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Quantum tunneling and phase transitions in spin systems with an applied magnetic field
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Transitions from classical to quantum behavior in a spin system with two degenerate ground states separated
by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that
these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and
magnetic parameters defining the system in an effective Lagrangian desciipdi$3-182608)10333-9

. INTRODUCTION field B in they direction, perpendicular to the easy direction.

) ] ) ) The corresponding Hamiltonidh involves the spin operator
Barrier penetration by tunneling processes is a purely,

quantum phenomenon which does not arise in classical phys and is given by*
ics where only processes leadioger the barrier, e.g., ther-

N a2 a2 .
mal activity according to a classical Boltzmann distribution, H=K(S;+\S))—2ueBSy, @
yield a nonzero barrier transition rate. At finite temperature,ynere the easyy plane demands <1.

either tunneling from thermally excited statgsemperature The physical situation described by this Hamiltonian is

assisted tunneling”pr thermal fluctuations over the barrier jjystrated in Fig. 1 where the spin operator is represented as
(“thermal activity”) dominate the transition rate, and the a classical spin vectdde St For zero magnetic fiel=0

crossover from temperature assisted tunneling to thermal ae ground state is twofold degenerate, the classical spin vec-

tivity can be understood as a phase transition from the qua or pointing alond the positive or negativedirection. i.e
tum phase to the classical phase of a physical system whigﬁ P 9 9 P 9 T
along the easy axis.

is of either first or second order. Under the infl f lied tic field i
Whereas the general theory of these phase transitions in nder the influence of an appiied magnetic iield in She
an abstract potential barrier setting is well known and clearl !rect!on, E?le):re f’g? _S“” two degenerate sp|r_1 ground state

understood (there is a remarkable similarity to the Maxwell directionsSgi, Sy in the easyxy plane moving towards
theory of phase transitions in the Van der Waals)gasly ~ they direction with increasing field.

very few models are known which allow an explicit and ~ T0 change the direction of the spin from one of these
analytic investigation of the phase transitions in decay an@round-state directions to a neighboring one, one has to
transition rates which may even be accessible to experimerfVercome an energy barrier, moving the spin along either
tal verification. Hence the recent discovery that spin systemBathS or pathL.

provide examples which exhibit first- and second-order

phase transitiofsaroused interest in the investigation of S,
such systems. In particular, a large spin in @Y easy-
plane anisotropy with an eagyaxis can be shown to exhibit
both first- and second-order phase transitions depending on
the value of the anisotropy parameter.

In the following, we consider this spin system with an
additional applied magnetic field and investigate its influence
on the dominant transition process. We begin with the pre-
sentation of the model and its effective semiclassical La-
grangian in Sec. Il, and then review the theory of tempera- .
ture assisted quantum tunneling and thermal activity in Sec. S y
[ll. Section IV contains some analytical results which guided AT T
the numerical calculations presented in Sec. IV and dis- ;(
cussed in the concluding Sec. V. S

-~ 2@
‘\?min

Il. THE MODEL AND ITS SEMICLASSICAL
APPROXIMATION S,

We consider a giant spin in a0Y easy-plane anisotropy FIG. 1. Classical visualization of th&0Y easy-planex easy
with easy axis along th& direction and external magnetic axis spin system with applied magnetic field in thelirection.
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FIG. 2. Asymmetric twin barrier potentiaV(¢), field- FIG. 3. The periods of the periodic instantons of the large bar-
dependent masd (), and small and large barrier periodic instan- rier p, for A=0.45 and of the small barrigus for A =0.8, plotted
tons. againste=E/K\s? for several values ofr with s°=1000, K

=1.

To study quantum tunneling and classical thermal effectsl_h iclassical imation i tin the limit of |
of the discrete spin system described fby we convert the © semiclassical approximation Is exact In the limit of 'arge

spin operators to a continuous potential problem. This can bépm()’i?:’llp the entire range of thanisotropy parameter
achieved with the help of spin-coherent state path integrals The shape of the potential($) is shown in Fig. 2, to-

or using the Villain transformatiohBoth approaches yield a . , S
semiclassical description of the quantum system given by thg.ether with the fleld—dependent maldy ) W.h'Ch IS a spe-
cial feature of this model. For small magnetic and anisotropy

effective Lagrangian X )
parameters, i.eA<<1, a<1, one can approximate the mass
1 function by a constant valull ()~ 1/2K,* but we are here
L(d,d)==M(p)p2—V(), (2)  particularly interested in the effect of nonconstant mass on
2 quantum tunneling and thermal activity. Therefore we re-
strict the mass only to be positive which yields the condition
N1+ a) <1 for themagnetic parametes, but keep the full
5 5 ¢ dependence df1(¢).
V() =K\s*(sir¢—a) ©) The degenerate spin ground states are given by the two
different types of minima ofV(¢) at 27+ arcsine and
(21 +1)7—arcsina. These minima are separated by a small
barrier S with height

where

and

_ L kB
" 2K(1—\ sirPo+arsing)’ “TKs' v(f) =KAS3(1—a)?=:Eg (6)

M(¢)
2

Here ¢ may be interpreted as a spherical parameter of thgnq a |arge barriet with height
classical spin vector

3 _ ”
s=s(sin 6 cos ¢,sin 0 sin ¢,cos6). (5) V(T) =KAs(It+a)"=:Ey, @)
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FIG. 4. Phase transitions far=0.3, «=0.5 with s>=1000, K=1. (S-a, (L-a): The periods of the periodic instantons of the small and
the large barrier plotted against=E/K\s?. (S-b), (L-b): Periodic instanton action$<(T), S (T) and thermodynamical actions
Sy(T), S.(T) for the small and the large barrier.

which corresponds to the patSsandL shown in Fig. 1. sume the quantum spin states to be populated according to a
Since ¢ and ¢+ 27 describe the same physical state, weBoltzmann distribution. The rate of thermal activity over the

restrict ourselves to the first twin barrier pair@j= 7/2 and ~ Small or large barrier is to first order given by the Boltzmann

%.=37/2. The maximum positiongs and 3, are called actor,
“sphalerons” in the usual field-theoretical terminology. The =
. . ~ = ~ E;
vacua surrounding these barriers are denoted by [(T)~e3M, §(T):= ?' (10)
O — arcsing~ (2 = i o ~ ~
g =arcsina=® "' =2m+arcsinx @  with i=S,L andkg=1. 34T) andS,(T) are called the
and thermodynamic actions of the small and the large barrier,
respectively.
@ = 7—arcsina= oY 9) The temperature-assisted tunneling rate can be estimated

by a Boltzmann average over the tunneling probabilities
We observe that barriers of different height only exist for Ofrom excited states with enerdgy. These tunneling prob-
< a<1. For vanishing magnetic fieldv(=0), the two bar- abilities can be approximated by the semiclassical WKB ex-
riers are equally highwhereas in the limie—1, the mag- ponentsP;(E)=e "B,
netic field dominates the easy-axis effect and there is only
one ground state pointing along tledirection.

(2)
wi(E)=2\2 [ "] NSV H-Elds, i=SL,

lll. THE THEORY OF QUANTUM TUNNELING (11

AND THERMAL ACTIVITY where ®{2(E), ®{“?(E) are the turning points for the

We consider transitions between spin states built aroundmall (S) or large L) barrier at energ¥, i.e., the solutions
the two degenerate vacua at finite temperature, i.e., we asf the equatiorV(¢)=E. It is easy to see that
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FIG. 5. Phase transitions far=0.45, «=0.8 with s>=1000, K=1. (S-a, (L-a): The periods of the periodic instantons of the small and
the large barrier plotted against=E/K\s?. (S-b), (L-b): Periodic instanton action$¢(T), S (T) and thermodynamical actions

Sy(T), S.(T) for the small and the large barrier.

<I>(sl)(E)=arcsir(a+ \/ = ) Fi(T)=j dEefE/TPi(E)=J dEe BT-Wi(® (19
K)\SZ 0 0

This integral can be estimated by the steepest descent
0<E<Eg (12 method, using the concept of periodic instantbisThese
are classical solutions of the Euclidean Euler-Lagrange equa-

E tions of the semiclassical Lagrangigd), i.e.,
QDgz)(E):w—arcsir( at+\/ ,
K\ s? " ..+1dM(¢). dV(qS)_O 15
dV(E)=m—arcsi a— / E , (dots now denote derivatives with respect to Euclidean time
KAs? T=it) with finite energyE as integration constant in the first
integral,
0O<E<E_ (13 1
5M(¢)¢”=V(¢)=~E. (16
E
O P(E)=27+ arcsif( a—1\/ 2) . 5 5 .
K\s For O<E<Eg or O<E<E, there are solutions

@5(7), ¢F(7) oscillating around the small or large barrier
Taking the Boltzmann average over the tunneling probwith period ps(E), p.(E), respectively. These solutions
abilities from excited state®;(E) yields the temperature- can be derived by integrating E(L.6) which leads to elliptic
assisted tunneling rate integrals, but it is impossible to solve the resulting expres-
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FIG. 6. Phase transitions far=0.7, «=0.3 with s>=1000, K=1. (S-a, (L-a): The periods of the periodic instantons of the small and
the large barrier plotted against=E/K\s?. (S-b), (L-b): Periodic instanton action$<(T), S (T) and thermodynamical actions

Sy(T), S.(T) for the small and the large barrier.

sions for the explicitr dependence of the solutiors, ¢f
which are visualized in Fig. 2.

i.e., the period of the periodic instanton has to be identified
with the inverse temperature. This yields the usual periodic

Nonetheless it is possible to compute the periods and thi@stanton tree approximation for the temperature-assisted

Euclidean actions of these periodic instantons from (E6)

which yields
_ o | M(9)
Pi=12 oM(E) V(¢)_Ed¢ ol
and
o2 (E)
3=2ﬁf o M(9)(V(¢)—E)d+pE
o{Y(E)
=W(E)+piE. (18

In the steepest descent approach, the intd@alis domi-
nated by the configuration satisfying

—|

tunneling rate,

Li(T)y=e S, (20)
whereS;(T) is the Euclidean action of the periodic instanton
with period 1T=p; .

Hence, there are two different physical processes and two
different energy barriers involved in the evaluation of the
finite-temperature spin-transition rate. Ignoring the effect of
the field-dependent mass, it is obvious that the small barrier
processes always dominate large barrier ones, and it has to
be checked whether this changes by taking into account the
field dependence of the mass, depending on the parameters
and «. Can transitions involving the large barrier become
dominant over those involving the small barrier for specific
values of these parameters?

Another question to be analyzed is that of the crossover
from temperature-assisted tunneling to thermal activity for
the small and the large barriers which can be understood as
phase transitions of either first or second kind, depending on
the shape of the functiop;(E).1!° This crossover can be
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FIG. 7. Phase transitions far=0.9, «=0.1 with s>=1000, K=1. (S-3, (L-a): The periods of the periodic instantons of the small and
the large barrier plotted against=EKAS?. (S-b), (L-b): Periodic instanton action$s(T), S, (T) and thermodynamical actions

Sy(T), S.(T) for the small and the large barrier.

visualized in a diagram showing both the thermodynamic IV. ANALYTICAL RESULTS
and the periodic instantons action depending on temperature,

i.e., T>{S(T),S(T)}. The phase transition occurs where 10 investigate the two questions mentioned, we calculate
the two curves intersedsharp crossover, first-order phase the functionsps(E), Ss(T) andp.(E), S_(E) numerically
transition or join (smooth crossover, second-order phaseand analyze their dependence »rand . To obtain some
transition at the lowest action. analytical hints for this numerical analysis, we first discuss
From Eq. (18), we obtain E=4S /dp, and thusS; the E—0, E—E; limits of the periodic instanton periods
=[Edp. The periodp;(E) of the periodic instantons usu- Pi(E), i=S,L.
a||y decreases monotonica”y for increasiEgnearE: 0. In the limit E—0, the periodic instantons reduce to the
Hence if p;(E) increases again after a certain critical valueusual(vacuun instantons describing ground-state tunneling
with increasing energf (“first-order behavior”), the in-  at zero temperature through the small or the large bétiter.
verse functiorE(p;) is double valued and so B(T). This IS & special feature of this mod&nd an effect of the field-
leads to an intersection of the lower branchST) with ~ dependent magshat although the vacuum instantons are not

~Si(T) which is the first-order phase transition at temperaturef)er'c’d'c’ they reach the vacua between which they interpo-

< wh h b hS(T) ioins S (T ate at finite time, i.e.,p;(E=0)<e. Nonetheless, since
i W ereath € Up'\LJeI’ Cranc 8(T) joins S(T) at some p;(E=0) is very large, the vacuum instantons dominate the
temperaturel ", T"<T;".

; ) . integral (14) also forT=0 and hence describe vacuum tun-
If pi(E) is monotonically decreasing'second-order be-  nejing as can also be seen from the comparison with the

havior”), there is only one branch &(T) which smoothly \,3cuum WKB tunneling rate.

joins S(T) at a temperaturé’iczTi""; this yields a second- Both p;(E=0) and the Euclidean action of the vacuum

order phase transition. instanton,
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both the large and the small barrier have second-order-type
periods p, (E), ps(E), then bothS (T) and Sg(T) have
only one branch which is strictly decreasing with increasing

can be estimated explicitly in terms of elliptic integrals. De-temperaturel. These branches end &t TiM with Si(Ti'V')

fining the parameters

8N4+ N\a?
wo?=4K2\s?, k2=¥, (22
a,a._

where

(a1)?=——, =
a, a_

,_2(a -2\ j2_ 2@ =20

(a3 wa, ' T araa (23

and
a,=VA+ra?+ 2N+ a X,
= A+ a2+ 2N —a X, (24)

the vacuum limits of the periods are given by

24a. (a2
wo(a_—2N)Va L >

- (al)z]l'[(arcsir(aia) ,(a3)2,k)

¥ <a1>2F(arcsir(i) k)] (25
a3

24a | (an?
2oLl

- (az)z]H(arcsir< i) ,(a4)2,k)
Ay

+ (az)ZF(arcsir( ai) k)] , (26)
4

whereas the vacuum instanton actions are given by

Se= 43[ %H(arcsir(a%> ,(aa)z.k)

a+—2\/X(l+a)l_/ r(i> )
\/EMT .\aI’CSI @ K, (27

,SL:4S{2\/X(a++a)—a+a H(arcsu{ 1) (ag)? k)
a

a+,

s (a_—2\)a,+2\ea_ (

F\arcsir< a%) k)] . (28

Ps(E=0)=

pL(E=0)=

a,a”

=S(TM). Equation(10) yields S, (T\")>Sg(T¥) for all val-
ues of\, « leading to second-order behavior for both bar-
riers, hence

SL(T)>Se(T), (29

e., tunneling through the small barrier always dominates
tunneling through the large barrier if the crossover to thermal
activity is a second-order phase transition for both barriers.
Whether a first-order transition behavior for one or both of
the barriers allows large barrier tunneling to become domi-
nant over small barrier tunneling has to be analyzed numeri-
cally.

In the second limiE—E;, i=S,L, the periodic instan-
tons reduce to the sphalerons

E) E~Es - _
s —— 5= ¢s (30)
€ BB 34
L —>7:(PL- (31

Near the maximum energy¥ — E;<1, the periodic instan-
tons can be approximated by small oscillations near the bot-
tom of the inverted potential, and the frequencig®f these
oscillations determine the periogg(E=E;) =27/ w; of the
static limits of the periodic instantons. To estimate these fre-
quencies, one inserté=¢,+ 8¢ into the Euler-Lagrange

equation(15) and expands to second orderde. This yields
harmonic-oscillator equations with frequencies

ws=VAKAS?(1—a)[1-N(1—a)], (32

o, = VAKAS2(1+a)[1-N(1+a)]. (33

Hence, the periodic instanton action cun®§T) smoothly
join the thermodynamic actio®(T) at Ti""=1/pi(E=Ei)
= @;/2m. It is worth noting thafT}'>T¥ for A<3, but T}/
<Tg’I for \>3. This suggests to investigate the parameter

ranges\ € (0,3) and\ e (3,1) separately.

V. NUMERICAL RESULTS

For vanishing magnetic fieldp=0, both barriers are
equally high and the periodicity functions coincid®g,(E)
=ps(E)=:p(E), a situation already discuss&dsor 0<x
<%, p(E) has second-order behavior, whereas ¥etr\
<1, p(E) changes to first-order behavior.

\* =3 remains a critical value of the anisotropy param-
eter if an applied magnetic field is considered. The main
influence of the magnetic field on the type of phase transition
is shown in Fig. 3 fors?=1000, K=1. For A=0.45
<\*, pL(E) changes from second-order behavior to first-
order behavior whenx is increasedFig. 3(L)], whereas

From these results, it is easy to check that the large barrigi(E) which is not plotted is of second-order type for all

vacuum instanton action is always greater than that of thgalues a<(0,1). On
small barrier,S, >Ss for all values of\, a considered. If

the other hand, fora=0.8

>\*, pg(E) varies from first-order behavior to second-
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TABLE I. Phase-transition-type combinations for the asymmetric twin barrier with field-dependent mass.

A<A* A>N*
Small barrier Large barrier Small barrier Large barrier
a<a*(\) Second order Second order First order First order
a>a*(\) Second order First order Second order First order
order behavior with increasing [Fig. 3S)], and one should The corresponding analytical and numerical analysis was
note that the allowed values of for A>3 are restricted by guided by two questions:
M1+ a)<l. p.(E) for \=0.8 which is not plotted exhib- (1) Does the field dependence of the mass allow the tun-
its first-order behavior for all allowed values af neling and/or thermal processes involving the large barrier to

These particular examplés=0.45 and\ =0.8 are typical become dominant over those involving the small barrier?
for the a dependence of the type of transitions in the anisotand
ropy parameter rangese (ON*) and A e (A*,1). We can (2) What types of phase transitions are the crossovers
thus distinguish four different situations in the phase-from temperature-assisted tunneling to thermal activity, de-
transition behavior of the asymmetric twin barrier problempending on the anisotropy parameterand the magnetic
which are shown in Figs. 4-7 for values »fand @ which  parameter?
yield clear shapes of the functions considered, again using Summarizing, the first question must be denied, i.e., small
s?=1000, K=1. These possible types of transition processbarrier processes always dominate large barrier processes
combinations are summarized in Table I. which is physically obvious for constant mass from the shape
For\ e (OA*), we have second-order phase transitions apf the potential and remains true even if the field dependence
both barriers(Fig. 4) for a<a*(\), or second-order phase of the mass is taken into account.
transitions at the small and and first-order phase transitions at But concerning the second question, the field dependence
the large barriefFig. 5 for a>a* (\). The functiona™ (\) of the mass is of great importance because it leads to first-
can be estimated numerically from the, &) dependence of order phase transitons besides the usual second-order behav-
the periodp, (E). In Table Il (L), some typical values of this ior. This can already be observed for zero magnetic field.
critical parameter are given, showing that (\) decreases Three of the four possible types of combinations of phase-
with N. For A<0.25, there is no critical value* (\)<1, transition types were found: First-order transitions at both
i.e., the phase transition at the large barrier is of second orddarriers, second-order transitions at both barriers, and a

regardless of the magnetic parameter if the anisotropy pas€cond-order transition at the small, and a first-order transi-
rameter is sufficiently small. tion at the large barrier. The fourth possibility, first-order

The second range of the anisotropy parameter, transitions at the small and second-order transition at the
e (\*,1), allows second-order transitions at the small andarge barrier, did not arise. N
first-order transitions at the large barriéFig. 6) for « The types of combination of phase transitions depend on
<a*(\), or first-order transitions at both barriegBig. 6)  the values of the parametexs a wherex* =3, the critical
for a>a*(\). Some typical values of* (\), now esti- Value at which second-order behavior turns to first-order be-
mated numerically from the\( ) dependence of the period havior for vanishing magnetic field.e., with equally high
p<(E), are shown in Table I{S). Here the critical value of be_lrrlers), remawls a critical value_lf a magnetic field is ap-
the magnetic parameter increases with increasing anisotrogiied. ForA<<\*, the small barrier exhibits only second-
parameter. Fox =0.85, there is no critical value af in the ~ Order phase transitions; far>\*, the large barrier exhibits
region (0,1x—1) restricted by the requirement of positive only first-order phase transitions. The transition order at the
mass. Foi <0.60, the numerical calculations failed due to Other barrier, respectively, depends on the value of the mag-
problems with the end-point integrations. netic parametewr and changes from second order to first
We note that it is not possible to have first-order transi-order at the large barrier at* (\) for A<A™ and from first
tions at the small and second-order transitions at the large
barrier for any allowed v_alues of th? parameters a. TABLE II. (L) Critical valuesa* (\) of the magnetic parameter
Moreover, the numerical analysis shows that processest the large barrier foh<\*, (S) critical valuesa*(\) of the
involving the small barrier always dominate over those in-magnetic parameter at the small barrier fos \*.
volving the large barrier even if one or both of the barriers

exhibit a first-order phase-transition behavior. Large barrier Small barrier
(L) )
A a*(\) A a*(\)
VI. SUMMARY AND CONCLUSIONS
<0.25 0.65 0.06
Above we have analyzed the crossover from temperatures.30 0.85 0.70 0.12
assisted tunneling to thermal activity for asymmetric twing.35 0.63 0.75 0.17
barriers in a model with a field-dependent mass describing .40 0.45 0.80 0.23
large spin in arX0Y easy plane withx easy axis anisotropy .45 0.31 =>0.85

and an applied magnetic field in tlyedirection.
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order to second order at the small barrieragt(\) for A corrections are not expected to change the crossover behav-
>\* for increasinge, 0<a<min{l,1\—1}. ior significantly. The results derived here for the two-
We considered only the tree approximation of the tunnelanisotropy model which is of high generality in small-
ing rate to analyze its crossover to thermal activity. Takingparticle magnetism should therefore be helpful in
one-loop corrections into account, i.e., calculating the flucexperimental tests.
tuation determinant prefactdrin Eq. (19), might perhaps
smoothen a sharp intersection of the two curves.
Nonetheless, in experimental results a crossover between
first- and second-order transitions can be observed, e.g., in D.K. Park acknowledges support of the Deutsche Fors-
molecular nanomagnets of spin 10-20, hence higher-ordethungsgemeinschafbFG).
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