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Crystal-field effects on the thermal conductivity of localized spin metallic compounds
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The influence of the crystal-electric-fiel€EP splitting on the thermal conductivity is calculated on the
basis of a two-level system model applicable to intermetallic magnetic compounds. The localized spin scat-
tering contributionkg, in @ manner similar to the total electronic thermal conductiwity shows a larger
increase at low and intermediate temperatures as compared to the case in which no crystal-electric-field
splitting is taken into account. The influence of some theoretical parameters is also discussed. It is shown that
the CEF effect enhances the effect of the magnetic scattering potential, and impurity contributions screen such
an enhancement at temperatures below the Debye temperature. Other scattering contributions, e.g., electron-
phonon and electron impurities, are also taken into account in our calculation. The theory is in quantitative
agreement with data dRAI, systems taken as test cases, and leads to values of the level splitting in the 50 K
range.[S0163-182698)03133-9

[. INTRODUCTION results on the thermal conductivity due to conduction elec-
tron scattering by a doublet due to a crystal-electric field. For
The influence of the #ilevels of the rare-earth ions on the Simplicity we consider only a shell model with= 3, i.e., the
transport properties of localized spin metallic compounds i$°-called pseudospin model and will try to examine whether
called either specificor strong? Theoretical models investi- the energy gained or lost by an electron in such a scattering
gating this influence have been presented in a limited numbdifOCeSS can be seen on a transport property. This seems more
of publications only*~® The case of thermal conductivity appropriate in order to gain some fIrS'F insight. We shall use
does not seem to have been worked out. the known transverse Ising model picture, which together
In previous investigatioris® we have calculated the ther- With the molecular field approximation that we apply, is a
mal conductivity of localized spin metallic compounds usingParadigm for most systems as, e.g., discussed in Refs. 11 and
a variational method taking into account several scatterin 2. . L
processes, i.ee~ phonon,e~ impurity, ande~ localized In Sec. Il the two-level Hamiltonian expression is briefly
spin. Their contributions were clarified. Continuing in the fecalléd. In Sec. lll we calculate the conduction-electron-
same path, we show in the following the influence of thelocalized spin scattering cross section in such a CEF case.
crystal-electric-field splitting on the thermal conductivity on '€ effect of the latter on the thermal conductivity and some
the basis of a two-level system model. It will be found thatdiscussion are found in Sec. IV. A quantitatively successful
the localized spin scattering contributiory, in a manner comparison to data on cubRAl, shows the interest of such

similar to the total electronic thermal conductivity, shows investigations.
an increase at low temperatures as compared to the case in
which no crystal-electric-field splitting is taken into account.

The splitting off-shell energy levels of rare-earthionsina  Treating a complete crystal-electric-field Hamiltonian is
crystal by the electric field surrounding iofystal-electric  very difficult. One should notice that each spin level is split
field (CEP] is an intrinsic property. It is known that mag- differently by a magnetic field and usually has to consider
netic properties of rare-earth compounds depend on whethevhether the ground state is a singlet or HoErom there,
the ground state of the shell is a singlet or a multipfetor simplifications can be made.
instance, if a magneti@ndirec) exchange interaction, e.g., The interaction Hamiltonian describing the energy of lo-
via the conduction electrons, exists in the singlet grounctalized moments can be assumed to have the form of the
state system, a spontaneous magnetic order can exist belowseudospin J=3) transverse Ising model where the trans-
finite temperature only in the case of a sufficiently strongverse magnetic field describes an internal electric-field ef-
exchange interaction. This fact was discovered by Bleaney ifect. The Hamiltonian reads
the 1960'st! and discussed, e.g., in Ref. 12.

The magnetic order ground state will not be the main s_ X_ P 1212
subject of the following investigation, but we shall study the H AEi I % KIRI=R)I} @3

Il. MODEL
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whereA is the strength of the crystal-electric field]; is the kK)o gt . 5

w component of the totdlocalized angular momentum, and ~ Hs—1= —(G/N\) E 1e '(ay @k —ay ax | )J]

R, denotes the lattice site coordinates. The first sum de- ik

scribes the crystalline-electric-field effect and the second one +a,}ak,i\],* +ak+¢ak’TJl+}’ 3.0

a ferromagnetic coupling of Ising type,,=K,,=0, K, . ]

=K(Ri—R;)]. A more exact form of the CEF Hamiltonian, WhereJf'=J#*(r)(x=2,+,-) is the effective angular mo-

for example, in lave phases such BAl,, is described in Mentum, the Fermi operatoeg, , a,, describe the electron

Ref. 10. Note that the Hamiltoniari2.1) describes the gas, andV\ is the number of lattice sitess is a strength

Bleaney modéf*2which as a first approximation considers constant.

that only the lowest level splitting is relevant for the main ~ The Hamiltonian(3.1) is treated as a perturbation k,

scattering processes, magnetic ground state nature, and mativen in Sec. Il, for static properties and an estimate of the

netic transitions. In the molecular field approximation critical temperaturdc, but Eq.(3.1) is fundamental for the

(MFA) (Ref. 12 Eq. (2.1) can be written as follows: scattering. Thus, in the first Born approximation the transi-
tion rate(cross sectionreads

HS=AY J'=AK(0)o X J2=23 HD. (2.2 C3=CoBf(K)[1—f(k")]C(q,w), 3.2
i ] i

wherek, k' (=k+q,) are, respectively, the wave vector of
After some algebra within MFAsee the Appendjxthe fol-  the conduction electron before and after the scattering for the
lowing equation foro=(J?) is obtained: corresponding energies (k') =g(k) + w(q), while Cy is a
material constafitand

1A%2-1
=— tanh( A2+ h?/2kgT), 2.3 1 . ec _
o 2 A2+1 r( z B ) ( ) C(qaw)zﬁz e*lq(Riij)f dte+lwt/h<\]i(t)\]j(0)>,
i,j —®
where (3.3
where(:--) means a thermodynamical average. The current
h,=K(0)o. 24 time dependence is obtained through the usual Liouville

equation with the Hamiltoniar3.1).
In the MFA, we calculate the long-wave range limit of
Eq. (3.3) and obtain

In the limit T—0 this equations yields the solution

1A%2-1 f
=——— if K(0)>2A 1
2 A%+1 _ _
C<o,w>=§2 e Pl (8,3 o) (85l |4

and (2.5 “p

+<8a|‘J7|8ﬂ><8,8|‘]+|8a>]5(w+Sa_sﬁ)

A _ 1
o=0 if K(0)<2A. _<J+><J—>5(w)+zz e—ﬁea[<8a|‘]2|8ﬁ>

a,B

For K(0)=<2A we have a paramagnetic system foT

<o, X(eglde)]8(w+e,—p) —(IH)?8(w), (3.9
The total crystal-electric-field energy splittidgin simple B ) :

magnetic compounds can be as large as few hundred K, e.§'N€réea, &5 (@, 8=1,2) are the eigenvalues b of Eq.

400 K for PrS, but the two lowest levels can be only distant 2.2 (|| ) denote matrix elements, arft=3 e”F*e.
of 50 K or so! In the case oRAI, compounds, the total spin S(u) is the Dirac delta function which describes the conser-

level distribution can be large but the lowest level splitting isVation of energy in scattering processes over different energy
also of moderate magnitude, i.e., 30—15¢%1* Thus, it _ _ 2 o
might influence transport coefficients far below the Debye AS In @ previous papérwe have solved the linearized

temperaturg(~=300 K) as we are going to examine on the Boltzmann equation by_ using the Ziman variational
thermal conductivity. method®?° and by assuming a general Mathiessen fdle.

We have taken into account phonon, impurity, and magnetic
contributions on the same footing with the same trial func-
lll. LOCALIZED SPIN-CONDUCTION ELECTRON tions as in Refs. 6 and 7 but with the MFA Hamiltonigh?2)
SCATTERING CROSS SECTION containing a crystal-field term. The latter contribution is de-
In order to calculate the thermal conductivity, we use ki-Scribed by matrix elements, which for the degenerated elec-

netic theory. In order to do so we should calculate cros4ron gas with the Fermi energy counted from the bottom of a

sections and introduce them into standard formulas such d&rabolic band read
those given by linear response thediif or a relaxation time

approximationt’ For describing the scattering process we

have considered the interaction between magnetic localized 72\ kT

moments and a conduction-electron system assumed to have S =pS =E — | —=]1I(T)
the form'® wrarsl 3]l '

1=1(T), (3.5
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TABLE I. Theoretical parameter values used for calculating the
thermal conductivity curves illustrated in Figs. 196./Tp is taken

to be always equal to 160 for illustration.

with
3 2Ke /g Y ¢
H(T)=Z(1—EZ), a 4 0.12 0
b 4 0.12 .=0) 0.04
NS G A S A : 012 00ss
= X— = = X<, . : '
2[cosh(x)+1] 2 sinh(x) e 4 0.12 0.04
f 4 0.12 0.035
Y
- h vaAT+h 3.7 g 3.8 0.12 0.045
kgT kgT '
and .
determined by the parametekg2/q,, of Table I. It denotes
_ A%+1 the ratio of the Fermi surface caliper to the phonon wave
=0 N2> (3-8 number cutoff. The values in Table | correspond to reason-

able values of the Fermi energy, effective electron mass, and
sound velocity.

To compute the localized spin contributiag we simply
put P;;="P7 into Eq.(4.1); since theP};’s are related to the
phonon background the final values ©f depend also on
r%k,:/q,\,I . The detailed formulas and calculations are found

where o and h,=K(0)o should be determined from Eq.
(2.5). The detailed calculations are given in the Appendix.

IV. THERMAL CONDUCTIVITY

The same assumptions as in Refs. 7—9 will be used he he A di
for pursuing the calculation. The expression of the'” tTe ppen Dc(i.' . f1h ical |
conduction-electron-localized spin scattering contribution to 0 start our discussion of the numerical results we present

the thermal conductivity £,), as well as the total electronic " Fig. 1 the results for the total electronic thermal conduc-
thermal conductivit e tivity k. for different physical parameters), (b), (d), (f).
y ke), are given by 4
The experimental data for the ThAtompound are also pre-

sented for a qualitative comparison and in order to observe
the features of interest.
The strictly theoretical divergence af at T=0 is a fea-

ture to be removed by including the impurity scatterfrig®
2. 17, 21 3P, By_ a proper Choipe of the constagt one is also able to _

22 722 F 2 adjust the theoretical curves to experimental data at least in
where theP;;’s result from the linear representatidm a  the low-temperature reginieThe magnetic scattering mani-
Mathiessen rule analogyof the conduction electron- fests itself by a break &, here takerT,=0.38T, where
localized spin scatterin@isj and the other scattering mecha- Tp denotes the Debye temperature. The slopeét inter-
nism matrix elements, such a%ipjh for the electron-phonon mediate and high temperature is controlled by the value of
scattering as calculated in Refs. 6 and 7 @® for the
electron-impurity scatteringj.e.,

w? J(ZJ
3
k= =2 3(LT) —
3 PO F( 0 Pll

x[Pﬂ_[P_ﬂ_§ ("B_T)(H m P“)}z (@1

200

Pij :'Pﬂh‘f' QD'P:TP'F ’yplsj )

4.2
where the dimensionless coefficiefts and(¢) measure the
relative magnetic and impurity to phonon contribution in the
scattering cross section, respectivelyOne should notice
that a mere conduction-electron-localized spin term can

be calculated using Eq$4.1) and (3.6). However, notice .
from the above that we do not calculate a mere superpositiors Lt -
of relaxation times, i.e., we do not simply write 1 .

(4.3 :f "

The values of the coefficientg and ¢ were estimated by
us in the above quoted papers based on experimental date
They are of the order of the data presented in Table I, which

we use in the present paper to illustrate our results. FIG. 1. Total electronic thermal conductivity, as derived from
The phonon contribution, treated in the same approximagg. (4.1) as a function off/ T, for material datda), (b), (d), and(f)

tion as in Ref. 6, is an important background of the numeri-of Table | with A=0 circles[(a) curve] correspond to the theoret-

cal data which we present below. As is obvious from con-ical impurity free case and the small triangles represent the experi-

siderations in Ref. 6 the magnitude of this contribution ismental data of ThAlfrom Ref. 2.
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) o ) FIG. 4. Localized spin contributiog to the total electronic
FIG. 2. Representation of the total thermal conductivity with thermal conductivity va/ Ty, for the (c) and(d) material constants
(solid curve or without (dash curvi CEF splitting. The influence  of Taple | in the case\ =0 (dash ling and A =200 K (solid line).
of the cutoff wave number is shown by curv@h and(g) and the

small triangles represent the experimental data. In order to illustrate the effect of the crystal-field splitting

on the total electronic thermal conductivity,, we have

2ke /gy (Fig. 2, where the results correspond to the materialmade a plot ofA k=, — ko (x, iS ke for A#0 and«, for
constants in théd) and(g) cases of Table | foA=0 (dash  A=0) versusT (Fig. 5 for the material constants compiled
line) andA =200 K (solid ling). The same experimental data in Table I. The value of\« is positive in accordance with the
in Fig. 1 are also presented in Fig. 2. data of Figs. 3 and 4. The only exception, i.e., whker

In Fig. 3 we present the dependence«@bnT/Ty forthe <0 is the case ofp=0 [item (a) of Table I, where no
material constant&) of Table | in the casé& =0 (dash ling impurity scattering is taken into account.
and A=200K (solid ling). For comparison we show as an |t is emphasized that in cases when the system is ferro-
inset the results for the purely paramagnetic sydiéam (b)  magnetic and scattering on impurities is taken into account
of Table [ also in the casé =0 andA =200 K, marking the  there is a maximum oA« in the close vicinity of the Curie
curves in the same way. It is seen that the crystal field intemperature. In casés) and (b) (paramagnetic systenthe
creases the magnetic contribution to the thermal conductivmaximum is shifted considerably beloWTp=0.38. These
ity. two cases are marked in Table I. It is also worth to notice

Figure 4 shows the localized spin contributiag as a that the value ofA« is enhanced with an increase ¢f (c)
function of T/Ty. Here, by presenting the results for the casg as seen from Fig. 5.

items (e) and (d) of Table | we show that an increase 4n The magnitude of the\k difference in casegc)—(g) of
(the magnetic to phonon scattering strengthplies a de- Table | for a given temperature is seen to be an increasing
crease in the localized spin contributiag. function of the crystal-field-splitting\, which is shown in

Fig. 6 for the material constants). Our investigations show

20 .
[ \ 16
| | Y A=200K
L 1 5 g
B ' S 2 T/T =038
15 \ E 12.8 = \ dp
—_ B u] E R
a B ' P Qt\ol / \
g i “ ;c:
£ 0| k !
z i | 2
) & I
o - \ 5T 5
5 N _ a7
i --0--¢ EL@*’D”
I T/T, =038
0 L R R R DR RS
0 0.2 0.4 0.6 0.8 1
T/T
D

/T
FIG. 3. Localized spin contribution to the thermal conductivity ’

ks VS T/Tp computed as described in the text for the material con- FIG. 5. The differencé\x between the electronic thermal con-
stant(e) of Table | for A=200 K (solid line) andA =0 (dash ling. ductivity for A=200 K andA=0 as a function off /T . Different

The inset shows the dependencexqffor a purely paramagnetic curves correspond to different parameter values given in Table I. In
system[item (b) of Table I]. nonparticular cases the largest valueAaf is situated afT.
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15 1 contribution point of view. The inclusion of the impurity

: T =110K scattering can change the sign dk =k, — k¢ (see Fig.
and can considerably lower the absolute valud ef There-
fore, we can state that the presence of impurities screens the
CEF splitting effect in the thermal conductivity and mainly
the cases of large magnetic scattering or in a pure paramag-
netic system strong influence can be founa ifs finite.

The theory leads to quite good agreement with available
experimental data on appropriate systems. Other theoretical
considerations could be made in further work such as taking
into account a more complicated crystal-electric-field
potential® to investigate its effect on the behavior of trans-
port properties of various intermetallic compounds. It seems
from the above comparison with experimental datat the

A model well describes the behavior of the thermal conductiv-
FIG. 6. The behavior of the differenc& (— «) as a function of ity and that it is not necessary to generalize the model ap-

A for different temperatures in the case of the material constants proximation, such _as the MFA for the SPi” Hamiltc_)nian or
of Table I. the simple parabolic band structure at this stage, without de-

tailed experimental data in various temperature regimes.

that this also holds true for other material constants exceptloreover the simple variational method used above seems
casesa) and (b). well controlled and appropriate. It is easily understood that
It is possible to go beyond the qualitative picture, takinggeneralized trial functions could be used in order to describe
into account data on a few rare-earf) (based cubic inter- More complicated symmetries and level splittings beyond the
metallic systems, such 4®Al,. In seven cases the thermal doublet level. Nevertheless the above theory shows that a

conductivity seems to have been measured and to fall intg@nSPOrt property such as the thermal conductivity can probe

three categories according to the atomic numbshell fill- crystal-field effects in magnetic or nonmagnetic systems.
ing or angular momentupof the R, T, andA, in view of
the overall behavior of the thermal conductivity. Examining ACKNOWLEDGMENTS

the three different categories, we show in.Figa fit of the

above formulas to one experimental datum in each category This work was partially supported by ARC 94-99/174,
for parameter values given in Table Il. The fits are ratherand by a KBN(PL)-CGRI (RW) bilateral agreement.
remarkable in view of the small number of parameters and

their sensitivity. APPENDIX

V. CONCLUSION The single-site Hamiltoniahi ") in Eq. (2.2) is not diag-

onal in the representation of the eigenvalueg%f
A simple model was used to describe the effect of the

crystal-electric-field splitting on the behavior of the thermal
conductivity of localized spin metallic compounds. This ef-
fect can be relevant at low, intermediate, and high tempera-
tures. We show that there is some competitiveness betwedii!t it can be represented as
the crystal-electric field and the impurities from a scattering

J4ny=(n—-23/2)|n), n=1,2, (A1)

Hyy Hypl [hJ2 A2 )
= = A
00T Hy, Hyl |A2 —hy2| (A2)
SrAlZ , ¢
50 - :— -Z(t/z:zzz o 5 whereh,=K(0)o. The eigenvalues dfl are
I A

100

1 1
s1=5 VA*+ h2, e,=— 5 VAZ+h. (A3)

Ke(mW/cm K)

50 Let us define for later use the eigenvalue splitting

h=g;—&5. (A4)

0 0.2 0.4 0.6 0.8 1 .
/T, The eigenvectorge,) (a=1,2) are

FIG. 7. Comparison of experimental ddfeom Ref. 2 for three 2
distinctly different thermal conductivity behaviors. The theoretical |8 )= 2 W, |n> (A5)
fits use the parameters indicated in Table II. =
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TABLE Il. Theoretical parameter values used for calculating the  The functionsR;;(#h) read
thermal conductivity curves illustrated in Fig. 7 for different ther-
mal conductivity behaviors.

[’ [ (91:

2ke Iqym Y @ A (K) Rij(ﬂh):fo dsfo de (—%)F(e,s-i- nh)
PrAl, 4.15 0.125 0.014 44 X S(e'— e+ nh)v- (& mh ALl
TbAl, 3.9 0.12 0.045 71 (&=t m)v(e.7h) (ALD)
TmAI, 4.15 0.00125 0.1 39 _

with »=0,%=1 and where
with _ 12 12
vii= e~ Ae+ nh)“42¢+ nh),
A 1
Wy Wyl | VIFAZ 1+ A2 vi,=e e+ nh)Vq (e —{)(2e + nh) + ph(e + nh)],
W= = , (AB)
Wo1 Wpo 1
JITAZ (1t AZ vor=e e+ nh)Vq (e — )%(2e + yh)
where +2(s= ) mh(e+nh)+(7h)%(e+7h)]  (A12)
h,+ A2+ hzz in which ¢ is the chemical potential. For a degenerate elec-
I — (A7) tron gas we can pu=¢r, Wheresg is the Fermi energy

counted from the bottom of a parabolic band structure mod-
The self-consistent value far as defined above is given by eling a complicated structure in general. The function
F(e,e') is defined as

1
o=(3)=5 2 (e ]¥e)e P, (A8)
“« 1
F(e,e')= —, (A13)
1-f(k){1-exd B(e,e") ]}

B=1kgT and Z=, e P
kg is the Boltzmann constant arndthe temperature of the B= i
system. From the above equation we can easily obtain Eq. kgT

(2.3.

The matrix elements describing the magnetic scattering,
the counterparts of the matrix elemeﬂrﬁ“) in Sec. IV of
Ref. 6, are

For the degenerate electron gas, after applying the stan-
dard Sommerfeld expansion, the functidAd.1) can be rep-
resented by
isj 2 .2 2 .,,2 2
ST 47 [2(WI W51+ WW55) + (WaaWa1— W1gW1) 7] 22
0 Ru(X) = 1+e

1
X[e Fu1Ry(+h)+e ARy (— )]+ 5 Ryj(0)

) . x{?  m? , l+e™”
X[wWiwie e+ wiwse #2]— (37 )(JI7)R;;(0) Ra(X) =Ran(¥) =| 7o=x— 3 (KeT)¢ (1te 2
2 2
P, 2 2 \24—Be T 8¢
taz Rij (0)[(wy;—wiy)%e™ 7 t (KgT)2 e
+(Wh,—wiy)%e #2]— (J%)2R;;(0). (A9)
P} is a material constarit’ The mean thermodynamical val- Ros(X) = 2x?  m? 8(kgT)*x¢?
ues are 22 1+e " 3 1+e X
1 w? . , 1-e™* w? T)2 472
(I)=@")= a (e #o1wy Wy + e PP2wpawy ] 3 (keT)xZ (1+e7%)? T3 (kgT) 1+e X
(A10) (A14)

and (J*=¢ is determined self-consistently from E(.5)
for the system in ferromagnetic phase and 0 in the para- wherex=7nh (7=0,%1). After inserting Eqs(A2), (A6),
magnetic phase. and (Al14) into Eqg. (A9) we obtain Egs(3.5—(3.9).
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The application of Eq(A14) in the cases of Ref. 6 lead-

ing to Egs.(6-5 and(6-6) of that paper yield

PP =T1y(T),

w2\ [ kgT
pgr;>=7>é"1“>=2(§)(si>”3m’
F

2

m_ [T _
P 3 I (T) = Ay(T) (A15)

with
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1

I;(T)=JJ+ 1)—02+crtanl'(§ x)
A(T)= (7%13) o 1 o ) AL6
(D= Srcoshin+1] X~ 2 s < (A19
_ A17
X kB—T, ( )
and o=(J,)=Jm. The above expression fal=3 corre-

sponds to Eq(3.6) in the case wherda =0.

We should apologize for misprints in Ref. 6 where formu-
las (6-5) and(6-6) should be replaced by the correct formulas
above. We expect that the use of the correct matrix elements
above would not change the physical content of Ref. 6. Such
corrected results applied to the thermoelectric power will be
used in a following paper on that property.
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