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The M-channel Anderson impurity modeM=1,2) is studied in the Kondo limit with a finite voltage bias
applied to the conduction-electron reservoirs. Using the noncrossing approxirtid@@y), we calculate the
local spectral functions, the differential conductance, and susceptibility at nonzero bias for symmetric as well
as asymmetric coupling of the impurity to the leads. We describe an effective procedure to solve the NCA
integral equations that enables us to reach temperatures far below the Kondo scale. This allows us to study the
scaling regime where the conductance depends on the bias only via a scaling function. Our results are appli-
cable to both tunnel junctions and to point contacts. We present a general formula that allows one to go
between the two cases of tunnel junctions and point contacts. Comparison is also made between the conformal
field theory and the NCA conduction-electron self-energies in the two-channel 88463-18208)08729-3

I. INTRODUCTION Although the original theories were quite successful in fitting
the data they were not able to get to what we now know as
In recent years, the Kondo model and the Anderson imthe low-temperature strong-coupling regime of the Kondo
purity model in its Kondo limit have been investigated ex- problem. In view of theoretical advances since that time, it is
tensively by use of numerical renormalization-groupworthwhile to reexamine the nonequilibrium Kondo effect,
calculations? the Bethe ansatz methdd,conformal field particularly in the low-temperature regime.
theory (CFT),°> and auxiliary particle techniques. In this way  In addition, there have been a number of interesting real-
a consistent theoretical understanding of the Kondo effect iizations of the Kondo effect in nonequilibrium. With recent
equilibrium has emerged. In particular, the ground state o&dvances in sample fabrication, it has become possible to see
the system depends on the symmetry group of the zero-bias anomaly caused by a single Kondo impdfity.
conduction-electron system: If the number of chaniélss  Very recently, there have been indications that Kondo phys-
less than the level degenerally the screening of the local ics have been observed in ultrasmall quantum dotpen-
moment at energies below the Kondo scale leads to a ing the possibility of studying the nonequilibrium Kondo ef-
singlet Fermi-liquid ground state with strongly renormalizedfect on devices with experimentally adjustable parameters.
Fermi-liquid parameters. If, in contradt)=N, the ground Even more intriguing is the observation of zero-bias anoma-
state isM -fold degenerate, leading to a nonvanishing entropylies in point contacts that exhibit logarithmic temperature
at zero temperatur€ and a characteristic energy dependencedependence at high temperatures and power-law behavior at
of the density of states, obeying a fractional power law bedow temperatures but no Zeeman splitting in a magnetic
low the Kondo scale. This is mirrored in an anomaléusn-  field.22-2°Such zero-bias anomalies may be described by the
Fermi liquid behavior of the thermodynamics as well astwo-channel Kondo model, where the ZBA is caused by
transport propertie. electron-assisted tunneling in two-level systeffikS’s), al-
On the other hand, there has been much less work on tHBough other descriptions have been proposed as'Well.
nonequilibrium Kondo problem, where the electron distribu- In the 1980’s Zawadowski and Vladérshowed that if
tion is not in local equilibrium about the Kondo impurity and two-level systems with sufficiently small energy splittings
linear response theory is no longer sufficient. Possible effectexisted in metals, then one could observe a Kondo effect due
in this situation include the breaking of time-reversal sym-to the electrons scattering off these TLS'’s. In this case the
metry and the appearance of an energy scale like the chargéLS plays the role of a pseudospin. One state of the two-
transfer rate through a tunneling or point contact. The phelevel system may be regarded as pseudospin up and the other
nomena of tunneling through magnetic impurities has bee@as pseudospin down. An electron scattering off the TLS can
explored since the 1960’s when zero-bias anom4H&A’s) cause the pseudospin state of the TLS to change. The elec-
were observed in metal-insulator-metal tunnel junctihs. tron state also changes, e.g., its parity, in the process. This
The origin of these zero-bias anomalies was understood ialectron-assisted pseudospin-flip scattering plays the role of
terms of perturbative theori@syhich captured the basic phe- spin-flip scattering in the standard case of the magnetic
nomena: a logarithmic temperature dependence and a ZeKondo effect. Detailed analysis, taking into account the dif-
man splitting of the ZBA peak in a finite magnetic field. ferent partial waves for scattering off the TLS, shows that a
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Kondo effect is indeed generated by this electron-assistetivo-channel Anderson models and their applicability to tun-
tunneling. However, since the true electron spin is conservedel junctions and point contacts with defects are discussed.
in scattering from the TLS, there are two kinds, or channelsSection Il contains the formulation of the problem within
of electrons. Hence, the system will display the two-channethe NCA and discusses its validity for the single- and the
Kondo effect!® Level splitting and multielectron scattering two-channel case, respectively. An effective method for the
may disrupt the two-channel non-Fermi-liquid behavior. Thesolution of the NCA equations both for equilibrium and for
stability of the two-channel fixed point against these perturStatic nonequilibrium is introduced. Section IV contains the
bations is currently a subject of investigatitft®2! results for the quantities mentioned above, which are dis-

In recent years a number of techniques have been appliddiSSed in comparison with equilibrium CFT solutions and
to the nonequilibium Kondo problem: variational experiments, where applicable. All the results are summa-

calculation€? perturbation theor§? equation of motio? ~ fized in Sec. V.

perturbative functional integral methotfsand exactly solv-

able points of the modéf One of the most powerful tech-  IIl. THE SU (N)x SU(M) ANDERSON IMPURITY MODEL
niques in this context is the auxiliary boson technig{ié? It OUT OF EQUILIBRIUM

has two major advantagegi) In its lowest-order self-
consistent approximation, the noncrossing approximation
(NCA),%-%2it yields an accurate quantitative description of ~The single-channelM=1) and multichannel NI >1)

the single-channel Anderson model in equilibriifnif*down  Kondo effects occur when a lochl-fold degenerate degree
to low temperatures, although it does not capture correctlpf freedom,o=1, ... N, is coupled via an exchange inter-
the Fermi-liquid regime. The NCA even describes the infra-action toM identical conduction-electron bands, character-
red dynamics of the two-channel model correctly as one apized by a continuous density of states and a Fermi surface.
proaches zero temperatute(ii) The NCA is based on a For example, the ordinary Kondo effect occurs when a mag-
standard self-consistent Feynman propagator expansionetic impurity is coupled to conduction electrons via an ex-
Therefore, in contrast to exact solution methods, it need nothange interaction. The impurity with spgplays the role of
rely on special symmetry properties that are not always realthe N=2S+1 degenerate degrees of freedom, and there is
ized in experiments. The formalism also allows for system-only one flavor or channel of conduction electrons, Mo
atic improvements of the approximatid®>® Moreover, the =1. There are other physical situations where thereMre
NCA may be generalized for nonequilibrium cases in abands of conduction electrons that are not scattering into
straightforward manner. This has been achieved recently fagach other. In this case one says that ther&vhighannels or
the single-channel Anderson modef® However, the low- flavors of electrons. For th# channel Kondo effect, the
temperature strong-coupling regime of the model was nothannel or flavor degree of freedom=1,... M, is as-
reached. sumed to be conserved by the exchange coupling.

In this article we give a formulation of the NCA away  Because of the noncanonical commutation relations of the
from equilibrium that allows for a highly efficient numerical spin algebra, this model is not easily accessible by standard
treatment, so that temperatures well inside the low-energfield-theoretic methods. Rather than work directly with the
scaling regime may be reached. In order to enable other r&kondo model, it is frequently more convenient to work with
searchers in this field to more readily apply this method tathe corresponding Anderson model. Within the Anderson
related problems, we describe the numerical implementatiomodel, each of the possible spin or pseudospin statés
of the formalism in some detail. Subsequently, we study aepresented by a fermionic particle. By convention, the op-
number of nonequilibrium properties of the single- and espeerator that creates a fermion in the local levelfrom a
cially the two-channel Anderson model in the Kondo regime:conduction electron in channel is denoted byd:r”. Since
(1) In linear response we study the conductance of the tWogach of thed states created byl represents a different
channel model and the one-channel model for different spinyseudgspin state, only one of the states should be occupied
degeneracies. We use both tunnel junction and point-contagk 5 time. In order to enforce this constraint, we use the

geometries and discuss how to go continuously between th&‘uxiliary boson technigq3é and write df asdf =f'b—

. . o ]
two. These results are compared to the bulk resistivty. wheref, is a fermion operator anl. is a boson operator

The nonlinear response is computed for the same Andersqfqiping the unoccupied local level. The constraint is
models, and the scaling of the differential conductance afhen written as the operator identi§=3 it +> ptp

low temperatures and voltages is stucﬁ(ﬁj.The NCA self- . =1.In terms of pseudofermion operatdrsand slave boson
energies are compared to those obtained by conformal flelcd) eratorso-, the SUN) X SU(M) Anderson model is
theory. This sheds light on the question of how far the equi- P T

librium CFT results for the scaling function are applicable to

A. The model and physical realizations

nonequilibrium situationg4) The effect of an asymmetry in H= > (ef— ev,)ce TCE +eg> fIf,

the coupling of the impurity to the two leads is studied and Kora or Rar s 7

shown to be consistent with asymmetries of ZBA's observed

experimentally.(5) Finally, we compute the effect of finite + > U (flbc? +H.c), (1)
bias on the localpseudgspin susceptibility. Temperature Ko ma T

and voltage scaling is verified beloW, but large differ- )

ences between the temperature and the voltage dependert¥gere f,, (o=1,... N) transforms according to St
are found outside of the scaling regime. andb_, (r=1, ... M) transforms according to the adjoint

The paper is organized as follows: In Sec. Il the one- andepresentation of SW{). The first term in Eq(1) describes
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the conduction-electron bands with kinetic eneegyoffset ~ J, or 1N do not produce additional singularities of pertur-
by —eV, due to an applied voltage. The indexis equal to  bation theory. It has recently been shéw#“°that such a
L andR, for the left and the right reservoirs, respectively. singularity does arise in the single-channel casé=(1,
Note that the two reservoirs do not constitute different scatN=2) below the Kondo temperatuiig due to the incipient
tering channels in the sense of the multichannel model, sinceormation of the singlet bound state between conduction
the reservoir indexr is notconserved by the Kondo interac- electrons and the local impurity spin. However, around and
tion. The second and third terms represent the energy of aboveT,, and in the Kondo limit of the two-channel model
states and the hybridization term, respectively. The con{N=2, M=2) even down to the lowest temperatures, this
straint term is not explicitly written in the Hamiltonian Eq. singularity is not preserif Indeed, the NCA has been very
(). Note that the local charg® commutes with the Hamil- successful in describing the single-channel Kondo model ex-
tonian. cept for the appearance of spurious nonanalytic behavior at
As discussed in the Introduction, there are a number ofemperatures far belowy. The spurious low-temperature
possible physical realizations of the one-channel nonequilibproperties are due to the fact that the NCA neglects vertex
rium Kondo model: magnetic impurities in tunnel junctions, corrections responsible for restoring the Fermi-liquid behav-
tunneling through charge traps, and possibly even tunnelinigpr of the single-channel modé}:* A qualitatively correct
through quantum dots. In each of these modelsctistates  description was achievéd® for the wide temperature range
introduced in the Anderson model have physical meaning. Ifirom well below T, (but above the breakdown temperature
the case of transition-metal magnetic impurities, dhgtates  of NCA) through the crossover region aroufigd up to the
are literally the atomid states of the impurity. For a charge high-temperature regime&>Ty . For the multichannel prob-
trap, thed states are the electronic states for the two possibléem M =N, the complications of the appearance of a spin
spin orientations of the trap. The two-channel model hascreened Fermi-liquid fixed point are absent. For this case it
been proposed as a possible scenario for the occurrence lods recently been showithat the NCA does reproduce the
non-Fermi-liquid behavior in some heavy fermion com-exacf® low-frequency power-law behavior of all physical
pounds with cubic crystal symmet®*2>*3In that case, the properties involving the 4-point slave particle correlation
occupiedd states correspond to the states of a low-lyingfunctions, like the impurity spectral functioky and the sus-
nonmagnetic doublet of the rare earth or actinide atoms;eptibilities, down to zero temperature. Therefore, in the
while the empty levels, described Hty, constitute an ex- multichannel case the NCA is a reliable approximatfdor
cited doublet of local orbital&’ guantities involvingA4 (like the nonequilibrium conduc-
On the other hand, for the physical realization in terms oftance and the susceptibilities, even at the lowest tempera-
two-level systems, the empty statés}X do not have direct tures.
physical meaning. They are introduced as a construct in rep-
resenting the pseudospins such that the channel quantum 2. NCA in thermodynamic equilibrium
number 7 is conserved by the Kondo interaction. Via a
Schrieffer-Wolff transformatioft} one can show that the |yieq in the grand canonical ensemble, i.e., in the enlarged

low-energy physics of the Anderson model of E) is the | jjjpert space of pseudofermion and slave boson degrees of
same as for the Kondo model in the limit when the 0CCUPatraedom. with a single chemical potentiat\ for both

tion of thed statesny approaches one. Thus, although we us&,qe,dofermions and slave bosons. Therefore, standard dia-

the Anderson model, the results for the low-energy IOhySIC%ram techniques are valid, including Wick's theorem. In a

are expected to be the same as for the Kondo model. second step, the exact projection of the equations onto the

physical Hilbert spac®=1 is performed®*2%For a brief

review of the projection technique, we refer the reader to
1. Validity of the NCA Appendix A. _ _

In the present context we are interested in the Kondo re; The equations for the self-energies of the retarded Green

. . rro
gime of the Anderson model E¢l), where the low-energy ugcrtlonsil of the pseudofenglons_,G (w)T[w_fld
) . _ 2 —2"(w)] *, and the slave-bosonB, (w)=[w—II"(w)] -,

effective couplingl ,=|U,|*/e4 between the band electrons constrained to the phvsical subspace. read
and the impurity is small\V(0)J,<1, with A{0) the band phy pace,
electron density of states pgrseud® spin and channel. The
NCA is a self-consistent conserving perturbation expansion r —
for the pseudofermion and slave boson self-energies to first 3 (w)=M ;j deMow—e)f(e—w)D'(e), (23
order in N{0)J, . Considering the inverse level degeneracy
1/N as an expansion parameter, the NCA includes all self-
energy diagrams up t@(1/N). The self-energies are then r _
made self-consistent by inserting the dressed slave particle Hr(w):N;f deMe—w)f(e—w)G'(e), (2b)
propagators in the Feynman diagrams instead of the bare
propagatoré®=3? |t is easily seen that this amounts to the o
summation of all self-energy diagrams without any propagawherel’ = 77|U|2A(0), M{(w) = M®)/N(0) is the bare den-
tor lines crossing each other, hence, the name, noncrossirsify of states of the band electrons, normalized to its value at
approximation. the Fermi level, and (w)=1/(1+¢e#®) is the Fermi func-

One may expect that the self-consistent perturbative apion. The real and imaginary parts of the self-energy are re-
proach is valid as long as the summation of higher orders itated via Kramers-Kronig relations, e.g.,

The slave boson perturbation expansion is initially formu-

B. The noncrossing approximation
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) 1 Im3(€) The equations for the impurity spectral function and the par-
ReX'(w)= ;Pf de P () tition function then become

Taking the imaginary part of Eq$2) and defining the spec- _ EJ B

tral functions for the slave particles as Ad(w)= Z de[A(et w)ble) +a(e)Ble~w)], (10

A(w)=—ImG'(w)/7=—Im X" (w) |G (w)|,

ZZJ de[Na(e)+Mb(e)]. (11

B(w)=—Im D"(w)/7m=—Im [I"(w) |D"(w)|%m, (4) _ o S

_ _ _ In view of the generalization to nonequilibrium, it is instruc-

we arrive at the self-consistent equations tive to realize that the functiors(w) andb(w) are propor-

tional to the Fourier transform of the lesser Green functions

Alw) T — used in the Keldysh techniqdé,
W—M ;f de./\/(w—e)f(e—w)B(e), (5a) i
a(w)=5-G™(), G=(t—t")=—i{fT(t")f (1)),
Blw) T — 12
W—N;f de./\f(e—w)f(e—w)A(e). (Sb) |
[
Together with the Kramers-Kronig relations, E®), Egs. b(w)=75—-D"(w), D=(t—t")=i(b(t")b(1)),

(5) form a complete set of equations to determine the slave
particle propagators. However, an additional difficulty arisesand contain information about the distribution functions of
in the construction of physical quantities from the auxiliary the slave particles. Henceforth we will cal{w) and b(w)

particle propagators. The local impurity propagator the “lesser” functions. Equation&), (9), and(3) form a set
of self-consistent equations that allow for the construction of
Gyor(7— 1) =—(T{dg o (Dd] ,.(T)}) the impurity spectral functiod .

o ] ) ) A significant simplification of the above procedure can be
is given _by thef —b corr_elgtlon function. Thus, its spectral achieved by exploiting thatn equilibrium, Egs.(5) and (9)
function is calculated within NCA &% are not independent but linked to each other by EB).

1 Hence, we define new functioy w) andB(w) via®’
Ag(@)= ZJ dee BTA(e+ w)B(e)+Al€)B(e— )],

© f(—w)A(w)=A(w), f(—0)B(w)=B(w). (13

By definition, A(w) andB(w) do not have threshold behav-
ior, and the spectral functions as well as the lesser functions

s may easily be extracted from them, i.a(w)=f(w)A(w),
Z:f dee” " [NA(e) +MB(e)] (7 B(w)=f(w)B(w). Inserting Eq.(13) into Egs.(5) one ob-
tains the NCA equations fok(w) andB(w),

where

is the canonical partition function of the impurity in the

physical Hilbert spac®=1 (see Appendix A The require- Aw) r - fle—w)f(—e)

ment thatZ be finite implies that the auxiliary particle spec- — =M —f deMw—€) ————B(e),
tral functions vanish exponentially below a threshold energy  |G'(w)|? ™ f(-w)

E,.3%3! Above the threshold, the spectral functions show (149
characteristic power-law behavior originatfigirom the ~

Anderson orthogonality catastrophe. In E(. and(7), the Blw) T — fle—w)f(—€)<
Boltzmann factor does not allow for a direct numerical |Gr(w)|2_N;f dEN(E_“’)WA(e)'
evaluation of the integrand at negatieeif B=1/KkgT is (14b)

large. It is therefore necessary to absorb the Boltzmann fac- ) o
tor in the spectral functions and find solutions for the func-One can convince oneself that the statistical factors appear-

tions ing in these equations are nondivergent in the zero-
temperature limit for all frequencies, €. Thus, by solving
a(w)=e P°A(w), b(w)=e P*B(w). (8) the two Eqs.(14), instead of the four Eq45) and (9), one
saves a significant amount of integrations. The equations are
Using e°f(w)=f(—-w), the equations determining(w)  solved numerically by iteration. After finding the solution at
andb(w) are easily found from Eqg5): an elevated temperaturg, is gradually decreased. As the
starting point of the iterations at any givan we take the

a(w) T — solution at the respective previous temperature value. In Ap-

G (@) M ;f deMao—e)f(w—e)ble), (98 pendix A we describe an elegant and efficient implementa-
tion of the NCA equations that leads to a significant im-

b(w) I provement in computa_tional precision as well as speed. The

_:N_f deMe—w)f(o—e)a(e). (9p)  Proper setup of the discrete frequency meshes for the nu-
|G (w)|? ™ merical integrations in the equilibrium and in the nonequilib-
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rium case is discussed in some detail in Appendix B. In this

way temperatures of 1/100D¢ and below may be reached
without much effort. The solutions we obtained fulfill the
exact sum rules
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B(w) N
—|Gr(w)|2=;f deA(e)

X D [T Me—w—pu)f(e—o—p,)],

a=L,R
ndENJ' de f(e)Ad(e)ZNf de a(e)=n;s, (17b
_ ! aw) M
f ded(E)—l_(l_N)nfi —:—f de b(e)
G'(w)|? ™
typically to within 0.1% or better, wherey andn; are the o
occupation numbers of physicdlparticles and pseudofermi- X 2 [T Mo—et+pu)f(o—e+pu,)],
ons in the impurity level, respectively. a=L.R
An important quantity is the self-energy.(w) of the (18a
conduction electrons due to scattering off the Kondo or
Anderson impurities. In the limit of dilute impurity concen- b(w) N
tration x<<1, it is proportional to the bulKlinear response ﬁ:_f de a(e)
resistivity of the system and determines the renormalized G (w)[* 7
conduction-electron density of states, which can be measured .
in tunneling experiments. Below we will calculai®.(w) X D [CoMe—o—py)f(o—etu,)l.
within NCA in order to compare with the CFT prediction for a=L.R
the resistivity in equilibrium on one hand, and to compare (18b)

the linear response result with the zero-bias conductance cal-

culated from a generalized Landauertfiker formalism(see
Sec. Il A) on the other hand.

3. .(w) is defined via the impurity averaged conduction-
electron Green function in momentum spag,,(w)=[w
—gx—3(w)]7L. In the dilute limit and for pures-wave
scattering 2 .(w) is momentum independent,

2 () =xt(w), (15)

wheret(w) is the localT matrix for scattering off a single
impurity. According to the Hamiltonian, Eql), t(w) is
given exactly in terms of the local-particle propagator and
reads, e.g., for scattering across the junctibr+(R),

t(w)=UgU{ Gy(). (16)

C. NCA for static nonequilibrium

If we apply a finite biasV, the system is no longer in
equilibrium. We cannot expect the simple relation E8).

If the density of states\{w) were a constant, the only dif-
ference between the equilibrium and the nonequilibrium
NCA equations would be the replacement of the Fermi func-
tion by an effective distribution functiok s given by

Ny

19
T 19

r

Feri(€)=—f(e=m)+ o f(e= ur),

tot
wherel',,;=I" +I'gr. Since our density of states is a Gauss-
ian with a width much larger than all the other energy scales,
gl Tiot, Tk, this is in fact the only significant modifica-
tion of the NCA equations. Numerically, the most crucial
modification concerns the integration mesh. The proper
choice of integration meshes is central to the success of the
iteration and is discussed in Appendix B.

[lI. CURRENT FORMULAS, CONDUCTANCE,
AND SUSCEPTIBILITIES

A. Current formulas and conductance

between the lesser and the spectral functions to hold in this For the case of tunneling through a Kondo impurity, the

case. Therefore, the trick with introducing the functiohs

andB cannot be performed. Rather, the NCA equations hav
to be derived by means of standard nonequilibrium Green*

function technique&®4"“8and one has to solve the equiva-

lent of Egs.(5) and(9) for the nonequilibrium case without
any further simplification. Defining in analogy to the equi-
librium casel’| g=w|U g|°M(0), the NCA equations for
steady-state nonequilibrium are

A(w) M
————=—1| deB
TR Trfde (e)
X ;R[raf\_/(w—ema)f(e—w—ua)],

(17a

current is directly related to the impurity Green functions. In

garticular, the current in the left or in the right lead is

iver’>* by a generalized Landauer-8iker formula,

e _
(V)= _N%FLJ doMo—pu)
X[Gg (@)= Ag(@)f(0—p)], (203
e _
IR(V):N%FRJ doMw—ug)
X[Gg(w)—Ag(w)f(0—pug)], (200

whereGy is the lesser Green function of the impurity. It is
obtained from the pseudofermion and slave boson Green
functions via
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1 are joined by a small constriction. A curreh will flow
Gy (w)= Zf de a(e)B(e—w). (21)  through the constriction without the impurity being present.
In fact, the impurity willimpedethe current due to additional
Making use of current conservatioh,=lg, and taking the scattering in the vicinity of the constriction. The question
wide band limit, whereM{w) is taken to be a constant, the arises whether the effect of an impurity in a point contact is
current may be expressed solely in terms of the impuritthe same in magnitude but opposite in sign. This seems a

spectral function natural assumption and has been known to be qualitatively
oT T correct experimentall§* Theoretically however, this has not
e L' R been shown, especially not for an interacting system like an
[(V)=N- dwA flo—p)—flo— . ' . |
V) h T +TR f @hg(@)flo=u)—flo-nr)] Anderson model. In Appendix C we derive a general formula

(22)  for the conductance that allows one to go continuously be-

The NCA is a conserving approximatiéh Therefore, the tween aclegn point contact and atunneljynption. In thg .Ii.mit
currents computed for the left and the right leads should b&f acleanpomt'contact', where the transmission probabilities
the same when evaluated numerically. We have checked tH&€ Close to unity, we find that the change in the conductance
current conservation within NCA and found that the two 9U€ o animpurity in a point contact has the same form as for
currents agree to within 0.5%, which sets a limit to the un-& tUnnel junction, except for a change in sign. Thus, in clean
certainty for the average curren(V)= (I, +1g)/2. _samples the results .for the current caICL_llated for the tunnel
In order to obtain the differential conductan&(V) junction apply for point contacts as We_II, if one subtracts out
=dI(V)/dV, we perform the numerical derivativid (V) the bapkgrc_;und current, . If 1, is ohmic, thg conductar_lce
—1(V,)]/(V1—V,), and take it as the value dB(V) V G('V) is shlfted. by the constandl,/dV. As@e from this
= (V,+V,)/2. The numerical error involved in this proce- shift and sign difference, the conductance signals of a tunnel

dure could be reduced to as little as 2%. The zero-bias cort"Ction and a clean point contact will be the same.
ductancgZBC) is the special case of the above equations in

the limit of vanishing applied voltag¢— 0. The ZBC for a C. Susceptibilities
tunnel junction is thus The impurity contribution to the dynamitpseudgspin
2 susceptibility is calculated using the standard formittés
G(0,T)=N-— f do!| — Aq(w). (23 from the lesser and the spectral function of the pseudofermi-
A Ti+Tg oo ons. The formula for the imaginary part reads

It will be useful to compare this to the linear-response bulk
resistivity for a small density of impurities in a metal. The

1(de
resistivity p is related to the impurity spectral function ¥a Im x(w)= Zf L Aletw)ale)—a(e)A(e—w)].

(25
of(w)
1//’:00”5'[] do| = ———|7(w), (249 The real part can be obtained by means of a Kramers-Kronig
. . . _ relation:
where the impurity scattering rate is7t l(w)
=xU_ U{A¢(w). The impurity concentration is denoted by 1 Im x(e)
X. ReX(‘U):;PJ de —w (26)

Most of our calculations were done with symmetric cou-

plings,I" =T'r. However, this is not necessarily the case inTne static susceptibility,= x(w=0) follows directly from

an experimental situation, especially for tunnel junctions.s equation. Note that in the two-channel Anderson model,
When an Anderson impurity is placed inside a tunneling baryg possibly realized in TLS's, this susceptibility is not the
rier of thicknesdl, the tunneling matrix elemeft, depends  magnetic susceptibility. Rather, it is probed by a field cou-

exponentially on_the distanceof the impurity from the sur- pling to the impurity pseudospin, e.g., a crystal field breaking
face of the barrier. Also, the bare energy lewgl of the  the degeneracy of the TLS.

impurity will be shifted due to the approximately linearan
voltage drop inside the barrier. In order to investigate the

consequences on the nonequilibrium conductance, we also IV. RESULTS
performed evaluations with asymmetric couplings. For sim- A. Conductance for one- and two-channel models
plicity, and in order to keep the total coupling,,;=1", with symmetric couplings

+I'g constant, we assume a linear dependence of'{lie
on z of the formI" =T ,(1—2/d), T'g=T";,;z/d. We also
modify e4 according toey(V)=e4+(V/2)(1-22/d). The
latter modification turns out to be insignificant as longvas
<|Ed|.

Using the formulas discussed in the previous section, we
now present the results obtained from the numerical evalua-
tion of the bulk resistivity and of the conductance for sym-
metric couplings. For the evaluations a Gaussian conduction-
electron density of state8{w) with half width D was used.

All calculations were done in the Kondo regime for the set of
parametergy=—0.6/D, I' ='g=0.1D. In order to make

The above formulas for the currents and conductances atbe most direct comparison to experiment, the results for the
valid in a tunnel junction geometry where the current musttwo-channel case have been computed fgroant contact
flow through the impurity. In a point contact the two leadsand the results for the one-channel case have been computed

B. Tunnel junctions vs point contacts
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FG. 1. 7 bi duct for t ling th h inal FIG. 2. Bulk resistivity vs temperature for tHd =1 channel
- 4. £€10 bias conductance for tunneling through a sing e'modeI,N: 2,4,6. Of the three curves only=6 has a clear convex
channel Anderson impurityM =1, N=2) vs temperature. The

. : .~ shape and falls roughly lik&2 at low T. The N=2 graph again
conductance for a clean point contact in the presence of a S'ngles'hows almost linealm dependence. Note that the humps in the

channel Kondo impurity would be obtained by subtraction of th'sconductance foN=4 andN=6 are not present in the bulk resis-
curve from a(constant background conductance. The graph for tivity p

=2 shows an almost lineaf dependence at low whereas the
curves for spin degenerady=4 andN=6 show nonmonotonic

behavior. The humps are due to the fact that the Kondo peak of the Folr)_a bulk (Ij<or:do Sysﬁer_n Itl IS |mpq?5|bltla tot mgasure the
spectral functiomAy(w) is shifted away from the Fermi energy Z€ro-bias conductance of single impurities. instead, oné mea-

by aboutTy . For T>Ty, all the curves fall like In{/Ty) for ap- _Sures_the "ne_ar response reSiSti\f’i"fyln Fig. 2 we show_the
proximately one decade. impurity contribution to the resistivity for one-channel impu-
rities with N=2,4,6. Only theN=6 curve shows a convex
for atunnel junction except for Fig. 3 where we compare the dependence ZO”T- In fact, p seems to behave lik¢l
scaling behavior of the nonlinear conductance for the one= const(T/Ty)°] at the temperatures shown, consistent with

and two-channel models. a Fermi liquid® For N=2 there is no convex temperature
dependence even down 16=0.02T . Figures 1 and 2 also
1. Linear response conductance and resistivity serve to illustrate that the zero-bias conductance and the bulk

. . resistivity for the same kind of Kondo impurities do not nec-
The low-temperature limit of. thg linear response Conduc'essarily have the same temperature dependence.
tance shows power-law behavior in temperature. The expo-
nent is determined by the symmetry of the underlying Kondo
model. As explained in the discussion of the NCA, we ex- _
pect to get quantitatively correct behavior for the two- Recently, it has been shodftthat the two-channel model
channel model, but not for the one-channel case. In Ref. 48xhibits scaling of the nonlinear conductar@¢V,T) as a
we showed that the zero-bias correction to the conductand&nction of biasV and T of the form'®

G(0,T) for a two-channel Kondo impurityN=M=2) in a

2. Nonlinear conductance

. . V
point contact exhibits the expecfe@'/’? dependence at low G(VT) -GO0T) =B T”H(Ae— 28
T. The slope of thel'? behavior defines a constaBt : (V1) =GO =Bx kgT/" 9
G(0,T)—G(0,00=B5 T2 (27) Here,H is a universal scaling function that satisfie$0)

=0 and H(x)xx” for x>1, and A, By are nonuniversal

which we will use below in interpreting the nonlinear con- constants. The exponent is 3 for the two-channel model.
ductance. This scaling ansatz is motivated by the scaling of the con-

On the other hand, for the one-channel casé=(1, duction electron self-energy in the variables frequeaand
N=2), one expectd? dependence because of the Fermi-temperaturel as obtained by CFT in equilibriuthScaling
liquid behavior at low temperatures. As shown in Fig. 1 for abehavior is well knowhto be present also in the equilibrium
tunnel junction, the NCA as a larg¢ expansion is not able properties of the single-channel modeM €1, N=2).
to reproduce this power law fod =2 at temperatures below Hence, in the cas®l =1, one may expect a scaling form of
Tk . IncreasingN to N=4 andN=6, the ZBC develops a the nonequilibrium conductance similar to Eg8) as well,
hump as a function of temperature. This peak is due to thbowever with Fermi-liquid exponeny=2.
fact that the Kondo resonance is shifted away from the Fermi In order to examine whether the scaling ansatz is correct
level for N>2. Although we know of no experimental evi- in a nonequilibrium situation, the rescaled conductance is
dence for such humps in zero-bias anomalies, similar humpglotted as a function of (egT) 7. The conductance curves
have been seen in the magnetic susceptibilities of thes®r different T should collapse onto a single curve with a
systems? Note that forN=4,6, aT? behavior appears for linear part for not too large and not too small arguments:
the temperatures shown below the hump. The temperatuiéery largeV or T would drive the system out of the scaling
range shown here is above the breakdown temperature oégime. A collapse indeed occurs for low b¥s<T. How-
NCA, below which a fractional power law,G(0,T) ever, for the larger bias the slope of the linear part shéws
—G(0.0)x — TW(MMFN) '\would appear. dependencésee Ref. 49 for more detallsThis shows that
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9 2.5 @ T T s latter is generically present in experimental systems in addi-

'on 5 ol* T=.003 0 T=.005 f; o] tion to the ando(pseud()spln interaction. _

LY eaT=01+T=02 AN Recently, it has been shown in an exact solution of the

= _;TTZ.%%%T;% ﬁfgu d single-channel mod# that in nonequilibrium the conduc-

o & T=15® T=. ol ae, tance indeed has terms that explicitly break the scaling be-

\<|51.0 -* T=. T havior. Though the coefficients of these terms are small,

i . scaling in the ordinary sense is clearly violated even at tem-

\>;O'5 B =2 7 peratures well below the crossover temperaturg)( One

o0 72 may conjecture that the two-channel Kondo model behaves
0 1 2 3 4 5 in an analogous fashion.

)5 (eV/keT)!/2 Here we investigate cag@) for the two-channel Ander-
ROl ' ' ' son model by examination of the behavior of the self-
Lo oto 1=.01 energies in equilibrium. The Anderson impurity model natu-
= Ztgi rally includes particle-hole asymmetry: The local lewgl
ST 1206 has a finite position below the Fermi energy, while the dou-
@ 1 oloT=08 bly occupied level is effectively shifted to infinity by the
o e T=01 o= strong on-site repulsion. The effect of the particle-hole asym-
>05 N = 2 1 metry at low energies is a strong potential scattering t¥rm.
L Without such a term, the retarded conduction-electron self-

O-O ; 5 3 ‘jr 5 energy>.(w,T) of the two-channel particle-hole symmetric

eV/keT Kondo model obeys scaling of the form

FIG. 3. Scaling plots of the conductance of point contacts in the hw
presence ofa) a two-channel impurity 1 =N=2) and(b) a one- Im 3 o(,T)—Im 2(0,T)=bT"?H (ﬁ) , (29
channel impurity M=1, N=2). With[' =T"g andBs determined B
from the zero-bias conductan¢eompare Eq(27)], there are no ag js known from the CFT solution in equilibriuhi® Here
adjustable parameters. There are two regimes in these plots. F is the universal scaling function as considered a@&e
(eVIkgT)7<1.5 the curves collapse onto a single curve and the(28), 77:%] and the constart is nonuniversal. According to

rescaled conductance is proportional to (keyW)2. For larger : .
(eV/kgT)" the rescaled conductance is linear on these plots. ThereCFT’ the sign ofb the sign depends on whether the Kondo

) . . coupling is on the weak-coupling or the strong-coupling side
are substantial corrections to scaling ever &mall compared to f the (int diat lina fixed int> The NCA ap-
Tk . At even larger biases this linear behavior rounds off, indicatingO € lintermediate coup |n)g_|xe _point. € ap-
the breakdown of scaling. The temperatures are given in units of th roach is on the Weak_-COUpIIng side gnd yields a positive
respectiveTy for the two- and the one-channel case. con_stantb (see belowy, in 'agreement with CFT. The com-
parison of the self-energies of the Anderson mogalcu-
lated within NCA with the scaling form Eq(29) of the
corresponding Kondo model allows us to estimate how
g_trongly potential scattering influences the scaling behavior
in equilibrium. The corresponding scaling plot of the

rameters have qualitatively similar effects on the conduc- . : -
tance. conduction-electron self-energy is shown in Fig. 4, where the

Figures 2a) and 3b) show the scaling plots for the cases Nonuniversal parameter of the CFT curve[Eq. (29)] hf,lzs
M=2 andM=1, respectively, withN=2 in both cases. been adjusted so that the slope of the part lineafdn/T)
Whereas the two-channel case shows the behavior describ8j Negative frequenmgs matqhes the slope of the lowest
above with the expected exponept L, the NCA does not NCA curve. As seen in the figure, the self—gnerg|es_of the
give the correct exponent for the single-channel model. Irf*1derson model deviate from the Kondo scaling form in two
fact, the data show approximate scaling. However, the expoc-"ﬁferent ways:(1) There is a strong asymmetry about the
nent 5 extracted from the NCA data appears to be equal t@°Nt®=0, and(2) there are notable temperature-dependent
unity rather than 2. This seems to reflect the dominant lineafi€Viations from the CFT scaling curve. These deviations
temperature dependence of the ZBC that the NCA produce®2Y be traced back to the lack of partlgle—hole symmetry or,
in this case. This shortcoming is another consequence of tHiuivalently, to the presence of potential scattering.

negligence of singular vertex corrections within the NCA.  Within the Anderson model, the impurity electron self-
energy 2 4(w,T) is readily calculated from the definition

Gy(w,T) '=w—e4—34(w,T), where G4 is the local d
Green function. The two physical self-energi€s(w,T)
Two possible origins for the above-mentioned firllte- and3.(w,T), are nonlinearly related via Eq&l5) and(16)
corrections to scaling at low temperatufesre (i) the non-  for a system of dilute impurities in equilibrium. In Fig. 5 we
equilibrium state brings about terms in the electron self-display the imaginary part of the retarded self-energy,
energy that break scaling of the form suggested by CFT inm24(w,T) in a scaling plot analogous to Fig. 4. It is seen
equilibrium, and(ii) there exist deviations from scaling in that Im34(w,T) exhibits deviations from scaling similar to
equilibrium at finiteT that have large coefficients, restricting those of In® (w,T). The nonlinear conductance is directly
the scaling regime to temperatures smaller tiian Such related to the spectral functioky(w) via Eq.(22). Note that
deviations can be induced, e.g., by potential scattering. Ththe asymmetries induced by potential scattering, present in

there are significanT-dependent corrections to scaling, in-
dicating that finite bias/ and finite temperaturd@ are not

B. Deviations from scaling
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20 F2I'equ46n0)/6(0)/$)(1/2;lo 12 14 16 FIG. 6._ Nonline_ar conductance for thhd=2 channel case for
asymmetric coupling,I'  #'r=1-T"| . As expected from the
asymmetry of the NCA equationd6) and (17), the conductance
signals show a quite strong asymmetry about zero bias even for
moderate differences in the couplings. Asymmetries in the conduc-
tance have been observed in metal-insulator-metal tunnel junctions.

FIG. 4. Scaling plot for the imaginary part of the retarded con-
duction electron self-energy for a small concentratigs (%) of
the M =2 channel Anderson impurities in a noninteracting metal.
Temperatures are given in units Bf . Im X has a minimum that

is shifted to positive frequencies due to finite temperature effects . . I
The data are scaled with respect to the peing, -, Im S (wm;). NCA conductanc® (Fig. 3). Similar deviations are also ob-

For frequencies beloww, ., the self-energy behaves like served in the expe_rlments of Ref. 13. We_ conclude th_at the
(lw|/T)¥? and scales well up to frequencies of the orderTgf. ~ Presence of potential scattering is a possible explanation for
However, for positive frequencies the self-energy is strongly temihe deviations from scaling at finite temperature.

perature dependent and scaling is less perfect. The parameters of

the CFT prediction for the particle-hole symmetric Kondo model C. Conductance with asymmetric couplings

(dashed ling have been adjusted so that the slope for negative ar-

guments matches that of the lowest temperature NCA curve. Up to this point we have taken the couplings of the im-

purity to the conduction bands to be equBl,=I'g. As
mentioned before, especially for a tunnel junction there is no
Im3 (), Im24(w), andAy(w), respectively, are averaged reason why this should be the case. The NCA Efg) and

out in the nonlinear conductané®(V,T) as a function of (18 are not symmetric in the couplings, that B, < TI'g is
bias V due to the integration over frequenciesV/2<w  not a symmetry of the equations. This suggests that the dif-
<+V/2, in Eq.(22). In contrast, the temperature-dependentferential conductance signals are not symmetric about zero
deviations remain, as is seen from the scaling plot of theyias if ', #'s. Indeed, the Onsager relations for a two ter-
minal measurement only apply to the linear-response regime.

Q7 For nonlinear response there is no simple relation between
E 6 :8:88% 1(V) anql(—V). However,.interchanging both, < I'g and

= s \ --- =0.01 V< —V is a symmetry. It is therefore enough to show only
S Al f8~?5 the conductances fdf, > 3. The curves with" <% can be

eI e obtained from thd”| > ones by reflection about theaxis.

E ST An example of such asymmetric conductance curves is
»’l\ 2r shown in Fig. 6. The data is for the two-channel model, but
37 the qualitative aspects of asymmetry does not depend on the
»g or channel number. The constaBi is dependent on the asym-
S 5 ' 1 A'r 8 metry, but has been divided out for better comparison of the

( /%1/2 curves. The asymmetry is pronounced even for moderate de-
@ viations from symmetric coupling. Asymmetric conductance
FIG. 5. Scaling plot of the imaginary part of the impurity elec- VS Voltage curves have been seen in experiments on ordinary
tron self-energy for thé =2 channel Anderson model. Tempera- ©ne-channel Kondo impurities in Ta-I-Al tunnel junctichs,
tures are given in units off. For different temperaturey,  Where they were plotted as an odd in voltage contribution to
IM[Z4(w,T)—Im S4(0,T)]/(cT? is plotted vs the square root of the differential conductance. We are not aware of asymme-
the scaled frequencyw(T)*2 The constant is positive and de- tries in the experiments with two-channel Kondo impurities,
pends on details of the model. The left parts of the curves Q)  which would apply directly to Fig. 6.
obey the anticipated square-root behavior and scale very well for
|w|<Tg. For /T>0, the NCA curves show a strori depen-
dence even fof <Ty . This is a possible origin of th&-dependent
slopes of the nonlinear conductance curves in Fig. 5. However, for
modestly large frequencies, e.@/T<4, the lowesfT curves seem Finally, we discuss the results for the static and dynamic
to follow square-root behavior, too. The general asymmetry of thesusceptibilities with and without finite bias. The susceptibil-
self-energy is a consequence of the particle-hole asymmetry of thidy is one of the clearest measures of the screening of the
Anderson model considered here. impurity by electrons. All data shown below are for the two-

D. Dynamic and static susceptibility
for the two-channel model
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FIG. 7. Static susceptibilityy, (arb. unit3 vs temperature at FIG. 8. Static susceptibility, (arb. unit3 vs biasV at various

zero and at finite bia¥ for M=2, N=2. In equilibrium,x, Shows  temperatureg for M =2, N=2. Temperatures are given in units of
the characteristic, expected logarithmic divergence approaches 1, 'y has a very similar dependence WrandT as long asv, T
zero for the two-channel model. Out of equilibrium, this divergence 1, (scaling regime x, drops likeV?2 for T<0.1T, and like log
is cut off at a temperature corresponding to the biasThe inset (/) aroundT, . However, for largeVsTy, , falls less rapidly
shows thaly, falls with T2 below this cutoff. For high temperatures ith v/ than with T, see Fig. 9.
T>Tk, xo falls like LIT (Curie-Weiss lay.
: . behavior to a finite susceptibility value at zeFathat is de-
channel model, where NCA is known to describe the correc : :

. ’ . - fermined byV. Figure 7 shows th& dependence of, for
singular low-energy behavior of the susceptibilitiés. V= 1/10T

In equilibrium, in the zero-temperature limit, the dynamic K

susceptibility defined in Eq25) is given by a step function
of the forn?>

Similar behavior(i.e., quadratic inv for low V, logarith-
mic for T<V<T) is observed for th& dependence of the
static susceptibility(see Fig. & however, there is a differ-
ence in the dependence dnandV in the regimeTy<T,V
1—c [| @ n } (30 andT,V<T',,;. Note that NCA gives the correct equilibrium
ZNITl behavior atT=Ty and is currently the only technique that
makes controlled predictions about nonequilibrium proper-
The NCA approaches this behavior as the temperature is rétes. For largeT>Ty at zero bias the static susceptibility
duced. At finite temperature, the step is broadened, with thbehaves like T, indicating Curie-Weiss behavior. However,
extrema located at frequencies that scale Witk. The real  for large V at low temperaturey, falls less rapidly. The
part follows from a Kramers-Kronig relation and diverges difference becomes obvious if we pldty, vs log(V) and
logarithmically forw— 0, again cutoff at finitel. As a con- Ty, vs log(T) as shown in Fig. 9. Whereas tliedependence
sequence, the static susceptibilfy=Rex(w=0) diverges saturates, indicating the free moment at high temperatures
logarithmically asT approaches zero, in agreement with non-the V dependence shows linear behavior, leadingytp
Fermi-liquid behavior, as has been predicted befcr®.
This logarithmic divergence is well reproduced by the NCA 0.8 , . .
technique, see Fig. 7. M= 2 j
In contrast to the Zeeman term of an external “magnetic” N =2
field, an applied finite bias does not break tpseudg@spin
symmetry. Neither does it affect the channel symmetry.
However, as mentioned in Sec. IV C, it breaks the parity
symmetry. If T<V, the Anderson impurity effectively sees
two Fermi levels. In the regime&,V<Ty the bias acts like
an additional temperature, and thus serves as another low- ' Qf;f
energy cutoff. This picture is confirmed by the numerical M
data. If we look at the extrema of the imaginary part of the 0.0 :
susceptibility at low temperature but finite biag>*T, not —4 -2 0 2 4
shown, we find that they are located at smaller absolute log(T/Tk) (log(V/Tk))
va}lue.s than at the corresponding temperature. The logarith- FIG. 9. Product of the static susceptibility and temperatur@
mic dlvgrgence Of. th? Rl ) is CUthf at about\(, S0 that (biasV) vs T (V) on a semilogarithmic scale fail =2, N=2. +:
the static susceptibility d_oes not diverge I_oganthmlcally aST gependence; o dependence. THE dependence shows satura-
T—0 anymore. Instead, it approaches a finite value with gion at high temperatures and therefore implies the Curie Jay,
quadraticT dependencésee inset of Fig. )7 However, this  o1/T However, thev dependence is linear at large bias, implying
does not signal moment screening and Fermi-liquid formatnat y, falls less rapidly withV than with T, x,log(V)/V. The
tion for T<V, since we still haveyV/T behavior of the y-axis units are such that a “free pseudospin” would correspond to
conductance folV well below T, . Rather, it is crossover a constant value of 1/@urie-behavior at large temperatures
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~blog(V)/V. This stresses again the different consequenceperatures down to about 1/10Q . This indicates that finite

of rising T andV once one has left the scaling regimev biasV and finite temperatur@ are not equivalent, although

<Tg. This difference can be understood by observing thehey have qualitatively similar effects on the conductance.
very different behavior of the impurity spectral function The scaling of the conduction-electron self-energy turns out
Ag(w) (not shown, cf. Ref. 4Pin the large bias and large to be worse than that of the nonlinear conductance. This may
temperature regime, respectively. For zero bias and low temye traced back to the lack of particle-hole symmetry of our
peratures there is a sharp resonance with width Increas-  model, which leads to asymmetries in the self-energy even at
ing the temperature abovig , the peak would broaden atthe the Jowest temperature. Additionally, there are also strong

expense of its height. In contrast, if we keep the temperaturgsmperature-dependent corrections to the square-root behav-
low, T<Ty, and increase the bias, the resonance first devejg,

ops a shoulder and then splits into two much broader but
separated peaks. Increasmg the temperature \_/vould eventda m; seas, we observe conductance signals that are asym-
ally wash out the peak splitting and rgstore a §|ngle, thpug etric about zero bias. Such features have been seen in ex-
much less pronounced, peak. This difference in behavior a

X -~ _“periments on metal-insulator-metal tunnel junctions.
largeT vs largeV is the reason for the breakdown of scaling Finally, we also calculated the dynamic and stafiseu-
of the conductance foF or V larger thanTg . It is also the Y, y

origin of the different behavior of the susceptibilityig. 9). g?i‘:‘]?tig sil‘f;csstglg%glr:ado?tifﬁ:ij\?éﬁgﬂ?gﬂﬂgﬁi‘iﬁhdeui;?

namic susceptibility approaches a finite stepwat0 asT
V. CONCLUSION —0, leading to a logarithmic divergence of the static suscep-
In conclusion, we have described in detail the analyticaﬂ?'“?’ In ??hre?mg_”t with CFTI results. A f_|n|_:e bflasht_:uts ?t:f
foundations and the numerical implementation of the NCA IS logarithmic divergence. 1n a very simiar fashion, the
emperature cuts off the divergence as the bias is vanishing.

integral equations for the one- and two-channel Anderson_. . .
J d ’i)lfferences in the bias and temperature dependence of the

model out of equilibrium. Our algorithms enabled us to reac tati tibilit t hiah bi dt i ¢
lower temperatures than previously obtained, allowing us tratc susceplibliity appear at high bias and temperature out-
side of the scaling regime.

study the physics deep inside the scaling regime of the two*
channel model.

In linear response, we computed the conductance for tun-
nel junctions and point contacts as well as the bulk resistiv- ACKNOWLEDGMENTS
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higherT. This “hump” is associated with the fact that the | ASSP, Cornell University.

Kondo peak of the impurity spectral function is shifted away
from the Fermi level for values dfi>2.
If we turn on a finite bias/, the Kondo peak of the im-

If we allow for asymmetric couplings to the left and right

APPENDIX A: NUMERICAL IMPLEMENTATION

purity spectral function first diminishes in height and broad- OF THE NCA EQUATIONS
ens, then splits into two peaks located at the energies of the
two Fermi levels of the leads at a bias of abouT 10 The Below we briefly review the slave boson projection tech-

nonequilibrium conductance is again consistent with lineanique and describe an implementation that allows for a
behavior in the regim& <V <T for the single-channel case highly accurate, as well as efficient, numerical treatment of
with M =1, N=2. Therefore, we can plot the conductance ashe singularities of the spectral functions that arise from the
a function of eVkgT and achieve scaling for modest bds  projection.

Whether similar scaling of the conductance but with argu- The exact projection of the expectation value of any op-
ment (eVkgT)? can exist for the castl=6, is yet to be erator ® onto the physical subspac@=1 is achieved by
determined. The tunnel junction conductance falls With first taking the statistical average in the grand canorié&)

for biasV<T . This is in stark contrast to the hump in the ensemble with a chemical potential\ for both fermionsf

T dependence of the zero-bias conductance. If at all, scalingnd bosons, and then differentiating w.r.t. the fugacity
seems possible only for temperatures well below the tem=exp(— 8\) and taking the limit\ — o,

perature where the hump occurs. The two-channel data show

scaling with respect to the argument (&yT)2, consistent

with conductance measurements on clean point contacts. It d .

has to be pointed out, though, that the scaling at nonzero bias d—tr[Oefﬁ(H”Q)]

in the two-channel as well as in the single-channel model is <@>C: lim (A1)
only approximate. Finitel corrections are observed in the A= e AHHQ)

numerical datdand also in the experimental datar tem- dg
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lim <@>Gceﬁ)\ singular behavior very well, as described in Appendix B. The
Moo procedure described above leads to a substantial gain in pre-
:ﬁ (A2) cision and significantly improves the convergence of the it-
A[nx<Q>GCe erations, even though the equation determiniggmust be
solved during each iteration.
Note that in this expression the fact@ arising from the From Eq.(A7) and the definition of the impurity contri-

differentiationd/d{ in the numerator may be dropped for bution to the free energyFin,(T), exp(—BFinp)
any operatoi© whose expectation value in the subspée =Z(T)/Zq-o(T), it is seen thak, determined in the above
=0 vanishes(like, e.g., (’)=dw(t)d27(t’) or any other way is just equal td-;,,. This provides a convenient way of
physically observableperator on the impurity sileThe ca-  calculating Fi,,(T) directly from the auxiliary particle
nonical (C) partition function is given by Green functions.

Z=lim [e"Q)gc(M)] Zg-o (A3)

AN—x

APPENDIX B: INTEGRATION MESHES
FOR EQUILIBRIUM AND NONEQUILIBRIUM NCA

=Zo-0 f dee BINA(e)+MB(e)], (A4) The vgrious features of_the auxiliary partic_le, as well as
the physical spectral functions, are characterized by energy

scales, which differ by several orders of magnitude. These
The integrals involved in the NCA equations are difficult energy scales are the conduction bandwidifthe localized

to compute because of the singular threshold strudtge  €Vel €1, and the dynammalLy generated Kondo scale,

A(w), B(w), where the position of the threshold enefgy which is typically of orde_r 10”D. Moreover, bepguse of t_he

is a priori not known. In order to make the numerical evalu- 1 — 0, V=0 threshold divergence of the auxiliary particle

ations tractable, we apply a tiredependent (1) gauge spectral functions, the sharpest features have a width given

transformation simultaneously to tHeand b particles ac- PY the temperature, which can be of the order of . In

cording tof —exp(iAot)f, b—exp(it)b. This transforma- nonequilibrium, the bia¥ appears as an additional scale. In

tion is a symmetry of the Anderson model and amounts to the numerical solution of the NCA equations, discrete, non-

shift of the slave particle energy or chemical potentiahy equidistant integration meshes must be setup such that all the
w—w-+\,. Note that this shift does not affect any physical f¢@lures at the various enerqy scales are well resolved. -
properties, as seen explicitly, e.g., from Ef0). After this ese meshes can be generated by mapping the gri

energy shift, the spectral and lesser functions appearing iHointsxi of_an equidistant mesh onto the_ nonequidistant fre-
the NCA equations read quency pointsy; by means of an appropriately chosen func-

tion h(x). In the regions where the very sharp features of the

whereZq_ is the partition function in the subspaQe=0.

Im 3 () spectral functions and the Fermi function appear, i.e., near
Axo(w): ; 5 ; 5 w=0 andw=*=V/2, respectively, we will use a logarithmi-
[w— €3t o~ ReX (w)]*+[Im 2 (w)] cally dense mesh. On the other hand, in order to resolve the
(A5a) relatively broad peak centered around the local leyglthe
) substitutionw; = g4+ ctan(x;) will be used.
B, (w)= Im II'(w) In general, the entire interval of integration is composed
No [w+No—Rell(w)]2+[Im II'(w)]?’ of L meshegxl},i=1,...n,,1=1,... L. We map these
(A5b)  meshes onto the nonuniform frequency meshe$ via
3 (w) oli=h'(x)), i=1,...n" (B1)
a)\ (w): )
° [0—egtAo—ReX (w)]*+[Im 2 (w)]? We can now rewrite the integration of an arbitrary function
(ABa)  K(w) as an integration over the “equidistant” variables}:
M~ (w) oo b gh'(x)
b w)— . =
ol N TRe T (w) P+ [Im 1T (@) 2 f,xd“’k(“’) 2 LI x5 Kh()]
(ABb)
) n|—1 0,)h|
In particular, we now have from E@¢A4) :EI AX! ;2 J(X:)k[h(x!)]
Z(\
Z(Q—"zzeﬂkof dee P INA(e)+MB(e)]. (A7)

3

1fon" | |
— (xp)k[h(x1)]
The crucial point about making the numerics efficient is that X
\, is determinedn each iterationsuch that the integral in oh
Eq. (A7) is equal to unity’3 This definition of\, forces +— (X K[h(x! )])
the zero of the auxiliary particle energy to coincide with the oxt :
threshold energfe,=0 in each iteration step. Thus, it en- o ) _ )
e fi ea'=w!,b'=w! are the limits of integration of the dif-
ables us to define fixed frequency meshes that do not chand-én w1, Wp, g
from iteration to iteration and at the same time resolve thderent regions of the frequency axis. To cover the whole axis

. (B2)
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we must havea' "1=b'. In equilibrium, we can get by with The geometry we consider consists of perfect Ieft énd
four regions: [—»,—w), [—®,0=¢¢), [0,w)), [w,%], right (R) leads connected by a central region where there is
wherew, is an interface frequency where two regions of thescattering. The scattering statgéx) are eigenstates of the
mesh are matched.|dy|—T'>w,>Tg.) By choosing the noninteracting problem. They are labeled by their incoming
functionsh'(x') aseq+cytan(x') in the regions with large wave vectors, wherek,>0 corresponds to a right moving
absolute frequency and asexpi) in the regions|w| wave andk,<0 corresponds to a left moving wave, where
<w,, We create large mesh point spacings far fremand is the direction along the length of the leads. For example, a
exponentially small spacingé‘logarithmic” mesh) at eg  state moving from left to rightk,>0) has the asymptotic
=0. Proper adjustment of constants in thlés is required.  form for z>0 of

The frequency mesh point spacing nea=0 should be at

least 10 times smaller thah (and/orV out of equilibrium). _ RL T T ailkilz,,

Crucial for the success of this procedure is the introduction vdx) ?‘ telozlvzle q"&(xi)’ (CD

of \, (see Appendix Ain the iteration procedure\, shifts

the peaks of the slave particle functions to the neighborhooénd forz<0 of
of w=0 in each iteration step. This allows us to define a

fixed frequency grid, which leads to a significant increase in i L —ilk!
quency 9 g w0 =g (x)+ 2 1 v, lvgle el (x,).
ki

L

computational speed and precision.

Out of equilibrium the distribution function is a double (C2)
step function with steps atV/2. It turns out that in the
Kondo limit the slave boson spectral and lesser functiond he transverse modesy (x,) in Egs.(Cl1) and (C2) are
show broadened peaks at about the same frequencies. Hoehosen to have unit normalization, ang=k,/m is the ve-
ever, the pseudofermion functions behave differently. Theyocity along the length of the leads. It is also understood that
do not split, but have a single peak somewhere between théhe energy of the incident and transmitted waves are the
Fermi level anaVv/2 that shifts not linearly with/. To cope same,e + €, =€ T €.

with such behavior we wish to have good resolutiorta/2 The current for both the interacting and the noninteracting

and ateg . (The latter one is to improve the resolution at the case may be expressed as a cross-sectional integral of the
location of the peak of the pseudofermion functions. Unfor-«jesser” Green function:

tunately, we do not know how this location will move with

increasingV.) To achieve this we let the logarithmic mesh dw o (V= Vo

end at+V/2 coming from larger/smaller frequencies and |=f§ f d XJ_(W)9<(X,X/;UU) (C3)

choose the spacing in between according to the sum of two

tanh functions that have their zero shifted1d//4, respec-  For the noninteracting case, this Green function may be writ-

tively. We have to choose parameters of these functions, s@n in terms of the scattering states as

that the mesh spacings at the crucial energies is small enough

to resolve all features of the integrand. These parameters ) dk, .

depend on the biag. They have to be calculated before the 9<(X.X"; @)= f Py kz 2760 =B h(X) ¢ (X)) Fi(w),

mesh is defined whenever we change the potential from one . (C4)

run to the next. However, once the mesh is set, we do not

have to change it anymore during the iterations, because dfheref(w) is a Fermi function at chemical potentja| for

the same reasons as in equilibrium. k,>0 and atug for k,<0. We will usually refer to these
The typical total number of integration points used is 200Fermi functions a$, (w) andfg(w), respectively. Using the

and 250 for equilibrium and out of equilibrium, respectively. asymptotic expressions of Eq€1) and (C2) for the right

Out of equilibrium we need about 50 points more for themoving scattering states and the similar ones for the left

“inner” region between+V/2 at moderate bia¥<20T,.  Mmoving states, Eq$C3) and(C4) lead to the usual Landauer

For higher bias we have to introduce more points in the inneformula for the conductance:

region. Convergence is achieved within 100—200 iterations. dE

The CPU time to obtain a converged solution on a typical _ j Ytk RL |2 _

workstation is below 1 min for the equilibrium case and of ! 2m k%’ [t Th(B0 ~fR(BIL. - (CH

the order of minutes for the nonequilibrium case. -

x=x’

We now add an impurity that includes an interacting term
APPENDIX C: GENERAL FORMULA to the Hamiltonian. The COUp”ng of the impurity, denoted by

FOR THE CONDUCTANCE 0, to the electrons is given by

In this Appendix we derive Eq(22) for the current . dk, + N
through a constriction with an impurity. We proceed in three H=| 5~ ; WicCoCi+ Wi CyCo, (C6)
stages. First, we introduce our scattering state notation and -
review the noninteracting case. Next, we derive a generaivherek refers to the scattering state of incoming wave vec-
formula for scattering from an interacting impurity. This is tor k, nota plane-wave state. In EGC6), and in the previous
valid for point contacts, tunnel junctions, and anything inequations, we have not included spin. The entire derivation
between. Finally, we specialize to the case of a clean poirpresented here follows through in the presence of a @pin
contact. othep index so long as the self-energy is diagonal in that
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index. This is the case for the Anderson model used in this

paper. In order to simplify the notation, we shall proceed I =— E kkrr+tkgr(0 O Wier|*fr()
without spin and at the end quote the final result when the ki .k
electron spin is included. do
Usjng Dyson’s equation one can express all_of the Qreen — E _[|rtk,,+tkgr(o,o)wk,,|2_ 5kLk”]fL(w)
functions for the full systeng in terms of the noninteracting kK ™ +
Green functiong®, and the full Green function at the impu- q
rity, g9(0,0). In particular, the Green functiog_(k,k’), _ J do 2
which is used to compute the current, is given by % 27-r|vZ||tkgr(o’0)| 7<(@). (€12

Equationsg(C11) and(C12) are our most general expressions
for the current. It is useful to compare them to those for the
, noninteracting casgEq. (C5)]. Without the terms involving

+92 (k)W 9a(0,0 Wi g2 (k') o, Egs.(C11) and(C12) have exactly the same structure as

o 0/l the noninteracting current. The effect of the impurity is to
97 (Wi g<(0.0Wigz(k") change the transmission probability for electrons coming
+0%(K)W g,(0,0W, g% (k’).  (C7)  from the left or the right. Ther_ contains the “scattering
out” of an electron from the impurity state. This is a feature
of the interacting problem.

EquationgC11) and(C12) are valid for an arbitrary scat-
tering potential, including both the tunnel junction case and
the clean point-contact case. We model the clean point-
contact case by a perfect wire. The wire will have a conduc-

dk, tance equal tee?/h times the number of channels at the
9:(x,0 = f 5 > (¥)9,(k,0), (C8  Fermi energy. The transmission and reflection probabilities
KL for this case are 1 and O:

9-(k k) =2m8(k,—k}) 8y 1 9% (K)

In Eq. (C7) all Green functions have the same energy,
The self-energyr contains the many-body interaction at the
impurity site. Equatior{C7) is converted to real space using

and the similar relation for the advanced Green function. The 5 on=tRL —¢LR (C13
i k, .k Kk~ YKk
result for the real spacg.. is

O_rk k" rk K" - (Cl4)

In this perfect wire case the scattering states are plane waves.
The impurity is placed at positiox=a and the overlap ma-

+9,(X,00W,,}g2 (K") {llfﬁn(x')ﬂLW:uga(O,X’)}. trix elements are
(C9) eik~a
W, :WL(R) , (ClS)
‘ VA

dk!
9<(xX)=0r(x.0) o< Ga(OX)+ | 5= 2 {Yh(X)
<

As for the noninteracting case, we wish to evaluate the cur-
rent far into the left and right leads. To do this, we need the
asymptotic form of the scattering stafésys.(C1) and(C2)]
and the asymptotic form of the retarded and advanced Gree
functionsg, ,)(x,0), which we define as

where A is the cross-sectional area of the wire. As in Egs.
(tgtl) and(C2), theL here refers to scattering states that start
on the left,k,>0, andR refers to those which start on the
right, k,<0. The distinction between left and right moving is
probably unphysical here; however, it is useful to make con-

x,0 , tact to the tunnel junction case. Equati@il5 implies that
g’ﬁo 0; =2t g (x)) e g, (C10
gr(Y, ky WL(R)efik-a 1
R (C19
Substituting Eq.(C9) into Eg. (C3), for the current, then \/71 i,
ields
y Finally, we define the scattering rate of stdtefrom the
impurity as
IR: 2” _|tkku+tkgr(o O)Wk”lsz(w) A |WA| 5 B 11 |WA|2
: =4 E” (0= é ~a)=5 1,1 A
(C17)
+ 2 o LIF B +EG (0.0 Wiel 2= 8y i (@)
ky k] where the integral is done either over>0 or k,<0 for A
d =L, R, respectively. Current conservation requires that
w _ . . .
+> f —v2|tRg,(0,0|?0-(w), (c1)  =Ir, so, in computing our final result for the current, we can
take any linear combination df andly that is convenient:
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B |WL|2 |WR|2 I
|WL|2+|WR|2 L |WL|2+|WR|2 R

d
=3 [ Sort@ - fe(o)
2R
—f dw% Fk%r“kRAdw)[fL(w)—fR(w)],
(C18)

whereAy(w) = —1mg,(0,0)/7 is the impurity spectral func-
tion.
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of the impurity. The expression is the same as for a tunnel
junction?®2° except the sign is reversed. The correction to

the current once one includes the electron spin is

5' f d : : k,s E,S f f
w s FIE’S FE’S‘ ‘d,S(w)[ L(w) R(w)]!

where the only change from E¢C18) is that there is a sum
over the spirs. If we assume a constant density of states and
no spin dependence of the matrix elements, we obtain the
expression Eq(22), except for the difference in sign be-

This is our final result for the number current. The first tween the tunnel junction and point-contact case. Note that in
term gives the Sharvin point contact conductance. The sedq. (22) thel'| andI' are defined with the density of states
ond term is the correction to the current due to the presencdivided out.
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