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Nonequilibrium dynamics of the Anderson impurity model
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The M -channel Anderson impurity model (M51,2) is studied in the Kondo limit with a finite voltage bias
applied to the conduction-electron reservoirs. Using the noncrossing approximation~NCA!, we calculate the
local spectral functions, the differential conductance, and susceptibility at nonzero bias for symmetric as well
as asymmetric coupling of the impurity to the leads. We describe an effective procedure to solve the NCA
integral equations that enables us to reach temperatures far below the Kondo scale. This allows us to study the
scaling regime where the conductance depends on the bias only via a scaling function. Our results are appli-
cable to both tunnel junctions and to point contacts. We present a general formula that allows one to go
between the two cases of tunnel junctions and point contacts. Comparison is also made between the conformal
field theory and the NCA conduction-electron self-energies in the two-channel case.@S0163-1829~98!08729-3#
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I. INTRODUCTION

In recent years, the Kondo model and the Anderson
purity model in its Kondo limit have been investigated e
tensively by use of numerical renormalization-gro
calculations,1,2 the Bethe ansatz method,3,4 conformal field
theory~CFT!,5 and auxiliary particle techniques. In this wa
a consistent theoretical understanding of the Kondo effec
equilibrium has emerged. In particular, the ground state
the system depends on the symmetry group of
conduction-electron system: If the number of channelsM is
less than the level degeneracyN, the screening of the loca
moment at energies below the Kondo scaleTK leads to a
singlet Fermi-liquid ground state with strongly renormaliz
Fermi-liquid parameters. If, in contrast,M>N, the ground
state isM -fold degenerate, leading to a nonvanishing entro
at zero temperatureT and a characteristic energy dependen
of the density of states, obeying a fractional power law
low the Kondo scale. This is mirrored in an anomalous~non-
Fermi liquid! behavior of the thermodynamics as well
transport properties.5

On the other hand, there has been much less work on
nonequilibrium Kondo problem, where the electron distrib
tion is not in local equilibrium about the Kondo impurity an
linear response theory is no longer sufficient. Possible eff
in this situation include the breaking of time-reversal sy
metry and the appearance of an energy scale like the cha
transfer rate through a tunneling or point contact. The p
nomena of tunneling through magnetic impurities has b
explored since the 1960’s when zero-bias anomalies~ZBA’s!
were observed in metal-insulator-metal tunnel junctions6,7

The origin of these zero-bias anomalies was understoo
terms of perturbative theories,8 which captured the basic phe
nomena: a logarithmic temperature dependence and a
man splitting of the ZBA peak in a finite magnetic fiel
PRB 580163-1829/98/58~9!/5649~16!/$15.00
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Although the original theories were quite successful in fitti
the data,9 they were not able to get to what we now know
the low-temperature strong-coupling regime of the Kon
problem. In view of theoretical advances since that time, i
worthwhile to reexamine the nonequilibrium Kondo effec
particularly in the low-temperature regime.

In addition, there have been a number of interesting re
izations of the Kondo effect in nonequilibrium. With rece
advances in sample fabrication, it has become possible to
a zero-bias anomaly caused by a single Kondo impurit10

Very recently, there have been indications that Kondo ph
ics have been observed in ultrasmall quantum dots,11 open-
ing the possibility of studying the nonequilibrium Kondo e
fect on devices with experimentally adjustable paramet
Even more intriguing is the observation of zero-bias anom
lies in point contacts that exhibit logarithmic temperatu
dependence at high temperatures and power-law behavi
low temperatures but no Zeeman splitting in a magne
field.12–16Such zero-bias anomalies may be described by
two-channel Kondo model, where the ZBA is caused
electron-assisted tunneling in two-level systems~TLS’s!, al-
though other descriptions have been proposed as well.17

In the 1980’s Zawadowski and Vladar18 showed that if
two-level systems with sufficiently small energy splitting
existed in metals, then one could observe a Kondo effect
to the electrons scattering off these TLS’s. In this case
TLS plays the role of a pseudospin. One state of the tw
level system may be regarded as pseudospin up and the
as pseudospin down. An electron scattering off the TLS
cause the pseudospin state of the TLS to change. The e
tron state also changes, e.g., its parity, in the process.
electron-assisted pseudospin-flip scattering plays the rol
spin-flip scattering in the standard case of the magn
Kondo effect. Detailed analysis, taking into account the d
ferent partial waves for scattering off the TLS, shows tha
5649 © 1998 The American Physical Society
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5650 PRB 58HETTLER, KROHA, AND HERSHFIELD
Kondo effect is indeed generated by this electron-assi
tunneling. However, since the true electron spin is conser
in scattering from the TLS, there are two kinds, or chann
of electrons. Hence, the system will display the two-chan
Kondo effect.19 Level splitting and multielectron scatterin
may disrupt the two-channel non-Fermi-liquid behavior. T
stability of the two-channel fixed point against these pert
bations is currently a subject of investigation.18,20,21

In recent years a number of techniques have been app
to the nonequilibrium Kondo problem: variation
calculations,22 perturbation theory,23 equation of motion,24

perturbative functional integral methods,25 and exactly solv-
able points of the model.26 One of the most powerful tech
niques in this context is the auxiliary boson technique.27–29It
has two major advantages:~i! In its lowest-order self-
consistent approximation, the noncrossing approxima
~NCA!,30–32 it yields an accurate quantitative description
the single-channel Anderson model in equilibrium32–34down
to low temperatures, although it does not capture corre
the Fermi-liquid regime. The NCA even describes the inf
red dynamics of the two-channel model correctly as one
proaches zero temperature.35 ~ii ! The NCA is based on a
standard self-consistent Feynman propagator expans
Therefore, in contrast to exact solution methods, it need
rely on special symmetry properties that are not always r
ized in experiments. The formalism also allows for syste
atic improvements of the approximation.36–38 Moreover, the
NCA may be generalized for nonequilibrium cases in
straightforward manner. This has been achieved recently
the single-channel Anderson model.39,40 However, the low-
temperature strong-coupling regime of the model was
reached.

In this article we give a formulation of the NCA awa
from equilibrium that allows for a highly efficient numerica
treatment, so that temperatures well inside the low-ene
scaling regime may be reached. In order to enable othe
searchers in this field to more readily apply this method
related problems, we describe the numerical implementa
of the formalism in some detail. Subsequently, we stud
number of nonequilibrium properties of the single- and es
cially the two-channel Anderson model in the Kondo regim
~1! In linear response we study the conductance of the t
channel model and the one-channel model for different s
degeneracies. We use both tunnel junction and point-con
geometries and discuss how to go continuously between
two. These results are compared to the bulk resistivity.~2!
The nonlinear response is computed for the same Ande
models, and the scaling of the differential conductance
low temperatures and voltages is studied.~3! The NCA self-
energies are compared to those obtained by conformal
theory. This sheds light on the question of how far the eq
librium CFT results for the scaling function are applicable
nonequilibrium situations.~4! The effect of an asymmetry in
the coupling of the impurity to the two leads is studied a
shown to be consistent with asymmetries of ZBA’s observ
experimentally.~5! Finally, we compute the effect of finite
bias on the local~pseudo!spin susceptibility. Temperatur
and voltage scaling is verified belowTK , but large differ-
ences between the temperature and the voltage depend
are found outside of the scaling regime.

The paper is organized as follows: In Sec. II the one- a
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two-channel Anderson models and their applicability to tu
nel junctions and point contacts with defects are discuss
Section III contains the formulation of the problem with
the NCA and discusses its validity for the single- and t
two-channel case, respectively. An effective method for
solution of the NCA equations both for equilibrium and f
static nonequilibrium is introduced. Section IV contains t
results for the quantities mentioned above, which are d
cussed in comparison with equilibrium CFT solutions a
experiments, where applicable. All the results are summ
rized in Sec. V.

II. THE SU „N…3SU„M … ANDERSON IMPURITY MODEL
OUT OF EQUILIBRIUM

A. The model and physical realizations

The single-channel (M51) and multichannel (M.1)
Kondo effects occur when a localN-fold degenerate degre
of freedom,s51, . . . ,N, is coupled via an exchange inte
action toM identical conduction-electron bands, charact
ized by a continuous density of states and a Fermi surfa
For example, the ordinary Kondo effect occurs when a m
netic impurity is coupled to conduction electrons via an e
change interaction. The impurity with spinS plays the role of
the N52S11 degenerate degrees of freedom, and ther
only one flavor or channel of conduction electrons, soM
51. There are other physical situations where there areM
bands of conduction electrons that are not scattering
each other. In this case one says that there areM channels or
flavors of electrons. For theM channel Kondo effect, the
channel or flavor degree of freedom,t51, . . . ,M , is as-
sumed to be conserved by the exchange coupling.

Because of the noncanonical commutation relations of
spin algebra, this model is not easily accessible by stand
field-theoretic methods. Rather than work directly with t
Kondo model, it is frequently more convenient to work wi
the corresponding Anderson model. Within the Anders
model, each of the possible spin or pseudospin statess is
represented by a fermionic particle. By convention, the
erator that creates a fermion in the local levels from a
conduction electron in channelt is denoted bydst

† . Since
each of thed states created bydst

† represents a differen
~pseudo!spin state, only one of the states should be occup
at a time. In order to enforce this constraint, we use
auxiliary boson technique27 and write dst

† as dst
† 5 f s

†bt̄ ,
where f s is a fermion operator andbt is a boson operato
describing the unoccupied locald level. The constraint is
then written as the operator identityQ5(s f s

† f s1(tbt
†bt

51. In terms of pseudofermion operatorsf s and slave boson
operatorsbt̄ , the SU(N)3SU(M ) Anderson model is

H5 (
kW ,s,t,a

~«kW2eVa!ckWst
a †

ckWst
a

1«d(
s

f s
† f s

1 (
kW ,s,t,a

Ua~ f s
†bt̄ ckWst

a
1H.c.!, ~1!

where f s , (s51, . . . ,N) transforms according to SU(N)
and bt̄ , (t̄51, . . . ,M ) transforms according to the adjoin
representation of SU(M ). The first term in Eq.~1! describes
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the conduction-electron bands with kinetic energy«pW offset
by 2eVa due to an applied voltage. The indexa is equal to
L and R, for the left and the right reservoirs, respective
Note that the two reservoirs do not constitute different sc
tering channels in the sense of the multichannel model, s
the reservoir indexa is not conserved by the Kondo interac
tion. The second and third terms represent the energyd
states and the hybridization term, respectively. The c
straint term is not explicitly written in the Hamiltonian Eq
~1!. Note that the local chargeQ commutes with the Hamil-
tonian.

As discussed in the Introduction, there are a numbe
possible physical realizations of the one-channel nonequ
rium Kondo model: magnetic impurities in tunnel junction
tunneling through charge traps, and possibly even tunne
through quantum dots. In each of these models thed states
introduced in the Anderson model have physical meaning
the case of transition-metal magnetic impurities, thed states
are literally the atomicd states of the impurity. For a charg
trap, thed states are the electronic states for the two poss
spin orientations of the trap. The two-channel model h
been proposed as a possible scenario for the occurrenc
non-Fermi-liquid behavior in some heavy fermion com
pounds with cubic crystal symmetry.34,42,43In that case, the
occupiedd states correspond to the states of a low-lyi
nonmagnetic doublet of the rare earth or actinide ato
while the empty levels, described bybt̄ , constitute an ex-
cited doublet of local orbitals.43

On the other hand, for the physical realization in terms
two-level systems, the empty states (bt̄

†) do not have direct
physical meaning. They are introduced as a construct in
resenting the pseudospins such that the channel qua
number t is conserved by the Kondo interaction. Via
Schrieffer-Wolff transformation,44 one can show that the
low-energy physics of the Anderson model of Eq.~1! is the
same as for the Kondo model in the limit when the occu
tion of thed statesnd approaches one. Thus, although we u
the Anderson model, the results for the low-energy phys
are expected to be the same as for the Kondo model.

B. The noncrossing approximation

1. Validity of the NCA

In the present context we are interested in the Kondo
gime of the Anderson model Eq.~1!, where the low-energy
effective couplingJa5uUau2/«d between the band electron
and the impurity is small,N(0)Ja!1, with N(0) the band
electron density of states per~pseudo! spin and channel. The
NCA is a self-consistent conserving perturbation expans
for the pseudofermion and slave boson self-energies to
order inN(0)Ja . Considering the inverse level degenera
1/N as an expansion parameter, the NCA includes all s
energy diagrams up toO(1/N). The self-energies are the
made self-consistent by inserting the dressed slave par
propagators in the Feynman diagrams instead of the
propagators.29–32 It is easily seen that this amounts to th
summation of all self-energy diagrams without any propa
tor lines crossing each other, hence, the name, noncros
approximation.

One may expect that the self-consistent perturbative
proach is valid as long as the summation of higher order
.
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Ja or 1/N do not produce additional singularities of pertu
bation theory. It has recently been shown36,37,45 that such a
singularity does arise in the single-channel case (M51,
N52) below the Kondo temperatureTK due to the incipient
formation of the singlet bound state between conduct
electrons and the local impurity spin. However, around a
aboveTK , and in the Kondo limit of the two-channel mode
(N52, M52) even down to the lowest temperatures, th
singularity is not present.36 Indeed, the NCA has been ver
successful in describing the single-channel Kondo model
cept for the appearance of spurious nonanalytic behavio
temperatures far belowTK . The spurious low-temperatur
properties are due to the fact that the NCA neglects ve
corrections responsible for restoring the Fermi-liquid beh
ior of the single-channel model.33,36 A qualitatively correct
description was achieved32,33 for the wide temperature rang
from well belowTK ~but above the breakdown temperatu
of NCA! through the crossover region aroundTK up to the
high-temperature regimeT.TK . For the multichannel prob-
lem M>N, the complications of the appearance of a sp
screened Fermi-liquid fixed point are absent. For this cas
has recently been shown35 that the NCA does reproduce th
exact4,5 low-frequency power-law behavior of all physica
properties involving the 4-point slave particle correlati
functions, like the impurity spectral functionAd and the sus-
ceptibilities, down to zero temperature. Therefore, in t
multichannel case the NCA is a reliable approximation46 for
quantities involvingAd ~like the nonequilibrium conduc-
tance! and the susceptibilities, even at the lowest tempe
tures.

2. NCA in thermodynamic equilibrium

The slave boson perturbation expansion is initially form
lated in the grand canonical ensemble, i.e., in the enlar
Hilbert space of pseudofermion and slave boson degree
freedom, with a single chemical potential2l for both
pseudofermions and slave bosons. Therefore, standard
gram techniques are valid, including Wick’s theorem. In
second step, the exact projection of the equations onto
physical Hilbert spaceQ51 is performed.29,32,40For a brief
review of the projection technique, we refer the reader
Appendix A.

The equations for the self-energies of the retarded Gr
functions of the pseudofermions, Gr(v)5@v2ed
2S r(v)#21, and the slave-bosons,Dr(v)5@v2P r(v)#21,
constrained to the physical subspace, read

S r~v!5M
G

pE deN̄~v2e! f ~e2v!Dr~e!, ~2a!

P r~v!5N
G

pE deN̄~e2v! f ~e2v!Gr~e!, ~2b!

whereG5puUu2N(0), N̄(v)5N(v)/N(0) is the bare den-
sity of states of the band electrons, normalized to its valu
the Fermi level, andf (v)51/(11ebv) is the Fermi func-
tion. The real and imaginary parts of the self-energy are
lated via Kramers-Kronig relations, e.g.,
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ReS r~v!5
1

p
PE de

Im S r~e!

e2v
. ~3!

Taking the imaginary part of Eqs.~2! and defining the spec
tral functions for the slave particles as

A~v!52Im Gr~v!/p52Im S r~v! uGr~v!u2/p,

B~v!52Im Dr~v!/p52Im P r~v! uDr~v!u2/p, ~4!

we arrive at the self-consistent equations

A~v!

uGr~v!u2
5M

G

pE deN̄~v2e! f ~e2v!B~e!, ~5a!

B~v!

uGr~v!u2
5N

G

pE deN̄~e2v! f ~e2v!A~e!. ~5b!

Together with the Kramers-Kronig relations, Eq.~3!, Eqs.
~5! form a complete set of equations to determine the sl
particle propagators. However, an additional difficulty aris
in the construction of physical quantities from the auxilia
particle propagators. The local impurity propagator

Gd,st~t2t8!52^T̂$dd,st~t!dd,st
† ~t8!%&

is given by thef 2b correlation function. Thus, its spectra
function is calculated within NCA as31

Ad~v!5
1

ZE dee2be@A~e1v!B~e!1A~e!B~e2v!#,

~6!

where

Z5E dee2be@NA~e!1MB~e!# ~7!

is the canonical partition function of the impurity in th
physical Hilbert spaceQ51 ~see Appendix A!. The require-
ment thatZ be finite implies that the auxiliary particle spe
tral functions vanish exponentially below a threshold ene
Eo .30,31 Above the threshold, the spectral functions sh
characteristic power-law behavior originating36 from the
Anderson orthogonality catastrophe. In Eqs.~6! and ~7!, the
Boltzmann factor does not allow for a direct numeric
evaluation of the integrand at negativee if b51/kBT is
large. It is therefore necessary to absorb the Boltzmann
tor in the spectral functions and find solutions for the fun
tions

a~v!5e2bvA~v!, b~v!5e2bvB~v!. ~8!

Using ebv f (v)5 f (2v), the equations determininga(v)
andb(v) are easily found from Eqs.~5!:

a~v!

uGr~v!u2
5M

G

pE deN̄~v2e! f ~v2e!b~e!, ~9a!

b~v!

uGr~v!u2
5N

G

pE deN̄~e2v! f ~v2e!a~e!. ~9b!
e
s

y

l

c-
-

The equations for the impurity spectral function and the p
tition function then become

Ad~v!5
1

ZE de@A~e1v!b~e!1a~e!B~e2v!#, ~10!

Z5E de@Na~e!1Mb~e!#. ~11!

In view of the generalization to nonequilibrium, it is instru
tive to realize that the functionsa(v) andb(v) are propor-
tional to the Fourier transform of the lesser Green functio
used in the Keldysh technique,47

a~v!5
i

2p
G,~v!, G,~ t2t8!52 i ^ f †~ t8! f ~ t !&,

~12!

b~v!5
i

2p
D,~v!, D,~ t2t8!5 i ^b†~ t8!b~ t !&,

and contain information about the distribution functions
the slave particles. Henceforth we will calla(v) andb(v)
the ‘‘lesser’’ functions. Equations~5!, ~9!, and~3! form a set
of self-consistent equations that allow for the construction
the impurity spectral functionAd .

A significant simplification of the above procedure can
achieved by exploiting that,in equilibrium, Eqs.~5! and ~9!
are not independent but linked to each other by Eq.~8!.
Hence, we define new functionsÃ(v) and B̃(v) via37

f ~2v!Ã~v!5A~v!, f ~2v!B̃~v!5B~v!. ~13!

By definition, Ã(v) andB̃(v) do not have threshold behav
ior, and the spectral functions as well as the lesser functi
may easily be extracted from them, i.e.,a(v)5 f (v)Ã(v),
B(v)5 f (v)B̃(v). Inserting Eq.~13! into Eqs.~5! one ob-
tains the NCA equations forÃ(v) and B̃(v),

Ã~v!

uGr~v!u2
5M

G

pE deN̄~v2e!
f ~e2v! f ~2e!

f ~2v!
B̃~e!,

~14a!

B̃~v!

uGr~v!u2
5N

G

pE deN̄~e2v!
f ~e2v! f ~2e!

f ~2v!
Ã~e!.

~14b!

One can convince oneself that the statistical factors app
ing in these equations are nondivergent in the ze
temperature limit for all frequenciesv, e. Thus, by solving
the two Eqs.~14!, instead of the four Eqs.~5! and ~9!, one
saves a significant amount of integrations. The equations
solved numerically by iteration. After finding the solution
an elevated temperature,T is gradually decreased. As th
starting point of the iterations at any givenT, we take the
solution at the respective previous temperature value. In
pendix A we describe an elegant and efficient implemen
tion of the NCA equations that leads to a significant im
provement in computational precision as well as speed.
proper setup of the discrete frequency meshes for the
merical integrations in the equilibrium and in the nonequil
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rium case is discussed in some detail in Appendix B. In t
way temperatures of 1/1000TK and below may be reache
without much effort. The solutions we obtained fulfill th
exact sum rules

nd[NE de f ~e!Ad~e!5NE de a~e![nf ,

E de Ad~e!512S 12
1

NDnf ,

typically to within 0.1% or better, wherend and nf are the
occupation numbers of physicald particles and pseudoferm
ons in the impurity level, respectively.

An important quantity is the self-energySc(v) of the
conduction electrons due to scattering off the Kondo
Anderson impurities. In the limit of dilute impurity concen
tration x!1, it is proportional to the bulk~linear response!
resistivity of the system and determines the renormali
conduction-electron density of states, which can be meas
in tunneling experiments. Below we will calculateSc(v)
within NCA in order to compare with the CFT prediction fo
the resistivity in equilibrium on one hand, and to compa
the linear response result with the zero-bias conductance
culated from a generalized Landauer-Bu¨ttiker formalism~see
Sec. III A! on the other hand.

Sc(v) is defined via the impurity averaged conductio
electron Green function in momentum space,Gc k(v)5@v
2«k2Sc(v)#21. In the dilute limit and for pures-wave
scattering,Sc(v) is momentum independent,

Sc~v!5xt~v!, ~15!

where t(v) is the localT matrix for scattering off a single
impurity. According to the Hamiltonian, Eq.~1!, t(v) is
given exactly in terms of the locald-particle propagator and
reads, e.g., for scattering across the junction (L→R),

t~v!5URUL* Gd~v!. ~16!

C. NCA for static nonequilibrium

If we apply a finite biasV, the system is no longer in
equilibrium. We cannot expect the simple relation Eq.~8!
between the lesser and the spectral functions to hold in
case. Therefore, the trick with introducing the functionsÃ

andB̃ cannot be performed. Rather, the NCA equations h
to be derived by means of standard nonequilibrium Gre
function techniques,40,47,48and one has to solve the equiv
lent of Eqs.~5! and ~9! for the nonequilibrium case withou
any further simplification. Defining in analogy to the equ
librium caseGL,R5puUL,Ru2N(0), the NCA equations for
steady-state nonequilibrium are

A~v!

uGr~v!u2
5

M

p E deB~e!

3 (
a5L,R

@GaN̄~v2e1ma! f ~e2v2ma!#,

~17a!
s

r

d
ed

e
al-

is

e
-

B~v!

uGr~v!u2
5

N

pE deA~e!

3 (
a5L,R

@GaN̄~e2v2ma! f ~e2v2ma!#,

~17b!

a~v!

uGr~v!u2
5

M

p E de b~e!

3 (
a5L,R

@GaN̄~v2e1ma! f ~v2e1ma!#,

~18a!

b~v!

uGr~v!u2
5

N

pE de a~e!

3 (
a5L,R

@GaN̄~e2v2ma! f ~v2e1ma!#.

~18b!

If the density of statesN(v) were a constant, the only dif
ference between the equilibrium and the nonequilibriu
NCA equations would be the replacement of the Fermi fu
tion by an effective distribution functionFe f f given by

Fe f f~e!5
GL

G tot
f ~e2mL!1

GR

G tot
f ~e2mR!, ~19!

whereG tot5GL1GR . Since our density of states is a Gaus
ian with a width much larger than all the other energy sca
uedu, G tot , TK , this is in fact the only significant modifica
tion of the NCA equations. Numerically, the most cruc
modification concerns the integration mesh. The pro
choice of integration meshes is central to the success of
iteration and is discussed in Appendix B.

III. CURRENT FORMULAS, CONDUCTANCE,
AND SUSCEPTIBILITIES

A. Current formulas and conductance

For the case of tunneling through a Kondo impurity, t
current is directly related to the impurity Green functions.
particular, the current in the left or in the right lead
given23,39 by a generalized Landauer-Bu¨ttiker formula,

I L~V!52N
e

\
GLE dvN̄~v2mL!

3@Gd
,~v!2Ad~v! f ~v2mL!#, ~20a!

I R~V!5N
e

\
GRE dvN̄~v2mR!

3@Gd
,~v!2Ad~v! f ~v2mR!#, ~20b!

whereGd
, is the lesser Green function of the impurity. It

obtained from the pseudofermion and slave boson Gr
functions via
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Gd
,~v!5

1

ZE de a~e!B~e2v!. ~21!

Making use of current conservation,I L5I R , and taking the
wide band limit, whereN(v) is taken to be a constant, th
current may be expressed solely in terms of the impu
spectral function

I ~V!5N
e

\

2GLGR

GL1GR
E dvAd~v!@ f ~v2mL!2 f ~v2mR!#.

~22!

The NCA is a conserving approximation.40 Therefore, the
currents computed for the left and the right leads should
the same when evaluated numerically. We have checked
current conservation within NCA and found that the tw
currents agree to within 0.5%, which sets a limit to the u
certainty for the average current,I (V)5(I L1I R)/2.

In order to obtain the differential conductanceG(V)
5dI(V)/dV, we perform the numerical derivative@ I (V1)
2I (V2)#/(V12V2), and take it as the value ofG(V) V
5(V11V2)/2. The numerical error involved in this proce
dure could be reduced to as little as 2%. The zero-bias c
ductance~ZBC! is the special case of the above equations
the limit of vanishing applied voltageV→0. The ZBC for a
tunnel junction is thus

G~0,T!5N
e2

\

2GLGR

GL1GR
E dvS 2

] f ~v!

]v DAd~v!. ~23!

It will be useful to compare this to the linear-response b
resistivity for a small density of impurities in a metal. Th
resistivity r is related to the impurity spectral function via32

1/r5constE dvS 2
] f ~v!

]v D t~v!, ~24!

where the impurity scattering rate is t21(v)
5xULUR* Ad(v). The impurity concentration is denoted b
x.

Most of our calculations were done with symmetric co
plings,GL5GR . However, this is not necessarily the case
an experimental situation, especially for tunnel junctio
When an Anderson impurity is placed inside a tunneling b
rier of thicknessd, the tunneling matrix elementUa depends
exponentially on the distancez of the impurity from the sur-
face of the barrier. Also, the bare energy level«d of the
impurity will be shifted due to the approximately linear inz
voltage drop inside the barrier. In order to investigate
consequences on the nonequilibrium conductance, we
performed evaluations with asymmetric couplings. For s
plicity, and in order to keep the total couplingG tot5GL
1GR constant, we assume a linear dependence of theGa’s
on z of the formGL5G tot(12z/d), GR5G totz/d. We also
modify ed according toed(V)5ed1(V/2)(122z/d). The
latter modification turns out to be insignificant as long asV
!uedu.

B. Tunnel junctions vs point contacts

The above formulas for the currents and conductances
valid in a tunnel junction geometry where the current m
flow through the impurity. In a point contact the two lea
y
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are joined by a small constriction. A currentI o will flow
through the constriction without the impurity being prese
In fact, the impurity will impedethe current due to additiona
scattering in the vicinity of the constriction. The questio
arises whether the effect of an impurity in a point contac
the same in magnitude but opposite in sign. This seem
natural assumption and has been known to be qualitativ
correct experimentally.41 Theoretically however, this has no
been shown, especially not for an interacting system like
Anderson model. In Appendix C we derive a general form
for the conductance that allows one to go continuously
tween a clean point contact and a tunnel junction. In the li
of a cleanpoint contact, where the transmission probabiliti
are close to unity, we find that the change in the conducta
due to an impurity in a point contact has the same form as
a tunnel junction, except for a change in sign. Thus, in cle
samples the results for the current calculated for the tun
junction apply for point contacts as well, if one subtracts o
the background current,I o . If I o is ohmic, the conductance
G(V) is shifted by the constantdIo /dV. Aside from this
shift and sign difference, the conductance signals of a tun
junction and a clean point contact will be the same.

C. Susceptibilities

The impurity contribution to the dynamic~pseudo!spin
susceptibility is calculated using the standard formulas31,32

from the lesser and the spectral function of the pseudofer
ons. The formula for the imaginary part reads

Im x~v!5
1

ZE de

p
@ A~e1v!a~e!2a~e!A~e2v!#.

~25!

The real part can be obtained by means of a Kramers-Kro
relation:

Re x~v!5
1

p
PE de

Im x~e!

e2v
. ~26!

The static susceptibilityxo5x(v50) follows directly from
this equation. Note that in the two-channel Anderson mod
as possibly realized in TLS’s, this susceptibility is not t
magnetic susceptibility. Rather, it is probed by a field co
pling to the impurity pseudospin, e.g., a crystal field break
the degeneracy of the TLS.

IV. RESULTS

A. Conductance for one- and two-channel models
with symmetric couplings

Using the formulas discussed in the previous section,
now present the results obtained from the numerical eva
tion of the bulk resistivity and of the conductance for sym
metric couplings. For the evaluations a Gaussian conduct
electron density of statesN(v) with half width D was used.
All calculations were done in the Kondo regime for the set
parameters«d520.67D, GL5GR50.15D. In order to make
the most direct comparison to experiment, the results for
two-channel case have been computed for apoint contact,
and the results for the one-channel case have been comp
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for a tunnel junction, except for Fig. 3 where we compare th
scaling behavior of the nonlinear conductance for the o
and two-channel models.

1. Linear response conductance and resistivity

The low-temperature limit of the linear response cond
tance shows power-law behavior in temperature. The ex
nent is determined by the symmetry of the underlying Kon
model. As explained in the discussion of the NCA, we e
pect to get quantitatively correct behavior for the tw
channel model, but not for the one-channel case. In Ref
we showed that the zero-bias correction to the conducta
G(0,T) for a two-channel Kondo impurity (N5M52) in a
point contact exhibits the expected5 T1/2 dependence at low
T. The slope of theT1/2 behavior defines a constantBS:

G~0,T!2G~0,0!5BST1/2, ~27!

which we will use below in interpreting the nonlinear co
ductance.

On the other hand, for the one-channel case (M51,
N52), one expectsT2 dependence because of the Ferm
liquid behavior at low temperatures. As shown in Fig. 1 fo
tunnel junction, the NCA as a largeN expansion is not able
to reproduce this power law forN52 at temperatures below
TK . IncreasingN to N54 andN56, the ZBC develops a
hump as a function of temperature. This peak is due to
fact that the Kondo resonance is shifted away from the Fe
level for N.2. Although we know of no experimental ev
dence for such humps in zero-bias anomalies, similar hu
have been seen in the magnetic susceptibilities of th
systems.32 Note that forN54,6, aT2 behavior appears fo
the temperatures shown below the hump. The tempera
range shown here is above the breakdown temperatur
NCA, below which a fractional power law,G(0,T)
2G(0.0)}2TM /(M1N), would appear.

FIG. 1. Zero bias conductance for tunneling through a sing
channel Anderson impurity (M51, N52) vs temperature. The
conductance for a clean point contact in the presence of a sin
channel Kondo impurity would be obtained by subtraction of t
curve from a~constant! background conductance. The graph forN
52 shows an almost linearT dependence at lowT whereas the
curves for spin degeneracyN54 and N56 show nonmonotonic
behavior. The humps are due to the fact that the Kondo peak o
spectral functionAd(v) is shifted away from the Fermi energyeF

by aboutTK . For T.TK , all the curves fall like ln(T/TK) for ap-
proximately one decade.
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For a bulk Kondo system it is impossible to measure
zero-bias conductance of single impurities. Instead, one m
sures the linear response resistivityr. In Fig. 2 we show the
impurity contribution to the resistivity for one-channel imp
rities with N52,4,6. Only theN56 curve shows a convex
dependence onT. In fact, r seems to behave like@1
2const(T/TK)2# at the temperatures shown, consistent w
a Fermi liquid.32 For N52 there is no convex temperatur
dependence even down toT50.02TK . Figures 1 and 2 also
serve to illustrate that the zero-bias conductance and the
resistivity for the same kind of Kondo impurities do not ne
essarily have the same temperature dependence.

2. Nonlinear conductance

Recently, it has been shown49 that the two-channel mode
exhibits scaling of the nonlinear conductanceG(V,T) as a
function of biasV andT of the form13

G~V,T!2G~0,T!5BSThHS A
eV

kBTD . ~28!

Here, H is a universal scaling function that satisfiesH(0)
50 and H(x)}xh for x@1, and A, BS are nonuniversal
constants. The exponenth is 1

2 for the two-channel model
This scaling ansatz is motivated by the scaling of the c
duction electron self-energy in the variables frequencyv and
temperatureT as obtained by CFT in equilibrium.5 Scaling
behavior is well known1 to be present also in the equilibrium
properties of the single-channel model (M51, N52).
Hence, in the caseM51, one may expect a scaling form o
the nonequilibrium conductance similar to Eq.~28! as well,
however with Fermi-liquid exponenth52.

In order to examine whether the scaling ansatz is cor
in a nonequilibrium situation, the rescaled conductance
plotted as a function of (eV/kBT)h. The conductance curve
for different T should collapse onto a single curve with
linear part for not too large and not too small argumen
Very largeV or T would drive the system out of the scalin
regime. A collapse indeed occurs for low biasV,T. How-
ever, for the larger bias the slope of the linear part showT
dependence~see Ref. 49 for more details!. This shows that

-

le-

he

FIG. 2. Bulk resistivity vs temperature for theM51 channel
model,N52,4,6. Of the three curves onlyN56 has a clear convex
shape and falls roughly likeT2 at low T. The N52 graph again
shows almost linearT dependence. Note that the humps in t
conductance forN54 andN56 are not present in the bulk resis
tivity r.
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there are significantT-dependent corrections to scaling, i
dicating that finite biasV and finite temperatureT are not
equivalent as far as scaling is concerned, although both
rameters have qualitatively similar effects on the cond
tance.

Figures 3~a! and 3~b! show the scaling plots for the case
M52 and M51, respectively, withN52 in both cases.
Whereas the two-channel case shows the behavior desc
above with the expected exponenth5 1

2 , the NCA does not
give the correct exponent for the single-channel model
fact, the data show approximate scaling. However, the ex
nenth extracted from the NCA data appears to be equa
unity rather than 2. This seems to reflect the dominant lin
temperature dependence of the ZBC that the NCA produ
in this case. This shortcoming is another consequence o
negligence of singular vertex corrections within the NCA

B. Deviations from scaling

Two possible origins for the above-mentioned finiteT
corrections to scaling at low temperaturesT are ~i! the non-
equilibrium state brings about terms in the electron s
energy that break scaling of the form suggested by CFT
equilibrium, and~ii ! there exist deviations from scaling i
equilibrium at finiteT that have large coefficients, restrictin
the scaling regime to temperatures smaller thanTK . Such
deviations can be induced, e.g., by potential scattering.

FIG. 3. Scaling plots of the conductance of point contacts in
presence of~a! a two-channel impurity (M5N52) and~b! a one-
channel impurity (M51, N52). With GL5GR andBS determined
from the zero-bias conductance@compare Eq.~27!#, there are no
adjustable parameters. There are two regimes in these plots
(eV/kBT)h,1.5 the curves collapse onto a single curve and
rescaled conductance is proportional to (eV/kBT)2. For larger
(eV/kBT)h the rescaled conductance is linear on these plots. T
are substantial corrections to scaling even atT small compared to
TK . At even larger biases this linear behavior rounds off, indicat
the breakdown of scaling. The temperatures are given in units o
respectiveTK for the two- and the one-channel case.
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latter is generically present in experimental systems in ad
tion to the Kondo~pseudo!spin interaction.

Recently, it has been shown in an exact solution of
single-channel model26 that in nonequilibrium the conduc
tance indeed has terms that explicitly break the scaling
havior. Though the coefficients of these terms are sm
scaling in the ordinary sense is clearly violated even at te
peratures well below the crossover temperature (TK). One
may conjecture that the two-channel Kondo model beha
in an analogous fashion.

Here we investigate case~ii ! for the two-channel Ander-
son model by examination of the behavior of the se
energies in equilibrium. The Anderson impurity model na
rally includes particle-hole asymmetry: The local leveled
has a finite position below the Fermi energy, while the do
bly occupied level is effectively shifted to infinity by th
strong on-site repulsion. The effect of the particle-hole asy
metry at low energies is a strong potential scattering term44

Without such a term, the retarded conduction-electron s
energySc(v,T) of the two-channel particle-hole symmetr
Kondo model obeys scaling of the form

Im Sc~v,T!2Im Sc~0,T!5bT1/2HS \v

kBTD , ~29!

as is known from the CFT solution in equilibrium.5,50 Here
H is the universal scaling function as considered above@Eq.
~28!, h5 1

2 # and the constantb is nonuniversal. According to
CFT, the sign ofb the sign depends on whether the Kon
coupling is on the weak-coupling or the strong-coupling s
of the ~intermediate coupling! fixed point.5 The NCA ap-
proach is on the weak-coupling side and yields a posit
constantb ~see below!, in agreement with CFT. The com
parison of the self-energies of the Anderson model~calcu-
lated within NCA! with the scaling form Eq.~29! of the
corresponding Kondo model allows us to estimate h
strongly potential scattering influences the scaling beha
in equilibrium. The corresponding scaling plot of th
conduction-electron self-energy is shown in Fig. 4, where
nonuniversal parameterb of the CFT curve@Eq. ~29!# has
been adjusted so that the slope of the part linear in (uvu/T)1/2

at negative frequencies matches the slope of the lowesT
NCA curve. As seen in the figure, the self-energies of
Anderson model deviate from the Kondo scaling form in tw
different ways:~1! There is a strong asymmetry about th
point v50, and~2! there are notable temperature-depend
deviations from the CFT scaling curve. These deviatio
may be traced back to the lack of particle-hole symmetry
equivalently, to the presence of potential scattering.

Within the Anderson model, the impurity electron se
energy Sd(v,T) is readily calculated from the definition
Gd(v,T)215v2ed2Sd(v,T), where Gd is the local d
Green function. The two physical self-energies,Sd(v,T)
andSc(v,T), are nonlinearly related via Eqs.~15! and ~16!
for a system of dilute impurities in equilibrium. In Fig. 5 w
display the imaginary part of the retarded self-ener
ImSd(v,T) in a scaling plot analogous to Fig. 4. It is see
that ImSd(v,T) exhibits deviations from scaling similar t
those of ImSc(v,T). The nonlinear conductance is direct
related to the spectral functionAd(v) via Eq.~22!. Note that
the asymmetries induced by potential scattering, presen
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ImSc(v), ImSd(v), andAd(v), respectively, are average
out in the nonlinear conductanceG(V,T) as a function of
bias V due to the integration over frequencies,2V/2<v
<1V/2, in Eq. ~22!. In contrast, the temperature-depende
deviations remain, as is seen from the scaling plot of

FIG. 4. Scaling plot for the imaginary part of the retarded co
duction electron self-energy for a small concentration (x51%) of
the M52 channel Anderson impurities in a noninteracting me
Temperatures are given in units ofTK . Im Sc has a minimum that
is shifted to positive frequencies due to finite temperature effe
The data are scaled with respect to the point„vmin ,Im S(vmin)….
For frequencies belowvmin , the self-energy behaves lik
(uvu/T)1/2 and scales well up to frequencies of the order ofTK .
However, for positive frequencies the self-energy is strongly te
perature dependent and scaling is less perfect. The paramete
the CFT prediction for the particle-hole symmetric Kondo mod
~dashed line! have been adjusted so that the slope for negative
guments matches that of the lowest temperature NCA curve.

FIG. 5. Scaling plot of the imaginary part of the impurity ele
tron self-energy for theM52 channel Anderson model. Temper
tures are given in units ofTK . For different temperaturesT,
Im@Sd(v,T)2Im Sd(0,T)#/(cT1/2) is plotted vs the square root o
the scaled frequency, (v/T)1/2. The constantc is positive and de-
pends on details of the model. The left parts of the curves (v,0)
obey the anticipated square-root behavior and scale very wel
uvu!TK . For v/T.0, the NCA curves show a strongT depen-
dence even forT!TK . This is a possible origin of theT-dependent
slopes of the nonlinear conductance curves in Fig. 5. However
modestly large frequencies, e.g.,v/T,4, the lowestT curves seem
to follow square-root behavior, too. The general asymmetry of
self-energy is a consequence of the particle-hole asymmetry o
Anderson model considered here.
t
e

NCA conductance49 ~Fig. 3!. Similar deviations are also ob
served in the experiments of Ref. 13. We conclude that
presence of potential scattering is a possible explanation
the deviations from scaling at finite temperature.

C. Conductance with asymmetric couplings

Up to this point we have taken the couplings of the im
purity to the conduction bands to be equal,GL5GR . As
mentioned before, especially for a tunnel junction there is
reason why this should be the case. The NCA Eqs.~17! and
~18! are not symmetric in the couplings, that isGL↔GR is
not a symmetry of the equations. This suggests that the
ferential conductance signals are not symmetric about z
bias if GLÞGR . Indeed, the Onsager relations for a two te
minal measurement only apply to the linear-response regi
For nonlinear response there is no simple relation betw
I (V) andI (2V). However, interchanging bothGL↔GR and
V↔2V is a symmetry. It is therefore enough to show on
the conductances forGL. 1

2 . The curves withGL, 1
2 can be

obtained from theGL. 1
2 ones by reflection about they axis.

An example of such asymmetric conductance curves
shown in Fig. 6. The data is for the two-channel model, b
the qualitative aspects of asymmetry does not depend on
channel number. The constantBS is dependent on the asym
metry, but has been divided out for better comparison of
curves. The asymmetry is pronounced even for moderate
viations from symmetric coupling. Asymmetric conductan
vs voltage curves have been seen in experiments on ordi
one-channel Kondo impurities in Ta-I-Al tunnel junctions9

where they were plotted as an odd in voltage contribution
the differential conductance. We are not aware of asymm
tries in the experiments with two-channel Kondo impuritie
which would apply directly to Fig. 6.

D. Dynamic and static susceptibility
for the two-channel model

Finally, we discuss the results for the static and dynam
susceptibilities with and without finite bias. The susceptib
ity is one of the clearest measures of the screening of
impurity by electrons. All data shown below are for the tw
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FIG. 6. Nonlinear conductance for theM52 channel case for
asymmetric coupling,GLÞGR512GL . As expected from the
asymmetry of the NCA equations~16! and ~17!, the conductance
signals show a quite strong asymmetry about zero bias even
moderate differences in the couplings. Asymmetries in the cond
tance have been observed in metal-insulator-metal tunnel juncti
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channel model, where NCA is known to describe the corr
singular low-energy behavior of the susceptibilities.35

In equilibrium, in the zero-temperature limit, the dynam
susceptibility defined in Eq.~25! is given by a step function
of the form35

Im x~v!5c1sgn~v!F12c2AU v

TK
U1 . . . G . ~30!

The NCA approaches this behavior as the temperature is
duced. At finite temperature, the step is broadened, with
extrema located at frequencies that scale withT1/2. The real
part follows from a Kramers-Kronig relation and diverg
logarithmically forv→0, again cutoff at finiteT. As a con-
sequence, the static susceptibilityxo5Rex(v50) diverges
logarithmically asT approaches zero, in agreement with no
Fermi-liquid behavior, as has been predicted before.4,5,35

This logarithmic divergence is well reproduced by the NC
technique, see Fig. 7.

In contrast to the Zeeman term of an external ‘‘magnet
field, an applied finite bias does not break the~pseudo!spin
symmetry. Neither does it affect the channel symme
However, as mentioned in Sec. IV C, it breaks the pa
symmetry. IfT!V, the Anderson impurity effectively see
two Fermi levels. In the regimeT,V!TK the bias acts like
an additional temperature, and thus serves as another
energy cutoff. This picture is confirmed by the numeric
data. If we look at the extrema of the imaginary part of t
susceptibility at low temperature but finite bias (V.T, not
shown!, we find that they are located at smaller absol
values than at the corresponding temperature. The loga
mic divergence of the Rex(v) is cutoff at aboutV, so that
the static susceptibility does not diverge logarithmically
T→0 anymore. Instead, it approaches a finite value wit
quadraticT dependence~see inset of Fig. 7!. However, this
does not signal moment screening and Fermi-liquid form
tion for T,V, since we still haveAV/T behavior of the
conductance forV well below TK . Rather, it is crossove

FIG. 7. Static susceptibilityxo ~arb. units! vs temperature a
zero and at finite biasV for M52, N52. In equilibrium,xo shows
the characteristic, expected logarithmic divergence asT approaches
zero for the two-channel model. Out of equilibrium, this divergen
is cut off at a temperature corresponding to the biasV. The inset
shows thatxo falls with T2 below this cutoff. For high temperature
T@TK , xo falls like 1/T ~Curie-Weiss law!.
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behavior to a finite susceptibility value at zeroT that is de-
termined byV. Figure 7 shows theT dependence ofxo for
V51/10TK .

Similar behavior~i.e., quadratic inV for low V, logarith-
mic for T,V,TK) is observed for theV dependence of the
static susceptibility~see Fig. 8!; however, there is a differ-
ence in the dependence onT andV in the regimeTK,T,V
andT,V,G tot . Note that NCA gives the correct equilibrium
behavior atT*TK and is currently the only technique tha
makes controlled predictions about nonequilibrium prop
ties. For largeT.TK at zero bias the static susceptibilit
behaves like 1/T, indicating Curie-Weiss behavior. Howeve
for large V at low temperature,xo falls less rapidly. The
difference becomes obvious if we plotVxo vs log(V) and
Txo vs log(T) as shown in Fig. 9. Whereas theT dependence
saturates, indicating the free moment at high temperatu
the V dependence shows linear behavior, leading toxo

e

FIG. 8. Static susceptibilityxo ~arb. units! vs biasV at various
temperaturesT for M52, N52. Temperatures are given in units o
TK . xo has a very similar dependence onV andT as long asV,T
,TK ~scaling regime!. xo drops likeV2 for T&0.1TK and like log
(V) aroundTK . However, for largeV@TK , xo falls less rapidly
with V than withT, see Fig. 9.

FIG. 9. Product of the static susceptibilityxo and temperatureT
~biasV) vs T (V) on a semilogarithmic scale forM52, N52. 1:
T dependence; o:V dependence. TheT dependence shows satur
tion at high temperatures and therefore implies the Curie law,xo

}1/T. However, theV dependence is linear at large bias, implyin
that xo falls less rapidly withV than with T, xo} log(V)/V. The
y-axis units are such that a ‘‘free pseudospin’’ would correspond
a constant value of 1/2~Curie-behavior at large temperatures!.
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;blog(V)/V. This stresses again the different consequen
of rising T andV once one has left the scaling regimeT,V
,TK . This difference can be understood by observing
very different behavior of the impurity spectral functio
Ad(v) ~not shown, cf. Ref. 49! in the large bias and larg
temperature regime, respectively. For zero bias and low t
peratures there is a sharp resonance with widthTK . Increas-
ing the temperature aboveTK , the peak would broaden at th
expense of its height. In contrast, if we keep the tempera
low, T!TK , and increase the bias, the resonance first de
ops a shoulder and then splits into two much broader
separated peaks. Increasing the temperature would eve
ally wash out the peak splitting and restore a single, tho
much less pronounced, peak. This difference in behavio
largeT vs largeV is the reason for the breakdown of scalin
of the conductance forT or V larger thanTK . It is also the
origin of the different behavior of the susceptibility~Fig. 9!.

V. CONCLUSION

In conclusion, we have described in detail the analyti
foundations and the numerical implementation of the NC
integral equations for the one- and two-channel Ander
model out of equilibrium. Our algorithms enabled us to rea
lower temperatures than previously obtained, allowing us
study the physics deep inside the scaling regime of the t
channel model.

In linear response, we computed the conductance for
nel junctions and point contacts as well as the bulk resis
ity. The two-channel data for both properties showT1/2 be-
havior in agreement with results obtained by other metho
For the single-channel model andN52, we find dominantly
linear behavior belowTK . For N56, the bulk resistivity
drops withT2 ~Fermi-liquid behavior! at the lowest tempera
tures considered in this work; however, the tunnel junct
conductancerises with T2, reaches a maximum below th
Kondo temperatureTK , and then falls off logarithmically a
higher T. This ‘‘hump’’ is associated with the fact that th
Kondo peak of the impurity spectral function is shifted aw
from the Fermi level for values ofN.2.

If we turn on a finite biasV, the Kondo peak of the im-
purity spectral function first diminishes in height and broa
ens, then splits into two peaks located at the energies of
two Fermi levels of the leads at a bias of about 10TK . The
nonequilibrium conductance is again consistent with lin
behavior in the regimeT,V,TK for the single-channel cas
with M51, N52. Therefore, we can plot the conductance
a function of eV/kBT and achieve scaling for modest biasV.
Whether similar scaling of the conductance but with arg
ment (eV/kBT)2 can exist for the caseN56, is yet to be
determined. The tunnel junction conductance falls withV2

for biasV,TK . This is in stark contrast to the hump in th
T dependence of the zero-bias conductance. If at all, sca
seems possible only for temperatures well below the te
perature where the hump occurs. The two-channel data s
scaling with respect to the argument (eV/kBT)1/2, consistent
with conductance measurements on clean point contact
has to be pointed out, though, that the scaling at nonzero
in the two-channel as well as in the single-channel mode
only approximate. FiniteT corrections are observed in th
numerical data~and also in the experimental data! for tem-
es
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peratures down to about 1/100TK . This indicates that finite
biasV and finite temperatureT are not equivalent, although
they have qualitatively similar effects on the conductan
The scaling of the conduction-electron self-energy turns
to be worse than that of the nonlinear conductance. This m
be traced back to the lack of particle-hole symmetry of o
model, which leads to asymmetries in the self-energy eve
the lowest temperature. Additionally, there are also stro
temperature-dependent corrections to the square-root be
ior.

If we allow for asymmetric couplings to the left and righ
Fermi seas, we observe conductance signals that are a
metric about zero bias. Such features have been seen in
periments on metal-insulator-metal tunnel junctions.

Finally, we also calculated the dynamic and static~pseu-
do!spin susceptibility and discussed the modifications due
a finite bias by example of the two-channel model. The d
namic susceptibility approaches a finite step atv50 as T
→0, leading to a logarithmic divergence of the static susc
tibility in agreement with CFT results. A finite bias cuts o
this logarithmic divergence. In a very similar fashion, t
temperature cuts off the divergence as the bias is vanish
Differences in the bias and temperature dependence of
static susceptibility appear at high bias and temperature
side of the scaling regime.
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APPENDIX A: NUMERICAL IMPLEMENTATION
OF THE NCA EQUATIONS

Below we briefly review the slave boson projection tec
nique and describe an implementation that allows for
highly accurate, as well as efficient, numerical treatment
the singularities of the spectral functions that arise from
projection.

The exact projection of the expectation value of any o
erator Ô onto the physical subspaceQ51 is achieved by
first taking the statistical average in the grand canonical~GC!
ensemble with a chemical potential2l for both fermionsf
and bosonsb, and then differentiating w.r.t. the fugacityz
5exp(2bl) and taking the limitl→`,

^Ô&C5 lim
l→`

d

dz
tr@Ôe2b~H1lQ!#

d

dz
tr@e2b~H1lQ!#

~A1!
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5

lim
l→`

^Ô&GCebl

lim
l→`

^Q&GCebl
. ~A2!

Note that in this expression the factorQ arising from the
differentiation d/dz in the numerator may be dropped fo
any operatorO whose expectation value in the subspaceQ
50 vanishes~like, e.g., O5dst(t)dst

† (t8) or any other
physically observableoperator on the impurity site!. The ca-
nonical ~C! partition function is given by

Z5 lim
l→`

@ebl^Q&GC~l!# ZQ50 ~A3!

5ZQ50 E dee2be@NA~e!1MB~e!#, ~A4!

whereZQ50 is the partition function in the subspaceQ50.
The integrals involved in the NCA equations are difficu

to compute because of the singular threshold structure31 of
A(v), B(v), where the position of the threshold energyEo
is a priori not known. In order to make the numerical eval
ations tractable, we apply a timet-dependent U~1! gauge
transformation simultaneously to thef and b particles ac-
cording tof→exp(ilot) f , b→exp(ilot)b. This transforma-
tion is a symmetry of the Anderson model and amounts t
shift of the slave particle energy or chemical potential bylo ,
v→v1lo . Note that this shift does not affect any physic
properties, as seen explicitly, e.g., from Eq.~10!. After this
energy shift, the spectral and lesser functions appearin
the NCA equations read

Alo
~v!5

Im S r~v!

@v2ed1lo2Re S r~v!#21@ Im S r~v!#2
,

~A5a!

Blo
~v!5

Im P r~v!

@v1lo2Re P r~v!#21@ Im P r~v!#2
,

~A5b!

alo
~v!5

S,~v!

@v2ed1lo2Re S r~v!#21@ Im S r~v!#2
,

~A6a!

blo
~v!5

P,~v!

@v1lo2Re P r~v!#21@ Im P r~v!#2
.

~A6b!

In particular, we now have from Eq.~A4!

Z~lo!

ZQ50
5e2bloE dee2be@NA~e!1MB~e!#. ~A7!

The crucial point about making the numerics efficient is t
lo is determinedin each iterationsuch that the integral in
Eq. ~A7! is equal to unity.37,33 This definition oflo forces
the zero of the auxiliary particle energy to coincide with t
threshold energyEo50 in each iteration step. Thus, it en
ables us to define fixed frequency meshes that do not ch
from iteration to iteration and at the same time resolve
a

l

in

t

ge
e

singular behavior very well, as described in Appendix B. T
procedure described above leads to a substantial gain in
cision and significantly improves the convergence of the
erations, even though the equation determininglo must be
solved during each iteration.

From Eq.~A7! and the definition of the impurity contri
bution to the free energy Fimp(T), exp(2bFimp)
5Z(T)/ZQ50(T), it is seen thatlo determined in the above
way is just equal toFimp . This provides a convenient way o
calculating Fimp(T) directly from the auxiliary particle
Green functions.

APPENDIX B: INTEGRATION MESHES
FOR EQUILIBRIUM AND NONEQUILIBRIUM NCA

The various features of the auxiliary particle, as well
the physical spectral functions, are characterized by ene
scales, which differ by several orders of magnitude. Th
energy scales are the conduction bandwidthD, the localized
level ed , and the dynamically generated Kondo scaleTK ,
which is typically of order 1024D. Moreover, because of th
T50, V50 threshold divergence of the auxiliary partic
spectral functions, the sharpest features have a width g
by the temperature, which can be of the order of 1027D. In
nonequilibrium, the biasV appears as an additional scale.
the numerical solution of the NCA equations, discrete, n
equidistant integration meshes must be setup such that a
features at the various energy scales are well resolved.

These meshes can be generated by mapping the
pointsxi of an equidistant mesh onto the nonequidistant f
quency pointsv i by means of an appropriately chosen fun
tion h(x). In the regions where the very sharp features of
spectral functions and the Fermi function appear, i.e., n
v50 andv56V/2, respectively, we will use a logarithmi
cally dense mesh. On the other hand, in order to resolve
relatively broad peak centered around the local level«d , the
substitutionv i5«d1ctan(xi) will be used.

In general, the entire interval of integration is compos
of L meshes$xi

l%, i 51, . . . ,nl , l 51, . . . ,L. We map these
meshes onto the nonuniform frequency meshes$v i

l% via

v i
l5hl~xi

l !, i 51, . . . ,nl . ~B1!

We can now rewrite the integration of an arbitrary functi
k(v) as an integration over the ‘‘equidistant’’ variables$xi

l%:

E
2`

`

dvk~v!5(
l
E

al

bl
dx

]hl~x!

]x
k@h~x!#

.(
l

DxlF (
i 52

nl21 S ]hl

]xl
~xi

l !k@h~xi
l !# D

1
1

2S ]hl

]xl
~x1

l !k@h~x1
l !#

1
]hl

]xl
~xnl

l !k@h~xnl

l !# D G . ~B2!

The al5v1
l ,bl5vnl

l are the limits of integration of the dif-

ferent regions of the frequency axis. To cover the whole a
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we must haveal 115bl . In equilibrium, we can get by with
four regions: @2`,2v I), @2v I ,05eF), @0,v I), @v I ,`#,
wherev I is an interface frequency where two regions of t
mesh are matched. (uedu2G.v I@TK.! By choosing the
functionshl(xl) as «d1c1tan(xl) in the regions with large
absolute frequency and asc2exp(xl) in the regions uvu
,v I , we create large mesh point spacings far fromeF and
exponentially small spacings~‘‘logarithmic’’ mesh! at eF
50. Proper adjustment of constants in thehl ’s is required.
The frequency mesh point spacing nearv50 should be at
least 10 times smaller thanT ~and/orV out of equilibrium!.
Crucial for the success of this procedure is the introduct
of lo ~see Appendix A! in the iteration procedure.lo shifts
the peaks of the slave particle functions to the neighborh
of v50 in each iteration step. This allows us to define
fixed frequency grid, which leads to a significant increase
computational speed and precision.

Out of equilibrium the distribution function is a doub
step function with steps at6V/2. It turns out that in the
Kondo limit the slave boson spectral and lesser functi
show broadened peaks at about the same frequencies. H
ever, the pseudofermion functions behave differently. Th
do not split, but have a single peak somewhere between
Fermi level andV/2 that shifts not linearly withV. To cope
with such behavior we wish to have good resolution at6V/2
and ateF . ~The latter one is to improve the resolution at t
location of the peak of the pseudofermion functions. Unf
tunately, we do not know how this location will move wit
increasingV.! To achieve this we let the logarithmic mes
end at 6V/2 coming from larger/smaller frequencies a
choose the spacing in between according to the sum of
tanh functions that have their zero shifted to6V/4, respec-
tively. We have to choose parameters of these functions
that the mesh spacings at the crucial energies is small en
to resolve all features of the integrand. These parame
depend on the biasV. They have to be calculated before th
mesh is defined whenever we change the potential from
run to the next. However, once the mesh is set, we do
have to change it anymore during the iterations, becaus
the same reasons as in equilibrium.

The typical total number of integration points used is 2
and 250 for equilibrium and out of equilibrium, respective
Out of equilibrium we need about 50 points more for t
‘‘inner’’ region between6V/2 at moderate biasV,20TK .
For higher bias we have to introduce more points in the in
region. Convergence is achieved within 100–200 iteratio
The CPU time to obtain a converged solution on a typi
workstation is below 1 min for the equilibrium case and
the order of minutes for the nonequilibrium case.

APPENDIX C: GENERAL FORMULA
FOR THE CONDUCTANCE

In this Appendix we derive Eq.~22! for the current
through a constriction with an impurity. We proceed in thr
stages. First, we introduce our scattering state notation
review the noninteracting case. Next, we derive a gen
formula for scattering from an interacting impurity. This
valid for point contacts, tunnel junctions, and anything
between. Finally, we specialize to the case of a clean p
contact.
n
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The geometry we consider consists of perfect left (L) and
right (R) leads connected by a central region where ther
scattering. The scattering statesc(x) are eigenstates of th
noninteracting problem. They are labeled by their incom
wave vectorsk, wherekz.0 corresponds to a right movin
wave andkz,0 corresponds to a left moving wave, wherez
is the direction along the length of the leads. For example
state moving from left to right (kz.0) has the asymptotic
form for z@0 of

ck~x!5(
k'8

tk8k
RL Auvz /vz8ue

i ukz8uzwk
'8
~x'!, ~C1!

and forz!0 of

ck~x!5ei ukzuzwk'
~x'!1(

k'8
r k8k

L Auvz /vz8ue
2 i ukz8uzwk

'8
~x'!.

~C2!

The transverse modeswk'
(x') in Eqs. ~C1! and ~C2! are

chosen to have unit normalization, andvz5kz /m is the ve-
locity along the length of the leads. It is also understood t
the energy of the incident and transmitted waves are
same,ek'

1ekz
5ek

'8
1ek

z8
.

The current for both the interacting and the noninteract
case may be expressed as a cross-sectional integral o
‘‘lesser’’ Green function:

I 5E dv

2p E d2x'S ¹z2¹z8
2mi Dg,~x,x8;v!U

x5x8

. ~C3!

For the noninteracting case, this Green function may be w
ten in terms of the scattering states as

g,
o ~x,x8;v!5E dkz

2p (
k'

2pd~v2Ek!ck~x!ck* ~x8! f k~v!,

~C4!

wheref k(v) is a Fermi function at chemical potentialmL for
kz.0 and atmR for kz,0. We will usually refer to these
Fermi functions asf L(v) and f R(v), respectively. Using the
asymptotic expressions of Eqs.~C1! and ~C2! for the right
moving scattering states and the similar ones for the
moving states, Eqs.~C3! and~C4! lead to the usual Landaue
formula for the conductance:

I 5E dEk

2p (
k'k'8

utk8k
RL u2@ f L~Ek!2 f R~Ek!#. ~C5!

We now add an impurity that includes an interacting te
to the Hamiltonian. The coupling of the impurity, denoted
0, to the electrons is given by

H85E dkz

2p (
k'

Wkc0
†ck1Wk* ck

†c0 , ~C6!

wherek refers to the scattering state of incoming wave ve
tor k, not a plane-wave state. In Eq.~C6!, and in the previous
equations, we have not included spin. The entire deriva
presented here follows through in the presence of a spin~or
other! index so long as the self-energy is diagonal in th
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index. This is the case for the Anderson model used in
paper. In order to simplify the notation, we shall proce
without spin and at the end quote the final result when
electron spin is included.

Using Dyson’s equation one can express all of the Gr
functions for the full systemg in terms of the noninteracting
Green functionsgo, and the full Green function at the impu
rity, g(0,0). In particular, the Green functiong,(k,k8),
which is used to compute the current, is given by

g,~k,k8!52pd~kz2kz8!dk'k
'8
g,

o ~k!

1g,
o ~k!Wk* ga~0,0!Wk8ga

o~k8!

1gr
o~k!Wk* g,~0,0!Wk8ga

o~k8!

1gr
o~k!Wk* gr~0,0!Wk8g,

o ~k8!. ~C7!

In Eq. ~C7! all Green functions have the same energy,v.
The self-energys contains the many-body interaction at th
impurity site. Equation~C7! is converted to real space usin

gr~x,0!5E dkz

2p (
k'

ck~x!gr~k,0!, ~C8!

and the similar relation for the advanced Green function. T
result for the real spaceg, is

g,~x,x8!5gr~x,0! s, ga~0,x8!1E dkz9

2p (
k'9

$ck9~x!

1gr~x,0!Wk9%g,
o ~k9! $ck9

* ~x8!1Wk9
* ga~0,x8!%.

~C9!

As for the noninteracting case, we wish to evaluate the c
rent far into the left and right leads. To do this, we need
asymptotic form of the scattering states@Eqs.~C1! and~C2!#
and the asymptotic form of the retarded and advanced G
functionsgr (a)(x,0), which we define as

gr~x,0!

gr~0,0!
5(

k'

tk
R~L ! wk'

~x'! e1~2 !i ukzuzuEk5v . ~C10!

Substituting Eq.~C9! into Eq. ~C3!, for the current, then
yields

I R5 (
k' ,k'9

E dv

2p
utkk9

RL
1tk

Rgr~0,0!Wk9u
2f L~v!

1 (
k' ,k'9

E dv

2p
@ ur kk9

R
1tk

Rgr~0,0!Wk9u
22dk'k

'9
# f R~v!

1(
k'

E dv

2p
vz9utk

Rgr~0,0!u2s,~v!, ~C11!
is

e

n

e

r-
e

en

I L52 (
k' ,k'9

E dv

2p
utkk9

LR
1tk

Lgr~0,0!Wk9u
2f R~v!

2 (
k' ,k'9

E dv

2p
@ ur kk9

L
1tk

Lgr~0,0!Wk9u
22dk'k

'9
# f L~v!

2(
k'

E dv

2p
uvz9uutk

Lgr~0,0!u2s,~v!. ~C12!

Equations~C11! and~C12! are our most general expressio
for the current. It is useful to compare them to those for
noninteracting case@Eq. ~C5!#. Without the terms involving
s, , Eqs.~C11! and~C12! have exactly the same structure
the noninteracting current. The effect of the impurity is
change the transmission probability for electrons com
from the left or the right. Thes, contains the ‘‘scattering
out’’ of an electron from the impurity state. This is a featu
of the interacting problem.

Equations~C11! and~C12! are valid for an arbitrary scat
tering potential, including both the tunnel junction case a
the clean point-contact case. We model the clean po
contact case by a perfect wire. The wire will have a cond
tance equal toe2/h times the number of channels at th
Fermi energy. The transmission and reflection probabilit
for this case are 1 and 0:

dk',k
'9
5tk,k9

RL
5tk,k9

LR , ~C13!

05r k,k9
R

5r k,k9
L . ~C14!

In this perfect wire case the scattering states are plane wa
The impurity is placed at positionx5a and the overlap ma-
trix elements are

Wk5WL~R!
eik•a

AA
, ~C15!

whereA is the cross-sectional area of the wire. As in Eq
~C1! and~C2!, theL here refers to scattering states that st
on the left,kz.0, andR refers to those which start on th
right, kz,0. The distinction between left and right moving
probably unphysical here; however, it is useful to make c
tact to the tunnel junction case. Equation~C15! implies that

tk
R~L !5

WL~R!e2 ik•a

AA
1

i uvzu
. ~C16!

Finally, we define the scattering rate of statek from the
impurity as

Gk
A5

uWAu2

A E dkz

2p
pd~v2ek'

2ekz
!5

1

2

1

uvzu
uWAu2

A ,

~C17!

where the integral is done either overkz.0 or kz,0 for A
5L, R, respectively. Current conservation requires thatI L
5I R , so, in computing our final result for the current, we c
take any linear combination ofI L and I R that is convenient:
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I 5
uWLu2

uWLu21uWRu2
I L1

uWRu2

uWLu21uWRu2
I R

5(
k'

E dv

2p
@ f L~v!2 f R~v!#

2E dv(
k'

2Gk
LGk

R

Gk
L1Gk

R
Ad~v!@ f L~v!2 f R~v!#,

~C18!

whereAd(v)52Imgr(0,0)/p is the impurity spectral func-
tion.

This is our final result for the number current. The fir
term gives the Sharvin point contact conductance. The
ond term is the correction to the current due to the prese
a

,

t
c-
ce

of the impurity. The expression is the same as for a tun
junction,23,39 except the sign is reversed. The correction
the current once one includes the electron spin is

dI 52E dv (
k' ,s

2Gk,s
L Gk,s

R

Gk,s
L 1Gk,s

R
Ad,s~v!@ f L~v!2 f R~v!#,

~C19!

where the only change from Eq.~C18! is that there is a sum
over the spins. If we assume a constant density of states a
no spin dependence of the matrix elements, we obtain
expression Eq.~22!, except for the difference in sign be
tween the tunnel junction and point-contact case. Note tha
Eq. ~22! theGL andGR are defined with the density of state
divided out.
.

.
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