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Crystal-field effects on the thermal conductivity of localized spin metallic compounds

A. Rassili*
Institute of Physics B5, University of Lie`ge, Sart-Tilman, B-4000 Lie`ge, Belgium

K. Durczewski†

Institute for Low Temperatures and Structure Research, Polish Academy of Sciences,
P.O. Box 1410, PL-50 950 Wroclaw 2, Poland

M. Ausloos‡

Institute of Physics B5, University of Lie`ge, Sart-Tilman, B-4000 Lie`ge, Belgium
~Received 2 December 1997; revised manuscript received 20 April 1998!

The influence of the crystal-electric-field~CEF! splitting on the thermal conductivity is calculated on the
basis of a two-level system model applicable to intermetallic magnetic compounds. The localized spin scat-
tering contributionks , in a manner similar to the total electronic thermal conductivityke , shows a larger
increase at low and intermediate temperatures as compared to the case in which no crystal-electric-field
splitting is taken into account. The influence of some theoretical parameters is also discussed. It is shown that
the CEF effect enhances the effect of the magnetic scattering potential, and impurity contributions screen such
an enhancement at temperatures below the Debye temperature. Other scattering contributions, e.g., electron-
phonon and electron impurities, are also taken into account in our calculation. The theory is in quantitative
agreement with data onRAl2 systems taken as test cases, and leads to values of the level splitting in the 50 K
range.@S0163-1829~98!03133-6#
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I. INTRODUCTION

The influence of the 4f levels of the rare-earth ions on th
transport properties of localized spin metallic compound
called either specific1 or strong.2 Theoretical models investi
gating this influence have been presented in a limited num
of publications only.3–5 The case of thermal conductivit
does not seem to have been worked out.

In previous investigations6–9 we have calculated the the
mal conductivity of localized spin metallic compounds usi
a variational method taking into account several scatte
processes, i.e.,e2 phonon,e2 impurity, ande2 localized
spin. Their contributions were clarified. Continuing in th
same path, we show in the following the influence of t
crystal-electric-field splitting on the thermal conductivity o
the basis of a two-level system model. It will be found th
the localized spin scattering contributionks , in a manner
similar to the total electronic thermal conductivityke , shows
an increase at low temperatures as compared to the ca
which no crystal-electric-field splitting is taken into accou

The splitting off-shell energy levels of rare-earth ions in
crystal by the electric field surrounding ions@crystal-electric
field ~CEF!# is an intrinsic property. It is known that mag
netic properties of rare-earth compounds depend on whe
the ground state of the shell is a singlet or a multiplet.10 For
instance, if a magnetic~indirect! exchange interaction, e.g
via the conduction electrons, exists in the singlet grou
state system, a spontaneous magnetic order can exist be
finite temperature only in the case of a sufficiently stro
exchange interaction. This fact was discovered by Bleane
the 1960’s,11 and discussed, e.g., in Ref. 12.

The magnetic order ground state will not be the m
subject of the following investigation, but we shall study t
PRB 580163-1829/98/58~9!/5665~7!/$15.00
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results on the thermal conductivity due to conduction el
tron scattering by a doublet due to a crystal-electric field. F
simplicity we consider only a shell model withJ5 1

2 , i.e., the
so-called pseudospin model and will try to examine whet
the energy gained or lost by an electron in such a scatte
process can be seen on a transport property. This seems
appropriate in order to gain some first insight. We shall u
the known transverse Ising model picture, which toget
with the molecular field approximation that we apply, is
paradigm for most systems as, e.g., discussed in Refs. 11
12.

In Sec. II the two-level Hamiltonian expression is briefl
recalled. In Sec. III we calculate the conduction-electro
localized spin scattering cross section in such a CEF c
The effect of the latter on the thermal conductivity and so
discussion are found in Sec. IV. A quantitatively success
comparison to data on cubicRAl2 shows the interest of suc
investigations.

II. MODEL

Treating a complete crystal-electric-field Hamiltonian
very difficult. One should notice that each spin level is sp
differently by a magnetic field and usually has to consid
whether the ground state is a singlet or not.11 From there,
simplifications can be made.

The interaction Hamiltonian describing the energy of
calized moments can be assumed to have the form of
pseudospin (J5 1

2 ) transverse Ising model where the tran
verse magnetic fieldD describes an internal electric-field e
fect. The Hamiltonian reads

Hs5D(
i

Ji
x2(

i , j
K~Ri2Rj !Ji

zJj
z , ~2.1!
5665 © 1998 The American Physical Society
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whereD is the strength of the crystal-electric field,Ji
m is the

m component of the total~localized! angular momentum, and
Ri denotes the lattice site coordinates. The first sum
scribes the crystalline-electric-field effect and the second
a ferromagnetic coupling of Ising type@Kxx5Kyy50, Kzz
5K(Ri2Rj )#. A more exact form of the CEF Hamiltonian
for example, in lave phases such asRAl2, is described in
Ref. 10. Note that the Hamiltonian~2.1! describes the
Bleaney model11,12 which as a first approximation conside
that only the lowest level splitting is relevant for the ma
scattering processes, magnetic ground state nature, and
netic transitions. In the molecular field approximatio
~MFA! ~Ref. 12! Eq. ~2.1! can be written as follows:

Hs5D(
i

Ji
x2NK~0!s(

j
Jj

z5(
i

H ~ i !. ~2.2!

After some algebra within MFA~see the Appendix! the fol-
lowing equation fors5^Ji

z& is obtained:

s5
1

2

A221

A211
tanh~AD21hz

2/2kBT!, ~2.3!

where

hz5K~0!s. ~2.4!

In the limit T→0 this equations yields the solution

s5
1

2

A221

A211
if K~0!.2D

and ~2.5!

s50 if K~0!<2D.

For K(0)<2D we have a paramagnetic system for 0,T
,`.

The total crystal-electric-field energy splittingD in simple
magnetic compounds can be as large as few hundred K,
400 K for PrS, but the two lowest levels can be only dista
of 50 K or so.1 In the case ofRAl2 compounds, the total spin
level distribution can be large but the lowest level splitting
also of moderate magnitude, i.e., 30–150 K.1,13,14 Thus, it
might influence transport coefficients far below the Deb
temperature~'300 K! as we are going to examine on th
thermal conductivity.

III. LOCALIZED SPIN-CONDUCTION ELECTRON
SCATTERING CROSS SECTION

In order to calculate the thermal conductivity, we use
netic theory. In order to do so we should calculate cr
sections and introduce them into standard formulas suc
those given by linear response theory15,16or a relaxation time
approximation.17 For describing the scattering process w
have considered the interaction between magnetic local
moments and a conduction-electron system assumed to
the form18
e-
e

ag-

g.,
t

e

-
s
as

ed
ve

Hs2 f52~G/N! (
l ,k,k8

$ei ~k2k8!•r l~ak↑
1 ak8↑2ak↓

1 ak8↓!Jl
z

1ak↑
1 ak8↓Jl

21ak↓
1 ak8↑Jl

1%, ~3.1!

whereJl
m5Jm(r l)(m5z,1,2) is the effective angular mo

mentum, the Fermi operatorsakv
1 , ak8v describe the electron

gas, andN is the number of lattice sites.G is a strength
constant.

The Hamiltonian~3.1! is treated as a perturbation toHs,
given in Sec. II, for static properties and an estimate of
critical temperatureTC , but Eq.~3.1! is fundamental for the
scattering. Thus, in the first Born approximation the tran
tion rate~cross section! reads

C s5C0b f ~k!@12 f ~k8!#C~q,v!, ~3.2!

wherek, k8 (5k1q,) are, respectively, the wave vector o
the conduction electron before and after the scattering for
corresponding energies«8(k8)5«(k)1v(q), while C0 is a
material constant6 and

C~q,v!5
1

N (
i , j

e2 iq~Ri2Rj !E
2`

`

dte1 ivt/h^Ji~ t !Jj~0!&,

~3.3!

where ^¯& means a thermodynamical average. The curr
time dependence is obtained through the usual Liouv
equation with the Hamiltonian~3.1!.

In the MFA, we calculate the long-wave range limit o
Eq. ~3.3! and obtain

C~0,v!5
1

2Z
(
a,b

e2b«a@^«auJ1u«b&^«buJ2u«a&

1^«auJ2u«b&^«buJ1u«a&#d~v1«a2«b!

2^J1&^J2&d~v!1
1

Z
(
a,b

e2b«a@^«auJzu«b&

3^«buJzu«a&#d~v1«a2«b!2^Jz&2d~v!, ~3.4!

where«a , «b (a,b51,2) are the eigenvalues ofH ( i ) of Eq.
~2.2! ^¯u¯u¯& denote matrix elements, andZ5(ae2b«a.
d(u) is the Dirac delta function which describes the cons
vation of energy in scattering processes over different ene
shells.

As in a previous paper7 we have solved the linearize
Boltzmann equation by using the Ziman variation
method19,20 and by assuming a general Mathiessen rule6,7

We have taken into account phonon, impurity, and magn
contributions on the same footing with the same trial fun
tions as in Refs. 6 and 7 but with the MFA Hamiltonian~2.2!
containing a crystal-field term. The latter contribution is d
scribed by matrix elements, which for the degenerated e
tron gas with the Fermi energy counted from the bottom o
parabolic band read

P 11
s 5P~T!, ~3.5!

P 12
s 5P 21

s 5
2

3 S p2

3 D S kBT

«F
DP~T!,
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P 22
s 5S p2

3 DP~T!2L~T!/2,

with

P~T!5
3

4
~12s̄2!,

L~T!5
~p2/3!s̄

2@cosh~x!11#
x2

1

2

s̄

sinh~x!
x2, ~3.6!

x5
h

kBT
5

AD21hz
2

kBT
, ~3.7!

and

s̄5s
A211

A221
, ~3.8!

where s and hz5K(0)s should be determined from Eq
~2.5!. The detailed calculations are given in the Appendix

IV. THERMAL CONDUCTIVITY

The same assumptions as in Refs. 7–9 will be used h
for pursuing the calculation. The expression of t
conduction-electron-localized spin scattering contribution
the thermal conductivity (ks), as well as the total electroni
thermal conductivity (ke), are given by

k5
p2

3

J0
2

P0
«F

3~L0T!
1

P11

3FP11

P22
2HP12

P22
2

3

2 S kBT

«F
D S 11

p2

3

P11

P22
D J 2G , ~4.1!

where thePi j ’s result from the linear representation~in a
Mathiessen rule analogy! of the conduction electron
localized spin scatteringP i j

s and the other scattering mech
nism matrix elements, such asP i j

ph for the electron-phonon
scattering as calculated in Refs. 6 and 7 andP i j

imp for the
electron-impurity scattering,7 i.e.,

Pi j 5P i j
ph1wP i j

imp1gP i j
s , ~4.2!

where the dimensionless coefficients~g! and~w! measure the
relative magnetic and impurity to phonon contribution in t
scattering cross section, respectively.6,7 One should notice
that a mere conduction-electron-localized spin termks , can
be calculated using Eqs.~4.1! and ~3.6!. However, notice
from the above that we do not calculate a mere superpos
of relaxation times, i.e., we do not simply write

ke
215ke-ph

21 1ke-imp
21 1ke-s

21. ~4.3!

The values of the coefficientsg andw were estimated by
us in the above quoted papers based on experimental
They are of the order of the data presented in Table I, wh
we use in the present paper to illustrate our results.

The phonon contribution, treated in the same approxim
tion as in Ref. 6, is an important background of the nume
cal data which we present below. As is obvious from co
siderations in Ref. 6 the magnitude of this contribution
re
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-

determined by the parameter 2kF /qM of Table I. It denotes
the ratio of the Fermi surface caliper to the phonon wa
number cutoff. The values in Table I correspond to reas
able values of the Fermi energy, effective electron mass,
sound velocity.

To compute the localized spin contributionks we simply
putPi j 5P i j

s into Eq.~4.1!; since theP i j
s ’s are related to the

phonon background the final values ofks depend also on
2kF /qM . The detailed formulas and calculations are fou
in the Appendix.

To start our discussion of the numerical results we pres
in Fig. 1 the results for the total electronic thermal condu
tivity ke for different physical parameters~a!, ~b!, ~d!, ~f!.
The experimental data for the TbAl2 compound are also pre
sented for a qualitative comparison and in order to obse
the features of interest.

The strictly theoretical divergence ofke at T50 is a fea-
ture to be removed by including the impurity scattering.4,7,19

By a proper choice of the constantw one is also able to
adjust the theoretical curves to experimental data at leas
the low-temperature regime.3 The magnetic scattering man
fests itself by a break atTc ,1 here takenTc50.38TD , where
TD denotes the Debye temperature. The slope ofke at inter-
mediate and high temperature is controlled by the value

TABLE I. Theoretical parameter values used for calculating
thermal conductivity curves illustrated in Figs. 1–6.TF /TD is taken
to be always equal to 160 for illustration.

2kF /qM g w

a 4 0.12 0
b 4 0.12 (Tc50) 0.04
c 4 0.2 0.04
d 4 0.12 0.045
e 4 0.12 0.04
f 4 0.12 0.035
g 3.8 0.12 0.045

FIG. 1. Total electronic thermal conductivityke as derived from
Eq. ~4.1! as a function ofT/TD for material data~a!, ~b!, ~d!, and~f!
of Table I with D50 circles@~a! curve# correspond to the theoret
ical impurity free case and the small triangles represent the exp
mental data of TbAl2 from Ref. 2.
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2kF /qM ~Fig. 2!, where the results correspond to the mate
constants in the~d! and ~g! cases of Table I forD50 ~dash
line! andD5200 K ~solid line!. The same experimental da
in Fig. 1 are also presented in Fig. 2.

In Fig. 3 we present the dependence ofks on T/TD for the
material constants~e! of Table I in the caseD50 ~dash line!
and D5200 K ~solid line!. For comparison we show as a
inset the results for the purely paramagnetic system@item ~b!
of Table I# also in the caseD50 andD5200 K, marking the
curves in the same way. It is seen that the crystal field
creases the magnetic contribution to the thermal conduc
ity.

Figure 4 shows the localized spin contributionks as a
function of T/TD . Here, by presenting the results for th
items ~e! and ~d! of Table I we show that an increase ing
~the magnetic to phonon scattering strength! implies a de-
crease in the localized spin contributionks .

FIG. 2. Representation of the total thermal conductivity w
~solid curve! or without ~dash curve! CEF splitting. The influence
of the cutoff wave number is shown by curves~d! and ~g! and the
small triangles represent the experimental data.

FIG. 3. Localized spin contribution to the thermal conductiv
ks vs T/TD computed as described in the text for the material c
stant~e! of Table I forD5200 K ~solid line! andD50 ~dash line!.
The inset shows the dependence ofks for a purely paramagnetic
system@item ~b! of Table I#.
l

-
v-

In order to illustrate the effect of the crystal-field splittin
on the total electronic thermal conductivityke , we have
made a plot ofDk5kD2k0 (kD is ke for DÞ0 andk0 for
D50) versusT ~Fig. 5! for the material constants compile
in Table I. The value ofDk is positive in accordance with th
data of Figs. 3 and 4. The only exception, i.e., whenDk
,0 is the case ofw50 @item ~a! of Table I#, where no
impurity scattering is taken into account.

It is emphasized that in cases when the system is fe
magnetic and scattering on impurities is taken into acco
there is a maximum ofDk in the close vicinity of the Curie
temperature. In cases~a! and ~b! ~paramagnetic system! the
maximum is shifted considerably belowT/TD50.38. These
two cases are marked in Table I. It is also worth to not
that the value ofDk is enhanced with an increase ofg @~c!
case# as seen from Fig. 5.

The magnitude of theDk difference in cases~c!–~g! of
Table I for a given temperature is seen to be an increas
function of the crystal-field-splittingD, which is shown in
Fig. 6 for the material constants~c!. Our investigations show

-

FIG. 4. Localized spin contributionks to the total electronic
thermal conductivity vsT/TD for the ~c! and~d! material constants
of Table I in the caseD50 ~dash line! andD5200 K ~solid line!.

FIG. 5. The differenceDk between the electronic thermal con
ductivity for D5200 K andD50 as a function ofT/TD . Different
curves correspond to different parameter values given in Table
nonparticular cases the largest value ofDk is situated atTc .
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that this also holds true for other material constants exc
cases~a! and ~b!.

It is possible to go beyond the qualitative picture, taki
into account data on a few rare-earth (R) based cubic inter-
metallic systems, such asRAl2. In seven cases the therm
conductivity seems to have been measured and to fall
three categories according to the atomic number~f-shell fill-
ing or angular momentum! of the R, Tc , andD, in view of
the overall behavior of the thermal conductivity. Examini
the three different categories, we show in Fig. 7 a fit of the
above formulas to one experimental datum in each categ
for parameter values given in Table II. The fits are rath
remarkable in view of the small number of parameters a
their sensitivity.

V. CONCLUSION

A simple model was used to describe the effect of
crystal-electric-field splitting on the behavior of the therm
conductivity of localized spin metallic compounds. This e
fect can be relevant at low, intermediate, and high temp
tures. We show that there is some competitiveness betw
the crystal-electric field and the impurities from a scatter

FIG. 6. The behavior of the difference (kD2k0) as a function of
D for different temperatures in the case of the material constant~c!
of Table I.

FIG. 7. Comparison of experimental data~from Ref. 2! for three
distinctly different thermal conductivity behaviors. The theoretic
fits use the parameters indicated in Table II.
pt

to
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e
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contribution point of view. The inclusion of the impurit
scattering can change the sign ofDk5kD2k0 ~see Fig. 5!
and can considerably lower the absolute value ofDk. There-
fore, we can state that the presence of impurities screens
CEF splitting effect in the thermal conductivity and main
the cases of large magnetic scattering or in a pure param
netic system strong influence can be found ifD is finite.

The theory leads to quite good agreement with availa
experimental data on appropriate systems. Other theore
considerations could be made in further work such as tak
into account a more complicated crystal-electric-fie
potential13 to investigate its effect on the behavior of tran
port properties of various intermetallic compounds. It see
from the above comparison with experimental data2 that the
model well describes the behavior of the thermal conduc
ity and that it is not necessary to generalize the model
proximation, such as the MFA for the spin Hamiltonian
the simple parabolic band structure at this stage, without
tailed experimental data in various temperature regim
Moreover the simple variational method used above se
well controlled and appropriate. It is easily understood t
generalized trial functions could be used in order to desc
more complicated symmetries and level splittings beyond
doublet level. Nevertheless the above theory shows th
transport property such as the thermal conductivity can pr
crystal-field effects in magnetic or nonmagnetic systems.

ACKNOWLEDGMENTS

This work was partially supported by ARC 94-99/17
and by a KBN~PL!-CGRI ~RW! bilateral agreement.

APPENDIX

The single-site HamiltonianH ( i ) in Eq. ~2.2! is not diag-
onal in the representation of the eigenvalues ofJz;

Jzun&5~n23/2!un&, n51,2, ~A1!

but it can be represented as

H5FH11 H12

H21 H22
G5Fhz/2 D/2

D/2 2hz/2
G , ~A2!

wherehz5K(0)s. The eigenvalues ofH are

«15
1

2
AD21hz

2, «252
1

2
AD21hz

2. ~A3!

Let us define for later use the eigenvalue splitting

h5«12«2 . ~A4!

The eigenvectorsu«a& (a51,2) are

u«a&5 (
n51

2

wnaun& ~A5!l
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with

W5Fw11 w12

w21 w22
G5F A

A11A2

1

A11A2

1

A11A2
2

A

A11A2

G , ~A6!

where

A5
hz1AD21hz

2

D
. ~A7!

The self-consistent value fors as defined above is given b

s5^Jz&5
1

Z (
a

^«auJzu«a&e2b«a, ~A8!

b51/kBT and Z5(
a

e2b«a.

kB is the Boltzmann constant andT the temperature of the
system. From the above equation we can easily obtain
~2.3!.

The matrix elements describing the magnetic scatter
the counterparts of the matrix elementsPi j

(m) in Sec. IV of
Ref. 6, are

Pi j
s

P0
s 5

1

4Z
@2~w12

2 w21
2 1w11

2 w22
2 !1~w22w212w11w12!

2#

3@e2b«1Ri j ~1h!1e2b«2Ri j ~2h!#1
1

Z
Ri j ~0!

3@w21
2 w11

2 e2b«11w12
2 w22

2 e2b«2#2^J1&^J2&Ri j ~0!

1
1

4Z
Ri j ~0!@~w21

2 2w11
2 !2e2b«1

1~w22
2 2w12

2 !2e2b«2#2^Jz&2Ri j ~0!. ~A9!

P0
s is a material constant.6,7 The mean thermodynamical va

ues are

^J1&5^J2&5
1

Z
@e2b«1w11w211e2b«2w22w11#

~A10!

and ^Jz&[s is determined self-consistently from Eq.~2.5!
for the system in ferromagnetic phase ands50 in the para-
magnetic phase.

TABLE II. Theoretical parameter values used for calculating
thermal conductivity curves illustrated in Fig. 7 for different the
mal conductivity behaviors.

2kF /qM g w D ~K!

PrAl2 4.15 0.125 0.014 44
TbAl2 3.9 0.12 0.045 71
TmAl2 4.15 0.00125 0.1 39
q.

g,

The functionsRi j (hh) read

Ri j ~hh!5E
0

`

d«E
0

`

d«8S 2
] f

]« DF~«,«1hh!

3d~«82«1hh!n i j ~«,hh! ~A11!

with h50,61 and where

n115«1/2~«1hh!1/2~2«1hh!,

n125«1/2~«1hh!1/2@~«2z!~2«1hh!1hh~«1hh!#,

n225«1/2~«1hh!1/2@~«2z!2~2«1hh!

12~«2z!hh~«1hh!1~hh!2~«1hh!# ~A12!

in which z is the chemical potential. For a degenerate el
tron gas we can putz5«F , where«F is the Fermi energy
counted from the bottom of a parabolic band structure m
eling a complicated structure in general. The functi
F(«,«8) is defined as

F~«,«8!5
1

12 f ~k!$12exp@b~«,«8!#%
, ~A13!

b5
1

kBT
.

For the degenerate electron gas, after applying the s
dard Sommerfeld expansion, the functions~A11! can be rep-
resented by

R11~x!5
z2

11e2x ,

R12~x!5R21~x!5F 2xz2

11e2x2
p2

3
~kBT!z2

11e2x

~11e2x!2

1
p2

3
~kBT!2

8z2

11e2xG ,

R22~x!5F 2x2

11e2x 1
p2

3

8~kBT!2xz2

11e2x

2
p2

3
~kBT!xz2

12e2x

~11e2x!2 1
p2

3
~kBT!2

4z2

11e2xG ,
~A14!

wherex5hh (h50,61). After inserting Eqs.~A2!, ~A6!,
and ~A14! into Eq. ~A9! we obtain Eqs.~3.5!–~3.8!.
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The application of Eq.~A14! in the cases of Ref. 6 lead
ing to Eqs.~6-5! and ~6-6! of that paper yield

P 11
~m!5PJ~T!,

P 12
~m!5P 21

~m!52S p2

3 D S kBT

«F
DPJ~T!,

P 22
~m!5S p2

3 DPJ~T!2LJ~T! ~A15!

with
PJ~T!5J~J11!2s21s tanhS 1

2
xD

LJ~T!5
~p2/3!s

2@cosh~x!11#
x2

1

2

s

sinh~x!
x2, ~A16!

x5
hz

kBT
, ~A17!

and s5^Jz&5Jm. The above expression forJ5 1
2 corre-

sponds to Eq.~3.6! in the case whereD50.
We should apologize for misprints in Ref. 6 where formu

las~6-5! and~6-6! should be replaced by the correct formula
above. We expect that the use of the correct matrix eleme
above would not change the physical content of Ref. 6. Su
corrected results applied to the thermoelectric power will
used in a following paper on that property.
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