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Antiferromagnetic hedgehogs with superconducting cores
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Excitations of the antiferromagnetic state that resemble antiferromagnetic hedgehogs at large distances but
are predominantly superconducting inside a core region are discussed within the context of Zhang’s SO~5!-
symmetry-based approach to the physics of high-temperature superconducting materials. Nonsingular, in con-
trast with their hedgehog cousins in pure antiferromagnetism, these texture excitations are what hedgehogs
become when the antiferromagnetic order parameter is permitted to ‘‘escape’’ into superconducting directions.
The structure of such excitations is determined in a simple setting, and a number of their experimental
implications are examined.@S0163-1829~98!04733-X#
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I. INTRODUCTION

In Zhang’s SO~5!-symmetry-based approach to the phy
ics of high-temperature superconducting materials,1 the local
state of the system at the spatial pointr is characterized by
the orientation of a five-component unit vectorn~r !. Orien-
tations for which(a51

3 (na)250 are purely superconducting
the orientation ofn in the ~two-dimensional! 4-5 hyperplane
determining the phase of the complex superconducting o
parameter. Orientations for which(a54

5 (na)250 are purely
antiferromagnetic, the orientation ofn in the ~three-
dimensional! 3-4-5 hyperplane determining the direction
real space of the antiferromagnetic~i.e., Néel! vector order
parameter. The novelty of Zhang’s approach lies in its
sembling of these two order parameters into a unified or
parametern, and the consequent possibility of orientations
n that do not lie wholely in one or other of the supercondu
ing and antiferromagnetic subspaces, instead simultaneo
containing components from both subspaces and, he
characterizing regions that are at once partially superc
ducting and partially antiferromagnetic. The purpose of
present paper is to point out a simple but potentially int
esting property of this model: in antiferromagnetic regions
the phase diagram this model supports three-~spatial!-
dimensional antiferromagnetic hedgehog configurations
find it energetically favorable to have superconducting co
as depicted schematically in Fig. 1.

It should be noted that the subject of the present pape
loosely speaking, conjugate to that of a recent one2 in which
it was shown that, within the SO~5! approach, the cores o
vortices in the superconducting order parameter should
be singular, the mechanism for the evasion of a singula
being escape from the two superconducting dimensions
the three antiferromagnetic ones.

II. ANTIFERROMAGNETIC HEDGEHOGS
WITH SUPERCONDUCTING CORES

What we mean by antiferromagnetic hedgehog configu
tions with superconducting cores are energetically station
spatial configurations of the order parametern~r ! having the
following properties.~i! Far from the ~arbitrarily located!
center, the configurationn~r ! closely resembles a~nonsuper-
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conducting! antiferromagnetic hedgehog~i.e., a point defect
in which the Néel vector points radially away from the
center, or some global SO~3! rotation of this configuration!
and the quantity sin2x @[(a54

5 (na)2#, which measures the
degree of superconducting order~without regard to its
phase!, is small. Correspondingly, the compleme
cos2x @[(a51

3 (na)2#, which measures the degree of antiferr
magnetic order without regard to its orientation, is close
unity. ~ii ! As the center of the configuration is approache
however, the order parameter escapes from dimensions
and 3 into dimensions 4 and 5, so that superconducting o
is acquired at the expense of antiferromagnetic order. S

FIG. 1. An eighth of an antiferromagnetic hedgehog having
superconducting core~determined numerically!. The local orienta-
tion of the vectors indicates the local orientation of the antifer
magnetism. Their local magnitude indicates the local strength of
antiferromagnetism and, hence, the local weakness of the supe
ductivity.
5731 © 1998 The American Physical Society
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equivalently, the anglex rotates from 0 top/2 as the center
of the configuration is approached.~In principle, more exotic
hedgehog excitations are possible, in which the antife
magnetic order varies more rapidly. For the sake of simp
ity we shall primarily focus on the simplest class.! By this
mechanism, the medium is able to remain nonsingular,
evade the~albeit finite! free-energy cost of the spatial grad
ent in the Ne´el vector~this gradient diverging as the center
the singular, purely antiferromagnetic, configuration is a
proached! at the expense of condensing locally into t
‘‘wrong’’ ~i.e., superconducting! state.~iii ! While not being
stable global-energetically—the homogeneous antiferrom
netic configuration of course having a lower free energy
antiferromagnetic hedgehog configurations with superc
ducting cores do turn out to be energetically favorab
compared with purely antiferromagnetic hedgehogs, as
shall see below, at least when amplitude variations of
order parameter are inhibited. Presumably, such config
tions are alsolocally energetically stable.3 From the physical
perspective, then, it would be quite intriguing if local regio
of superconductivity were created by ‘‘stressing’’ the an
ferromagnetism in regions of the phase diagram in which
stable homogeneous state is not superconducting. Moreo
the topological stability of these textures will tend to ho
these ‘‘stresses’’ in place.

In the simplest version of Zhang’s approach, the free
ergy F of a three-dimensional sample in which the ord
parametern~r ! varies with positionr is given by

F5E d3r H r

2 (
n51

3

(
a51

5

~]nna!21
g

2 (
a54

5

~na!2J , ~2.1!

wherer is the appropriate stiffness,n (51,2,3) runs through
the Cartesian spatial coordinates, and spatial anisotropie
the gradient term have been accommodated by coordi
rescalings. By tuning the chemical potentialm relative to its
critical valuemc ~e.g., by doping!, the parameterg @}(mc

2

2m2)# is varied such that one moves from a region in wh
antiferromagnetic states are favored (g.0) to a region in
which superconducting states are favored (g,0). This free
energy is invariant under separate rotations on the th
dimensional antiferromagnetic and two-dimensional sup
conducting subspaces; invariance under arbitrary fi
dimensional rotations is absent whenevergÞ0. Thus, from
any configurationn~r ! one can obtain a configuration havin
the same free energy via the transformation

n→~RA
% RS!•n, ~2.2!

where RA is a (333) orthogonal matrix operative in th
antiferromagnetic~i.e., a51,2,3) sector~i.e., a magnetiza-
tion rotation! andRS is a (232) orthogonal matrix operative
in the superconducting~i.e., a54,5) sector~i.e., a phase ro-
tation!, and the symbol% indicates that the five-dimensiona
operator is block-diagonal and composed of one three-
one two-dimensional block.

To calculate the structure of an isolated antiferromagn
hedgehog with a superconducting core, let us make the
pothesis that components ofn~r ! in this configuration can be
expressed in the form
-
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S n1

n2

n3

n4

n5

D 5S cosx~r !sin u cosf
cosx~r !sin u sin f

cosx~r !cosu
sin x~r !

0

D . ~2.3!

Here,r , u, andf are spherical polar spatial coordinates ce
tered on the center of the configuration, and the funct
x(r ), which allows for interpolation between purely antife
romagnetic and purely superconducting values of the or
parameter, is assumed to depend only on the radial dista
from the center. This configuration is spherically symmetr
in the sense that for it we have

n~RA
•r !5~RA

% I S!•n~r !, ~2.4!

whereI S is the identity operation in the superconducting se
tor. By exchanging the radial variabler for the dimension-
less versiont ~i.e., the radius, measured in units of the co
relation length jp[Ar/g for the conversion of anti-
ferromagnetic order into superconducting order! via

x~r ![X~ t !, ~2.5a!

r[Ar/gt, ~2.5b!

and inserting the configuration~2.3! into the free energy
~2.1!, we find that the free energy is given by

F5F̃E
0

t

dtH t2

2
Ẋ~ t !21cos2X~ t !1

t2

2
sin2X~ t !J , ~2.6!

where F̃[4pg(r/g)3/2, the overdot denotes a derivativ
with respect tot, andAr/gt is a large-distance cutoff, intro
duced to render finite the otherwise linearly divergent fr
energy. Application of the calculus of variations to the fun
tional F then leads to the stationarity condition

t2Ẍ12tẊ1S 12
t2

2 D sin 2X50. ~2.7!

The relevant solutions of Eq.~2.7! are ~i! X(t)[0 ~i.e., the
pure antiferromagnetic hedgehog, unescaped into the su
conducting directions! and ~ii ! the solution in whichX(t)
interpolates betweenp/2 and 0 ast varies from 0 tò ~i.e.,
the antiferromagnetic hedgehog with a superconduc
core!. The precise form of the latter solution is readily foun
numerically, and is shown in Fig. 2. Its asymptotic behav

is ( 1
2 p2X);t ~for t!1) andX;exp(2t) ~for t→`). The

configuration corresponding to solution~ii ! is depicted in
Fig. 1.

To determine which of the solutions~i! or ~ii ! has the
lower free energy, let us consider the quantityDF[(F (ii)

2F (i) ), whereF (i) and F (ii) , respectively refer to the free
energy of solution~i! and of solution~ii !. Then, by using Eq.
~2.7!, along with integration by parts, we find that

DF5F̃E
0

`

dtH t2

2
21J $2X cosX1sin X%sin X, ~2.8!

where convergence at larget permits the replacement of th
upper limit by`. The numerical evaluation of this quantit
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gives DF'20.272F̃. This indicates that it is energeticall
favorable for the order parameter in the core of an antife
magnetic hedgehog to escape into the superconducting d
tions.

III. CONSEQUENCES OF AMPLITUDE-SECTOR
FLUCTUATIONS

As we have seen, in the setting of a model in which
amplitude ofn~r ! is constrained to be unity, there are hedg
hog excitations that have superconducting cores. We n
explore the issue of whether such excitations continue
exist in settings in which amplitude variations ofn~r ! are
inhibited ~i.e., are not prohibited, although they are su
pressed energetically!. Under such circumstances, it
possible—and may prove energetically favorable—for
core of the hedgehog to avoid antiferromagnetic gradient
ergy via the development of an amplitude-reduced pur
antiferromagnetic core, rather than by escaping into the
perconducting directions. To address this issue, we fol
Arovas et al.2 and consider a ‘‘soft-spin’’ generalization o
the SO~5! model. Thus we consider a free energy of the fo

F5
r

2 E d3r $@] rn~r !#212r 22n~r !2 cos2x~r !

1n~r !2@] rx~r !#21jp
22n~r !2 sin2x~r !%

1aE d3r H 2
1

2
n~r !21

1

4
n~r !4J , ~3.1!

where 2a denotes the squared ‘‘mass’’ associated with
amplitude-sector fluctuations ofn, n is the amplitude ofn,
and we have restricted the discussion to~spatially! spheri-
cally symmetric configurations.

In the absence of amplitude fluctuations, the hedge
with superconducting core hasn[1 andx varying from 0 to
p/2 as the center of the texture is approached. T
amplitude-reduced purely antiferromagnetic hedgehog e
tation will be one for whichn vanishes at the center of th
texture and grows to unity at large distances, andx[0. The
stationarity condition forn, which determines the structur
of the amplitude-reduced hedgehog, can be solved num
cally, allowing us to obtain the functionn(r ). Then, we may

FIG. 2. The degree of superconductivity sin2 X as a function of
the scaled radial coordinatet ~determined numerically!.
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insert this back into Eq.~3.1! to obtain the free energy of th
purely antiferromagnetic hedgehog with reduced-amplitu
core. The free energies of the hedgehog with supercond
ing core and the purely antiferromagnetic hedgehog w
amplitude-reduced core each must be defined with a lo
distance cutoff to render them finite, but the difference b
tween these two quantities is independent of this cutoff, a
turns out to be given by

FAF2FSC'4pr~0.272Ar/g21.454Ar/a!, ~3.2!

where the subscripts refer to the purely antiferromagn
amplitude-reduced~AF! and superconducting-core~SC!
hedgehogs. Thus, within the context of this model in wh
amplitude sector fluctuations are permitted, we find that
hedgehog with superconducting core will be energetica
preferred when this quantity is positive, i.e., provided th
g,0.035a @or, equivalently, jp.5.35ja, where ja

([Ar/a) denotes the fluctuation correlation length for an
ferromagnetic fluctuations#. Now, it is typical forja to be on
the order of a lattice spacing for the cuprate materia
whereasjp is expected to grow as the superconducting ph
boundary is approached from the antiferromagnetic st
Thus, one should anticipate that over a substantial portio
the antiferromagnetic part of the phase diagram, antife
magnetic hedgehog excitations will have escap
superconducting~rather than amplitude-reduced purely an
ferromagnetic! cores.

IV. TOPOLOGICAL CLASSIFICATION
OF HEDGEHOG EXCITATIONS

We now turn to the issue of the topological classificati
of hedgehog excitations having superconducting cores, th
excitations being nonsingular textures of the order-param
field n~r !. In pure antiferromagnets, the existence of singu
hedgehog point-defect excitations is expressed, mathem
cally, by the statementP2(S2)5Z.4,5 What this means is
that mappings~provided by order-parameter configuration!
of spheres in real space into the antiferromagnetic ord
parameter spaceS2 fall into homotopically inequivalent
classes labeled by the integers~and combine according to
integer arithmetic!. Within the SO~5! approach, however, the
nonsingular hedgehog texture excitations having superc
ducting cores are described by order parameter config
tions n~r ! that lie in the antiferromagnetic subspaceS2 at
large distances from the core, but escape into the full ord
parameter spaceS4 , as the core is approached. In order
complete the classification of these textures, then, we sh
ascertain whether or not there exist homotopically inequi
lent textures that, at large distances, are homotopic
equivalent and lie in the antiferromagnetic subspaceS2 . The
appropriate mathematical machinery for this task involv
relative homotopy groupsandexact homotopy sequences.5,6

To implement this machinery, we consider mappings
cubes~in real space! such that the surface of the cube
mapped intoS2 whereas the interior of the cube is mapp
into S4 . Such mappings are classified according to the re
tive homotopy groupP3(S4 ,S2). This group is readily com-
puted by making use of the exact sequence of homom
phisms:
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P3~S4!→
b3

P3~S4 ,S2!→
g3

P2~S2!→
a2

P2~S4!. ~4.1!

Here,b3 , g3 , anda2 denote mappings of the elements
the previous group in the sequence to elements of the foll
ing group, that, in general, are not isomorphic.7 Now, as
P3(S4) andP2(S4) are both the trivial group, the homomo
phism g3 is, in fact, an isomorphism,5,6 from which it fol-
lows that P3(S4 ,S2)>P2(S2)>Z and, thus, we find tha
there is no structure inP3(S4 ,S2) beyond what was alread
present inP2(S2). The physical consequence of this result
that while hedgehog excitations fall into homotopically i
equivalent classes, the possible nonsingular supercondu
cores of a given class of hedgehog are homotopically equ
lent to one another.

V. RELATED STRUCTURES
IN OTHER CONDENSED STATES

The notion of the conversion of singularities into textur
via the escaping of order-parameters into additional dir
tions has been realized in several other condensed m
settings. For example,~uniaxially! nematic liquid-crystalline
media have long been known to exhibit a structure clos
related to antiferromagnetic hedgehog configurations w
superconducting cores. When confined to a cylinder that
poses homeotropic~i.e., perpendicular! boundary conditions
on the nematic alignment, the system can evade the thr
ing of the cylinder by a singularity because the order para
eter orientation can escape from the radial plane into
axial direction.8 This mechanism remains energetically f
vorable even for diamagnetic nematics in an axial magn
field ~for which escape costs condensation energy!.

Superfluid3He is another system that provides a rich
ray of topologically interesting textures.9 The example hav-
ing the most relevance to the present paper is that of he
hog excitations in3He-B. The order parameter for3He-B
is a complex-valued 333 matrix of the form Amn

5eifRmn(n̂,u), wheref is a phase angle andRmn is a rota-
tion matrix about the unit vectorn̂ by an angleu. On long
length scales,u becomes fixed, due to a dipolar couplin
acquiring the valueuL , known as the Leggett angle, so th
the low-energy degrees of freedom are expressed by the
sible values off and the directions ofn̂. Thus, the order-
parameter spaceG is given by G5U(1)3S2 , so that
P2(G)5P2(S2)5Z, so that the system may form hedg
hogs with the unit vectorn̂. On short length scales, howeve
u can vary, so that the order-parameter space is effecti
enlarged to U~1!3SO~3!. We see that, asP2@SO(3)#50,
over short distances there are no topologically stable p
defects, so that hedgehogs in3He-B have nonsingular cores

A similar effect occurs in nematic liquid crystals,10 where
on large length scales the system is uniaxial, so that
relevant order-parameter space isRP2 ~i.e., the real projec-
tive plane constructed by identifying opposite points onS2).
On short length scales, however, the order-parameter spa
enlarged toS4 , so that disclinations in the nematic ord
have nonsingular cores.
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VI. EXPERIMENTAL SIGNATURES OF HEDGEHOGS;
CONCLUDING REMARKS

We now briefly consider some issues associated with
tiferromagnetic hedgehogs having superconducting co
that might be relevant to experiments. These excitati
should be present after performing a quench, from high te
perature or high magnetic field, into the antiferromagne
state. The number of excitations per unit volume should
higher for more rapid quenches. As time proceeds after
quench, the number of hedgehog excitations can decreas
their mutual annihilation, although this would require col
sions of two or more hedgehogs. Presumably, this proc
can occur relatively slowly, at least at sufficiently low tem
peratures, so that one may anticipate regimes in which th
excitations, once created, remain long enough for their c
sequences to be detected.

What experimental signatures might antiferromagne
hedgehogs with superconducting cores yield? Let us supp
that a sufficiently high density of such excitations can
created, and that this density can be maintained for a s
ciently long time. Then one may crudely regard the exci
tions as providing a set of randomly located, random
phased, superconducting inclusions.11 These inclusions
would not be unlike Aslamazov-Larkin paraconductin
fluctuations,12 except that they would be ‘‘externally’’ main
tained and, therefore, could be much longer lived. One mi
hope that these inclusions would be detectable in electr
conductivity experiments, their presence leading to an
hancement of the conductivity.~One would need to accoun
for scattering from the antiferromagnetic hedgehogs whi
presumably, diminishes the conductivity.! This enhancemen
should be suppressed by magnetic fields, and by the deca
the excitations. Similarly, one might also envisage observ
Andreev reflection from the superconducting inclusions~al-
though capacitive charging effects may suppress
effect13!.

An externally applied magnetic field will be partiall
screened by these inclusions, leading to a negative contr
tion to the magnetic susceptibility. To estimate the size
this effect, we approximate the hedgehog cores to be
formly superconducting and spherical in shape.14 In the re-
gime where the London penetration depthl is much longer
than the core radiusj, this leads to a diamagnetic suscep
bility contribution x52dj5/40pl2, whered is the number
of excitations per unit volume. One might also hope that
presence of antiferromagnetic hedgehogs with supercond
ing cores would be detectable via probes such as nuc
magnetic resonance, electromagnetic absorption
hedgehog/antihedgehog pair creation and, perhaps fancif
scanning tunneling microscopy~e.g., with a magnetic tip!.

In addition, these excitations should leave their fingerpr
on the~staggered! magnetic structure factorS(k), this factor
being determined byN~k! ~i.e., the Fourier transform of the
antiferromagnetic Ne´el vector at the probing wave vectork!
via

S~k![V21N~k!•N~k!, ~6.1!

whereV is the volume of the system. Specifically, for leng
scales that are long compared with the core sizejp but short
compared to the spacing between the hedgehogsd21/3, we
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expectS(k) to have the conventional hedgehog form. Ho
ever, for length scales that are short compared with the c
size but long compared with the lattice spacing, we expe
reduction inS(k) ~and hence scattering!, owing to the dimi-
nution of the Fourier amplitude of the antiferromagnetic m
ment at these scales. The computed hedgehog structure
indeed realize this scenario:

S~k!;H dj6~kj!26 for d21/3!k!jp
21,

dj6~kj!210 for jp
21!k.

~6.2!

However, it should be noted that, being sensitive only
antiferromagnetic order, this particular probe does not
rectly ascertain whether or not the cores of hedgehog ex
tions are superconducting~except via the dependence of th
size of the cores on the location of the system in the ph
diagram!.

If detected in experiments, antiferromagnetic hedgeh
with superconducting cores would provide striking eviden
e
t
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in support of Zhang’s SO~5! approach to the physics of high
temperature superconducting materials. Their prese
would corroborate the notion that superconducting exc
tions are essential low-energy excitations of the antifer
magnetic state. Moreover, it would prove rather intriguing
have at hand a physical system in which superconductivit
induced by the distortion of a thermodynamically preferr
nonsuperconducting state.
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MA, 1993!, Appendix A, Table 6 VI.

5For pedagogical introductions to the topological theory of defec
in condensed matter, see N. D. Mermin, Rev. Mod. Phys.51,
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