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Quasi-long-range order in random-anisotropy Heisenberg models
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Monte Carlo simulations have been used to study a discretized Heisenberg ferrofgnetith random
uniaxial single-site anisotropy dnx L X L simple cubic lattices, foL up to 64. The spin variable on each site
is chosen from the 1p110] directions. The random anisotropy has infinite strength and a random direction on
a fractionx of the sites of the lattice, and is zero on the remaining sites. In many respects the behavior of this
model is qualitatively similar to that of the corresponding random-field model. Due to the discretization, for
small x at low temperature there is[d10] FM phase. Fox>0 there is an intermediate quasi-long-range-
ordered (QLRO) phase between the paramagnet and the ferromagnet, which is characterizetk|by a
divergence of the magnetic structure fac8jk) for smallk, but no true FM order. At the transition between
the paramagnetic and QLRO phasg{) diverges like|k| “2. The limit of stability of the QLRO phase is
somewhat greater than=0.5. Forx close to 1 the low-temperature form (k) can be fit by a Lorentzian,
with a correlation length estimated to be#11 atx=1.0 and 255 atx=0.75.[S0163-18208)09333-3

I. INTRODUCTION proximation of Aharony and Pytte, and its later elaboration
by Goldschmidt and Aharon¥, it is claimed that the

The Heisenberg model with random uniaxial single-siteinfinite-susceptibility phase occurs in the presence of random
anisotropy is considered to be the proper model for studyingnisotropy, but not in the presence of a random field. This is
amorphous alloys? of nonS-state rare earthéRE’s) and  rather problematic, as it requires that the infinite-
transition metal§TM’s), such as TiFe,_,. The model was susceptibility phase not break time-reversal symmetry. The
introduced by Harris, Plischke, and Zuckermanmho per-  relationship between the ordered states of random-field and
formed a mean-field calculation and found a ferromagneti¢andom-anisotropy models is well known, as it provides the
(FM) phase at low temperature. It was shown later by Pelcokey step in the argument of Pelcovits, Pytte, and Rudhick.
vits, Pytte, and Rudnickusing an argument parallel to that ~ In the last few years, Monte Carlo calculations have re-
of Imry and M& for the random-field case, that such a FM vealed that for then=2 case there is a low-temperature
phase is not stable in three dimensions. phase with power-law decay of two-spin correlatiégwhich

The actual behavior of this model in three dimensions hadVill be referred to as the QLRO phasier both the random
remained a subject of controversy. It was argued by soméniaxial anisotropd? and random fieltf in three dimensions.
worker$'%=8 that there should be a low-temperature IsingThe QLRO phase is characterized by the small-wave-number
spin-glass phase, but the numerical evidence for this waehavior of the magnetic structure factor
never convincing:'° Recently, Migliorini and Berkét have
shown that in three dimensions the Ising spin glass is desta- S(k)=[{IM(k)|?)1, (1)
bilized by a random field. The spin-glass phase, as it is usu-
ally envisioned, has spontaneously broken time-reversaWhere the expectation valye) indicates a thermal average
symmetry(i.e., the time-average expectation values of localand[ ] is an average over the alloy disordd.(k) is the
moments do not vanighTherefore, one would expect that it Fourier transform of the magnetization. With the random
should also be destabilized by random uniaxial anisotropy. field it was found that in the QLRO phase the snialbe-

It was shown some time ago by Jagannathan, Schaub, afvior of S(k) goes a3, and with the random uniaxial
Kosterlitz? that the Ising spin-glass phase which exists in aanisotropy it goes a& 2% A spin-wave theory analysis
mean-field theory of the random-anisotropy m8deldesta-  would predict that this behavior should be the same. Thus the
bilized by fluctuations for any finite, wheren is the num-  fact that the power law is found to be different in the two
ber of spin components. This means that there may be @ases demonstrates that vortex lines are controlling the be-
spin-glass-like phase in the random anisotropy model, bubavior forn=2 with random anisotropy. The=2 case with
that the critical exponents should dependmprand will not  threefold(or highe) random anisotropy retains a stable FM
be the same as those of the Ising spin glass, except in six @hase in three dimensiohs.
more space dimensions. Other papers which indicate the presence of QLRO for

An alternative scenario, first proposed by Aharony andh=2 are the Monte Carlo calculation of Gingras and Hfise
Pyttel® is that in three dimensions at low temperature thergor the random-field case, the high-temperature susceptibility
is a phase characterized by an infinite magnetic susceptibilitgeries of Fisch and Harfisfor the random-anisotropy case,
and a power-law decay of two-spin correlations as a functiomand the replica-symmetry-breaking analysis of Giamarchi
of the distance between the two spins, but no true FM longand Le Doussd The latter work actually studies the closely
range order. This power-law decay of the two-spin correlatelated problem of randomly pinned vortex lines in a dirty
tions is called quasi-long-range ord6PLRO). In the ap-  type-Il superconductd®
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The existence of QLRO fon=2 is not a big surprise, induced anisotrop§ Understanding the effects of this weak
given our previous experience with the Kosterlitz-Thoulessanisotropy is a worthwhile exercise. The existence of the
phase in thénonrandom two-dimensionalXY model. How-  growth-induced anisotropy is crucial for the use of these
ever, the Aharony-Pytte-Goldschmitit* calculations find films as magneto-optical memory devi¢édhe third reason
an infinite-susceptibility phase for any finite valuergfin-  is that besides the amorphous RE-TM alloys, we are also
dependent of the existence of any topological defects. Renterested in crystalline spin-glass alloys like Cuf?®
cently, a Monte Carlo calculation by the current aufor where a cubic single-ion anisotropy is present in the real
found a QLRO phase with a& k) which goes a& 3 forthe = materials.
n=3 model in a random field in three dimensions. Here we As discussed by, for example, Chudnovsky, Saslow, and
will extend this work to the case @f=3 spins with random Serotd’ in the presence of a nonzero average anisotropy a
anisotropy, and we will find the same result for the snkall- weak random anisotropy is not able to destabilize the ferro-

behavior ofS(k) as for the random field. magnetism in three dimensions, although it may spoil the
collinearity of the spin state. The ferromagnetic phases

Il. DISCRETIZED HEISENBERG MODEL which are often reported to exist in amorphous magnetic

WITH RANDOM ANISOTROPY materials in the laboratory are a reflection of this fact. The

author does not know of any method of growing a solid
The Hamiltonian we study in this work is the obvious laboratory sample which has no average anisotropy.
modification of the one previously used for the=3 Another discretized three-dimensiona+ 3 Hamiltonian
random-field modef? It consists of a FM Heisenberg ex- which combines cubic single-ion anisotropy and random
change term, with the addition of a cubic single-ion anisot-uniaxial anisotropy has been studied previod$lyn that
ropy term and a random-anisotropy term due to the alloycase only six state&he [100] unit vectors were used. Al-
disorder. Thus the form of the Hamiltonian is though the six-state discretization is too coarse to serve as a
5 5 qlijantitative ?ppg)ximati?]n to the I—:ﬁeisegber?1 mode:(, some
indications of a QLRO phase were found in that work.
H=-3 > S's'—KX X (sH* A discussion from aprenormalization-group viewpoint of
(i) =t bt the effects of having both a crystalline anisotropy and ran-
dom uniaxial anisotropy has been given by Mukamel and

—DZ [(S/-m)*=1], (2)  Grinstein?® They argued that a QLRO phase could exist in
: this case between the FM and the paramagRbt), as was
where the sites form a simple cubic lattice andij) indi-  later found by a Monte Carlo calculation for the=2 case?®

cates a sum over nearest neighbors. ®hare spin indices, They also discussed the difference between a discretized

eachn;, is an independently chosen random unit vector, andnodel in which all of the allowed axes are mutually orthogo-

thei’ sites are a randomly chosen subset of the lattice cor?@l, such as the six-state model for3, and finer discreti-

taining a fractionx of the sites. zations such as th®,, model, which are expected to provide
Thei’ sites represent the sites of the RE atoms, while thé@Pproximations to a model without the crystalline anisot-

remaining sites of the lattice contain the TM atoms. ThislOPY:

ignores the fact that the RE-TM alloys of interest here are AS shown in the previous wor¥ the pureO;, model,

amorphous rather than crystalline, but it is a reasonable firg#ith no random term, possesses two ordered FM phases. At

approximation. Since the atoms are assumed to be immobilé0W temperatures the average magnetizatidn) points

the n;, do not change with time. In this work we will study @along one of the 19110] directions. Naturally, we label this

the limit in which D is taken to infinity. The random- @&[110] FM phase. AtT/J=1.06 there is a first-order phase

anisotropy term is then a projection operator, and the spin oHfansition into g111] FM phase, in whicM) points along

each of thei’ sites is restricted to two states, parallel andone of the eight [111] directions. As pointed out

antiparallel to the vectan;, . For simplicity, we will assume ~Previously?’ the stability of the[111] FM phase for small

that all of the spins are unit vectors and that the exchang&M)| may be understood within a Landau mean-field expan-

couplingsJ between all pairs of nearest neighbor spins areS!on. _ o _ _

identical. Our assumed values for the couplings are not close Since ourOj; discretization of the spin variables auto-

to the actual values in RE-TM alloysbut they should still Matically builds a cubic anisotropy into the free energy, and

give the qualitative behavior correctly, due to universality. We are primarily trying to understand the qualitative aspects
There are several reasons for including the cubic singleof the ordering and not attempting a quantitative model of a

ion anisotropy term in the Hamiltonian. The first is a matterparticular experiment, we do not keep theterm in the

of convenience. In order to improve the efficiency of the Hamiltonian explicitly. Thus, the Hamiltonian is reduced to

Monte Carlo program®?*and to make it easy to store states the simple form

of the system for later analysis, we are going to discretize the

phase space of the model. For each spin vari8blnd each H— —JE s-s 3)

random anisotropy axis;. , we restrict the allowed states to o (N

be the 12110] unit vectors. We will refer to this discretiza-

tion as theO;, model. This discretization induces an effec- The random anisotropy term has been reduced to the

tive cubic single-ion anisotropy term in the Hamiltonian. Theconstraint that for each site in the set the spir§ has only

second reason is that the experimental samples of amorphotigo allowed states, either parallel or antiparallel to the vector

RE-TM alloys are sputtered films which have some growth-;, .
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Ill. MONTE CARLO CALCULATION 2.0 L B BN N

Because all of th& are chosen from thel10] states, Eq.
(3) has the useful property that the energy of every state is an
integral multiple ofJ/2. Thus it becomes easy to write a 1.5
Monte Carlo program to study Edq3) which uses integer
arithmetic to calculate energies. This, plus the fact that each SN
spin has only 12 possible states, gives substantial improve- - B ‘ -
ments in performance over working with the general form of =
Eq. (2), for both memory size and speed. It is also possible to
use integer arithmetic iD is chosen to be an integéf. ,
The Monte Carlo program used two linear congruential 0.5 [110]h\ [100]
pseudorandom number generators. In order to avoid un- v X
wanted correlations, the decision of whether or not a state M i
was in thei’ set was done using one of the generators, and | | A
the choice of the vectar,, was made using the other. A heat O'OO O' — ‘0 2‘ = 04' = ‘O 6‘ ' ‘“O 8‘ = ‘1 "
bath method was used for flipping the spins, which at each ) ’ o ' ’
step reassigned the value of a spin to one of its two allowed
states if it was a member of thé set or to one of the 12 FIG. 1. Phase diagram of the dilute random-anisotr@py
[110] states if it was not, weighted according to the Boltz-model on simple cubic lattices, showing the paramagniétid),
mann factors and independent of the prior state of the spinferromagnetic(FM), and quasi-long-range-ord¢QLRO) phases.
LxLxL simple cubic lattices with periodic boundary The plotting symbqls ;how e§t|matgs obtained frqm the Monte
conditions were used throughout. The values Lofused dCatho g?_ta. T_hz_solnd lines &nduzatetfnrst-_ctn_rder tTrﬁnscujnct)tnsa Ignd the
ashed lines indicate second-order transitions. The dotted lines rep-
[3&%33;:321 ]%?;8 54‘110 ':‘Av(\;ﬁi/efgg:l(?g]é;geps;in&%ssyv ;tre resent transitions yvhich are inferred indirectly and whose locations
eachT, with sampling after each 10 MCS. NearTa they are rather uncertain.
were run several times longer. The initial part of each data . ) )
set was discarded for equilibration. In some cases, two dif?Vith the random anisotropy were obtained for0.125,
ferent random-field configurations with a giverwere stud- 92 05, 0.75, and 1.0. An approximate picture of the phase
ied for a givenx>0. This gives a rather crude estimate of thed'agram obt_ayned from these results is showrj in Fig. 1. The
L dependence of the various thermodynamic properties. Wit of stability of the[110] FM ground state is between
are forced to go to largé for this problem by crossover =0.25 andk=0.5. The QLRO phase exists fo=0.5, butis
effects. To do a high-precision finite-size-scaling analysi¢!nStable ak=0.75. o 2
would require studying many samples at eachwhich is The [111] FM phase, which is stable at=0," should
very time-consuming for largk. glso_extend to small positive valuesxf The dpmam walls
Due to our discretization of the spins, in a ground statdn thiS phase are broad and have a low cost in free energy. It
with x<0.25 essentially all of the spins are as aligned a s difficult to obtain meaningful numerical results for very
possible along one of thEL10] directions, consistent with SMall X, due to crossover effectS. The [111] FM-QLRO
the restriction that eacH spin be in one of its two allowed phase bogndgry was not obser_ved directly, and its existence
states. Thus, in these cases it is easy to equilibrate the systdfpSNoWn in Fig. 1 as a dotted line. Although for smalihe
at low temperatures by starting from an ordered configura€ective cubic anisotropy induced by our discretization fa-
tion. Forx=0.25 a sample with small will spontaneously vors the[111] directions, forx near 0.5 the effective anisot-
nucleate 4110] FM state upon cooling, but for =64 this 0Py _favors the[100] directions. Consequently, near
does not happen in the time available. When lan 64 =0.25 the effective cubic anisotropy is very small. There is
sample withx=0.25 is slowly cooled toT/J=0.5625 it Probably a[100] FM low-temperature phase near0.5.
nucleates a polydomain state. For 0.5, where the ground HoWwever, because it is so difficult to equilibrate large
state is not 4110] FM state, it becomes extremely difficult samples in t_h|s region of the phase diagram, the details are
to equilibrate large lattices at low temperatures. very uncertain. o
In the absence of any external field, the rotationNof The QLRO-to-PM transition is second order fo=0.5.
between differenf110] directions is a slow process. In the 1"€ energy all; remains nearly constant along this part of
presence of random anisotropy the differitt0] ferromag- thg tranS|t|or_1 Ime,_ decrea_s!ng very slowly»agicreases. The
netic Gibbs states have different energies. Because all ¢iift Of Tc with x is surprisingly small here; a¢=0,
these 12 minima are equivalent, on the average, there is no
need for the Monte Carlo program to average over them. If d [ Ts(x)
the system is started in a high-enefdyl0] direction, it will d_x(T 0)
eventually jump to a more favorable direction, unlésis so ¢
low that this does not happen in the time available.

T T T T
o
©

PM

T vy

) ——0.12+0.02. (4

Similar effects were observed in the= 2 random-anisotropy
case’® but the random-field cases are significantly
IV. NUMERICAL RESULT oo ) ;
v c SULTS different?? At somex>0.5, T, begins to drop rapidly, and
For x=0 there is no random anisotropy, and results forby x=0.75 the QLRO phase has disappeared. The details of
this case were presented earfiéMonte Carlo simulations the sharp drop ifT, are not clear, and they may depend on
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the presence of the effective cubic anisotropy, without which ' b ' b
the [100] FM phase would not be stable. (a) 0,

Because in the presence of random anisotropy the expec- o o
tation values of the energies of different bonds are not the -
same, one certainly does not expect the energy &b re- " o B
main exactly constant, independentofUnlike the random - Fog o= i
field, however, which causes spins to have nonvanishing ex-
pectation values even at high temperatures, the random o
uniaxial anisotropy does not produce major qualitative
changes in the PM phase. Therefore, it is reasonable that the 1 O
limit of stability of the PM phase occurs at about the same
value of the nearest-neighbor two-spin correlation function, i
which is the energy in this model. Recall that in a tree- i
diagram summation the energyTat of the classicah-vector r i
ferromagnet depends only on the lattice structure, and is in- 0
dependent of the number of spin components.

For the n=2 random-anisotropy model it was fourid
that the QLRO phase exists on a simple cubic lattieven
for x=1, but here we see that QLRO is less stable rfor
=3 random anisotropy. Although time=4 case is nofto the
author’'s knowledgeof any experimental relevance, it would
be quite interesting to know if it is possible to have a QLRO i B0 i
phase for small nonzem in that case and for larger finite 3 OB X 8
values ofn. The author sees no reason why this should not Fo® £o8° ygx
be so. Some authd¥shave argued for the importance of
hedgehog excitations in three-dimensional 3 models, but | o
this does not seem to hold up under detailed scrufing.a | x=0.25 0
lattice model one can obtain equivalent effects by replacing ¢ L=32 =
the hedgehog fugacity with a nontopological multispin inter- r tL=48.81 1
action, and this multispin interaction can be extended in a ro - Li48’ 5° ]
straightforward way to the=4 case™ Lo ees 8

The behavior of the specific heat &sis increased is 0 . I .
shown in Fig. 2. The data displayed were obtained by nu- 1.2 1.4 1.6
merically differentiating the calculated values of the energy
with respect toT. The specific heat was also computed by 20
calculating the fluctuations in the energy at fixed tempera-
ture, yielding similar but noisier results. We see that the data
for different samples with the same valueofagree fairly
well, although some differences are visible near the phase 15
transitions.

The sharp peaks which océarfor x=0 become rounded
asx increases, and they move to lower At x=0.125 the & 1.0
behavior of the specific heat at the QLRO-to-PM transition
can be approximated by an effective critical specific heat
exponenta = —0.45, with an amplitude ratio of 2.5. The
transition out of thg110] FM phase still appears to be first 0.5
order atx=0.125, although the latent heat is too small to
measure accuratefy.It is likely that this transition actually
goes into th¢111] FM phase. Ax=0.25 there is substantial
hysteresis at theL10] FM-to-QLRO transition, which makes 12 14
an accurate determination of the equilibrium thermodynamic T/1
properties near this transition impossible. The specific heat
near the QLRO-to-PM transition at=0.25, shown in Fig. _FIG. 2. Specific heat vs temperature for _the djlute random-
2(b), is remarkably similar to the specific heat recently re-anisotropy Os, model onLXLXL simple cubic lattices(a) x
ported for real amorphous RE-TM filnisThe effective value ~ — 0-125:(0) x=0.25, and(c) x=0.5.
of the critical specific heat exponent is nawgz=—0.6, and
the amplitude ratio is again about 2.5. It is well kndWthat  the low temperature side of the peak in Figc)2may be due
the introduction of randomness gives rise to effective criticalto a transition from the QLRO phase intd 200] FM phase.
exponents that appear to vary with By x=0.5 the specific Looking at the dependence @M |) onx andL provides
heat peak has become rather smeared out, but it still seemsadditional insight. The data fox=0.25 andx=0.5 are
be centered at the QLRO-to-PM transition. The shoulder orshown in Fig. 3. In thgd110] FM phase,(|M|) is almost
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1% (a) Oyz — i o 1
L %%&(’%& ] 12
RS ] 100 T/I=1.40625 —
X E ]
i P i ]
0.1— ' —
v L o L=16, S1 X o ] % 10 = —
[ < L=24, S1 X oO i F ]
F % 1=32, S1 ® 4 o, 1 C ]
T o L=48, S1 “J + Coo ] - x=0.25 iy
T x 1.=48, S2 ox s i r
- o L-64, S1 ¢ ey . L=64
X, -
0.01 L 1 ‘ 1 1 ? X ‘ L0 110 ‘ I
0.5 1.0 1.5 2.0 005 0.1 0.2 0.5 1
T/J |k|
[ L B FIG. 4. Angle-averaged magnetic structure factor at the PM-to-
1= (b) 0z —1 QLRO transition for the dilute random-anisotro@, model on a
- ] 64X 64X 64 simple cubic lattice wittbk=0.25, log-log plot. The
7000006, 1 points show averaged data from four states sampled at 10 240 MCS
[ * *Wﬁ*"‘*‘*nw% . | intervals. The line has a slope 6f2.00.
Dﬂééééé M o
i T o | within the accuracy of the estimates. There is no reason,
A Chiy y : _
= - + however, why effective exponents should satisfy scaling re-
V01— X795 B¢ o — :
- o 1=16, SI x, O ] lations exactly.
L+ L=24, S1 %m °u 1 We can get valuable information by looking at the mag-
i ; ifi’;" 21 s ©o] netic structure facto®(k). The structure factor can be mea-
P % Le48 2 R+ sured by x-ray and neutron scattering experiments. Negar
L o L—64 S1 o¥a ] the small-wave-number behavior of the structure factor is
= expected to have the form
O'Ol 1 1 1 ‘ 1 1 1 1 ‘ 1 1 2 2 17 /2
0.5 1.0 15 S(K)~AJ(1/%+ |k|#)t e, (5)

T/J
/ As T approached . in the PM phase¢ is expected to di-
FIG. 3. Magnetization vs temperature for the dilute random-verge like T—T.) " S(k) at T, for anL=64 sample with
anisotropyO;, model onL XL XL simple cubic lattices. Thg axis ~ x=0.25 is shown on a log-log plot in Fig. 4. The exponent
is scaled logarithmically(@) x=0.25 and(b) x=0.5. is seen to be very close to zero; this is the same result that
was found for this exponent in the=2 random-anisotropy

independent of, except very close td . In the[111] and casel.ff
[100] FM phases(|M|) becomes independent af only Inside the QLRO phas8(k) appears to take on the form
whenL is larger than the domain-wall thickness. In practice _ 2 2 2 N1 pf2
we do not satisfy this condition, and for accessiblé& be- S(k) = AJ(LE%+ [K[*) + BI (1/6%+ [K[ %)™ 7%, ©)
comes very difficult to distinguish thgl11] and[100] FM  with 7,=—1, independent off. The B term has replaced
phases from the QLRO phase. In the QLRO phd§¥|)  the ¢ function which would be found in the structure factor
decreases slowly a& increases, probably decaying as of a ferromagnet. The coefficie® goes to zero continu-
1/In(L). In the PM phase(|M|) decreases asL(&) %2, ously asT approached . from below, presumably with an
where¢ is the ferromagnetic correlation length. exponent B. At x=0.25 where the effective cubic anisot-
In Fig. 3 we see that for both values wfthe variation of  ropy is small, ¢ is found to be immeasurably large in the
(IM]) with T becomes increasingly sharp kasincreases. If QLRO phase, which means that it must be large compared to
one looks at finite-size scaling plotsot shown, there is L=64.
substantial scatter due to sample-to-sample fluctuations. This is shown in Fig. 5, which displayS(k) data from
However, in both cases the finite-size scaling is consistenthe samel =64 sample as in Fig. 4, but for lowdr. The
with a divergence ot asT approached in the PM phase, data set shown with the symbols was obtained by slowly
with an effective value of3/v (and therefore ofy) which is  cooling the lattice from abové, to T/J=0.6875. After dis-
indistinguishable from the standand=3 Heisenberg critical carding the initial part of the run, this state appears stationary
point value®® The data can also be fit with=0. The effec- on a time scale of 50 000 MCS. It h&dvl|)=0.419 and an
tive values ofv are, however, about 0.8 a=0.25 and 1.0 at energy of —1.9992. The fit of this data to a straight line
x=0.5. Note that if one uses the effective valuerofound  with a slope of—3 is excellent. The remaining data shown
here forx=0.25 and the effective value @f found in the here were generated using a cold start initial condition, with
specific heat, the Josephson relatn=2— « is satisfied the direction ofM chosen to be approximately the same as
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FIG. 5. Angle-averaged magnetic structure factor neaf1té) L
FM-to-QLRO transition for the dilute random-anisotrofy;, r
model on a 6& 64X 64 simple cubic lattice witbx=0.25, log-log
plot. The data set shown with- symbols was obtained from a 100
series of four states which were obtained after cooling slowly from
high temperature. The other data sets were obtained with a cold
start initial condition. The solid line has a slope -68.00, and the
dashed line has a slope 6f2.00.

(b) Oy
T/J=0.75

<|M(K)|?>

10

for the slowly cooled state. At/J=0.5, which is within the

[110] FM phase{|M|)=0.812 andS(k) is rather flat at non-

zerok. Upon warming this state up fyJ=0.5625, which is

approximately equal to the FM-QLRO transition point, 0L=32, S1

(IM]) has decreased to 0.757, as(k) has increased at 1= +L=32, S2

nonzerok. A s s
Using a cold start initial condition at/J=0.6875 results 0.05 0.1 0.2 0.5 1

in a state which does not relax to equilibrium on accessible [i<]

time scales. The data shown in Fig. 5 with the diamond

symbols fall on top of the equilibriurtslow-cooled data for

k=0.1, but they are flat at small&; where relaxation times

are long. These data hayéM|)=0.599 and an energy of

—2.0049, but there is a clear trend of decreasifil|) and

increasing energy with time. The rounded p&adnd slow

FIG. 6. Angle-averaged magnetic structure factor at lxrgad
low T for the dilute random-anisotrop®,, model onL XL XL
simple cubic lattices, log-log plot. The lines have a slope of
—2.00. (a) x=0.75 and(b) x=1.0.

.- ) ) - ; at T>0 in this model wherx=0.75. Although no attempt
relaxationt” of this state are quite reminiscent of the field- 25 made to find the exact ground states of these samples,

cooled state in the spin-glass phase of CuMn alloys. the estimated ground state energy for g, model atx
Forx=0.75 the ferromagnetic correlation length does not_ 1 is —1.12+0.01J essentially equal to its value in the

become larger than aqcessiblg valued oAt any tempera- isotropic random-anisotropy case.
ture, andS(k) can be fit by a simple Lorentzian forfine.,
setting =0 in Eq. (5)]. This is shown in Fig. 6. Fox
=0.75 we display data taken dt/J=1.156 25 for anL
=64 sample, using both slow cooling and cold start initial The integral ofS(k) over k is proportional to the total
conditions. This value of is slightly below what our ex- neutron-scattering cross section, which is finite. Because
trapolation from smalk would lead us to expect, would  |k|~2 is not an integrable singularity in three dimensions,
be. Although there is a substantial pealkSk), the value of  eitheré must become finite, albeit extremely large, below
¢ (measured in lattice unitappears to be 255, and it does  whereB is nonzero, or else), must be modified slightly to
not increase a¥ is lowered. make the integral converge. In the presence of some crystal-
Data for twoL =32 samples witlk=1 atT/J=0.75 us- line or growth-induced nonrandom anisotropy, it is natural to
ing slow cooling are shown in Fig.(B). Here the value of  expect thatt becomes finite, just as it does in a nonrandom
is 11+ 1, in excellent agreement with earlier estimates for theferromagnet belowl ;.33 Although it has become traditional
x=1 model withn=3 isotropic random anisotropy*° For  to fit neutron-scattering data fd(k) in random-field and
x=1, £ becomes essentially temperature independent belowandom-anisotropy magnets to a Lorentzian plus Lorentzian
aboutT/J=0.9, but there is no evidence of singular behaviorform, this is based on a theoretical preconception. It has been
at anyT. Given the recent results of Migliorini and Berkeér, known for a long time that Eq6) will serve to fit the data in
the author does not believe that there is any phase transitisome case¥ while in otherd*the 3 in the exponent should

V. DISCUSSION
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be replaced by 2.4. A value of 2.4 in this exponent is pre- As mentioned in the Introduction, the Ising spin-glass
cisely the value found for then=2 random-anisotropy phase which is found in a mean-field theory for the random-
model’® and thus should be expected in the presence oknisotropy magnétbecomes modified for finite n in less
easy-plane anisotropy. Thi&| 3 behavior of S(k) for n than six dimensions. In this work the author is suggesting
=3 is the same exponent for both the random-anisotropy anthat @ QLRO phase will exist for the random-anisotropy fer-
random-field cases. Therefore, we have no reason to beliey@magnet in three spatial dimensions for any finitelt is
that the presence of hedgehog singularities is essential for tf&l€vant to inquire about what happens for infinitewhich

QLRO whenn=3. There seems to be no reason why QLROshouId reduce to the Ising spin-glass case. It is reasonable to
should not exist for larger finite values of as originally ~2nticipate that, although eadfis a unique universality class,
predicted by Aharony and Pytta ' there should be a qualitative similarity between the finite-

The magnetic susceptibility is cases and the Ising spin glass. Therefore, it is very interesting
to note that a recent Monte Carlo simulation of Berg and
N Janké® has provided evidence for a rather similar QLRO
af— -1 a B\ (S (S phase in the Ising spin glass. It was argued long ago by
X (NT) mzzl (S S"BH (S ><Sjﬁ>]' @) Hertz, Fleishman, and AndersBrthat the Ising spin glass
behaves as if it has a continuous symmetry, and that, there-
fore, there could not be any true long-range spin-glass order
in less than four dimensions. It seems that this analysis has
finally been confirmed by the Monte Carlo work.

The Aharony-Pytte-Goldschmidt** analysis predicts that at
small wave numbers its Fourier transfoppik) will behave
like k| 2. If time-reversal symmetry is unbroken, then the
[(S{'}(Sﬁ)] terms all vanish, and the trace gfk) is propor-

tional to S(k). Thus Aharony-Pytte-Goldschmidt analysis VI. CONCLUSION
implicitly predicts thatS(k) goes like|k| 2 in the QLRO . . .
phase, which is not correct. Its prediction fgtk) in the In this work we have used Monte Carlo simulations to

QLRO phase is, however, probably correct in the absence citudy theO;, version of the diluted random-anisotropy fer-

any crystalline anisotropy. To check this numerically would'omagnet in three dimensions. We have found that there are

require very long runs, in order to compute f&)(Sf)] WO types of ordered phases, just as in the2 case. In

terms accurately. This has not been attempted here. addition to the anisotropy-stabilized ferromagnet, we find an
It is likely that the reason why the Aharony-Pytte- intermediate QLRO phase displayingld > behavior of the

Goldschmidt analysis fails to predict QLRO for the random-magnetic structure factor. This is the same behavior _which
field case is also its incorrect handling of t[1€5|“><3ﬁ8>] has been found for the= 3 random-field model. The critical

terms. For the random-field case these terms are nonzefgPonent7. which chgract'erizes the two-spin (.:orr'ela'ltiolns' on
even in the PM phase. the QLRO-to-PM critical line, has a value which is indistin-
The FM phases shown in Fig. 1 exist because of the angL"_Shalble from Z€ro. The results ShO.UId be_z applicable to a
isotropy induced by our discretization. It would be very help-VaTiety of experimental systems, including amorphous
ful to repeat this calculation using an alternative discretiza RE-TM alloys and CuMn-type spin-glass alloys.
tion, such as Rapaport's 30-state motfelwhich has
icosahedral symmetry. It would also be desirable to study a
continuous-spin binary alloy model with a fully isotropic dis-  This work was undertaken after the author was shown a
tribution of the random anisotropy. This would be very dif- preliminary version of the results of Hellman, Abarra, Sha-
ficult to manage for large lattices, unless a way can be foungiro, and van Dover. The author is greatful to Frances Hell-
to adapt the cluster Monte Carlo algoritfthto include ran- man for extensive discussions of these results. He also
dom anisotropy. Whex>0 the Hamiltonian no longer has thanks Phil Anderson, Nihat Berker, Yadin Goldschmidt,
any planes of reflection symmetry, even though it is stillBrooks Harris, David Huse, and Tom Lubensky for helpful
inversion symmetric. discussions.
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