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Quantum tunneling and phase transitions in spin systems with an applied magnetic field
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Transitions from classical to quantum behavior in a spin system with two degenerate ground states separated
by twin energy barriers which are asymmetric due to an applied magnetic field are investigated. It is shown that
these transitions can be interpreted as first- or second-order phase transitions depending on the anisotropy and
magnetic parameters defining the system in an effective Lagrangian description.@S0163-1829~98!10333-8#
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I. INTRODUCTION

Barrier penetration by tunneling processes is a pur
quantum phenomenon which does not arise in classical p
ics where only processes leadingover the barrier, e.g., ther
mal activity according to a classical Boltzmann distributio
yield a nonzero barrier transition rate. At finite temperatu
either tunneling from thermally excited states(‘‘temperature
assisted tunneling’’)or thermal fluctuations over the barrie
(‘‘thermal activity’’) dominate the transition rate, and th
crossover from temperature assisted tunneling to therma
tivity can be understood as a phase transition from the qu
tum phase to the classical phase of a physical system w
is of either first or second order.

Whereas the general theory of these phase transition
an abstract potential barrier setting is well known and clea
understood1 ~there is a remarkable similarity to the Maxwe
theory of phase transitions in the Van der Waals gas!, only
very few models are known which allow an explicit an
analytic investigation of the phase transitions in decay
transition rates which may even be accessible to experim
tal verification. Hence the recent discovery that spin syste
provide examples which exhibit first- and second-ord
phase transitions2 aroused interest in the investigation
such systems. In particular, a large spin in anX0Y easy-
plane anisotropy with an easyy axis can be shown to exhib
both first- and second-order phase transitions dependin
the value of the anisotropy parameter.

In the following, we consider this spin system with a
additional applied magnetic field and investigate its influen
on the dominant transition process. We begin with the p
sentation of the model and its effective semiclassical
grangian in Sec. II, and then review the theory of tempe
ture assisted quantum tunneling and thermal activity in S
III. Section IV contains some analytical results which guid
the numerical calculations presented in Sec. IV and d
cussed in the concluding Sec. V.

II. THE MODEL AND ITS SEMICLASSICAL
APPROXIMATION

We consider a giant spin in anX0Y easy-plane anisotrop
with easy axis along thex direction and external magneti
PRB 580163-1829/98/58~9!/5554~9!/$15.00
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field B in they direction, perpendicular to the easy directio
The corresponding HamiltonianĤ involves the spin operato

SŴ and is given by3,4

Ĥ5K~Ŝz
21lŜy

2!22mBBŜy , ~1!

where the easyxy plane demandsl,1.
The physical situation described by this Hamiltonian

illustrated in Fig. 1 where the spin operator is represented
a classical spin vectorŜPS1. For zero magnetic fieldB50
the ground state is twofold degenerate, the classical spin
tor pointing along the positive or negativex direction, i.e.,
along the easy axis.

Under the influence of an applied magnetic field in they
direction, there are still two degenerate spin ground s
directionsSW min

(1) , SW min
(2) in the easyxy plane moving towards

the y direction with increasing fieldB.
To change the direction of the spin from one of the

ground-state directions to a neighboring one, one has
overcome an energy barrier, moving the spin along eit
pathS or pathL.

FIG. 1. Classical visualization of theX0Y easy-planex easy
axis spin system with applied magnetic field in they direction.
5554 © 1998 The American Physical Society
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PRB 58 5555QUANTUM TUNNELING AND PHASE TRANSITIONS IN . . .
To study quantum tunneling and classical thermal effe
of the discrete spin system described byĤ, we convert the
spin operators to a continuous potential problem. This can
achieved with the help of spin-coherent state path integr5

or using the Villain transformation.6 Both approaches yield a
semiclassical description of the quantum system given by
effective Lagrangian

L~f,ḟ !5
1

2
M ~f!ḟ22V~f!, ~2!

where

V~f!5Kls2~sin2f2a!2 ~3!

and

M ~f!5
1

2K~12l sin2f1al sinf!
, a:5

mBB
Kls

. ~4!

Here f may be interpreted as a spherical parameter of
classical spin vector

sW5s~sin u cosf,sin u sin f,cosu!. ~5!

FIG. 2. Asymmetric twin barrier potentialV(f), field-
dependent massM (f), and small and large barrier periodic insta
tons.
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The semiclassical approximation is exact in the limit of lar
spin, s→`, in the entire range of theanisotropy parameter
l, 0,l,1.7

The shape of the potentialV(f) is shown in Fig. 2, to-
gether with the field-dependent massM (f) which is a spe-
cial feature of this model. For small magnetic and anisotro
parameters, i.e.,l!1, a!1, one can approximate the ma
function by a constant valueM (f)'1/2K,4 but we are here
particularly interested in the effect of nonconstant mass
quantum tunneling and thermal activity. Therefore we
strict the mass only to be positive which yields the conditi
l(11a),1 for themagnetic parametera, but keep the full
f dependence ofM (f).

The degenerate spin ground states are given by the
different types of minima ofV(f) at 2lp1arcsina and
(2l 11)p2arcsina. These minima are separated by a sm
barrierS with height

VS p

2 D5Kls2~12a!25:ẼS ~6!

and a large barrierL with height

VS 3p

2 D5Kls~11a!25:ẼL , ~7!

FIG. 3. The periods of the periodic instantons of the large b
rier pL for l50.45 and of the small barrierpS for l50.8, plotted
againste5E/Kls2 for several values ofa with s251000, K
51.
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FIG. 4. Phase transitions forl50.3, a50.5 with s251000, K51. ~S-a!, ~L-a!: The periods of the periodic instantons of the small a
the large barrier plotted againste5E/Kls2. ~S-b!, ~L-b!: Periodic instanton actionsSS(T), SL(T) and thermodynamical action

S̃S(T), S̃L(T) for the small and the large barrier.
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which corresponds to the pathsS andL shown in Fig. 1.
Sincef andf12p describe the same physical state, w

restrict ourselves to the first twin barrier pair atw̃S5p/2 and
w̃L53p/2. The maximum positionsw̃S and w̃L are called
‘‘sphalerons’’ in the usual field-theoretical terminology. Th
vacua surrounding these barriers are denoted by

F̆S
~1!5arcsina.F̆L

~2!52p1arcsina ~8!

and

F̆S
~2!5p2arcsina5F̆L

~1! . ~9!

We observe that barriers of different height only exist for
,a,1. For vanishing magnetic field (a50), the two bar-
riers are equally high,8 whereas in the limita→1, the mag-
netic field dominates the easy-axis effect and there is o
one ground state pointing along they direction.

III. THE THEORY OF QUANTUM TUNNELING
AND THERMAL ACTIVITY

We consider transitions between spin states built aro
the two degenerate vacua at finite temperature, i.e., we
ly

d
s-

sume the quantum spin states to be populated according
Boltzmann distribution. The rate of thermal activity over th
small or large barrier is to first order given by the Boltzma
factor,

G̃ i~T!;eS̃i ~T!, S̃i~T!:5
Ẽi

T
~10!

with i 5S,L and kB51. S̃S(T) and S̃L(T) are called the
thermodynamic actions of the small and the large barr
respectively.

The temperature-assisted tunneling rate can be estim
by a Boltzmann average over the tunneling probabilit
from excited states with energyE. These tunneling prob-
abilities can be approximated by the semiclassical WKB
ponents,Pi(E)5e2Wi (E),

Wi~E!52A2E
F i

~1!
~E!

F i
~2!

~E!AM ~f!@V~f!2E#df, i 5S,L,

~11!

whereFS
(1,2)(E), FL

(1,2)(E) are the turning points for the
small (S) or large (L) barrier at energyE, i.e., the solutions
of the equationV(f)5E. It is easy to see that
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FIG. 5. Phase transitions forl50.45, a50.8 with s251000, K51. ~S-a!, ~L-a!: The periods of the periodic instantons of the small a
the large barrier plotted againste5E/Kls2. ~S-b!, ~L-b!: Periodic instanton actionsSS(T), SL(T) and thermodynamical action

S̃S(T), S̃L(T) for the small and the large barrier.
ob
-

cent

ua-

me
t

r
s

s-
FS
~1!~E!5arcsinS a1A E

Kls2D ,

0<E<ES ~12!

FS
~2!~E!5p2arcsinS a1A E

Kls2D ,

FL
~1!~E!5p2arcsinS a2A E

Kls2D ,

0<E<EL ~13!

FL
~2!~E!52p1arcsinS a2A E

Kls2D .

Taking the Boltzmann average over the tunneling pr
abilities from excited statesPi(E) yields the temperature
assisted tunneling rate
-

G i~T!5E
0

`

dEe2 E/TPi~E!5E
0

`

dEe2 E/T 2Wi ~E!. ~14!

This integral can be estimated by the steepest des
method, using the concept of periodic instantons.1,9 These
are classical solutions of the Euclidean Euler-Lagrange eq
tions of the semiclassical Lagrangian~2!, i.e.,

M ~f!f̈1
1

2

dM~f!

df
ḟ2

dV~f!

df
50 ~15!

~dots now denote derivatives with respect to Euclidean ti
t5 i t ) with finite energyE as integration constant in the firs
integral,

1

2
M ~f!ḟ22V~f!52E. ~16!

For 0,E,ẼS or 0,E,ẼL there are solutions
wS

E(t), wL
E(t) oscillating around the small or large barrie

with period pS(E), pL(E), respectively. These solution
can be derived by integrating Eq.~16! which leads to elliptic
integrals, but it is impossible to solve the resulting expre
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FIG. 6. Phase transitions forl50.7, a50.3 with s251000, K51. ~S-a!, ~L-a!: The periods of the periodic instantons of the small a
the large barrier plotted againste5E/Kls2. ~S-b!, ~L-b!: Periodic instanton actionsSS(T), SL(T) and thermodynamical action

S̃S(T), S̃L(T) for the small and the large barrier.
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which are visualized in Fig. 2.
Nonetheless it is possible to compute the periods and

Euclidean actions of these periodic instantons from Eq.~16!
which yields

pi5A2E
F i

~1!
~E!

F i
~2!

~E!A M ~f!

V~f!2E
df ~17!

and

Si52A2E
F i

~1!
~E!

F i
~2!

~E!AM ~f!~V~f!2E!df1piE

5Wi~E!1piE. ~18!

In the steepest descent approach, the integral~14! is domi-
nated by the configuration satisfying

1

T
5pi~E!, ~19!
e

i.e., the period of the periodic instanton has to be identifi
with the inverse temperature. This yields the usual perio
instanton tree approximation for the temperature-assis
tunneling rate,

G i~T!5e2Si ~T!, ~20!

whereSi(T) is the Euclidean action of the periodic instanto
with period 1/T5pi .

Hence, there are two different physical processes and
different energy barriers involved in the evaluation of t
finite-temperature spin-transition rate. Ignoring the effect
the field-dependent mass, it is obvious that the small bar
processes always dominate large barrier ones, and it ha
be checked whether this changes by taking into account
field dependence of the mass, depending on the parametl
and a. Can transitions involving the large barrier becom
dominant over those involving the small barrier for speci
values of these parameters?

Another question to be analyzed is that of the crosso
from temperature-assisted tunneling to thermal activity
the small and the large barriers which can be understoo
phase transitions of either first or second kind, depending
the shape of the functionpi(E).1,10 This crossover can be
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FIG. 7. Phase transitions forl50.9, a50.1 with s251000, K51. ~S-a!, ~L-a!: The periods of the periodic instantons of the small a
the large barrier plotted againste5EKls2. ~S-b!, ~L-b!: Periodic instanton actionsSS(T), SL(T) and thermodynamical action

S̃S(T), S̃L(T) for the small and the large barrier.
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visualized in a diagram showing both the thermodynam
and the periodic instantons action depending on tempera

i.e., T°$Si(T),S̃i(T)%. The phase transition occurs whe
the two curves intersect~sharp crossover, first-order pha
transition! or join ~smooth crossover, second-order pha
transition! at the lowest action.

From Eq. ~18!, we obtain E5]Si /]pi and thus Si

5*Edpi . The periodpi(E) of the periodic instantons usu
ally decreases monotonically for increasingE near E50.
Hence if pi(E) increases again after a certain critical val
with increasing energyE (‘‘first-order behavior’’), the in-
verse functionE(pi) is double valued and so isSi(T). This
leads to an intersection of the lower branch ofSi(T) with

S̃i(T) which is the first-order phase transition at temperat

Ti
C , whereas the upper branch ofSi(T) joins S̃i(T) at some

temperatureTi
M , Ti

M,Ti
C .

If pi(E) is monotonically decreasing(‘‘second-order be-
havior’’) , there is only one branch ofSi(T) which smoothly

joins S̃i(T) at a temperatureTi
C5Ti

M ; this yields a second
order phase transition.
c
re,

e

e

IV. ANALYTICAL RESULTS

To investigate the two questions mentioned, we calcu
the functionspS(E), SS(T) andpL(E), SL(E) numerically
and analyze their dependence onl and a. To obtain some
analytical hints for this numerical analysis, we first discu
the E→0, E→Ei limits of the periodic instanton period
pi(E), i 5S,L.

In the limit E→0, the periodic instantons reduce to th
usual~vacuum! instantons describing ground-state tunneli
at zero temperature through the small or the large barrier4 It
is a special feature of this model~and an effect of the field-
dependent mass! that although the vacuum instantons are n
periodic, they reach the vacua between which they inter
late at finite time, i.e.,pi(E50),`. Nonetheless, since
pi(E50) is very large, the vacuum instantons dominate
integral ~14! also forT50 and hence describe vacuum tu
neling as can also be seen from the comparison with
vacuum WKB tunneling rate.

Both pi(E50) and the Euclidean action of the vacuu
instanton,
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S̆i5Si@pi~E50!#5A2E
F̆ i

~1!

F̆ i
~2!

AM ~f!V~f!df, ~21!

can be estimated explicitly in terms of elliptic integrals. D
fining the parameters

v0
254K2ls2, k25

8Al~41la2!

a1a2
, ~22!

where

~a1!25
4Al

a1
, ~a2!25

4Al

a2
,

~a3!25
2~a222Al!

~12a!a1
, ~a4!25

2~a122Al!

~11a!a2
~23!

and

a15A41la212Al1aAl,

a25A41la212Al2aAl, ~24!

the vacuum limits of the periods are given by

pS~E50!5
2Aa1

v0~a222Al!Aa2

H @~a3!2

2~a1!2#PXarcsinS 1

a3
D ,~a3!2,kC

1~a1!2FXarcsinS 1

a3
D ,kCJ ~25!

pL~E50!5
2Aa2

v0~a122Al!Aa1

H @~a4!2

2~a2!2#PXarcsinS 1

a4
D ,~a4!2,kC

1~a2!2FXarcsinS 1

a4
D ,kCJ , ~26!

whereas the vacuum instanton actions are given by

S̆S54sH 4Al2a1

Aa1a2

PXarcsinS 1

a3
D ,~a3!2,kC

1
a122Al~11a!

Aa1a2

FXarcsinS 1

a4
D ,kCJ , ~27!

S̆L54sH 2Al~a11a2!2a1a2

Aa1a2
3

PXarcsinS 1

a4
D ,~a4!2,kC

1
~a222Al!a112Alaa2

Aa1a2
3

FXarcsinS 1

a4
D ,kCJ . ~28!

From these results, it is easy to check that the large ba
vacuum instanton action is always greater than that of
small barrier,S̆L.S̆S for all values ofl, a considered. If
-

er
e

both the large and the small barrier have second-order-
periods pL(E), pS(E), then bothSL(T) and SS(T) have
only one branch which is strictly decreasing with increas
temperatureT. These branches end atT5Ti

M with Si(Ti
M)

5S̃i(Ti
M). Equation~10! yieldsSL(TL

M).SS(TS
M) for all val-

ues ofl, a leading to second-order behavior for both ba
riers, hence

SL~T!.SS~T!, ~29!

i.e., tunneling through the small barrier always domina
tunneling through the large barrier if the crossover to therm
activity is a second-order phase transition for both barrie
Whether a first-order transition behavior for one or both
the barriers allows large barrier tunneling to become do
nant over small barrier tunneling has to be analyzed num
cally.

In the second limitE→Ei , i 5S,L, the periodic instan-
tons reduce to the sphalerons

wS
~E! ——→

E→ES p

2
5w̃S , ~30!

wL
~E! ——→

E→EL 3p

2
5w̃L . ~31!

Near the maximum energy,E2Ei!1, the periodic instan-
tons can be approximated by small oscillations near the
tom of the inverted potential, and the frequenciesv i of these
oscillations determine the periodspi(E5Ei)52p/v i of the
static limits of the periodic instantons. To estimate these
quencies, one insertsf5w̃ i1df into the Euler-Lagrange
equation~15! and expands to second order indf. This yields
harmonic-oscillator equations with frequencies

vS5A4Kls2~12a!@12l~12a!#, ~32!

vL5A4Kls2~11a!@12l~11a!#. ~33!

Hence, the periodic instanton action curvesSi(T) smoothly
join the thermodynamic actionS̃i(T) at Ti

M51/pi(E5Ei)
5v i /2p. It is worth noting thatTL

M.TS
M for l, 1

2 , but TL
M

,TS
M for l. 1

2 . This suggests to investigate the parame

rangeslP(0,1
2 ) andlP( 1

2 ,1) separately.

V. NUMERICAL RESULTS

For vanishing magnetic field,a50, both barriers are
equally high and the periodicity functions coincide,pL(E)
5pS(E)5:p(E), a situation already discussed.8 For 0,l
, 1

2 , p(E) has second-order behavior, whereas for1
2 ,l

,1, p(E) changes to first-order behavior.
l* 5 1

2 remains a critical value of the anisotropy param
eter if an applied magnetic field is considered. The m
influence of the magnetic field on the type of phase transit
is shown in Fig. 3 for s251000, K51. For l50.45
,l* , pL(E) changes from second-order behavior to fir
order behavior whena is increased@Fig. 3~L!#, whereas
pS(E) which is not plotted is of second-order type for a
values aP(0,1). On the other hand, forl50.8
.l* , pS(E) varies from first-order behavior to secon
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TABLE I. Phase-transition-type combinations for the asymmetric twin barrier with field-dependent m

l,l* l.l*
Small barrier Large barrier Small barrier Large barrier

a,a* (l) Second order Second order First order First order

a.a* (l) Second order First order Second order First order
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order behavior with increasinga @Fig. 3~S!#, and one should
note that the allowed values ofa for l. 1

2 are restricted by
l(11a),1. pL(E) for l50.8 which is not plotted exhib-
its first-order behavior for all allowed values ofa.

These particular examplesl50.45 andl50.8 are typical
for thea dependence of the type of transitions in the anis
ropy parameter rangeslP(0,l* ) and lP(l* ,1). We can
thus distinguish four different situations in the phas
transition behavior of the asymmetric twin barrier proble
which are shown in Figs. 4–7 for values ofl anda which
yield clear shapes of the functions considered, again u
s251000, K51. These possible types of transition proce
combinations are summarized in Table I.

For lP(0,l* ), we have second-order phase transitions
both barriers~Fig. 4! for a,a* (l), or second-order phas
transitions at the small and and first-order phase transition
the large barrier~Fig. 5! for a.a* (l). The functiona* (l)
can be estimated numerically from the (l,a) dependence o
the periodpL(E). In Table II ~L!, some typical values of this
critical parameter are given, showing thata* (l) decreases
with l. For l<0.25, there is no critical valuea* (l),1,
i.e., the phase transition at the large barrier is of second o
regardless of the magnetic parameter if the anisotropy
rameter is sufficiently small.

The second range of the anisotropy parameter,l
P(l* ,1), allows second-order transitions at the small a
first-order transitions at the large barrier~Fig. 6! for a
,a* (l), or first-order transitions at both barriers~Fig. 6!
for a.a* (l). Some typical values ofa* (l), now esti-
mated numerically from the (l,a) dependence of the perio
pS(E), are shown in Table II~S!. Here the critical value of
the magnetic parameter increases with increasing anisot
parameter. Forl>0.85, there is no critical value ofa in the
region (0,1/l21) restricted by the requirement of positiv
mass. Forl<0.60, the numerical calculations failed due
problems with the end-point integrations.

We note that it is not possible to have first-order tran
tions at the small and second-order transitions at the la
barrier for any allowed values of the parametersl, a.

Moreover, the numerical analysis shows that proces
involving the small barrier always dominate over those
volving the large barrier even if one or both of the barrie
exhibit a first-order phase-transition behavior.

VI. SUMMARY AND CONCLUSIONS

Above we have analyzed the crossover from temperat
assisted tunneling to thermal activity for asymmetric tw
barriers in a model with a field-dependent mass describin
large spin in anX0Y easy plane withx easy axis anisotropy
and an applied magnetic field in they direction.
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The corresponding analytical and numerical analysis w
guided by two questions:

~1! Does the field dependence of the mass allow the t
neling and/or thermal processes involving the large barrie
become dominant over those involving the small barrier?
and

~2! What types of phase transitions are the crossov
from temperature-assisted tunneling to thermal activity,
pending on the anisotropy parameterl and the magnetic
parametera?

Summarizing, the first question must be denied, i.e., sm
barrier processes always dominate large barrier proce
which is physically obvious for constant mass from the sha
of the potential and remains true even if the field depende
of the mass is taken into account.

But concerning the second question, the field depende
of the mass is of great importance because it leads to fi
order phase transitons besides the usual second-order b
ior. This can already be observed for zero magnetic fie8

Three of the four possible types of combinations of pha
transition types were found: First-order transitions at b
barriers, second-order transitions at both barriers, an
second-order transition at the small, and a first-order tra
tion at the large barrier. The fourth possibility, first-ord
transitions at the small and second-order transition at
large barrier, did not arise.

The types of combination of phase transitions depend
the values of the parametersl, a wherel* 5 1

2 , the critical
value at which second-order behavior turns to first-order
havior for vanishing magnetic field~i.e., with equally high
barriers!, remains a critical value if a magnetic field is a
plied. For l,l* , the small barrier exhibits only second
order phase transitions; forl.l* , the large barrier exhibits
only first-order phase transitions. The transition order at
other barrier, respectively, depends on the value of the m
netic parametera and changes from second order to fir
order at the large barrier ata* (l) for l,l* and from first

TABLE II. ~L! Critical valuesa* (l) of the magnetic paramete
at the large barrier forl,l* , ~S! critical valuesa* (l) of the
magnetic parameter at the small barrier forl.l* .

Large barrier Small barrier
~L! ~S!

l a* (l) l a* (l)

<0.25 0.65 0.06
0.30 0.85 0.70 0.12
0.35 0.63 0.75 0.17
0.40 0.45 0.80 0.23
0.45 0.31 >0.85
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order to second order at the small barrier ata* (l) for l
.l* for increasinga, 0,a,min$1,1/l21%.

We considered only the tree approximation of the tunn
ing rate to analyze its crossover to thermal activity. Tak
one-loop corrections into account, i.e., calculating the fl
tuation determinant prefactor11 in Eq. ~19!, might perhaps
smoothen a sharp intersection of the two curves.

Nonetheless, in experimental results a crossover betw
first- and second-order transitions can be observed, e.g
molecular nanomagnets of spin 10–20, hence higher-o
s

l-
g
-

en
in
er

corrections are not expected to change the crossover be
ior significantly. The results derived here for the two
anisotropy model which is of high generality in smal
particle magnetism should therefore be helpful
experimental tests.
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