction perpendicular to the transport current in a kind

the (1-T/T)** dependence expected from the Ginzburg-of stationary “flux-flow” regime. In this model a vortex

Landau depairing critical current of 1D wires. The extrapo-; : -
. a 22 - . jump from one antidot to another should lead to a phase slip
lation of the (1-T/Tc)™" law to T/T,=0 results inl;(0) induced in the 1D wire crossed by the vortex. Dissipation in

=7 mA. .

L .__arrays due to the vortex motion has also been reported by
_On the other hand, an estimation of the theoretlcalgther authoré:® This mechanism may explain the disappear-

Ginzburg-Landau value for the depairing critical current of a

1D wi ) ance of the resistive foot & =nd,. Since we have shown

WIre gives that at®=n®d, an edge surface current is flowing in the
antidot cluster, no vortices are present inside the antidot clus-
ter. Thus, if the dissipative foot is induced by the motion of
vortices, no foot should be expecteddat n®,,.

The possibility of vortex motion was not considered for
the critical current calculation in the previous section. There
we determined the critical current of the structure using a

1Ger(0) = (3.1

2. V(l) characteristics: Results and discussion

T=5.808 K

12+ =0

V(v)

o=03le, static approach, i.e., thie, was defined as the maximum
3 == that could keep zero voltage through the structure and still
/ / 9=05%, fulfill the fluxoid quantization condition and current conser-
0 2 0 T 700 vation equations. The real critical current values may there-
) fore be lower than the ones obtained by means of the static

approach. The experimental evidence supporting the idea

FIG. 12. Enlargement of the lower part of th§l) characteris- that motion of vortices in the antidot cluster induces phase-
tics for a reduced flu=®,, ®=0.37,, and®=0.50, at T  slip processes and thus gives rise to dissipatioh<dt;, is
=5.808 K andT=5.715 K. presented below.
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e V= h o N, 3.1
N2 “2e 7 NPog: (317
~ 03 *
i) On the other hand, since this model associates a PSC to each
] . . vortex jump, we have equated the total average powvjér
S 0'2-4-—J L —1,(®)] generated in the cluster to the sum of powers dis-
© N=1.3 sipated by each individual PSO?F,SCSzNiéRnZ)\g/a,
8-; where hereN is the number of PSC's is the quasiparticle
T 1=5.715 K current flowing in each wireR, is the normal-state resis-
_ tance of a single wire anlg, is the quasiparticle diffusion
g 02 . N=2 length. From this equality, and assuming thig=(]
5 —1.)/3,>3* we have determined an average vortex velocity
S 0o L___,_ *
© . ; N3 Rn2\g(1—1¢)
sl VT, (3.18
0006364 05 06 07
O/D which is proportional to the current {-1.). By substituting
° this velocity in Eq.(3.17 and calculating the differential

FIG. 14. Differential resistance determined at the onset of thd€Sistance at the critical currentf, we obtain

dissipative foot of theV(l) characteristics as a function of the re- "

duced flux forT=5.808 K andT=5.715 K. The solid line is a d_V _ E NRH)‘Q
di/, 9 a
Cc

(3.19

guide for the eyes showing the two levels expected from the model
of vortex motion induced by phase slips. The dotted lines indicate
the /@, values at which a change of vortex configuration is ob- From Eq. (3.19, and taking)\gzg('r) and N=1 for the
served experimentally. one-vortex configuration anM=2 for the two-vortex con-
figuration, we have determined the following differential re-

Figure 14 shows the differential resistand®//dl, as a  sistances: AtT=5.715K, dV/dI=0.1Q for N=1 and
function of the reduced flud/®,, determined at the onset dV/dI=0.2Q for N=2, which is in good agreement with
of the dissipative foot in theV(l) characteristic for the values given in Fig. 14. AtT=5.808K, dV/dl
T=5.808 K andT=5.715 K (Fig. 12. Since theV(l) char- =0.12Q for N=1 anddV/d1=0.24() for N=2. In this
acteristic for the dissipative foot is quasilinear, we have excase, the values shown in Fig. 14 are higher, although their
tracted one single value for the differential resistance at eacf@tio still remains approximately correct. These calculations
®/®,. Figure 14 shows theV/dl for the ®/d, interval  also point in the direction that the dissipative foot can be
where the current is flowing in the internal strands of theinterpreted in terms of vortex motion.

2% 2 antidot cluster. The interval where only an edge surface At higher currents, th&/ (1) characteristics do not show a
current is flowing in the antidot cluster has been omittedcontinuous increase of voltage with increasing current but
since, there, no foot is observed. We have denoted by vertinstead they are composed of several voltage Steps Fig.

cal dashed lines thé/®, values at which a change of vor- 11). The transition to the normal state of a 1D wire is pro-
tex configuration was experimentally observed. Note that, afluced by the generation of steady PSC'’s that increase in

both temperatures, tti/d| can be defined by two levels: a number as the transport current grows. This dissipation phe-
low level that accounts for the one-vortex configuratidh ( nomenon correlates the differential resistance with the num-

=1) and three-vortex configuratiorNE&3) or also called ber of PSC's created in the wire and therefore results in a
one-antivortex configuration, and a high level given by theV(l) curve with characteristic steps. Although the steps ob-
two-vortex configuration=2). This two level representa- Served in the/(I) curve in Fig. 11 are not steep like the ones
tion strongly suggests that the dissipative foot might bereported for single 1D wirés and infinite wire networks
caused by a “flux-flow” motion of vortices as reported also interpreted by the SBT theory, we believe that they are remi-
by Giroudet al2 for wire networks. In this model, a vortex nhiscent of the resistive transition of the quasi-one-
crossing one cell is associated to @ phase jump, which dimensional wires constituting the antidot cluster. A non-

generates a voltage in a timegiven by the Josephson rela- strictly 1D character of the wires forming the antidot cluster
tion may be one of the reasons for the smoothness of the steps.

5 o IV. CONCLUSIONS
aw
=% ;- (3.19 We have studied the transport properties of a Pb/Cu
2X 2 antidot clustera microsquare with four antidotdy
measuring the superconducting/normal phase boundary,
If we assume that the stationary dissipation process can heritical currents, and/(l) characteristics. The Pb/Cu bi-
described by a constant average vortex velogifys in the layer can be considered as a single superconducting entity
case of classical flux-flow in type-1l superconduct8rand  with superconducting parameters that are somewhat different
JJA’s (Ref. 39], the voltage generated by the net motion ofthan those of the single Pb layer. The presence of the anti-
N vortices can be written as dots leads to a characteristic structure in the magnetoresis-
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tance and phase boundary caused by the formation of weltlear evidence for a stationary vortex motion at the onset of
defined vortex configurations. By comparison of thedissipation and the creation of phase-slip centers at larger
experimental results with calculations that approximate theoltages and currents.

cluster as a 1D micronetwork, we were able to identify the
corresponding ground states.

The formation of particular vortex states, as the magnetic We thank M. Kuprianov, A. Lpez, H. Fink, A. Buzdin,
field is varied, was also observed in the critical current verM. Baert, J. G. Rodrigo, and V. Bruyndoncx for helpful dis-
sus field curves. Comparison with a static model showed thatussions. This work was supported by the Belgian Inter-
the current injection lifts the degeneracy and that the vortexJniversity Attraction PolegIUAP), the Flemish Concerted
states at larger current differ from the ground states, obAction (GOA), VIS, and the National Fund for Scientific
served in the phase boundaFy(B). Research(FWO-Vlaandereh programs. One of ugT.P)

The dissipative processes were probed for the differenthanks the European Training and Mobility of Researchers
vortex occupations by meansd{l) measurements. We find Program for financial support.
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