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The Kondo effect in a one-dimensional sénXXZ model in the gaplesXY regime (—1<A<1) is
studied both analytically and numerically. In our model an impurity sfis {/2) is coupled to a single spin
in the XXZ spin chain. Perturbative renormalization-grol®G) analysis is performed for various limiting
cases to deduce low-energy fixed points. It is shown that in the ground state the impurity spin is screened by
forming a singlet with a spin in the hoXtXZ chain. In the antiferromagnetic side<@ <1) the host chain
is cut into two semi-infinite chains by the singlet. In the ferromagnetic sitlé< A <0), on the other hand,
the hostXXZ chain remains as a single chain through “healing” of a weakened bond in the low-energy
(long-distanceg limit. The density-matrix renormalization-group method is used to study the size scaling of
finite-size energy gaps and the power-law decay of correlation functions in the ground state. The numerical
results are in good agreement with the predictions of the RG analysis. Low-temperature behaviors of specific
heat and susceptibility are also discus§&0163-182608)04433-4

I. INTRODUCTION the half-filled case in the original electronic models. The
Hamiltonian of the system we discuss in this paper has the
There has been a recent resurgence of interest in tHerm H=Hg+Hy, whereH, describes the ho§=1 XXZ
Kondo effect in one-dimensional1D) strongly correlated spin chain,
systems. In 1D interacting systems belonging to the univer-
sality class of the Tomonaga-Lutting€rL) liquids, a static
impurity potential has a drastic effect and is renormalized to
infinity or zero, depending on whether the interaction is re-
pulsive or attractivé. This anomalous response to a static
impurity of TL liquids has attracted a lot of attention and has
led to further studies on the effects of a dynamic impurityandHy the Kondo coupling,
(typically a magnetic impurityin a TL liquid. A generalized
Hubbard model with an impurity spirS& 3) and its variants
have been studied by many authors. It was found that the Hy = Jk(SpSimpt S§Simp T A SoSimp)- 2
Kondo temperature, which is a typical energy scale for host
electrons to screen an impurity spin, has a power-law depen-
dence on the Kondo exchange coupling.Properties of The size of the impurity spin is also assumed to be 1/2. An
low-energy fixed points have been discussed using perturbdnportant point of our model is the absence of(3lUspin-
tive renormalization-group analyéiand the boundary con- rotation symmetry. We assum&|<1 to ensure that the host
formal field theory approach® A recent Monte Carlo study XXZ spin chain has gapless excitations. For simplicity we
on the susceptibility of an impurity spin is consistent with have used the same paramelén Hy andHy . We note that
anomalous power-law temperature dependence conjecturddin Hg is an important parameter controlling the power-law
earlier? In addition to the models with a simple Kondo cou- behavior of various correlations whilein H, does not play
pling, there are some exactly solvable models in which ar@ny significant role in the following discussions. The Kondo
impurity spin is coupled to the spin density of electrons viacoupling Jx can be either antiferromagnetic or ferromag-
special forms of the Kondo exchange couplifig! These netic, but we will concentrate on the antiferromagnetic case
solvable models, however, do not show the anomalou$Jx>0) in this paper. We will show in this paper that, when
power-law behavior of the specific h&abecause the opera- 0<A<1, the Kondo effect in the&XXZ spin chain is very
tor responsible for this anomalous scaling is absent in theimilar to the Kondo effect in TL liquids Wité<Kp<1 and
models constructed to be integrable. It seems that these solit, =1, whereK, andK, are parameters characterizing the
able models do not represent a generic situation, and we willL liquids* In this sense our model can be regarded as a toy
not address this issue further. model for the Kondo problem in 1D interacting electron
In this paper we consider a simplified model that we be-systems? We note that in Eq.2) the impurity spin is
lieve shares common features with the above-mentionedoupled to asingle spin located in themiddle of the chain,
Kondo effect in 1D interacting electronic models like the unlike the model studied by Clarlet al,'* where an impu-
Hubbard model. We here focus on the spin sector and digity spin is coupled to two spins symmetrically, and the
card the charge degree of freedom. This may correspond tmodel studied by Wand, where an impurity spin is coupled

Ho=J E (S.XST+1+ S|yS|)/+1+AS|ZS|Z+1)7 1
j=—o
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to a boundary spin. This different form of Kondo coupling where II1(x) is a conjugate operator to the bosonic field

leads to different scaling behavior in both weak- and strong¢(x): [ ¢(x),I1(y)]=i8(x—y). The spin-wave velocity is

coupling regimes. known to bev = (/26)sin 6, where §=cos ! A. The spins
Eggert and Affleck®!’ studied, among various kinds of in the chain can be represented in terms of bosonic fields

disorder, the model at the isotropic poif¥ £ 1). They con-  4(x) and $(x) (I1=d¢/dx): 161

cluded that the impurity spi,, forms a singlet withS;,

and that the Heisenberg chain is decoupled into two semi- , 1 d¢ j ¢

infinite chains in the low-energy limit. A leading irrelevant = &“Lcl(_l) CoSR» (4a)
operator at the fixed point was identified and shown to have

scaling dimension 2. It corresponds to exchange coupling L P _

between boundary spins of the two decoupled chains. In this S =e*"?c, CoS +Ca(— 1)1}, (4b)

paper we extend their analysis to tX&XZ case (A|<1).
We first bosonize the Hamiltonian and study its WhereSji=Sj‘iiSJY. Herex~| and thec;’s are numerical

renormalization-groupRG) flows in the weak-coupling limit  constants. The lattice spacing is assumed to be unity. The

and in the strong-coupling limit. We will argue that the sys- parameterR in Egs. (48 and (4b) is related toA in the
tem is renormalized to stable low-energy fixed points whereyriginal Hamiltonian(1) as

the impurity spin 6=3%) is screened exactly. At the fixed
points the boundary condition for the hosXZ spin chain
depends on the parametar of the host chain: For €A
<1 the spin chain is cut into two semi-infinite chains with
open boundary condition at=* 1. On the other hand, for With the Gaussian form oH{”, we can immediately find
—1<A<0 the host spin chain is not affected much by thethe scaling dimensions of operat@$? and e'®?, both of
singlet and stays as a single chain. Leading irrelevant operavhich area?/4sr. Thus the dimensions of the staggered com-
tors at these fixed points have noninteger scaling dimensiongonents ofS” andS* are (47R?) ! and 7R?, respectively.
yielding a noninteger power-law temperature dependence of From Eqgs.(4a and (4b) the Kondo interaction terni ¢
the impurity contribution to specific heat and susceptibility. becomes
As evidence for this picture we will show finite-size scaling
of the energy gap and spin-spin correlation functions in the
ground state, both of which are obtained by using the
density-matrix renormalization-groypMRG) method. The
numerical results are consistent with the picture drawn from
the perturbative RG analysis. We note that our results are
very different from a recent paper by Liiwho studied the _ _ _
same model as ours and calculated various quantities nea{1ere the couplinga’s are proportional tal . Since the
strong-coupling fixed point. For example, he obtained superMpUrity spin is coupled to a single sp# in our model, we
linear temperature dependencE( a>1) for the impurity have backward Kondo scattering terms proportionak 9
contribution to the specific heat and vanishing susceptibiliy2"dAg, . These terms do not appear in some models where
at zero temperature, both of which cannot be correct on gendmp iS coupled symmetrically to two neighboring spins, say
eral grounds. S, and S;.2%?11% These backscattering terms are important

The plan of this paper is as follows. In Sec. Il we discussingredients of our model. The backward spin-flip scattering
RG flows of our model using the standard Abelian bosonizaterm (<\g;) has scaling dimensionrR? and is always a
tion method. Impurity contributions to specific heat and susI€levant operator. This should be contrasted with the conven-
ceptibility are also discussed. We show results of numericalional Kondo problem in 3D, where the Kondo interaction is
DMRG calculations in Sec. Ill and compare them with con-a marginal operator of the form¢/dx. Therefore we con-
clusions of the perturbative RG in Sec. II. For simplicity we clude that the weak-coupling poind{=0) is unstable for
setJ=1 throughout this paper. —1<A=<1 independent of the sign df, and the system

always flows to a strong-coupling regime. This situation is
quite similar to the Kondo effect in a TL liquitiTo lowest
IIl. PERTURBATIVE RENORMALIZATION-GROUP order the scaling equation of the most divergent coupling
ANALYSIS \g, iS given by

1/2
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A. Weak-coupling limit
piing dhg,

mZ(l—WRz)?\Bw (7)

We follow Ref. 16 and bosonize the Hamiltonidh.
Since the bosonization of théXZ chain is a standard pro-
cedure, we do not repeat the derivation of a bosonizegvhereL is system size. We thus expect that the energy scale
Hamiltonian here. After performing the Jordan-Wigner trans-T, at which the crossover from weak coupling to strong
formation and taking a continuum limit, we find thbty  coupling occurs should be

reduces to a free-boson model,

Tiox [N [ 7R e gy M 7R ®
o 2 . . . .
H(b)zﬂf dx (dd’ 1112 @ for |Jk|<J(=1). We identify this energy scale with the
0 1
2 ) dx Kondo temperaturé
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B. Strong-coupling limit for 0 <A=<1

Let us consider the strong-coupling limit whelg>1. In
this limit we first diagonalizéH and treat the coupling be-
tweenS; and its neighborsg..;) as weak perturbations. The
ground state oHy is a spin singlet §+ S,,=0). In the
limit Jy—o the system consists of the singlet and two de-
coupled semi-infinite chainSIC’s). With very large but fi-
nite Jx , we derive effective interactions acting on the sub-
space of the singlet plus the SIC’s usingd/expansiorf? /
Second-order perturbation yields Y

.-
i N
i N

e

'
'
~._

/] [ N /.
\r r o\
AZ
1 +S.ST) - 53, SiS%atconst.

K

©)
Higher-order calculations also give the same form of interlimit Jyk—, where the system is decoupled into a singlet
actions(and irrelevant operatorsWe now need to know the and two semi-infiniteXXZ spin chains; see Fig. 1. The sin-
bosonization of these operatdBs ; at the boundaries of the glet acts like an infinitely high potential barrier for excita-
SIC’s. This was discussed in detail by Eggert and Affléck tions in the spin chain and effectively cuts it into two SIC’s.
and we can simply borrow their results. The open-boundaryf the host spin chain is of finite length containihgspins
condition implies that the phase field(x) is fixed to be and if we apply the periodic boundary condition, then its
some constant at=0. To be specific, let us imposg(0) low-energy fixed point is an open spin chain consisting of
=0. The left-going fieldg, (x)= Ja[p(x)+d(x)] and the L—1 spir_13, in _addit@on toa de_coup_le_d spir_1 singlet formed
right-going fieldg(x) = [ é(x) — $(x)] are no longer in- from the impurity spin and a spin originally in the host spin

dependent. From these chiral fields we introduce two lefrchainZ® This strong-coupling fixed point is very similar to
going fields: the one found for the Kondo effect in electronic TL liquitis.

The above result is a natural generalization of the conclu-
sion of Eggert and Affleck to the case<@ < 1. In their case
the low-energy fixed point is a singlet plus decoupled two
semi-infinite Heisenberg spin chains, and the leading irrel-
D (X)=0(—x)p.(X)—O(X)pr(—x), (10  evant operator at the fixed point is a dimension 2 operator,

where ®(x) is a Heaviside step function. The fielfl. (x) S1+5-1. In Qur cgse the operatc?fs,ﬁsl SI, has a
describes bosonic excitations in the SIC of the positive SMaller scaling dimension tha§S”, because of the ab-
region (S : i>0), and the other fieldp_ describes excita- Sence of the S(2) symmetry. Since its dimensionzR? is
tions in the negativex region. Their commutation relations N general noninteger, we may expect that it should give

FIG. 1. Schematic picture of renormalization to the strong-

Hp= coupling fixed point where th&¥XZ chain is cut by the singlet.

- +
23 (114 o1

¢=-(X)=0(X) P (X) = O(=X)pr(—X), (108

are[ ¢-(X),d-(y)1=[d-(X),p-(y)]=—im sgnk—y) and  anomalous power-law temperature dependence to various
[¢~(X),-(y)]=0. Their dynamics is governed by the quantities.
Hamiltonian The coupling to the Kondo impurity gives rise to an extra

contribution to the specific heat and the spin susceptibility,
which we denote a$C and Sy. Their temperature depen-
dence near the strong-coupling fixed point is determined by
the leading irrelevant operatof);=g,(S; S_;+S;S",),
whereg; is a coupling constant. To obtain leading tempera-
ture dependence we may use a perturbation expansion in

o d - 2 d - 2
HS|CZ40—7T fwdx[( (;bx) +( (;bx) . (11

With these fields the boundary spins can be written as

0,.7
de-(0) We first estimateSC. Up to second order, the change in
S;wex *i2ymRp-(0)], S« G+ (128 the free energy is given by
. d¢-(0) 2d
- z B2 . ~ BI2 7T
S xexd =i2{mRe_(0)], S x 5 (12D SE—_ dr<ol(r)ol(0)>oc—f dT( 7 ) |
0 7 sinwTr
The scaling dimension &%, is 1 and that ofS; ; is 2R (13

In general, the vertex operata$?> ande'??< have dimen-
sion a/2. We thus find that, among possible interactions 5 N
generated by the 4 expansionsS; S ,+S;S', is most wheredf4wR , B is inverse of the temperatuig, O,(7)
dangerous and has dimensiomR2. This operator is irrel- =e"'si©Oe™""'sic, and 7 is a cutoff to regularize the inte-
evant when 8ZA<1. Therefore we may conclude that, when gral. Note that there is no first-order contribution ©f to
the anisotropy parametér of the hostXXZ spin chain is 0 §F. The low-temperature expansion of the integral in Eq.
<A=<1, the infrared stable fixed point corresponds to the(13) for generald reads
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B2 7Tr, |29 Te in 8x,. From these considerations, we conclude that in the
L sinaTr 2d-1 low-temperature limitdy has the following form:
4A7R*—1
(. , ST Rl 0<A<1NZ
—E(WTTC) : d=1 8mR*—3
XAT) = X0 12 nar), A=1N2
T(d—1) R I 3
—a— (7T7)* "Bl 5,5—d|, 1<d<g T2, 1IV2<A<1,
2d-1 2'2 2
4 (173
T (7 T7)? In(LarT d=2 .
7 (mT7e)” In(UnTre), 2 Sy, (T)— 6y, (0)=xT4 =1 po<A<1. (17b
Tod(7T7o)? §<d<§ We note that there is always a contribution proportional to
( 3(2d-3) ° 2 2’ T2 coming from irrelevant operators. When<@A <1, the

(14 term T8"®*~1 might be difficult to observe, because of its

whereB(a,b) is the beta function. Note that any irrelevant Small coefficient ¢47R*—1), compared with thd? term.
operator with dimensiod>3/2 generates a positie? term.  We also note that in general the zero-temperature limit of the

From these equations we get Susceptlblllty5)((0) is of order 1TK
( (d—1)2T242/(3— 2d), 1<d<§ C. Strong-coupling limit for —1<A<0
2 When the parameted in the host spin chain is in the

3 range —1<A<O0, the dimension of the operat®; S~
oCey TIn(LmTre), d=3 (19 4. s*, is smaller than 1 and is relevant. This means that
3 5 the open-boundary fixed point discussed in the previous sub-

T/(2d—3), —<d<=, section cannot be a low-energy fixed point whel<A

\ 2 2 <0. Both limits Jy—0 andJx—o° in the original Hamil-

in the low-temperature limit. Sinceé=47R?, the boundary ~tonian Ho+Hy are unstable. We thus need to find a non-
cased=2 corresponds td=1/2. When 0<A<1n2, sC  frivial fixed point. _

is proportional toT®™?*~2 with the exponent changing from Let us for the moment forget the singlet §fy, and S,

0 to 1 asA varying from 0 to 1¥2. This anomalous power- and concentrate on the rest of the spins. That is, we consider
law behavior is reminiscent of the Kondo effect in TL the two semi-infinite spin chains weakly coupled by a ferro-

liquids® The logarithmic correction appears at=1/72 magnetic exchange interaciio,:

when the dimension of the leading irrelevant operator be- o
comes 3/2. This is mathematically the same as in the two- z (SIS, + Y, +ASS, )
channel Kondo problerf!. When 1#2<A<1, the leading = ' '
term of 6C is proportional toT. o
We next considesy. Here we need to distinguish two +Z (84,8, +9.F +AS S, )

kinds of spin susceptibilities: one responding to a magnetic
field applied in thez direction and the other responding to e y
the one in thexy plane. We shall call therdy, and Sy, , —\(S{S%+8]9 ), (18

respectively. Suppose we apply a magnetic field 10&2lly where 0<\ <1. We have dropped the irrelevaBis? , term.
only to Sy,,, such that the perturbation, . X X . .
Since the term\(S;S* ;+S{S ;) is a relevant perturbation
Hh:thiZmp+h sﬁnp, (16) (dimension=47R?), the fixed point\=0 is unstable. On
) o ) ] ] the other hand, in the strong-coupling limit>1, the two
is added to the Hamiltonian. Using theJi/expansion again, gpinss, and S_, are in one of the triplet stat§=1 and

we can generate effective interactions inducedyin the  g7—0_ Virtual transitions from this state to excited states
Hilbert space of the singlet plus the SIGRig. 1). Fromthe  generate a residual ferromagnetic exchange coupling be-
symmetry we expect to have the following operators in adTweenSz andS._,, of the form similar toH,, which is again
dition to other less relevant one€,,=h,(S;+S%,), Onz  a relevant perturbation. Thus, the fixed point e is also

= hz(sl S,+S,S7)), andohs_ h(Si+S*,). Interms of  unstable, and we expect that there should be an intermediate-

the bosonic fields they may be written &g, h.[ d, ¢~ (0) coupling fixed point. We will argue that this nontrivial fixed
- P _ point is simply a pureXXZ spin chain where the spin§
+9xp<(0)]. Onphy Cog‘z‘/;R[¢>(0) ¢<(0)]}, and (i>0) are rotated byr around thez axis. The argument goes

Onsh{cog2\mR¢-(0)]+cog2\/mRp-(0)]},  whose  as follows. The rotation 08 (i>0) around thez axis by
scaling dimensions are 1,#R? and 2rR?. We can now changes the sign ok (—A—\) in H,. Since S,

estimatesF induced by these operators using Etd) and +9/9 | is relevant, the coupling. grows as the energy
obtainé — ?8Foh?| One point to be mentioned is 2

Xa™= h=0- P scale decreases THES? ; term is also generated in the
that products of O; and Oy, can contribute a term course of the RG transformatlon Thus, the two chains get
h2T8™R*~1 1o 5F, leading to a term proportional PR~ coupled stronger at a lower energy scale. We next consider
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[\ ] } [\ /. \
F \VF Vg Vg [ N/ /A
@ F 7 F oy
SR FIG. 3. Schematic picture of the low-energy fixed point.
\ t:l / pling betweenS, and its neighbors&, +S_,). We assume
- / \ /: :, \ / - that, as far as low-energy physics is concerned, the singlet is

----- rigid and can be broken only virtually by the weak coupling
FIG. 2. Schematic picture of renormalization to the stable fixedOf So to the spin chain. Thus, the stable fixed point may also
point consisting of a singlet weakly coupled to a spin chain. Theb€ represented schematically as in Fig. 3. From the assump-
singlet looks “transparent” for low-energy excitations in the chain. tion of the rigid singlet, we can integrate it out to get effec-
tive interaction®), =SS, + Y, andO;=S:S? , for the
the opposite limit where the two chains are well connectedow-energy excitations in the spin chain. In the boson repre-
but one bond is slightly disturbed. This is described by thesentation they are linear combinations of gifig),
Hamiltonian, (a1 9x)?, and @¢/at)?, which are irrelevant operators for
the spin chain with the parametdr in the range—1<<A
< 0. Hence the model is stable against weak perturbations,
and we conjecture that the above model gives a correct pic-
ture of the strong-coupling fixed point for the casd <A
< 0. Although it is impossible to show analytically that the

oo

Ho=2, ('S + S+ ASTSL)

o

+§1 (S48% 1+, +AS,S%, ) RG trajectories leaving from the unstable weak-coupling
point reach this fixed poinfFigs. 2 and 8 the numerical
+(1—e, ) (SIS + Y )+ (1—8,)ASIS |, results we show in the next section provide good evidence

for our picture.

(19 Assuming that our Kondo model is indeed renormalized
where 0<e , £,<1. Bosonizing this Hamiltonian as in Sec. t© the strong-coupling fixed point of Fig. 2, we can obtain
Il A, we find that the perturbationso(e) give the spin- leading temperature dependenceﬁﬁ‘fandéx as in the last
Peierls operator sjg(0)/R] of dimension (4rR?) ! and di- subsectlc_m. Since we know that a leading wrelevqnt operator
mension 2 operators like?(s/9x)?. Since they are irrelevant @t the fixed point is among the operators [giD)/R],

(e, ,e,—0 in the low-energy limit, we recover the pure L[9¢(0)/dx]%, and [d¢(0)/6t]°, we find that the low-
XXZ spin chain. It is tempting to assume that the RG trajeci€émperature behavior o6C is given by Eq.(15) with d
tories starting from the unstable point describing two weakly=(47R?) " *. We thus get

coupled chaindEq. (18)] continuously flow to the stable T —1<A<—1/2

fixed point of the pureXXZ chain. Although we cannot ’

prove it, we believe this is what actually happens. We note 5Cx4 TIn(1/T), A=-1/2 (20)
that this phenomenon is closely related to the well-known Tl/(zqfr@)fz’ —1/2<A<0.

result that a backward-scattering potential is renormalized to

zero for fermions interacting with mutual attractive ~ When a weak magnetic field is applied$g,,, we obtain

e e ol ek (e operators On=I(S{+S'y).  Oa=1i(S{S",
99 B +S,S",), andOp3=h,(S;+S*,) after integrating out the

berg chain with two symmetrically perturbed bortd<om- inclet. Since th T ors are not boundar ators at
ing back to the Hamiltoniatd, , we conclude that its low- singlet. ce these operalors are hot boundary opérators a

energy fixed point is a puéXZ spin chain with the sping,  the fixed point of our interest, the scaling dimension©g$
(i>0) rotated around the axis by . andO,,; are different from the open-boundary case. Here we
We now return to our Kondo problem. What we have use the bosonization formul&éa) and(4b) and find that the
found so far is that(i) the Kondo coupling is a relevant dimensions Obhz and(‘)h3 are (47R?) ! and 7R?, respec-
operator at the weak-coupling point and leads to a singlefively. We then obtain the following low-temperature behav-
formation and thatii) weakly coupled spin chains are renor- jor-
malized to a strongly coupled single chain. Combining these
two observations together, we propose the model schematfxz(T) = dx(0)
cally shown in Fig. 2 as a candidate for the low-energy fixed f 1—47R2
point. The model consists of the singlet®f,, andS, on top —
of the pureXXZ chain where spins are rotated as discussed 67R"—1
in the last paragraph. An important point is that low-energy

-|—(1/277R2)—1' _ %<A<0

excitations are spin-density fluctuations of long wavelength >3 T2 In(1/T), A=-3 (219
in the chain, and that for these low-energy excitations the
singlet has essentially no effect. In other words, the singlet is T2/(1-67R?), <A< =

“transparent” for them. At short-length scale there is a cou- \ 2
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Sy, o« T2TR -1, (21b) 3.0
D. Strong-coupling limit of the XY case(A =0) /¢,;g:::~’=”"::':'

We briefly comment on the low-energy fixed point for the
XY case. Since this is exactly on the border of the two cases 20 1
discussed in Secs. Il B and Il C, we naturally expect that a —e =10
picture for the fixed point of tha =0 case should be some- o =S
thing in between Figs. 1 and 2. That is, the singletSgf, :?:(1)1
andS, does not completely cut the ho$X Z spin chain into 10 ¢ o 1
two pieces. The weakened connection betwseandS_ is
not healed as in the negativecase. This is because at the
open-boundary fixed pointJg¢=«) the operatorS; S~
+S; S’ is a marginal operator. We expect that the impurity 0.0 - ) s :
contribution to the specific heat and the susceptibilities have 50 100 L 150 200 250

the following low-temperature limit:
FIG. 4. Energy gafE, as a function of system size for A

oCT, (223 =0.5. The data points are the gap computed.ferl7, 25, 33, 49,
5 65, 94, 129, 157, and 201 =1 (mod4]. The dashed line repre-
Oxo(T) = Ox7(0) =T, (22D sents the infinitd- limit, Egl =v3 /2.
ox. (T)=log(1/T). (220

chains, each having.(—1)/2 spins, plus a rigid spin singlet
of § and Sy, in between them. Note that (-1)/2=1 is an
Ill. RESULTS OF DMRG CALCULATIONS even integer.

To interpret finite-size scaling of the data, let us bosonize
the two opernXXZ chains of length, following Refs. 16 and

In this section we present our numerical results for finite32. The mode expansions of the phase fields are given by
chains. The Hamiltonian we studied k$,+Hy, Egs. (1)

A. Numerical methods

and(2). The site index in Eq. (1) runs from—1 tol—1, and X sin kX

the total number of spins in the hoXtXZ chain isL=2I du(X,t)=m7R+ Qﬂ|—+ >

+1. We impose the open boundary condition at the left and =0 Nmn

right ends of the hosKXZ chain. Using the DMRG method X(anﬂefiknut_’_alﬂeiknvt), (23)

proposed by Whité® we calculated lowest energy gap and

spin-correlation functions in the ground state. In order to ) K

accelerate the numerical calculation, we employed the im- ~ ~ - vl COSKpX
poy Pu(x ) =0, + QT +i 2D ——

proved algorithm proposed by Whit€.We also used the n=0 +Jan

finite-system method to achieve high accuracy. Up to 100 » -

states were kept for each block and the truncation error is X(ape " —ay e, (29)
typically 10 8. This error is directly related to the accurac

(i‘pener)g/;y. y yWhere k,=mn/l and the operators obey the commutation

As we mention in Introduction, our model may be re- relations[ ¢, ,Q,1=i4, , and [ay,.a},]1= 6mnd,., (u.v
garded as a toy model for the Kondo effect in 1D electron=I or r). The suffixesl andr stand for the left(S: i<0)
systems that have charge degrees of freedom as well as spand right § : i>0) spin chains, respectively. The fields
In this context we note that it is much easier to apply theand ¢, (¢, and é,) are therefore defined in the negative
DMRG method to the spin chains than to electronic mOdelipositive) X region, andd, + ¢, andd, + ¢, correspond tap

like the Hubbard model away from half filling, because the .~ . :
) : nd ¢ in Eq. (3). Note thate, and ¢, are different from¢ -
Hilbert space is smaller and the DMRG converges faster fof* d - . Substituting Eqs(23) and (24) into Eq. (3) yields

spin chains. We can thus treat large spin systems to rea o ;
scaling regime. It seems that for the Kondo effect of elec- e Hamiltonian of the. chain
tronic models the application of Monte Carlo methbis
more successful than the DMRG methtd. T

wo

AR
E+r§0 nanMan#—ﬂ . (25)
B. Numerical results for A=0.5 . . .
) Its energy eigenvalue and eigenfunctions are
As a typical case of &A<1 we have choseA=0.5. In

this caseR=1//37 andv = 3v3/4. With this choice we have U y zen 1
computed the lowest energy gdf, for chains of L=1 E,=—|27R(S,) +n§0 NMy, = 541 (26)

(mod4. Numerical results of the finite-size gap are shown in
Fig. 4. The energy gap is the difference between the lowest
energy in the sectoB;;=0 and that in the secto®;,=1.  Im. V=exni2 7RI ¥ 0
According to the RG analysis in Sec. Il B, the ground state | oA Mo}) Hizm "d)o”)nl;[o my,,! 0).

of a sufficiently long chain is described as two decoupled (27

(af )M
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FIG. 5. Size dependence of the correction to the energy gap FIG. 6. Correlation betwee8*; and S’ calculated forA=0.5
Eg’), which is the gap calculated in the limig=c. The dashed andL=201. The dashed line corresponds to thedbcay obtained
line represents the theoretically predicted*® dependence. from the perturbative calculation.

where|0) is a vacuum &,,|0)=0). The constan®;, is noth-  power-law behavior with the exponent 437R?, in per-

ing but a quantum number of tot&f of each chain. Since  fect agreement with the theory. This can be regarded as a
is an even integer$;, can take integer values only. There- numerical proof of the presence of the leading irrelevant op-
fore, in the limitJ,—, the ground state of the total system erator with the scaling dimensionmR? at the strong-

is the state withS? =m,,=0 for =1 andr. The first ex- coupling fixed point we discussed in Sec. Il B. We note that
cited states are fourfold degenerate and correspond the energy gafE(”) used in Fig. 5 is the one d=c°, or
(Sf,S9)=(=1,0),(0£1) andm,,=0. The energy gap in equivalently, the finite-size gap of &XZ spin chain con-
this limit is then given by taining| spins under the open-boundary condition. The rea-
son why we have use(” rather than Eq(28) is to reduce
the effect of a bulk irrelevant operator cog(R) of dimen-
sion 1/R?=3.

. . . Using the DMRG method, we have also calculated an
which equals/3#/2l at A=1/2. This gap value is shown as 4 A : : LA EX QX i
a dashed line in Fig. 4. It is clear that all the curves in Fig. 4equal time two-point spin correlation functi¢sys;) in the

~ e . .
are gradually approaching the dashed lineLagcreases. ground state fot _.201. (Stm_o.)' According to our plc.tulre
How the curves finally approach it in the—co limit is de- of the strong-coupling fixed point, the ho§XZ spin chain is

, T o effectively cut by a singlet in the low-energy limiEig. 1).

termined by the leading irrelevant operatog, whose ex- \ye naturally expect that correlations across the singlet

plicit form we may take: should be much weaker than correlations within one of the
()loccos{i277R[?,'5r(0,o)_3,|(0,o)]}_ (29 decoupled chains. Our numerical results shown in Figs. 6

R and 7 support this idea: A correlation function across the

The correction to Eq(28) due to the operato®©, can be singlet shows power-law dependenceionith an exponent

obtained from a lowest-order perturbation expanditince  larger than that for a pur&XZ chain (Jx=0), 27R2.

the degenerate first excited statk¥=1,5/=0) and |Sf

=0,5/=1) have a nonzero matrix element, 107"

(S/=18/-0/0,|5-08-1)
O>

m<o

oL AR (30)

T
By=—1" 27R?, (29

|
1
ex;{ _ZWRE _(anr_agr_anl_"agl)
n=1 +mn

the degeneracy of these two states is lifted by an amount

which scales at ~"R’. The same is true for the other two
degenerate statd§/=—1,5/=0) and|S=0,S/=—1). On

the other hand, the ground-state energy does not change in
first-order perturbation. Hence we may expect that the lead- .
ing correction to the energy gap should be proportional to 1 10 100
L=47R® which goes to zero faster than the finite-size gap !

(«L~1). This L dependence is indeed observed in our nu- FIG. 7. Correlation betweeS8,,, and S calculated forA=0.5
merical data shown in Fig. 5. The data show very cleamndL=201. The dashed line represents the expeictédehavior.
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The exponents fo(S™;Sf) and(Sj,,,Sf) can be obtained ' ' ' ' '
from the following argument. First we considé8’;S ),

which is equivalent tqS*;S). Since it vanishes when the 1or “‘\‘\‘\’\‘\‘
XXZ chain is completely decoupled, the nonzero contribu- l‘-*'\-\-\,

tion is due to the leading irrelevant operat®; S-, 08 1 |
+S,S",. To first order inO, the correlator is Lo Wi """""" *
Lﬂ% R
<Sfi3_>°<f d(S”y(1)S%(0))(S; (1S (0))r, (3D) oal ’—‘jféo
K —a K=

where the averagés), and( )_, are evaluated for the ground 2:(1) 5
state of each decoupled chain. Since the scaling dimension of 02 r «<J=01 |
the boundary operatd®; , is 27R? and that ofS, is 7R?,
we expect the correlator to scale as 00, 50 100 150 200 250 300

<StiS_>°<i_67TR2+l, (32) L

: X QX - _ : FIG. 8. Energy gafE, as a function of system size for A
from which we ge(S=;§)e 1/ for A=1/2. The results in - _ _ ' 3 "y e taken for=17, 25, 33, 49, 65, 97, 129, 201,
Fig. 6 are consistent with this perturbative calculation. . P
. X X and 301. The dashed line represents the infibitémit, EqL
The correlation betwee;,,, and S’ can be calculated _ 5 o
using the 1Jx expansion, which can be justified in the low-
energy limit. AtJ =< the ground state of the whole system sjze gap. It is clear that all the curves in Fig. 8 approach the
is a direct product ofS), which is the singlet wave function gashed lin€E L =v3m/8=0.68 . .., which is the value one
of Smp @nd S, and the ground states of the left and right expects for a singlé&XXZ chain of lengthL. Unlike in the
decoupled spin chains, which we denoteflasand|r). We  case ofA=0.5, however, we have not been able to obtain
calculate the correlation functidi$;,,,S; ) to lowest order in  information on the scaling dimension of a leading irrelevant
the coupling betwee, and its neighboring spi, S; : operator from the numerical data. A log-log plot &,
- Eé°)| versusL did not give straight lines corresponding to

1 power-law scaling. This would mean that the systems we
(SmpS )~ J_<S| Semp TUTISo [S)(r[S/ ST ) have studied I(~200) are not large enough.
K Next we show the results of correlation functions that we
o (— 1)1 3R, (33) computed for the ground state of the=201 system ${,

=0). Figures 9 and 10 show the correlation functions of
0 , S_; andS . The correlatofS*;S) is positive and decays
energy of orded . The exponent 3R%(=1) is a sum of  yy g j-13 \yhile (7. 57 is negative and decays much faster

. . + — _ - -
the dimensions 0§, andS; . The data fodx=5in Fig. 7 0 j -2 These features are exactly what we expect from our

are in excellent agreement with the above calculation, al'picture of the low-energy fixed poiriEigs. 2 and B Since

though the data fodx =1 is curving, which we think is dué  he spin chain is well connected, the correlation functions
to a crossover to the true scaling regime. (S%,S") should behave as in a pukeXZ chain without an
impurity spin. That is, exponents of power-law decays
C. Numerical results for A=—0.5 should be the same as those in the pure chain, although am-

Here we present the numerical results for negativeJs-  Plitudes of the correlators will depend dp . From Egs(4a)
ing the DMRG method, we have calculated finite-size gapand (4b) we see that at long distan&~d¢/dx and S’
and spin-correlation functions foA=-0.5, where R
=1/J/67 andv=3v3/8.

Figure 8 shows the finite-size energy gap as a function of
the system size fob=1 (mod4. As in the last section, the
gap is defined as the difference between the lowest energy in
the sectorS;,,=0 and that in the sect®;,=1. We find that 107
the normalized gagEgL increases for small, while it A
decreases for larg# . This is consistent with our picture of R“.T
the renormalization flows$Fig. 2). For smallJy the excita-
tion gap is due to fluctuations &, weakly coupled to the
host spin chain. This coupling is renormalized and becomes
stronger as we saw in Sec. Il A. For largg, on the other
hand, the hosKXZ chain is almost cut by a singlet, and the
finite-size gap roughly corresponds to the singlet-to-triplet 107
excitation energy in half chains. As increases, or equiva-
lently, as the energy scale decreases, the renormalized cou-
pling between the almost decoupled chains becomes larger FIG. 9. Correlation function(S*;S") for A=—0.5 and L
(“healing™), leading to the decrease of the normalized finite-=201. The dashed line corresponds to ih&® decay.

where|T) is a triplet state 0f5y,, and S having excitation

1 10 100
i
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FIG. 10. Correlation function(S?;S7) for A=—0.5 andL FIG. 12. Correlation betwee§,, and S’ for A=—0.5 andL
=201. The dashed line corresponds to ihé behavior. =201. The dashed line corresponds to the expeictédiecay.

~(~1)€¢*™?, whose scaling dimensions are 1 amR®  yarious limits, we have deduced properties of strong-
=1/6. Hence(S;S) should decay as™? and (S';S)  coupling, low-energy fixed points. In the antiferromagnetic
i ~*%, in agreement with the numerical restftt. side (0<A=<1) the hosXXZ chain is cut by the singlet into
We next discuss correlations betweBif, andS . Sincé o separate chains. On the other hand, in the ferromagnetic
there is always a short-distance correlation bet\/\&gpand side (-1<A<0) the singlet does not harm the host spin
Si+S.q, we expect (S, ST ((S{+S2,)S") with a  chain in the low-energy limit. This may be understood quali-
smaller constant of proportion for largdi . Noting that tatively by mapping the problem to a spinless fermionic sys-
Si+ St corresponds to the staggered component in a pur@em using the Jordan-Wigner transformation. The fermions
XXZ chain without the spin rotation d§ (i>0), we con-  have mutual repulsivéattractive interactions in the antifer-
clude that(S};, Sy oi =12 and(S},,,Sf)<i % for largei. Our  romagnetic(ferromagnetig region. The singlet may then be
numerical results shown in Figs. 11 and 12 show exactly theiewed as an impurity potential for the fermions, which can
feature discussed above. Hence we conclude that the numekbie a relevant or irrelevant perturbation, depending on the
cal results support our picture of the low-energy fixed point.sign of the mutual interactions. Employing the known result
for the spinless fermion systefrye can argue that the host
IV. CONCLUSIONS spin chain is cut into two pieces in.the antiferromagnetic
case whereas in the other case the singlet does not affect the
In this paper we have studied the Kondo effect due to aow-energy properties of the spin chain.
extra spin coupled to a gaple¥XZ spin chain. In our model We have used the powerful DMRG method to numeri-
the backward spin-flip scattering is always a relevant pertureally compute finite-size energy gaps and correlation func-
bation. At low energy the impurity spin is screened by a spintions. The numerical results are consistent with the RG
in the host chain, and the characteristic energy scale, thanalysis. ForA=0.5, the normalized gap approaches the
Kondo temperatur@y , has a power-law dependence on thevalue for a chain of half length, and the correlation function
Kondo coupling. From the perturbative RG analysis foracrossS, decays much faster than in a pure spin chaig (
=0). These results are explained successfully based on the

10° . RG analysis of the strong-coupling fixed pofifiig. 1). For
.~ eso A=-0.5we have_found_that_ the normalized gap ap_proaches
K the value for a spin chain without the Kondo impurity. The
O J= correlation functions also show the same power-law behavior
77777 i as in the pure spin chain. These results are consistent with

our picture of the fixed point where the host spin chain re-
mains as a single chain through the healing of a coupling
weakened by the singlet formatigRigs. 2 and 3
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