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Supershell structure of magnetic susceptibility
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~Received 24 March 1998!

The magnetic susceptibility of electrons confined to a spherical cavity or a circular billiard shows slow
oscillations as a function of the number of electrons, which are a manifestation of the supershell structure
found in the free energy of metal clusters. The relationship of the oscillations of the two different quantities is
analyzed by means of semiclassical calculations, which are in quantitative agreement with quantal results. The
oscillations should be observable for ensembles of circular ballistic quantum dots and metal clusters.
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I. INTRODUCTION

The confinement of independent fermions in two or th
dimensions~3D! leads to a bunching of the single partic
levels, if the mean free path of the fermions is large co
pared to the size of the system. This is known as shell st
ture~SS! and leads to oscillations of the total energy as fu
tion of particle numberN around a smoothly changin
background. The oscillating part, referred to as shell ene
has minima at the so-called magic numbers, which have b
known for a long time for nuclei. More recently they hav
been observed in the abundance spectra of alkali metal c
ters ~see Ref. 1 and the original work cited therein!, repre-
senting minima of the free energy.2 Later, it was found,3 that
the amplitude of these shell oscillations is modulated b
slow oscillation. This so-called supershell structure~SSS!
had been predicted theoretically.4,5 In this paper we will
show that the magnetic susceptibility follows a similar S
pattern. Using the Strutinsky shell correction method6–8 and
semiclassical periodic orbit theory~POT!, we will trace the
SSS of the susceptibility and free energy back to the sa
interference pattern between electrons on classical peri
orbits.

The consequences of SS for the magnetic susceptibilit
the confined electron gas have been discussed in Refs. 9
and earlier references cited therein. The susceptibility o
confined ballistic 2D electron gas can be measured for la
ensemble of quantum dots on a AlGaAs-GaAs semicond
tor heterostructure.9 For this type of experiment it is
claimed9,11–13 that the shell oscillations as a function of th
electron numberN are averaged out by the fluctuations of t
size and the shape of the individual dots. The only quan
size effect~QSE’s! expected to survive is a paramagne
enhancement of the susceptibility, which changes smoo
with N. In this paper we will argue that such experimen
should permit us to resolve the slow oscillations reflect
the SSS. We will also discuss the experimental possibili
to detect SSS of the magnetic susceptibility of metallic cl
ters.
PRB 580163-1829/98/58~9!/5622~6!/$15.00
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II. SUSCEPTIBILITY OF ELECTRONS
IN A SPHERICAL CAVITY

Choosingz as the direction of the magnetic fieldH, the
orbital part of the electronic Hamiltonian is15

H5H01vLz1
Mv2

2
~x21y2!, ~1!

whereH0 is the Hamiltonian at zero magnetic field, consis
ing of kinetic energy and the confining potential, which
assumed to be circular or spherical. The operatorLz is the
angular momentum projection on thez axis andM the effec-
tive electron mass. We use the Larmor frequen
v5mBH/\ as the unit of the magnetic fieldH in order to
stress the analogy to the case of a system rotating with
angular velocity2v.

Up to third order of perturbation theory inv, the thermo-
dynamical potentialV(T,l,v) as a function of the tempera
ture T and chemical potentiall is

V~T,l,v!52T(
n

lnF1

1expS l2«n2\vmn2Mv2^x21y2&n/2

T D G ,
~2!

where«n , mn , and ^•••&n are the energy, the angular mo
mentum projection, and the expectation value with the
perturbed electron staten. In our units, the zero field suscep
tibility is a moment of inertia. For the grand canonic
ensemble it reads

u52S ]2V

]v2 D
v50

5ucr2u rig , ~3!

ucr5(
n

~\mn!2
]nn

]l
, ~4!
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u rig5ME drr~r !~x21y2!, ~5!

wherenn5$11exp@(«n2l)/T#%21 are the Fermi occupation
numbers andu rig is the moment of inertia of rigid rotation
r(r ) being the particle density.

The shell structure ofucr has been analyzed for nucle
rotation ~where it is called the cranking moment of inertia!.
Following the concepts of Strutinsky’s shell correctio
method,6,7 V, ucr , and other quantities are divided into
smooth part and into a shell part~denoted by the subscrip
sh!. The shell contribution toucr , which we callush, repre-
sents the total QSE, because the shell part ofu rig is negligible
as compared toush. The partition can either be done nume
cally starting from the quantal electron levels6–8 or it can be
based on semiclassical periodic orbit theory~POT!. In the
latter case the shell terms read16,17,13

H ush~T,l!

Vsh~T,l!J 52(
b

H a~ l b!2

~\/tb!2J Ab~l!

3sinS 1

\
Sb~l!1nbD Ttb /\

sinh~Ttb /\!
, ~6!

whereVsh denotes the value at zero field anda51 or 1
3 in

2D or 3D, respectively. For the spherical cavity4 and the
circular billiard12,13the orbitsb(t,p) are defined by the num
ber t of the revolutions around the center and the numbep
of the corners,

Lb52pRsinf, f5pt/p, ~7!

Sb5\kLb , l b5\kRcosf, tb5
MLb

\k
, ~8!

Ab5
2MR2

\2

1

AkR

f b~sinf!3/2

App
~p>2t !, 2D, ~9!

Ab5
2MR2

\2
AkRsin~2f!Asinf

pp
~p.2t !, 3D, ~10!

Ad5
2MR2

\2

1

pp
~p52t !, 3D, ~11!

nb52
3p

2
p1

3p

4
, 2D, ~12!

nb52
3p

2
p2~ t21!p2

p

4
, 3D, ~13!

where we have introduced the length of the orbitLb , the
wave numberk5A2Ml/\2, and f b51 for diameters and 2
for planar orbits. The phasesnb , which are related to the
Maslov indices, are not important in our discussion and
given in Refs. 4 and 13. The POT level densities of a sph
cal cavity and a circular billiard in a magnetic field ha
been studied in Refs. 18 and 19.

Since the energy to extract one electron from the con
ing potential is much higher than the temperature, it is i
portant to use the canonical ensemble and define the sus
e
i-

-
-
ep-

tibility as the derivativeu52(]2F/]v2)v50 of the free
energy at fixed particle numberN. The importance of the
fixed electron number for the magnetic properties of
structures has been pointed out previously.12,13We adopt the
approximation valid for large N, calculating
F(T,N,v)5V(T,l,v)1lN, where l is found from the
condition

2]V~T,l,v!/]l5N. ~14!

The zero field susceptibility is given by expressions~3! or
~6! taken atl(N) fixed by Eq.~14! at v50. We solve this
equation numerically both for the semiclassical and
quantum calculation.

III. SPHERICAL CAVITY

Figure 1 showsush(N,T) calculated by means of the nu
merical Strutinsky averaging procedure8 from the quantal
levels in a spherical cavity. The parameters are appropr
for sodium. As a unit we use the Landau diamagnetic s
ceptibility ~LU! for the electron gas in the cavit
uuLu50.2715MNrS

2 . Since all contributions to the bulk sus
ceptibility are of the same order of magnitude,15 the figure
directly shows the enhancement due to the QSE.

The susceptibilityush oscillates with the period of the
shells. In addition its amplitude is modulated with a slo
oscillation, which is the supershell structure first noticed
the level density.4,5 It was found experimentally in the abun
dances of Na clusters,3 which are determined byFsh

2, show-
ing also the SSS pattern~cf. Fig. 2!.

We have also evaluatedush by means of the POT sum
~6!. As seen in the inset of Fig. 1, the quantal values ofush
agree very well with ones obtained from the semiclass
expression. Semiclassics permits a simple interpretation
the SSS. The shortest PO’s enclosing magnetic flux are
triangle and square. The temperature factor 1/sinh(Ttb /\)
'2exp(2Lb /LT), whereLT5\2k/TM is the characteristic
‘‘temperature length,’’ dampens the longer orbits. The b

FIG. 1. Shell contributionush of the magnetic susceptibility ofN
electrons in a spherical cavity. The effective mass isM5Me , the
radius R5r sN

1/3 with r s50.208 nm, the Fermi energy«F53.24
eV, and the temperatureT50.005«F5170 K. The thin line shows
the results without averaging overN1/3 and the fat ones after aver
aging with a Gaussian of widthDN1/350.75. Inset: solid and
dashed lines show the quantum and semiclassical calculation
the canonical ensemble, respectively. Dots present the grand
nonical quantum result~fixed l5«F).



in
as
h
to
th
n
n
s
o
p
F

he
fe

er

s

ere
free

ctor
s a

e. In

o

tion
nt

l
he
ich
up

of

but
LU

on-
s is

e
-
or

l for

ble

n.
out
s as
ity.
th a
llow

nly

e of
ble
, as

ent

nt

e

.
ula
r
a-

5624 PRB 58FRAUENDORF, KOLOMIETZ, MAGNER, AND SANZHUR
pattern results from the superposition of the two lead
terms, the triangle and the square. The basic oscillation h
period given byk(Ln1Lh)/2 and the beat oscillates wit
k(Lh2Ln). Figure 3 shows a calculation that takes in
account only the triangle and the square. Comparing with
full calculation, the influence of the longer orbits is see
Although they make the peaks higher the beat pattern is
much changed up toN1/3;16. The upper and lower envelop
of the full calculation are not very different from the ones
the truncated calculation. This demonstrates that the beat
tern is basically generated by the triangle and the square.
N1/3*16, the full calculation has a beat minimum where t
truncated one has a maximum, indicating that the inter
ence with the longer orbits becomes important.

IV. RELATION TO THE SHELL STRUCTURE
IN THE FREE ENERGY

The relation between the shell contributions to the z
field free energy,Fsh and to the susceptibilityush is under-
stood by comparing the two POT sums~6!. The terms are
identical up to the factor

Yb5a~ l btb /\!25\22M2R4ap2sin2~2f! ~15!

FIG. 2. Shell contributionFsh to the free energy ofN electrons
in a spherical cavity. The calculation and the conventions are id
tical to those in Fig. 1.

FIG. 3. Shell contributionush of the magnetic susceptibility ofN
electrons in a spherical cavity. The thin line is the same as in Fig
the thick line corresponds to a calculation where only the triang
and square orbits in the POT sums~6! are taken into account. Fo
N1/3,6 the level density is not positive definite in this approxim
tion and the solution of Eq.~14! is not possible.
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in ush, which suppresses the orbitsl b50 and gives the long
orbits a higher weight. If only few orbits with similar value
of Yb'Y contribute,ush'YFsh. The simple scaling is also
expected to hold for shapes not too different from the sph
and can be used to relate the SS in the susceptibility and
energy.

In the 3D case the diameter orbit is suppressed by a fa
1/AkR as compared to the planar orbits, because it ha
lower degeneracy. This makes its contribution toFsh insig-
nificant for largeN. The two sumsFsh andu rs become simi-
lar, because the leading terms are the triangle and squar
fact, for T.0.02«F we find ush'YFsh with p5324 in Eq.
~15! ~where«F is the Fermi Gas energy!. For the lower tem-
peratureT50.005«F , shown in Figs. 1 and 2, we find a rati
Y with p54 at the SSS maxima (N1/3512 and 17!. The SSS
minima are less pronounced forush than forFsh. There the
triangle and square cancel each other. The main contribu
comes from longer orbits, which are much more importa
for ush than forFsh, preventingush from becoming as smal
as Fsh. This interpretation is also supported by Fig. 3. T
difference between the full and truncated calculations, wh
represents the contribution of the longer orbits, is just an
shift of the upper envelope.

The SSS is clearly developed for the temperature
T50.005«F , shown in Fig. 1. ForT50.0005«F we find very
pronounced SS with an amplitude of a few thousand LU,
little SSS. The averaged susceptibility stays around 1500
with small peaks~400 LU high! at N1/357 and 13. Due to a
weak temperature damping in the POT sum many orbits c
tribute to the sum, destroying the simple beat pattern. Thi
at variance with a distinct SSS pattern inFsh persisting to
T50.4,5 The reason is the factor 1/Yb which suppresses th
orbits with highp. For T50.05«F there is SSS, but the am
plitude of the basic shell oscillations remains below 5 LU f
N,100, becoming small compared with the LU for largerN.
Hence, the intermediate temperature seems to be optima
the observation of the SSS.

V. CANONICAL ENSEMBLE

Experimentally, the average susceptibility of an ensem
of clusters with a distribution inN will be measured. Let us
consider a Gaussian distribution inN1/3 of width
D(N1/3)50.75, which corresponds to about one oscillatio
As shown in Fig. 1, averaging the susceptibility damps
only the basic shell oscillations, whereas the SSS remain
a modulation of the strongly paramagnetic susceptibil
Hence, it is expected that the SSS can be observed wi
moderate mass selection of the clusters that would not a
us to resolve the basic SS (DN/N50.23 forN51000 in Fig.
1!.

The QSE of the susceptibility survives the averaging o
for the canonical ensemble.9,11–13 The inset of Fig. 1 com-
pares the canonical with grand canonical ensemble (l5«F).
Though the positions of the extrema are similar, the shap
peaks is rather different. For the grand canonical ensem
the negative and positive values are equally probable and
the result, averaging with respect toN quenchesush. For the
canonical ensemble, the positive values are more frequ
and the QSE survives the averaging with respect toN. The
preference ofush.0 for the canonical ensemble is evide

n-

1,
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from POT sum~6!: The shell correction to the level densi
gsh, which is given by setting the factor$•••%51, oscillates
in phase withush, i.e., moreN values correspond to a para
magnetic than to a diamagnetic susceptibility and the a
age with respect to the particle number is positive.

Let us discuss this correlation in more detail because
crucial for the measurability of the SSS. Figure 3 illustra
that typical inverted parabolas already appears for the low
orbits. It is sufficient to consider only one term in Eq.~6!,
say the triangle. For the grand canonical ensemble, the w
numberk5kF is constant (kF is the Fermi gas value!. The
orbit length isLn}N1/3. The susceptibility is proportional to
sin(kFLn) ~for simplicity the phasenn is left away!, which
averages to zero. The particle number expectation valu
given by ~14! contains a term proportional to2cos(kFLn)
that makes it oscillating aroundN. Thus, for the canonica
ensemble, the wave numberk5kF1dk cannot be constant
It must contain an oscillating termdk in order to satisfy Eq.
~14!. In order to understand qualitatively its consequen
for the susceptibility we use an argument from Refs. 12 a
13. Retaining only the linear order ofdk, Eq. ~14! gives
dk}cos(kFLn). The susceptibility is proportional to
sin@(kF1dk)Ln#'sin(kFLn)1dkLncos(kFLn). The second
term is proportional to cos(kFLn)2 which averages to 1/2
Hence, the total averaged susceptibility is positive. Since
interference between the triangular and quadratic orbits
both ush andgsh is about the same, the SSS modulates pa
magnetic term also after averaging. The oscillations ofdk
narrow the minima and broaden the maxima of the susce
bility. In our calculations,dk is treated exactly. As seen i
Figs. 1 and 3, due to the higher orders indk the minima are
narrowed to cusps and the maxima take the shape of par
las.

VI. REAL CLUSTERS

Real clusters deviate from the perfect spherical cav
The surface has a finite thickness of the order of the scre
ing length. The discrete ionic back ground implies a cert
surface roughness of the order of the interatomic distan
There may be impurities or other imperfections distribu
over the volume.

The SS in a spherical potential with a realistic surfa
thickness~the one of sodium! has been studied in Ref. 5. Th
SSS in the binding energies is clearly developed. The b
minima are somewhat shifted as compared to the cavity.
shift has been be traced back to small changes of the ac
of the POT due to the modified ‘‘reflection’’ by the finit
potential at the surface. Since the expressions~6! hold also
for the more realistic potentials if the appropriate actionS is
inserted, a similar shift of the SSS pattern can be inferred
the susceptibility.

The consequences of the surface roughness for the
structure of the ground state energy have been studied in
21. The energy is given by the POT sum~6!, where each
term contains an additional damping factorxp. Assuming
that the rough surface is randomly displaced relative to
ideal one, the damping factor is

xp5exp@22p~sksinf!2#, ~16!
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where a Gaussian displacement distribution with the wi
s;r S is used. It has a simple interpretation. The number
reflection on the surface isp. For each reflection the roug
surface scatters a certain fraction of the particles away fr
the POT. The arguments of Ref. 21 can be immediat
taken over to the zero field susceptibility. The damping fa
tor arises from the reflections on the irregular surface.
weak magnetic field does not change the reflections on
surface~the difference between the case with a weak a
without a field is the small curvature of the trajectory b
tween the reflection points which barely changes the an
of the trajectory with the surface! and the damping facto
~16! also appears in the susceptibility. Hence, the long or
~large number of reflectionsp) are strongly suppressed b
the surface roughness. In Ref. 21 it is shown that a roughn
s50.2r S50.38/kF reduces the amplitude of the SS to abo
1/2 of the one of the ideal cavity. The SSS is found to
nearly the same as for the ideal cavity. For the susceptib
one expects that the surface roughness strongly reduce
contributions of the long orbits, such that the SSS pattern
Fig. 1 approaches the one of Fig. 3 with a reduced amplitu
In particular, for very low temperature the surface roughn
is expected to enhance the SSS, because it efficiently da
the long orbits.

Impurities or other imperfections that are homogeneou
distributed over the volume will also scatter the partic
away from the POT. The situation is analogous to the pro
gation of a wave in an absorbing medium, which has be
considered in Ref. 4. The scattering results in a damp
factor of the form exp(2Lb /LI), where 1/L I measures the
amount of scattering per unit length and corresponds to
mean free path of the electrons due to the imperfections. T
kind of damping is equivalent with an increase of the te
perature, because the temperature damping factor in Eq~6!
1/2sinh(Ttb /\)'exp(2Lb /LT). The consequences of a tem
perature increase are discussed above.

VII. MEASUREMENTS OF THE SUSCEPTIBILITY
OF METAL CLUSTERS

In Ref. 14 the susceptibility has been measured for th
ensembles of clusters with average sizes ofN1/3'4, 2, and
1.5 and a large spread in size. A paramagnetic enhance
of 5, 2, and 1.5 is found, respectively. The decrease of
enhancement withN, which Ref. 14 refers to as an unex
plained phenomenon, can be seen in Fig. 1. To identify
SSS, experiments with more points inN and a mass resolu
tion better than 30% are needed. An alternative experim
would be the measurement of the deflection of a cold clu
beam in an inhomogeneous magnetic field, which direc
provides the susceptibility. To reach the necessary sensit
of such a Stern-Gerlach apparatus seems to be possible22 It
is favorable for this kind of experiment that only a modera
mass selection is needed to observe SSS, which per
larger intensities.

Measuring the susceptibility could shed new light on t
electronic structure of small metal clusters. Solid icosahed
shapes have been suggested for sodium clusters witT
;200 K.23 Our sphere model should be a rough first appro
mation forN,1000. In this range the shell energiesEsh for
the spherical and icosahedral cavity are similar24 and, as dis-
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cussed above, the same can be expected for the suscep
ties. A more pronounced paramagnetic SSS is expected i
shape of the cold clusters comes close to a rough sphere
picture changes if the clusters are liquid or if they keep
same shape as in the liquid state when freezing at lowT.
Then magic clusters are spherical and strongly diamagn
whereas the nonmagical ones are deformed and we
diamagnetic.20 Thus, the averaged susceptibility would b
diamagnetic, still showing a SSS.

VIII. HALF SPHERE

Figure 4 shows the susceptibility for a half sphere w
R5r S(N/2)1/3. The results are very similar to the full spher
The main difference is a shift of the basic shell oscillatio
by half a period. The averaged susceptibility is almost ind
tinguishable from Fig. 1. Clusters deposited on an insula
surface may take shapes close to half spheres.25–27

IX. CIRCULAR QUANTUM DOTS

The susceptibility of the 2D electron gas confined to
circular potential well withR5500 nm is shown in Fig. 5
An effective mass ofM50.067Me ,28 appropriate for GaAs,

FIG. 4. Shell contribution of the magnetic susceptibilityN elec-
trons in a half spherical cavity. The line conventions and calcula
@exceptR5r S(N/2)1/3] are identical to those in Fig. 1.

FIG. 5. Shell contributionush to the magnetic susceptibility ofN
electrons in a circular well. The effective mass isM50.067Me , the
well radiusR5500 nm, and the temperatureT55\2/2MR2'0.13
K. The line conventions are the same as in Fig. 1. Averaging o
N1/2 is carried out with a Gaussian of widthDN1/251.6. The non-
averaged values are divided by a factor of 10.
ili-
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is assumed. The LU isuuLu5MR2/3. The 2D case is similar
to the 3D case, the main difference consisting in an incre
of the QSE withN ~the values in Fig. 5 are divided byN). At
the temperatureT55\2/2MR2'0.13 K a distinct SSS is
seen. ForT50.5\2/2MR2 the averaged susceptibility;4/N
LU showing shallow oscillations with an amplitude of;1/N
LU, which loosely correlates with the SSS in Fig. 5. A SS
beat pattern for a circular dot has been calculated in Ref.
However, it is argued there and also in Refs. 11,12 that w
averaging over the ensemble of dots used as experime
probe, uncertainties in the shape and size will complet
wipe out the shell structure, the only remaining QSE bein
paramagnetic enhancement that varies smoothly withN. In
contrast, Fig. 5 shows that averaging with a Gaussian
width DN1/251.6 ~corresponding to a 10% spread inN for
N51000) destroys only the basic SS, whereas the SSS
mains visible.

Nowadays it is possible to manufacture probes with
large number of circular quantum dots, specifying the rad
and the gate voltage with a 5% accuracy.28 Changing the
number of electrons in the dots by means of the gate volt
seems to be a possibility to measure the SSS of the sus
tibility. The imperfections in manufacturing circular do
will have similar effects as discussed above for the me
clusters. The discussion of the 3D case can be directly
plied to the 2D case. Thus, the SSS pattern is expecte
survive if the surface roughnesss,0.4/kF .

Figure 6 demonstrates that, in contrast to the 3D ca
Fsh(N) significantly differs fromush(N). For the 2D case,
the diameter orbit is not suppressed inFsh. The interference
of the diameter, triangle, and square results in slower b
and faster beat oscillations as compared tou ,sh, for which
the diameter is missing. Averaging with respect toN1/2 filters
out the slow oscillation due to the interference between
angle and square, which mainly modulatesFsh(N). The SS
of the free energy should show up as a modulation of
capacitance of the dot. It is given byd2F/dN2, which also
determines the abundances of heavy clusters.2

X. CONCLUSIONS

The susceptibility of electrons confined in two or thr
dimensions by a spherical potential oscillates as a functio

n

r

FIG. 6. Shell contributionFsh to the free energy ofN electrons
in a circular well in units of«F5N\2/MR2. The calculation and the
conventions are identical to those in Fig. 3.
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their number. This shell structure is modulated by slow
cillations, the supershell structure, which only develops
sufficiently high temperatures. Measurements that aver
out the shell structure may still reveal the supershell str
ture. The free energy of electrons confined in three dim
sions, shows the analogous supershell pattern, whic
observed in the abundances of metal clusters. However
the two-dimensional potential the shell structure of t
s

n,

et
-
t

ge
-
-
is
or

free energy differs considerably from the one of the susc
tibility.
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