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Quasi-long-range order in random-anisotropy Heisenberg models
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Monte Carlo simulations have been used to study a discretized Heisenberg ferromagnet~FM! with random
uniaxial single-site anisotropy onL3L3L simple cubic lattices, forL up to 64. The spin variable on each site
is chosen from the 12@110# directions. The random anisotropy has infinite strength and a random direction on
a fractionx of the sites of the lattice, and is zero on the remaining sites. In many respects the behavior of this
model is qualitatively similar to that of the corresponding random-field model. Due to the discretization, for
small x at low temperature there is a@110# FM phase. Forx.0 there is an intermediate quasi-long-range-
ordered~QLRO! phase between the paramagnet and the ferromagnet, which is characterized by auku23

divergence of the magnetic structure factorS(k) for small k, but no true FM order. At the transition between
the paramagnetic and QLRO phasesS(k) diverges likeuku22. The limit of stability of the QLRO phase is
somewhat greater thanx50.5. Forx close to 1 the low-temperature form ofS(k) can be fit by a Lorentzian,
with a correlation length estimated to be 1161 at x51.0 and 2565 at x50.75. @S0163-1829~98!09333-3#
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I. INTRODUCTION

The Heisenberg model with random uniaxial single-s
anisotropy is considered to be the proper model for study
amorphous alloys1,2 of non-S-state rare earths~RE’s! and
transition metals~TM’s!, such as TbxFe12x . The model was
introduced by Harris, Plischke, and Zuckermann,3 who per-
formed a mean-field calculation and found a ferromagn
~FM! phase at low temperature. It was shown later by Pe
vits, Pytte, and Rudnick,4 using an argument parallel to tha
of Imry and Ma5 for the random-field case, that such a F
phase is not stable in three dimensions.

The actual behavior of this model in three dimensions
remained a subject of controversy. It was argued by so
workers4,6–8 that there should be a low-temperature Isi
spin-glass phase, but the numerical evidence for this
never convincing.9,10 Recently, Migliorini and Berker11 have
shown that in three dimensions the Ising spin glass is de
bilized by a random field. The spin-glass phase, as it is u
ally envisioned, has spontaneously broken time-reve
symmetry~i.e., the time-average expectation values of lo
moments do not vanish!. Therefore, one would expect that
should also be destabilized by random uniaxial anisotrop

It was shown some time ago by Jagannathan, Schaub
Kosterlitz12 that the Ising spin-glass phase which exists in
mean-field theory of the random-anisotropy model6 is desta-
bilized by fluctuations for any finiten, wheren is the num-
ber of spin components. This means that there may b
spin-glass-like phase in the random anisotropy model,
that the critical exponents should depend onn, and will not
be the same as those of the Ising spin glass, except in s
more space dimensions.

An alternative scenario, first proposed by Aharony a
Pytte,13 is that in three dimensions at low temperature th
is a phase characterized by an infinite magnetic susceptib
and a power-law decay of two-spin correlations as a func
of the distance between the two spins, but no true FM lo
range order. This power-law decay of the two-spin corre
tions is called quasi-long-range order~QLRO!. In the ap-
PRB 580163-1829/98/58~9!/5684~8!/$15.00
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proximation of Aharony and Pytte, and its later elaborati
by Goldschmidt and Aharony,14 it is claimed that the
infinite-susceptibility phase occurs in the presence of rand
anisotropy, but not in the presence of a random field. Thi
rather problematic, as it requires that the infinit
susceptibility phase not break time-reversal symmetry. T
relationship between the ordered states of random-field
random-anisotropy models is well known, as it provides
key step in the argument of Pelcovits, Pytte, and Rudnic4

In the last few years, Monte Carlo calculations have
vealed that for then52 case there is a low-temperatu
phase with power-law decay of two-spin correlations~which
will be referred to as the QLRO phase! for both the random
uniaxial anisotropy15 and random field16 in three dimensions.
The QLRO phase is characterized by the small-wave-num
behavior of the magnetic structure factor

S~k!5@^uM ~k!u2&#, ~1!

where the expectation value^ & indicates a thermal averag
and @ # is an average over the alloy disorder.M (k) is the
Fourier transform of the magnetization. With the rando
field it was found that in the QLRO phase the small-k be-
havior of S(k) goes ask23, and with the random uniaxia
anisotropy it goes ask22.4. A spin-wave theory analysis
would predict that this behavior should be the same. Thus
fact that the power law is found to be different in the tw
cases demonstrates that vortex lines are controlling the
havior forn52 with random anisotropy. Then52 case with
threefold~or higher! random anisotropy retains a stable F
phase in three dimensions.17

Other papers which indicate the presence of QLRO
n52 are the Monte Carlo calculation of Gingras and Hus18

for the random-field case, the high-temperature susceptib
series of Fisch and Harris19 for the random-anisotropy case
and the replica-symmetry-breaking analysis of Giamar
and Le Doussal.20 The latter work actually studies the close
related problem of randomly pinned vortex lines in a dir
type-II superconductor.21
5684 © 1998 The American Physical Society
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The existence of QLRO forn52 is not a big surprise
given our previous experience with the Kosterlitz-Thoule
phase in the~nonrandom! two-dimensionalXY model. How-
ever, the Aharony-Pytte-Goldschmidt13,14 calculations find
an infinite-susceptibility phase for any finite value ofn, in-
dependent of the existence of any topological defects.
cently, a Monte Carlo calculation by the current autho22

found a QLRO phase with anS(k) which goes ask23 for the
n53 model in a random field in three dimensions. Here
will extend this work to the case ofn53 spins with random
anisotropy, and we will find the same result for the smalk
behavior ofS(k) as for the random field.

II. DISCRETIZED HEISENBERG MODEL
WITH RANDOM ANISOTROPY

The Hamiltonian we study in this work is the obviou
modification of the one previously used for then53
random-field model.22 It consists of a FM Heisenberg ex
change term, with the addition of a cubic single-ion anis
ropy term and a random-anisotropy term due to the a
disorder. Thus the form of the Hamiltonian is

H52J(̂
i j &

(
a51

3

Si
aSj

a2K(
i

(
a51

3

~Si
a!4

2D(
i 8

@~Si 8•ni 8!
221#, ~2!

where the sitesi form a simple cubic lattice and̂i j & indi-
cates a sum over nearest neighbors. Thea are spin indices,
eachni 8 is an independently chosen random unit vector, a
the i 8 sites are a randomly chosen subset of the lattice c
taining a fractionx of the sites.

The i 8 sites represent the sites of the RE atoms, while
remaining sites of the lattice contain the TM atoms. T
ignores the fact that the RE-TM alloys of interest here
amorphous rather than crystalline, but it is a reasonable
approximation. Since the atoms are assumed to be immo
the ni 8 do not change with time. In this work we will stud
the limit in which D is taken to infinity. The random
anisotropy term is then a projection operator, and the spin
each of thei 8 sites is restricted to two states, parallel a
antiparallel to the vectorni 8 . For simplicity, we will assume
that all of the spins are unit vectors and that the excha
couplingsJ between all pairs of nearest neighbor spins
identical. Our assumed values for the couplings are not c
to the actual values in RE-TM alloys,2 but they should still
give the qualitative behavior correctly, due to universality

There are several reasons for including the cubic sin
ion anisotropy term in the Hamiltonian. The first is a mat
of convenience. In order to improve the efficiency of t
Monte Carlo program,22,23and to make it easy to store stat
of the system for later analysis, we are going to discretize
phase space of the model. For each spin variableSi and each
random anisotropy axisni 8 , we restrict the allowed states t
be the 12@110# unit vectors. We will refer to this discretiza
tion as theO12 model. This discretization induces an effe
tive cubic single-ion anisotropy term in the Hamiltonian. T
second reason is that the experimental samples of amorp
RE-TM alloys are sputtered films which have some grow
s
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induced anisotropy.24 Understanding the effects of this wea
anisotropy is a worthwhile exercise. The existence of
growth-induced anisotropy is crucial for the use of the
films as magneto-optical memory devices.25 The third reason
is that besides the amorphous RE-TM alloys, we are a
interested in crystalline spin-glass alloys like CuMn,15,26

where a cubic single-ion anisotropy is present in the r
materials.

As discussed by, for example, Chudnovsky, Saslow,
Serota,7 in the presence of a nonzero average anisotrop
weak random anisotropy is not able to destabilize the fe
magnetism in three dimensions, although it may spoil
collinearity of the spin state. The ferromagnetic phas
which are often reported to exist in amorphous magne
materials in the laboratory are a reflection of this fact. T
author does not know of any method of growing a so
laboratory sample which has no average anisotropy.

Another discretized three-dimensionaln53 Hamiltonian
which combines cubic single-ion anisotropy and rand
uniaxial anisotropy has been studied previously.27 In that
case only six states~the @100# unit vectors! were used. Al-
though the six-state discretization is too coarse to serve
quantitative approximation to the Heisenberg model, so
indications of a QLRO phase were found in that work.

A discussion from a renormalization-group viewpoint
the effects of having both a crystalline anisotropy and r
dom uniaxial anisotropy has been given by Mukamel a
Grinstein.28 They argued that a QLRO phase could exist
this case between the FM and the paramagnet~PM!, as was
later found by a Monte Carlo calculation for then52 case.15

They also discussed the difference between a discret
model in which all of the allowed axes are mutually orthog
nal, such as the six-state model forn53, and finer discreti-
zations such as theO12 model, which are expected to provid
approximations to a model without the crystalline anis
ropy.

As shown in the previous work,22 the pureO12 model,
with no random term, possesses two ordered FM phases
low temperatures the average magnetization^M & points
along one of the 12@110# directions. Naturally, we label this
a @110# FM phase. AtT/J51.06 there is a first-order phas
transition into a@111# FM phase, in whicĥM & points along
one of the eight @111# directions. As pointed out
previously,22 the stability of the@111# FM phase for small
u^M &u may be understood within a Landau mean-field exp
sion.

Since ourO12 discretization of the spin variables auto
matically builds a cubic anisotropy into the free energy, a
we are primarily trying to understand the qualitative aspe
of the ordering and not attempting a quantitative model o
particular experiment, we do not keep theK term in the
Hamiltonian explicitly. Thus, the Hamiltonian is reduced
the simple form

H52J(̂
i j &

Si•Sj . ~3!

The random anisotropy term has been reduced to
constraint9 that for each site in thei 8 set the spinSi 8 has only
two allowed states, either parallel or antiparallel to the vec
ni 8 .



s a
a

ac
v
o
t

tia
u

ta
an
at
ac
e

tz
pi
y

at
di

he
W
r
si

at
a

st
ra

lt

e

ll
s
.

fo

ase
he

y. It
ry

nce

fa-
-

is

are

of

tly

s of
on

nte
the
rep-

ons

5686 PRB 58RONALD FISCH
III. MONTE CARLO CALCULATION

Because all of theSi are chosen from the@110# states, Eq.
~3! has the useful property that the energy of every state i
integral multiple of J/2. Thus it becomes easy to write
Monte Carlo program to study Eq.~3! which uses integer
arithmetic to calculate energies. This, plus the fact that e
spin has only 12 possible states, gives substantial impro
ments in performance over working with the general form
Eq. ~2!, for both memory size and speed. It is also possible
use integer arithmetic ifD is chosen to be an integer.27

The Monte Carlo program used two linear congruen
pseudorandom number generators. In order to avoid
wanted correlations, the decision of whether or not a s
was in thei 8 set was done using one of the generators,
the choice of the vectorni 8 was made using the other. A he
bath method was used for flipping the spins, which at e
step reassigned the value of a spin to one of its two allow
states if it was a member of thei 8 set or to one of the 12
@110# states if it was not, weighted according to the Bol
mann factors and independent of the prior state of the s

L3L3L simple cubic lattices with periodic boundar
conditions were used throughout. The values ofL used
ranged from 16 to 64. Away from anyTc the samples were
typically run for 10 240 Monte Carlo steps per spin~MCS! at
eachT, with sampling after each 10 MCS. Near aTc they
were run several times longer. The initial part of each d
set was discarded for equilibration. In some cases, two
ferent random-field configurations with a givenL were stud-
ied for a givenx.0. This gives a rather crude estimate of t
L dependence of the various thermodynamic properties.
are forced to go to largeL for this problem by crossove
effects. To do a high-precision finite-size-scaling analy
would require studying many samples at eachL, which is
very time-consuming for largeL.

Due to our discretization of the spins, in a ground st
with x<0.25 essentially all of the spins are as aligned
possible along one of the@110# directions, consistent with
the restriction that eachi 8 spin be in one of its two allowed
states. Thus, in these cases it is easy to equilibrate the sy
at low temperatures by starting from an ordered configu
tion. For x50.25 a sample with smallL will spontaneously
nucleate a@110# FM state upon cooling, but forL564 this
does not happen in the time available. When anL564
sample with x50.25 is slowly cooled toT/J50.5625 it
nucleates a polydomain state. Forx>0.5, where the ground
state is not a@110# FM state, it becomes extremely difficu
to equilibrate large lattices at low temperatures.

In the absence of any external field, the rotation ofM
between different@110# directions is a slow process. In th
presence of random anisotropy the different@110# ferromag-
netic Gibbs states have different energies. Because a
these 12 minima are equivalent, on the average, there i
need for the Monte Carlo program to average over them
the system is started in a high-energy@110# direction, it will
eventually jump to a more favorable direction, unlessT is so
low that this does not happen in the time available.

IV. NUMERICAL RESULTS

For x50 there is no random anisotropy, and results
this case were presented earlier.22 Monte Carlo simulations
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with the random anisotropy were obtained forx50.125,
0.25, 0.5, 0.75, and 1.0. An approximate picture of the ph
diagram obtained from these results is shown in Fig. 1. T
limit of stability of the @110# FM ground state is betweenx
50.25 andx50.5. The QLRO phase exists forx<0.5, but is
unstable atx50.75.

The @111# FM phase, which is stable atx50,22 should
also extend to small positive values ofx. The domain walls
in this phase are broad and have a low cost in free energ
is difficult to obtain meaningful numerical results for ve
small x, due to crossover effects.29 The @111# FM-QLRO
phase boundary was not observed directly, and its existe
is shown in Fig. 1 as a dotted line. Although for smallx the
effective cubic anisotropy induced by our discretization
vors the@111# directions, forx near 0.5 the effective anisot
ropy favors the @100# directions. Consequently, nearx
50.25 the effective cubic anisotropy is very small. There
probably a@100# FM low-temperature phase nearx50.5.
However, because it is so difficult to equilibrate largeL
samples in this region of the phase diagram, the details
very uncertain.

The QLRO-to-PM transition is second order forx<0.5.
The energy atTc remains nearly constant along this part
the transition line, decreasing very slowly asx increases. The
shift of Tc with x is surprisingly small here; atx50,

d

dxS Tc~x!

Tc~0! D520.1260.02. ~4!

Similar effects were observed in then52 random-anisotropy
case,15 but the random-field cases are significan
different.22 At somex.0.5, Tc begins to drop rapidly, and
by x50.75 the QLRO phase has disappeared. The detail
the sharp drop inTc are not clear, and they may depend

FIG. 1. Phase diagram of the dilute random-anisotropyO12

model on simple cubic lattices, showing the paramagnetic~PM!,
ferromagnetic~FM!, and quasi-long-range-order~QLRO! phases.
The plotting symbols show estimates obtained from the Mo
Carlo data. The solid lines indicate first-order transitions, and
dashed lines indicate second-order transitions. The dotted lines
resent transitions which are inferred indirectly and whose locati
are rather uncertain.
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the presence of the effective cubic anisotropy, without wh
the @100# FM phase would not be stable.

Because in the presence of random anisotropy the ex
tation values of the energies of different bonds are not
same, one certainly does not expect the energy atTc to re-
main exactly constant, independent ofx. Unlike the random
field, however, which causes spins to have nonvanishing
pectation values even at high temperatures, the ran
uniaxial anisotropy does not produce major qualitat
changes in the PM phase. Therefore, it is reasonable tha
limit of stability of the PM phase occurs at about the sa
value of the nearest-neighbor two-spin correlation functi
which is the energy in this model. Recall that in a tre
diagram summation the energy atTc of the classicaln-vector
ferromagnet depends only on the lattice structure, and is
dependent of the number of spin components.

For the n52 random-anisotropy model it was found15

that the QLRO phase exists on a simple cubic lattice30 even
for x51, but here we see that QLRO is less stable fon
53 random anisotropy. Although then54 case is not~to the
author’s knowledge! of any experimental relevance, it woul
be quite interesting to know if it is possible to have a QLR
phase for small nonzerox in that case and for larger finit
values ofn. The author sees no reason why this should
be so. Some authors31 have argued for the importance o
hedgehog excitations in three-dimensionaln53 models, but
this does not seem to hold up under detailed scrutiny.32 In a
lattice model one can obtain equivalent effects by replac
the hedgehog fugacity with a nontopological multispin int
action, and this multispin interaction can be extended i
straightforward way to then54 case.33

The behavior of the specific heat asx is increased is
shown in Fig. 2. The data displayed were obtained by
merically differentiating the calculated values of the ene
with respect toT. The specific heat was also computed
calculating the fluctuations in the energy at fixed tempe
ture, yielding similar but noisier results. We see that the d
for different samples with the same value ofx agree fairly
well, although some differences are visible near the ph
transitions.

The sharp peaks which occur22 for x50 become rounded
as x increases, and they move to lowerT. At x50.125 the
behavior of the specific heat at the QLRO-to-PM transit
can be approximated by an effective critical specific h
exponentaeff520.45, with an amplitude ratio of 2.5. Th
transition out of the@110# FM phase still appears to be firs
order atx50.125, although the latent heat is too small
measure accurately.34 It is likely that this transition actually
goes into the@111# FM phase. Atx50.25 there is substantia
hysteresis at the@110# FM-to-QLRO transition, which makes
an accurate determination of the equilibrium thermodyna
properties near this transition impossible. The specific h
near the QLRO-to-PM transition atx50.25, shown in Fig.
2~b!, is remarkably similar to the specific heat recently
ported for real amorphous RE-TM films.2 The effective value
of the critical specific heat exponent is nowaeff520.6, and
the amplitude ratio is again about 2.5. It is well known35 that
the introduction of randomness gives rise to effective criti
exponents that appear to vary withx. By x50.5 the specific
heat peak has become rather smeared out, but it still seem
be centered at the QLRO-to-PM transition. The shoulder
h
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the low temperature side of the peak in Fig. 2~c! may be due
to a transition from the QLRO phase into a@100# FM phase.

Looking at the dependence of^uM u& on x andL provides
additional insight. The data forx50.25 and x50.5 are
shown in Fig. 3. In the@110# FM phase,^uM u& is almost

FIG. 2. Specific heat vs temperature for the dilute rando
anisotropy O12 model on L3L3L simple cubic lattices.~a! x
50.125, ~b! x50.25, and~c! x50.5.
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5688 PRB 58RONALD FISCH
independent ofL, except very close toTc . In the @111# and
@100# FM phases,̂ uM u& becomes independent ofL only
whenL is larger than the domain-wall thickness. In practi
we do not satisfy this condition, and for accessibleL it be-
comes very difficult to distinguish the@111# and @100# FM
phases from the QLRO phase. In the QLRO phase,^uM u&
decreases slowly asL increases, probably decaying a
1/ln(L). In the PM phase,̂ uM u& decreases as (L/j)23/2,
wherej is the ferromagnetic correlation length.

In Fig. 3 we see that for both values ofx the variation of
^uM u& with T becomes increasingly sharp asL increases. If
one looks at finite-size scaling plots~not shown!, there is
substantial scatter due to sample-to-sample fluctuati
However, in both cases the finite-size scaling is consis
with a divergence ofj asT approachesTc in the PM phase,
with an effective value ofb/n ~and therefore ofh) which is
indistinguishable from the standardn53 Heisenberg critical
point value.36 The data can also be fit withh50. The effec-
tive values ofn are, however, about 0.8 atx50.25 and 1.0 at
x50.5. Note that if one uses the effective value ofn found
here forx50.25 and the effective value ofa found in the
specific heat, the Josephson relationdn522a is satisfied

FIG. 3. Magnetization vs temperature for the dilute rando
anisotropyO12 model onL3L3L simple cubic lattices. They axis
is scaled logarithmically.~a! x50.25 and~b! x50.5.
s.
nt

within the accuracy of the estimates. There is no reas
however, why effective exponents should satisfy scaling
lations exactly.

We can get valuable information by looking at the ma
netic structure factorS(k). The structure factor can be mea
sured by x-ray and neutron scattering experiments. NeaTc
the small-wave-number behavior of the structure factor
expected to have the form

S~k!'A/~1/j21uku2!12h/2. ~5!

As T approachesTc in the PM phase,j is expected to di-
verge like (T2Tc)

2n. S(k) at Tc for an L564 sample with
x50.25 is shown on a log-log plot in Fig. 4. The exponenth
is seen to be very close to zero; this is the same result
was found for this exponent in then52 random-anisotropy
case.15

Inside the QLRO phaseS(k) appears to take on the form

S~k!'A/~1/j21uku2!1B/~1/j21uku2!12h0/2, ~6!

with h0521, independent ofT. The B term has replaced
the d function which would be found in the structure fact
of a ferromagnet. The coefficientB goes to zero continu-
ously asT approachesTc from below, presumably with an
exponent 2b. At x50.25 where the effective cubic aniso
ropy is small,j is found to be immeasurably large in th
QLRO phase, which means that it must be large compare
L564.

This is shown in Fig. 5, which displaysS(k) data from
the sameL564 sample as in Fig. 4, but for lowerT. The
data set shown with the1 symbols was obtained by slowl
cooling the lattice from aboveTc to T/J50.6875. After dis-
carding the initial part of the run, this state appears station
on a time scale of 50 000 MCS. It has^uM u&50.419 and an
energy of21.9992J. The fit of this data to a straight line
with a slope of23 is excellent. The remaining data show
here were generated using a cold start initial condition, w
the direction ofM chosen to be approximately the same

-

FIG. 4. Angle-averaged magnetic structure factor at the PM
QLRO transition for the dilute random-anisotropyO12 model on a
64364364 simple cubic lattice withx50.25, log-log plot. The
points show averaged data from four states sampled at 10 240 M
intervals. The line has a slope of22.00.
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for the slowly cooled state. AtT/J50.5, which is within the
@110# FM phase,̂ uM u&50.812 andS(k) is rather flat at non-
zerok. Upon warming this state up toT/J50.5625, which is
approximately equal to the FM-QLRO transition poin
^uM u& has decreased to 0.757, andS(k) has increased a
nonzerok.

Using a cold start initial condition atT/J50.6875 results
in a state which does not relax to equilibrium on access
time scales. The data shown in Fig. 5 with the diamo
symbols fall on top of the equilibrium~slow-cooled! data for
k>0.1, but they are flat at smallerk, where relaxation times
are long. These data have^uM u&50.599 and an energy of
22.0045J, but there is a clear trend of decreasing^uM u& and
increasing energy with time. The rounded peak26 and slow
relaxation37 of this state are quite reminiscent of the fiel
cooled state in the spin-glass phase of CuMn alloys.

For x>0.75 the ferromagnetic correlation length does n
become larger than accessible values ofL at any tempera-
ture, andS(k) can be fit by a simple Lorentzian form@i.e.,
setting h50 in Eq. ~5!#. This is shown in Fig. 6. Forx
50.75 we display data taken atT/J51.156 25 for anL
564 sample, using both slow cooling and cold start init
conditions. This value ofT is slightly below what our ex-
trapolation from smallx would lead us to expectTc would
be. Although there is a substantial peak inS(k), the value of
j ~measured in lattice units! appears to be 2565, and it does
not increase asT is lowered.

Data for twoL532 samples withx51 at T/J50.75 us-
ing slow cooling are shown in Fig. 6~b!. Here the value ofj
is 1161, in excellent agreement with earlier estimates for
x51 model withn53 isotropic random anisotropy.9,10 For
x51, j becomes essentially temperature independent be
aboutT/J50.9, but there is no evidence of singular behav
at anyT. Given the recent results of Migliorini and Berker,11

the author does not believe that there is any phase trans

FIG. 5. Angle-averaged magnetic structure factor near the@110#
FM-to-QLRO transition for the dilute random-anisotropyO12

model on a 64364364 simple cubic lattice withx50.25, log-log
plot. The data set shown with1 symbols was obtained from
series of four states which were obtained after cooling slowly fr
high temperature. The other data sets were obtained with a
start initial condition. The solid line has a slope of23.00, and the
dashed line has a slope of22.00.
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at T.0 in this model whenx>0.75. Although no attemp
was made to find the exact ground states of these sam
the estimated ground state energy for theO12 model atx
51 is 21.1260.01J, essentially equal to its value in th
isotropic random-anisotropy case.

V. DISCUSSION

The integral ofS(k) over k is proportional to the total
neutron-scattering cross section, which is finite. Beca
uku23 is not an integrable singularity in three dimension
eitherj must become finite, albeit extremely large, belowTc
whereB is nonzero, or elseh0 must be modified slightly to
make the integral converge. In the presence of some cry
line or growth-induced nonrandom anisotropy, it is natural
expect thatj becomes finite, just as it does in a nonrando
ferromagnet belowTc .33 Although it has become traditiona
to fit neutron-scattering data forS(k) in random-field and
random-anisotropy magnets to a Lorentzian plus Lorentz2

form, this is based on a theoretical preconception. It has b
known for a long time that Eq.~6! will serve to fit the data in
some cases,38 while in others1,38 the 3 in the exponent shoul

ld

FIG. 6. Angle-averaged magnetic structure factor at largex and
low T for the dilute random-anisotropyO12 model onL3L3L
simple cubic lattices, log-log plot. The lines have a slope o
22.00. ~a! x50.75 and~b! x51.0.
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be replaced by 2.4. A value of 2.4 in this exponent is p
cisely the value found for then52 random-anisotropy
model,15 and thus should be expected in the presence
easy-plane anisotropy. Theuku23 behavior of S(k) for n
53 is the same exponent for both the random-anisotropy
random-field cases. Therefore, we have no reason to be
that the presence of hedgehog singularities is essential fo
QLRO whenn53. There seems to be no reason why QLR
should not exist for larger finite values ofn, as originally
predicted by Aharony and Pytte.13

The magnetic susceptibility is

xab5~NT!21 (
i , j 51

N

@^Si
aSj

b&#2@^Si
a&^Sj

b&#. ~7!

The Aharony-Pytte-Goldschmidt13,14 analysis predicts that a
small wave numbers its Fourier transformx(k) will behave
like uku22. If time-reversal symmetry is unbroken, then t
@^Si

a&^Sj
b&# terms all vanish, and the trace ofx(k) is propor-

tional to S(k). Thus Aharony-Pytte-Goldschmidt analys
implicitly predicts thatS(k) goes like uku22 in the QLRO
phase, which is not correct. Its prediction forx(k) in the
QLRO phase is, however, probably correct in the absenc
any crystalline anisotropy. To check this numerically wou
require very long runs, in order to compute the@^Si

a&^Sj
b&#

terms accurately. This has not been attempted here.
It is likely that the reason why the Aharony-Pytt

Goldschmidt analysis fails to predict QLRO for the rando
field case is also its incorrect handling of the@^Si

a&^Sj
b&#

terms. For the random-field case these terms are non
even in the PM phase.

The FM phases shown in Fig. 1 exist because of the
isotropy induced by our discretization. It would be very he
ful to repeat this calculation using an alternative discreti
tion, such as Rapaport’s 30-state model,23 which has
icosahedral symmetry. It would also be desirable to stud
continuous-spin binary alloy model with a fully isotropic di
tribution of the random anisotropy. This would be very d
ficult to manage for large lattices, unless a way can be fo
to adapt the cluster Monte Carlo algorithm39 to include ran-
dom anisotropy. Whenx.0 the Hamiltonian no longer ha
any planes of reflection symmetry, even though it is s
inversion symmetric.
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As mentioned in the Introduction, the Ising spin-gla
phase which is found in a mean-field theory for the rando
anisotropy magnet6 becomes modified12 for finite n in less
than six dimensions. In this work the author is suggest
that a QLRO phase will exist for the random-anisotropy f
romagnet in three spatial dimensions for any finiten. It is
relevant to inquire about what happens for infiniten, which
should reduce to the Ising spin-glass case. It is reasonab
anticipate that, although eachn is a unique universality class
there should be a qualitative similarity between the finiten
cases and the Ising spin glass. Therefore, it is very interes
to note that a recent Monte Carlo simulation of Berg a
Janke40 has provided evidence for a rather similar QLR
phase in the Ising spin glass. It was argued long ago
Hertz, Fleishman, and Anderson41 that the Ising spin glass
behaves as if it has a continuous symmetry, and that, th
fore, there could not be any true long-range spin-glass o
in less than four dimensions. It seems that this analysis
finally been confirmed by the Monte Carlo work.

VI. CONCLUSION

In this work we have used Monte Carlo simulations
study theO12 version of the diluted random-anisotropy fe
romagnet in three dimensions. We have found that there
two types of ordered phases, just as in then52 case. In
addition to the anisotropy-stabilized ferromagnet, we find
intermediate QLRO phase displaying auku23 behavior of the
magnetic structure factor. This is the same behavior wh
has been found for then53 random-field model. The critica
exponenth, which characterizes the two-spin correlations
the QLRO-to-PM critical line, has a value which is indistin
guishable from zero. The results should be applicable t
variety of experimental systems, including amorpho
RE-TM alloys and CuMn-type spin-glass alloys.
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