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Supershell structure of magnetic susceptibility
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The magnetic susceptibility of electrons confined to a spherical cavity or a circular billiard shows slow
oscillations as a function of the number of electrons, which are a manifestation of the supershell structure
found in the free energy of metal clusters. The relationship of the oscillations of the two different quantities is
analyzed by means of semiclassical calculations, which are in quantitative agreement with quantal results. The
oscillations should be observable for ensembles of circular ballistic quantum dots and metal clusters.
[S0163-182608)03533-4

I. INTRODUCTION Il. SUSCEPTIBILITY OF ELECTRONS
IN A SPHERICAL CAVITY

The confinement of independent fermions in two or three Choosingz as the direction of the magnetic field, the
dimensions(3D) leads to a bunching of the single particle orbital part of the electronic Hamiltonian'ts
levels, if the mean free path of the fermions is large com-
pared to the size of the system. This is known as shell struc- M w? _
ture (S and leads to oscillations of the total energy as func- H=Hotwl,+ 2 (x“+y9), @
tion of particle numberN around a smoothly changing
background. The oscillating part, referred to as shell energywhere™, is the Hamiltonian at zero magnetic field, consist-
has minima at the so-called magic numbers, which have bedgng of kinetic energy and the confining potential, which is
known for a long time for nuclei. More recently they have assumed to be circular or spherical. The operatois the
been observed in the abundance spectra of alkali metal clugngular momentum projection on thexis andM the effec-
ters (see Ref. 1 and the original work cited thefeirepre-  tive electron mass. We use the Larmor frequency
senting minima of the free energy.ater, it was found,that ~ @=ugH/% as the unit of the magnetic field in order to
the amplitude of these shell oscillations is modulated by #tress the analogy to the case of a system rotating with the
slow oscillation. This so-called supershell structy&sg  angular velocity— w. . _
had been predicted theoreticafly.In this paper we will Up to third order of perturbation theory in, the thermo-
show that the magnetic susceptibility follows a similar Sssdynamical potential}(T,\, ) as a function of the tempera-
pattern. Using the Strutinsky shell correction mefidcand  ture T and chemical potential is
semiclassical periodic orbit theoff?OT), we will trace the
SSS of the susceptibility and free energy back t_o the S_am_eQ(T,)\,w)= _TE In
interference pattern between electrons on classical periodic >
orbits. 2 2. 2
The consequences of SS for the magnetic susceptibility of N exr{ A—e,~hom,~Mo*(x"+y >V/2”
the confined electron gas have been discussed in Refs. 9-13, T ’
and earlier references cited therein. The susceptibility of a )
confined ballistic 2D electron gas can be measured for large
ensemble of quantum dots on a AlGaAs-GaAs semiconduowvheree,, m,, and(---), are the energy, the angular mo-
tor heterostructur®. For this type of experiment it is mentum projection, and the expectation value with the un-
claimed'**3that the shell oscillations as a function of the perturbed electron state In our units, the zero field suscep-
electron numbeN are averaged out by the fluctuations of thetibility is a moment of inertia. For the grand canonical
size and the shape of the individual dots. The only quantun@nsemble it reads
size effect(QSE’9 expected to survive is a paramagnetic
enhancement of the susceptibility, which changes smoothly o)
with N. In this paper we will argue that such experiments _<W) = 0= Orig, ©)
should permit us to resolve the slow oscillations reflecting =0
the SSS. We will also discuss the experimental possibilities an
:ngfatect SSS of the magnetic susceptibility of metallic clus- 0= 2;‘ (hm”)za_)\y’ (4)
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0ng=MJ drp(r)(x2+y?), ©)

wheren,={1+exd(s,—\)/T]}"! are the Fermi occupation
numbers and),y is the moment of inertia of rigid rotation,
p(r) being the particle density.

The shell structure of,, has been analyzed for nuclear
rotation (where it is called the cranking moment of inejtia
Following the concepts of Strutinsky’s shell correction
method®’ Q, 6, and other quantities are divided into a
smooth part and into a shell padenoted by the subscript
sh). The shell contribution t@,,, which we calléy,, repre-
sents the total QSE, because the shell pa#;gfs negligible
as compared td,. The partition can either be done numeri-  FIG. 1. Shell contributiords, of the magnetic susceptibility o
cally starting from the quantal electron levis&or it can be  €lectrons in a spherical cavity. The effective masMis M., the

. ) - . i —r N3 wi _ ; _
based on semiclassical periodic orbit the¢BOT). In the  radiusR=r{N" with r;=0.208 nm, the Fermi energy=3.24
latter case the shell terms ré&d’13 eV, and the temperature=0.00%=170 K. The thin line shows

the results without averaging ovBi*® and the fat ones after aver-

05y (Landau units)

Os(T\) a(/ p)? aging with a Gaussian of widtANY*=0.75. Inset: solid and
{Q (T )\)] = E [(ﬁ/r )z]AB()\) dashed lines show the quantum and semiclassical calculations for
sm p B the canonical ensemble, respectively. Dots present the grand ca-
" 1 S0+ Trglth © nonical quantum resulffixed A =&¢).
Sin| — Vgl V=73
B B ’
h Sinh(T75 /%) tibility as the derivatived=—(#?F/dw?),_, of the free

where ()¢, denotes the value at zero field aag-1 or 3 in  energy at fixed particle numbed. The importance of the
2D or 3D, respectively. For the spherical cafignd the fixed electron number for the magnetic properties of 2D
circular billiard?3the orbitsa(t,p) are defined by the num- structures has been pointed out previod3ff: We adopt the
bert of the revolutions around the center and the nunber approximation valid for large N, calculating

of the corners, F(T,N,w)=Q(T,\,w)+ AN, where\ is found from the
condition
Lg=2pRsing, ¢=mt/p, (7)
L —9Q(T,\,w)/dN=N. (14)
_ ;) I
Sp=tfikLg, /g=hkRcosp, 75= 7K 8 The zero field susceptibility is given by expressid8s or
(6) taken at\(N) fixed by Eq.(14) at w=0. We solve this
OMR? 1 fgy(sing)%? equation numerically both for the semiclassical and the
_ B (p=2t), 2D, (99  quantum calculation.

A=
P p2 \/ﬁ VpT
2 Il. SPHERICAL CAVITY

2MR

) sing
Ap= Py VKRsin(2¢) e (p>2t), 3D, (10 Figure 1 shows(N,T) calculated by means of the nu-

merical Strutinsky averaging procedfirfom the quantal
levels in a spherical cavity. The parameters are appropriate

Ad:ZMR2 i(p=2t), 3D, (11) for spdjum. As a unit we use the Landau Qiamagnetic.sus—
K2 pm ceptibility (LU) for the electron gas in the cavity
|6,|=0.2715VINrZ. Since all contributions to the bulk sus-
37 3w ceptibility are of the same order of magnitu@ehe figure
Vp= T 5 Pt 2D, (12 directly shows the enhancement due to the QSE.
The susceptibilitydy, oscillates with the period of the
37 T shells. In addition its amplitude is modulated with a slow
vg=— 5 p—(t=Dm—7, 3D, (13)  oscillation, which is the supershell structure first noticed for

the level density:® It was found experimentally in the abun-
where we have introduced the length of the oibjt, the  dances of Na clustefswhich are determined b2, show-
wave numbek=\2M\/#?2, andfz=1 for diameters and 2 ing also the SSS pattelef. Fig. 2.
for planar orbits. The phases;, which are related to the We have also evaluatefl, by means of the POT sums
Maslov indices, are not important in our discussion and aré6). As seen in the inset of Fig. 1, the quantal value®gf
given in Refs. 4 and 13. The POT level densities of a spheriagree very well with ones obtained from the semiclassical
cal cavity and a circular billiard in a magnetic field have expression. Semiclassics permits a simple interpretation of
been studied in Refs. 18 and 19. the SSS. The shortest PO’s enclosing magnetic flux are the
Since the energy to extract one electron from the confintriangle and square. The temperature factor 1/3in)
ing potential is much higher than the temperature, it is im-~2exp(-Lg/Ay), where A+=%%kITM is the characteristic
portant to use the canonical ensemble and define the susceffemperature length,” dampens the longer orbits. The beat
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10 ' ' in 6sn, Which suppresses the orbltg=0 and gives the long
orbits a higher weight. If only few orbits with similar values
of Yz~Y contribute,fs~Y Fg,. The simple scaling is also
expected to hold for shapes not too different from the sphere
and can be used to relate the SS in the susceptibility and free
o0 energy.

V U | ‘ , i V V\] U w w U V V v \J In the 3D case the diameter orbit is suppressed by a factor

0.5 A

Fsu / er

1/JkR as compared to the planar orbits, because it has a
] lower degeneracy. This makes its contribution/g, insig-
nificant for largeN. The two sumg-4, and 6, become simi-
: ‘ ' lar, because the leading terms are the triangle and square. In
N fact, for T>0.0Z we find 64~Y F4, with p=3—4 in Eq.
o (15) (whereeg is the Fermi Gas energyFor the lower tem-
FIG. 2. Shell contributiorF 4, to the free energy ol electrons peratureT = 0.005% ¢, shown in Figs. 1 and 2, we find a ratio
ip a sphericallcav.ity. The calculation and the conventions are ideny \\ith p=4 atthe SSS maxima\(1’3= 12 and 17. The SSS
tical to those in Fig. 1. minima are less pronounced fég, than forF,. There the
triangle and square cancel each other. The main contribution
pattern results from the superposition of the two leadingcomes from longer orbits, which are much more important
terms, the triangle and the square. The basic oscillation hasfgy 6, than forF,, preventingdy, from becoming as small
period given byk(L ,+Lp)/2 and the beat oscillates with asF . This interpretation is also supported by Fig. 3. The
k(Lo—L,). Figure 3 shows a calculation that takes into gifference between the full and truncated calculations, which
account only the triangle and the square. Comparing with theepresents the contribution of the longer orbits, is just an up
full calculation, the influence of the longer orbits is seen.ghijft of the upper envelope.
Although they make the peaks higher the beat pattern is not The SSS is clearly developed for the temperature of
much changed up tN**~ 16. The upper and lower envelops T=0.005:, shown in Fig. 1. Foff = 0.0005:; we find very
of the full calculation are not very different from the ones of pronounced SS with an amplitude of a few thousand LU, but
the truncated calculation. This demonstrates that the beat pajitle SSS. The averaged susceptibility stays around 1500 LU
tern is basically generated by the triangle and the square. Fe{ith small peakg400 LU high atN¥3=7 and 13. Due to a
N1/32 16, the full calculation has a beat minimum where theWeak temperature dampn’]g in the POT sum many orbits con-
truncated one has a maximum, indicating that the interfergipyte to the sum, destroying the simple beat pattern. This is
ence with the longer orbits becomes important. at variance with a distinct SSS pattern iy, persisting to
T=0.2°The reason is the factorIj; which suppresses the
orbits with highp. For T=0.0% there is SSS, but the am-
plitude of the basic shell oscillations remains below 5 LU for
N<100, becoming small compared with the LU for lard\er
The relation between the shell contributions to the zerdHence, the intermediate temperature seems to be optimal for
field free energyFg, and to the susceptibilityy, is under-  the observation of the SSS.
stood by comparing the two POT surn®. The terms are

identical up to the factor V. CANONICAL ENSEMBLE

0.5

IV. RELATION TO THE SHELL STRUCTURE
IN THE FREE ENERGY

Experimentally, the average susceptibility of an ensemble
of clusters with a distribution itN will be measured. Let us
consider a Gaussian distribution ilNY® of width
A(NY3=0.75, which corresponds to about one oscillation.
As shown in Fig. 1, averaging the susceptibility damps out
only the basic shell oscillations, whereas the SSS remains as
a modulation of the strongly paramagnetic susceptibility.
Hence, it is expected that the SSS can be observed with a
moderate mass selection of the clusters that would not allow
us to resolve the basic SAN/N=0.23 forN=1000 in Fig.

1).
The QSE of the susceptibility survives the averaging only
- . . . for the canonical ensembié!~**The inset of Fig. 1 com-
4 8 12 16 20 pares the canonical with grand canonical ensembledr).
N Though the positions of the extrema are similar, the shape of
FIG. 3. Shell contributiordg, of the magnetic susceptibility o~ P€2aks is rather different. For the grand canonical ensemble

electrons in a spherical cavity. The thin line is the same as in Fig. 1the negative and positive values are equally probable and, as
the thick line corresponds to a calculation where only the triangulath€ result, averaging with respectioquenched,. For the

and square orbits in the POT surt€ are taken into account. For canonical ensemble, the positive values are more frequent
N3<6 the level density is not positive definite in this approxima- and the QSE survives the averaging with respediidhe

tion and the solution of Eq14) is not possible. preference offy>0 for the canonical ensemble is evident

Yg=a(lgrglh)?>=h"*M?R*ap’sir’(2¢) (15

600

300

05y (Landau units)
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from POT sum(6): The shell correction to the level density where a Gaussian displacement distribution with the width
Osn. Which is given by setting the factdr--} =1, oscillates o~rgis used. It has a simple interpretation. The number of
in phase withégy,, i.e., moreN values correspond to a para- reflection on the surface is. For each reflection the rough
magnetic than to a diamagnetic susceptibility and the aversurface scatters a certain fraction of the particles away from
age with respect to the particle number is positive. the POT. The arguments of Ref. 21 can be immediately
Let us discuss this correlation in more detail because it isaken over to the zero field susceptibility. The damping fac-
crucial for the measurability of the SSS. Figure 3 illustratestor arises from the reflections on the irregular surface. A
that typical inverted parabolas already appears for the lowesteak magnetic field does not change the reflections on the
orbits. It is sufficient to consider only one term in E), surface(the difference between the case with a weak and
say the triangle. For the grand canonical ensemble, the wawgithout a field is the small curvature of the trajectory be-
numberk=kg is constant kg is the Fermi gas valyeThe tween the reflection points which barely changes the angles
orbit length isL , N3, The susceptibility is proportional to of the trajectory with the surfageand the damping factor
sinkeL,) (for simplicity the phasev, is left away, which  (16) also appears in the susceptibility. Hence, the long orbits
averages to zero. The particle number expectation value dkrge number of reflectionp) are strongly suppressed by
given by (14) contains a term proportional te-coskzL,)  the surface roughness. In Ref. 21 it is shown that a roughness
that makes it oscillating around. Thus, for the canonical o=0.2rg=0.38kr reduces the amplitude of the SS to about
ensemble, the wave numbke=kg+ 6k cannot be constant. 1/2 of the one of the ideal cavity. The SSS is found to be
It must contain an oscillating terk in order to satisfy Eq. nearly the same as for the ideal cavity. For the susceptibility
(14). In order to understand qualitatively its consequence®ne expects that the surface roughness strongly reduces the
for the susceptibility we use an argument from Refs. 12 andontributions of the long orbits, such that the SSS pattern of
13. Retaining only the linear order afk, Eq. (14) gives Fig. 1 approaches the one of Fig. 3 with a reduced amplitude.
SkxcoskeL,). The susceptibility is proportional to In particular, for very low temperature the surface roughness
sin (ke + k)L J~sin(keL )+ kL coskeL,). The second is expected to enhance the SSS, because it efficiently damps
term is proportional to cokfL,)?> which averages to 1/2. the long orbits.
Hence, the total averaged susceptibility is positive. Since the Impurities or other imperfections that are homogeneously
interference between the triangular and quadratic orbits iflistributed over the volume will also scatter the particles
both 64, andgg, is about the same, the SSS modulates paraaway from the POT. The situation is analogous to the propa-
magnetic term also after averaging. The oscillationsslof ~ gation of a wave in an absorbing medium, which has been
narrow the minima and broaden the maxima of the suscepticonsidered in Ref. 4. The scattering results in a damping
bility. In our calculations,sk is treated exactly. As seen in factor of the form exp{L;/A,), where 1A, measures the
Figs. 1 and 3, due to the higher orderssk the minima are amount of scattering per unit length and corresponds to the
narrowed to cusps and the maxima take the shape of parab@ean free path of the electrons due to the imperfections. This
las. kind of damping is equivalent with an increase of the tem-
perature, because the temperature damping factor if@tq.
1/2sinh{T7/h)~exp(—Lg/At). The consequences of a tem-
VI. REAL CLUSTERS perature increase are discussed above.

Real clusters deviate from the perfect spherical cavity:
The surface has a finite thickness of the order of the screen- VIl. MEASUREMENTS OF THE SUSCEPTIBILITY
ing length. The discrete ionic back ground implies a certain OF METAL CLUSTERS
surface roughness of the order of the interatomic distance.

There may be impurities or other imperfections distributed " R€f. 14 the susceptibility has been measured for three
over the volume. ensembles of clusters with average sizedNdf~4, 2, and

The SS in a spherical potential with a realistic surfacel:> @nd a large spread in size. A paramagnetic enhancement
thickness(the one of sodiumhas been studied in Ref. 5. The ©f 5 2, and 1.5 is found, respectively. The decrease of the
SSS in the binding energies is clearly developed. The bednhancement wittN, which Ref. 14 refers to as an unex-
minima are somewhat shifted as compared to the cavity. ThBlaineéd phenomenon, can be seen in Fig. 1. To identify the

shift has been be traced back to small changes of the actiopoo: €XPeriments with more pointshhand a mass resolu-
of the POT due to the modified “reflection” by the finite 10N better than 30% are needed. An alternative experiment

potential at the surface. Since the expressi@shold also would be the measurement of the deflection of a cold cluster
for the more realistic potentials if the appropriate actiis ~ °€@m in an inhomogeneous magnetic field, which directly
inserted, a similar shift of the SSS pattern can be inferred foProvides the susceptibility. To reach the necessary sensitivity
the susceptibility. of such a Stern-Gerlach apparatus seems to be po$sible.
The consequences of the surface roughness for the shds favorable for this kind of experiment that only a moderate
structure of the ground state energy have been studied in R&['@sS selection is needed to observe SSS, which permits
21. The energy is given by the POT su), where each |arger intensities. . .
term contains an additional damping factpf. Assuming Measuring the susceptibility could shed new light on the

that the rough surface is randomly displaced relative to th@lectronic structure of small metal clusters. Solid icosahedral
ideal one, the damping factor is shapes have been suggested for sodium clusters With

~ 200 K23 Our sphere model should be a rough first approxi-
mation forN<<1000. In this range the shell energigg, for
xP=exd —2p(oksing)?], (16)  the spherical and icosahedral cavity are sirfifland, as dis-
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FIG. 4. Shell contribution of the magnetic susceptibiltyelec- N
trons in a half spherical cavity. The line conventions and calculation

/ ) ! s FIG. 6. Shell contributiorF, to the free energy o electrons
[exceptR=r5(N/2)'7| are identical to those in Fig. 1.

in a circular well in units ok r=N#%2/MR?. The calculation and the

_ conventions are identical to those in Fig. 3.
cussed above, the same can be expected for the susceptibili-

ties. A more pronounced paramagnetic SSS is expected if t’_@assumed. The LU i, |=MR23. The 2D case is similar
shape of the cold clusters comes close to a rough sphere. The e 3 case, the main difference consisting in an increase

piciure changes !f the cI_ustgrs are liquid or if they keep theyt e QSE withN (the values in Fig. 5 are divided ly). At
same shape as in the liquid state when freezing at Tow the temperaturel =542/2MR2~0.13 K a distinct SSS is

Then magic clusters are spherical and strongly diamagnetic,., Foir=0.5:2/2MR? the averaged susceptibility 4/N
whereas the nonmagical ones are deformed and weak

YU showing shall illati i i

: . 50 L g shallow oscillations with an amplitude 6f1/N
d!amagnet!(?. T_hus, th_e averaged susceptibility would be LU, which loosely correlates with the SSS in Fig. 5. A SSS
diamagnetic, still showing a SSS.

beat pattern for a circular dot has been calculated in Ref. 13.
However, it is argued there and also in Refs. 11,12 that when
VIIl. HALF SPHERE averaging over the ensemble of dots used as experimental
probe, uncertainties in the shape and size will completely

R=rg(N/2)¥ The results are very similar to the full sphere. V'P€ out the shell struciure, the only remaining QSE being a

The main difference is a shift of the basic shell oscillationsPa'amagnetic enhancement that varies smoothly Witin

: o . .contrast, Fig. 5 shows that averaging with a Gaussian of
by half a period. The averaged susceptibility is almost indis idth ANY2=1.6 (corresponding to a 10% spread hhfor

tinguishable from Fig. 1. Clusters deposited on an insulating ™ .
surface may take shapes close to half sphre. —_100(_))_ destroys only the basic SS, whereas the SSS re-
mains visible.
Nowadays it is possible to manufacture probes with a
IX. CIRCULAR QUANTUM DOTS large number of circular quantum dots, specifying the radius

The susceptibility of the 2D electron gas confined to a@nd the gate voltage with a 5% accura€yChanging the
circular potential well withR=500 nm is shown in Fig. 5. number of electrons in the dots by means of the gate voltage

An effective mass oM =0.06™M 28 appropriate for GaAs, S€e€MS to be a possibility to measure the SSS of the suscep-
tibility. The imperfections in manufacturing circular dots

8 will have similar effects as discussed above for the metal
clusters. The discussion of the 3D case can be directly ap-
plied to the 2D case. Thus, the SSS pattern is expected to
survive if the surface roughness<0.4kg .

Figure 6 demonstrates that, in contrast to the 3D case,
Fs(N) significantly differs fromég{(N). For the 2D case,
the diameter orbit is not suppressedHy,. The interference
of the diameter, triangle, and square results in slower basic
and faster beat oscillations as comparedtg, for which
the diameter is missing. Averaging with respechNt# filters
out the slow oscillation due to the interference between tri-
e angle and square, which mainly modulateg(N). The SS
10 20 30 40 50 of the free energy should show up as a modulation of the
capacitance of the dot. It is given WfF/dN?, which also
determines the abundances of heavy clusters.

Figure 4 shows the susceptibility for a half sphere with

&
=

Osy(Landau units)/N

g
=

FIG. 5. Shell contributiordy, to the magnetic susceptibility of
electrons in a circular well. The effective mas#s=0.06M, the

well radiusR=500 nm, and the temperatufe=5/2/2MR*~0.13 X. CONCLUSIONS
K. The line conventions are the same as in Fig. 1. Averaging over
N2 is carried out with a Gaussian of widthN2=1.6. The non- The susceptibility of electrons confined in two or three

averaged values are divided by a factor of 10. dimensions by a spherical potential oscillates as a function of
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their number. This shell structure is modulated by slow osfree energy differs considerably from the one of the suscep-
cillations, the supershell structure, which only develops atibility.
sufficiently high temperatures. Measurements that average

out the shell structure may still reveal the supershell struc-

ture. The free energy of electrons confined in three dimen-
sions, shows the analogous supershell pattern, which is Discussions with M. Brack and F. A. lvanyuk and finan-
observed in the abundances of metal clusters. However, faiial support by INTAS(Grant No. 93-015]Lare gratefully
the two-dimensional potential the shell structure of theacknowledged.
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