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Kondo effect in XXZ spin chains
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The Kondo effect in a one-dimensional spin-1
2 XXZ model in the gaplessXY regime (21,D<1) is

studied both analytically and numerically. In our model an impurity spin (S51/2) is coupled to a single spin
in the XXZ spin chain. Perturbative renormalization-group~RG! analysis is performed for various limiting
cases to deduce low-energy fixed points. It is shown that in the ground state the impurity spin is screened by
forming a singlet with a spin in the hostXXZ chain. In the antiferromagnetic side (0,D<1) the host chain
is cut into two semi-infinite chains by the singlet. In the ferromagnetic side (21,D,0), on the other hand,
the hostXXZ chain remains as a single chain through ‘‘healing’’ of a weakened bond in the low-energy
~long-distance! limit. The density-matrix renormalization-group method is used to study the size scaling of
finite-size energy gaps and the power-law decay of correlation functions in the ground state. The numerical
results are in good agreement with the predictions of the RG analysis. Low-temperature behaviors of specific
heat and susceptibility are also discussed.@S0163-1829~98!04433-6#
t

e

t
re
tic
as
ity

th
o
e

rb
-

ith
u
u-
a

via

ou
-
th

so
w

e
ne
e

di
d

he
the

An

t
we

w

do
g-
se
n

e
toy
n

e

I. INTRODUCTION

There has been a recent resurgence of interest in
Kondo effect1 in one-dimensional~1D! strongly correlated
systems. In 1D interacting systems belonging to the univ
sality class of the Tomonaga-Luttinger~TL! liquids, a static
impurity potential has a drastic effect and is renormalized
infinity or zero, depending on whether the interaction is
pulsive or attractive.2 This anomalous response to a sta
impurity of TL liquids has attracted a lot of attention and h
led to further studies on the effects of a dynamic impur
~typically a magnetic impurity! in a TL liquid. A generalized
Hubbard model with an impurity spin (S5 1

2 ) and its variants
have been studied by many authors. It was found that
Kondo temperature, which is a typical energy scale for h
electrons to screen an impurity spin, has a power-law dep
dence on the Kondo exchange coupling.3–5 Properties of
low-energy fixed points have been discussed using pertu
tive renormalization-group analysis4 and the boundary con
formal field theory approach.6–8 A recent Monte Carlo study9

on the susceptibility of an impurity spin is consistent w
anomalous power-law temperature dependence conject
earlier.4 In addition to the models with a simple Kondo co
pling, there are some exactly solvable models in which
impurity spin is coupled to the spin density of electrons
special forms of the Kondo exchange coupling.10,11 These
solvable models, however, do not show the anomal
power-law behavior of the specific heat10 because the opera
tor responsible for this anomalous scaling is absent in
models constructed to be integrable. It seems that these
able models do not represent a generic situation, and we
not address this issue further.

In this paper we consider a simplified model that we b
lieve shares common features with the above-mentio
Kondo effect in 1D interacting electronic models like th
Hubbard model. We here focus on the spin sector and
card the charge degree of freedom. This may correspon
PRB 580163-1829/98/58~9!/5529~10!/$15.00
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the half-filled case in the original electronic models. T
Hamiltonian of the system we discuss in this paper has
form H5H01HK , whereH0 describes the hostS5 1

2 XXZ
spin chain,

H05J (
i 52`

`

~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !, ~1!

andHK the Kondo coupling,

HK5JK~S0
xSimp

x 1S0
ySimp

y 1DS0
zSimp

z !. ~2!

The size of the impurity spin is also assumed to be 1/2.
important point of our model is the absence of SU~2! spin-
rotation symmetry. We assumeuDu,1 to ensure that the hos
XXZ spin chain has gapless excitations. For simplicity
have used the same parameterD in H0 andHK . We note that
D in H0 is an important parameter controlling the power-la
behavior of various correlations whileD in HK does not play
any significant role in the following discussions. The Kon
coupling JK can be either antiferromagnetic or ferroma
netic, but we will concentrate on the antiferromagnetic ca
(JK.0) in this paper. We will show in this paper that, whe
0,D,1, the Kondo effect in theXXZ spin chain is very
similar to the Kondo effect in TL liquids with12 ,Kr,1 and
Ks51, whereKr and Ks are parameters characterizing th
TL liquids.4 In this sense our model can be regarded as a
model for the Kondo problem in 1D interacting electro
systems.12 We note that in Eq.~2! the impurity spin is
coupled to asingle spin located in themiddle of the chain,
unlike the model studied by Clarkeet al.,14 where an impu-
rity spin is coupled to two spins symmetrically, and th
model studied by Wang,15 where an impurity spin is coupled
5529 © 1998 The American Physical Society
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to a boundary spin. This different form of Kondo couplin
leads to different scaling behavior in both weak- and stro
coupling regimes.

Eggert and Affleck16,17 studied, among various kinds o
disorder, the model at the isotropic point (D51). They con-
cluded that the impurity spinSimp forms a singlet withS0 ,
and that the Heisenberg chain is decoupled into two se
infinite chains in the low-energy limit. A leading irrelevan
operator at the fixed point was identified and shown to h
scaling dimension 2. It corresponds to exchange coup
between boundary spins of the two decoupled chains. In
paper we extend their analysis to theXXZ case (uDu,1).
We first bosonize the Hamiltonian and study
renormalization-group~RG! flows in the weak-coupling limit
and in the strong-coupling limit. We will argue that the sy
tem is renormalized to stable low-energy fixed points wh
the impurity spin (S5 1

2 ) is screened exactly. At the fixe
points the boundary condition for the hostXXZ spin chain
depends on the parameterD of the host chain: For 0,D
<1 the spin chain is cut into two semi-infinite chains wi
open boundary condition ati 561. On the other hand, fo
21,D,0 the host spin chain is not affected much by t
singlet and stays as a single chain. Leading irrelevant op
tors at these fixed points have noninteger scaling dimensi
yielding a noninteger power-law temperature dependenc
the impurity contribution to specific heat and susceptibili
As evidence for this picture we will show finite-size scalin
of the energy gap and spin-spin correlation functions in
ground state, both of which are obtained by using
density-matrix renormalization-group~DMRG! method. The
numerical results are consistent with the picture drawn fr
the perturbative RG analysis. We note that our results
very different from a recent paper by Liu,18 who studied the
same model as ours and calculated various quantities ne
strong-coupling fixed point. For example, he obtained sup
linear temperature dependence (Ta, a.1! for the impurity
contribution to the specific heat and vanishing susceptib
at zero temperature, both of which cannot be correct on g
eral grounds.

The plan of this paper is as follows. In Sec. II we discu
RG flows of our model using the standard Abelian bosoni
tion method. Impurity contributions to specific heat and s
ceptibility are also discussed. We show results of numer
DMRG calculations in Sec. III and compare them with co
clusions of the perturbative RG in Sec. II. For simplicity w
setJ51 throughout this paper.

II. PERTURBATIVE RENORMALIZATION-GROUP
ANALYSIS

A. Weak-coupling limit

We follow Ref. 16 and bosonize the HamiltonianH.
Since the bosonization of theXXZ chain is a standard pro
cedure, we do not repeat the derivation of a bosoni
Hamiltonian here. After performing the Jordan-Wigner tran
formation and taking a continuum limit, we find thatH0
reduces to a free-boson model,

H0
~b!5

v
2 E

2`

`

dxF S df

dx D 2

1P2G , ~3!
-
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where P(x) is a conjugate operator to the bosonic fie
f(x): @f(x),P(y)#5 id(x2y). The spin-wave velocityv is
known to bev5(p/2u)sinu, whereu5cos21 D. The spins
in the chain can be represented in terms of bosonic fie
f(x) and f̃(x) (P5df̃/dx):16,19

Sj
z5

1

2pR

df

dx
1c1~21! j cos

f

R
, ~4a!

Sj
15ei2pRf̃Fc2 cos

f

R
1c3~21! j G , ~4b!

whereSj
65Sj

x6 iSj
y . Herex' j and thecj ’s are numerical

constants. The lattice spacing is assumed to be unity.
parameterR in Eqs. ~4a! and ~4b! is related toD in the
original Hamiltonian~1! as

R5F 1

2p S 12
1

p
cos21 D D G1/2

. ~5!

With the Gaussian form ofH0
(b) , we can immediately find

the scaling dimensions of operatorseiaf and eiaf̃, both of
which area2/4p. Thus the dimensions of the staggered co
ponents ofSi

z andS6 are (4pR2)21 andpR2, respectively.
From Eqs.~4a! and ~4b! the Kondo interaction termHK

becomes

HK
~b!5Simp

1 e2 i2pRf̃~0!S lF' cos
f~0!

R
1lB'D1H.c.

1Simp
z S lFz

df~0!

dx
1lBz cos

f~0!

R D , ~6!

where the couplingsl’s are proportional toJK . Since the
impurity spin is coupled to a single spinS0 in our model, we
have backward Kondo scattering terms proportional tolBz
andlB' . These terms do not appear in some models wh
Simp is coupled symmetrically to two neighboring spins, s
S0 and S1 .20,21,14 These backscattering terms are importa
ingredients of our model. The backward spin-flip scatter
term (}lB') has scaling dimensionpR2 and is always a
relevant operator. This should be contrasted with the conv
tional Kondo problem in 3D, where the Kondo interaction
a marginal operator of the formdf/dx. Therefore we con-
clude that the weak-coupling point (JK50) is unstable for
21,D<1 independent of the sign ofJK , and the system
always flows to a strong-coupling regime. This situation
quite similar to the Kondo effect in a TL liquid.4 To lowest
order the scaling equation of the most divergent coupl
lB' is given by

dlB'

d ln L
5~12pR2!lB' , ~7!

whereL is system size. We thus expect that the energy sc
TK at which the crossover from weak coupling to stro
coupling occurs should be

TK}ulB'u1/~12pR2!}uJKu1/~12pR2! ~8!

for uJKu!J(51). We identify this energy scale with th
Kondo temperature.22
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B. Strong-coupling limit for 0 <D<1

Let us consider the strong-coupling limit whereJK@1. In
this limit we first diagonalizeHK and treat the coupling be
tweenS0 and its neighbors (S61) as weak perturbations. Th
ground state ofHK is a spin singlet (S01Simp50). In the
limit JK→` the system consists of the singlet and two d
coupled semi-infinite chains~SIC’s!. With very large but fi-
nite JK , we derive effective interactions acting on the su
space of the singlet plus the SIC’s using 1/JK expansion.24

Second-order perturbation yields

H252
1

2JK~11D!
~S1

1S21
2 1S1

2S21
1 !2

D2

2JK
S1

zS21
z 1const.

~9!

Higher-order calculations also give the same form of int
actions~and irrelevant operators!. We now need to know the
bosonization of these operatorsS61 at the boundaries of the
SIC’s. This was discussed in detail by Eggert and Afflec16

and we can simply borrow their results. The open-bound
condition implies that the phase fieldf(x) is fixed to be
some constant atx50. To be specific, let us imposef(0)
50. The left-going fieldfL(x)5Ap@f(x)1f̃(x)# and the
right-going fieldfR(x)5Ap@f(x)2f̃(x)# are no longer in-
dependent. From these chiral fields we introduce two l
going fields:

f.~x!5Q~x!fL~x!2Q~2x!fR~2x!, ~10a!

f,~x!5Q~2x!fL~x!2Q~x!fR~2x!, ~10b!

whereQ(x) is a Heaviside step function. The fieldf.(x)
describes bosonic excitations in the SIC of the positivex
region (Si : i .0!, and the other fieldf, describes excita-
tions in the negativex region. Their commutation relation
are@f.(x),f.(y)#5@f,(x),f,(y)#52 ip sgn(x2y) and
@f.(x),f,(y)#50. Their dynamics is governed by th
Hamiltonian

HSIC5
v

4p E
2`

`

dxF S df.

dx D 2

1S df,

dx D 2G . ~11!

With these fields the boundary spins can be written as

S1
6}exp@6 i2ApRf.~0!#, S1

z}
df.~0!

dx
, ~12a!

S21
6 }exp@6 i2ApRf,~0!#, S21

z }
df,~0!

dx
. ~12b!

The scaling dimension ofS61
z is 1 and that ofS61

6 is 2pR2.
In general, the vertex operatorseiaf. andeiaf, have dimen-
sion a2/2. We thus find that, among possible interactio
generated by the 1/JK expansions,S1

1S21
2 1S1

2S21
1 is most

dangerous and has dimension 4pR2. This operator is irrel-
evant when 0,D<1. Therefore we may conclude that, whe
the anisotropy parameterD of the hostXXZ spin chain is 0
,D<1, the infrared stable fixed point corresponds to
-

-

-

ry

t-

s

e

limit JK→`, where the system is decoupled into a sing
and two semi-infiniteXXZ spin chains; see Fig. 1. The sin
glet acts like an infinitely high potential barrier for excita
tions in the spin chain and effectively cuts it into two SIC’
If the host spin chain is of finite length containingL spins
and if we apply the periodic boundary condition, then
low-energy fixed point is an open spin chain consisting
L21 spins, in addition to a decoupled spin singlet form
from the impurity spin and a spin originally in the host sp
chain.26 This strong-coupling fixed point is very similar t
the one found for the Kondo effect in electronic TL liquids4

The above result is a natural generalization of the conc
sion of Eggert and Affleck to the case 0,D,1. In their case
the low-energy fixed point is a singlet plus decoupled t
semi-infinite Heisenberg spin chains, and the leading ir
evant operator at the fixed point is a dimension 2 opera
S1•S21 . In our case the operatorS1

1S21
2 1S1

2S21
1 has a

smaller scaling dimension thanS1
zS21

z because of the ab
sence of the SU~2! symmetry. Since its dimension 4pR2 is
in general noninteger, we may expect that it should g
anomalous power-law temperature dependence to var
quantities.

The coupling to the Kondo impurity gives rise to an ext
contribution to the specific heat and the spin susceptibil
which we denote asdC and dx. Their temperature depen
dence near the strong-coupling fixed point is determined

the leading irrelevant operator,Ô15g1(S1
1S21

2 1S1
2S21

1 ),
whereg1 is a coupling constant. To obtain leading tempe
ture dependence we may use a perturbation expansio
Ô1 .27

We first estimatedC. Up to second order, the change
the free energy is given by

dF52E
0

b/2

dt^Ô1~t!Ô1~0!&}2E
tc

b/2

dtS pTtc

sin pTt D 2d

,

~13!

whered54pR2, b is inverse of the temperatureT, Ô1(t)
[etHSICÔe2tHSIC, and tc is a cutoff to regularize the inte
gral. Note that there is no first-order contribution ofÔ1 to
dF. The low-temperature expansion of the integral in E
~13! for generald reads

FIG. 1. Schematic picture of renormalization to the stron
coupling fixed point where theXXZ chain is cut by the singlet.
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E
tc

b/2S pTtc

sin pTt D 2d

dt2
tc

2d21

55
2

tc

3
~pTtc!

2, d51

tc~d21!

2d21
~pTtc!

2d21BS 1

2
,
3

2
2dD , 1,d,

3

2

tc

2
~pTtc!

2 ln~1/pTtc!, d5
3

2

tcd~pTtc!
2

3~2d23!
,

3

2
,d,

5

2
,

~14!

whereB(a,b) is the beta function. Note that any irreleva
operator with dimensiond.3/2 generates a positiveT2 term.
From these equations we get

dC}5
~d21!2T2d22/~322d!, 1,d,

3

2

T ln~1/pTtc!, d5
3

2

T/~2d23!,
3

2
,d,

5

2
,

~15!

in the low-temperature limit. Sinced54pR2, the boundary
cased5 3

2 corresponds toD51/&. When 0,D,1/&, dC

is proportional toT8pR222 with the exponent changing from
0 to 1 asD varying from 0 to 1/&. This anomalous power
law behavior is reminiscent of the Kondo effect in T
liquids.4 The logarithmic correction appears atD51/&
when the dimension of the leading irrelevant operator
comes 3/2. This is mathematically the same as in the t
channel Kondo problem.27 When 1/&,D<1, the leading
term of dC is proportional toT.

We next considerdx. Here we need to distinguish tw
kinds of spin susceptibilities: one responding to a magn
field applied in thez direction and the other responding
the one in thexy plane. We shall call themdxz and dx' ,
respectively. Suppose we apply a magnetic field local28

only to Simp such that the perturbation,

Hh5hzSimp
z 1hxSimp

x , ~16!

is added to the Hamiltonian. Using the 1/JK expansion again
we can generate effective interactions induced byHh in the
Hilbert space of the singlet plus the SIC’s~Fig. 1!. From the
symmetry we expect to have the following operators in
dition to other less relevant ones:Ôh15hz(S1

z1S21
z ), Ôh2

5hz
2(S1

1S21
2 1S1

2S21
1 ), andÔh35hx(S1

x1S21
x ). In terms of

the bosonic fields they may be written asÔh1}hz@]xf.(0)
1]xf,(0)#, Ôh2}hz

2 cos$2ApR@f.(0)2f,(0)#%, and

Ôh3}hx$cos@2ApRf.(0)#1cos@2ApRf,(0)#%, whose
scaling dimensions are 1, 4pR2, and 2pR2. We can now
estimatedF induced by these operators using Eq.~14! and
obtaindxa52]2dF/]ha

2 uh50 . One point to be mentioned i

that products of Ô1 and Ôh2 can contribute a term
hz

2T8pR221 to dF, leading to a term proportional toT8pR221
-
o-

ic

-

in dxz . From these considerations, we conclude that in
low-temperature limitdx has the following form:

dxz~T!2dxz~0!}H 4pR221

8pR223
T8pR221, 0,D,1/&

T2 ln~1/T!, D51/&

T2, 1/&,D<1,
~17a!

dx'~T!2dx'~0!}T4pR221, 0,D<1. ~17b!

We note that there is always a contribution proportional
T2 coming from irrelevant operators. When 0,D!1, the
term T8pR221 might be difficult to observe, because of i
small coefficient (}4pR221), compared with theT2 term.
We also note that in general the zero-temperature limit of
susceptibilitydx~0! is of order 1/TK .

C. Strong-coupling limit for 21<D<0

When the parameterD in the host spin chain is in the
range 21,D,0, the dimension of the operatorS1

1S21
2

1S1
2S21

1 is smaller than 1 and is relevant. This means t
the open-boundary fixed point discussed in the previous s
section cannot be a low-energy fixed point when21,D
,0. Both limits JK→0 andJK→` in the original Hamil-
tonian H01HK are unstable. We thus need to find a no
trivial fixed point.

Let us for the moment forget the singlet ofSimp andS0 ,
and concentrate on the rest of the spins. That is, we cons
the two semi-infinite spin chains weakly coupled by a fer
magnetic exchange interactionH2 :

Hl5(
i 51

`

~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !

1(
i 51

`

~S2 i
x S2 i 21

x 1S2 i
y S2 i 21

y 1DS2 i
z S2 i 21

z !

2l~S1
xS21

x 1S1
yS21

y !, ~18!

where 0,l!1. We have dropped the irrelevantS1
zS21

z term.
Since the terml(S1

xS21
x 1S1

yS21
y ) is a relevant perturbation

~dimension54pR2!, the fixed pointl50 is unstable. On
the other hand, in the strong-coupling limitl@1, the two
spins S1 and S21 are in one of the triplet state,S51 and
Sz50. Virtual transitions from this state to excited stat
generate a residual ferromagnetic exchange coupling
tweenS2 andS22 , of the form similar toH2 , which is again
a relevant perturbation. Thus, the fixed pointl5` is also
unstable, and we expect that there should be an intermed
coupling fixed point. We will argue that this nontrivial fixe
point is simply a pureXXZ spin chain where the spinsSi
( i .0) are rotated byp around thez axis. The argument goe
as follows. The rotation ofSi ( i .0) around thez axis byp
changes the sign ofl (2l→l) in Hl . Since S1

xS21
x

1S1
yS21

y is relevant, the couplingl grows as the energy
scale decreases. TheS1

zS21
z term is also generated in th

course of the RG transformation. Thus, the two chains
coupled stronger at a lower energy scale. We next cons
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the opposite limit where the two chains are well connec
but one bond is slightly disturbed. This is described by
Hamiltonian,

H«5(
i 51

`

~Si
xSi 11

x 1Si
ySi 11

y 1DSi
zSi 11

z !

1(
i 51

`

~S2 i
x S2 i 21

x 1S2 i
y S2 i 21

y 1DS2 i
z S2 i 21

z !

1~12«'!~S1
xS21

x 1S1
yS21

y !1~12«z!DS1
zS21

z ,

~19!

where 0,«' , «z!1. Bosonizing this Hamiltonian as in Se
II A, we find that the perturbations (}«) give the spin-
Peierls operator sin@f(0)/R# of dimension (4pR2)21 and di-
mension 2 operators like (]f/]x)2. Since they are irrelevan
(«' ,«z→0 in the low-energy limit!, we recover the pure
XXZ spin chain. It is tempting to assume that the RG traj
tories starting from the unstable point describing two wea
coupled chains@Eq. ~18!# continuously flow to the stable
fixed point of the pureXXZ chain. Although we canno
prove it, we believe this is what actually happens. We n
that this phenomenon is closely related to the well-kno
result that a backward-scattering potential is renormalize
zero for fermions interacting with mutual attractiv
interactions.2 It is also similar to the ‘‘healing’’ of weak
bonds that Eggert and Affleck found for the isotropic Heise
berg chain with two symmetrically perturbed bonds.16 Com-
ing back to the HamiltonianHl , we conclude that its low-
energy fixed point is a pureXXZ spin chain with the spinsSi
( i .0) rotated around thez axis byp.

We now return to our Kondo problem. What we ha
found so far is that~i! the Kondo coupling is a relevan
operator at the weak-coupling point and leads to a sin
formation and that~ii ! weakly coupled spin chains are reno
malized to a strongly coupled single chain. Combining th
two observations together, we propose the model schem
cally shown in Fig. 2 as a candidate for the low-energy fix
point. The model consists of the singlet ofSimp andS0 on top
of the pureXXZ chain where spins are rotated as discus
in the last paragraph. An important point is that low-ener
excitations are spin-density fluctuations of long wavelen
in the chain, and that for these low-energy excitations
singlet has essentially no effect. In other words, the single
‘‘transparent’’ for them. At short-length scale there is a co

FIG. 2. Schematic picture of renormalization to the stable fix
point consisting of a singlet weakly coupled to a spin chain. T
singlet looks ‘‘transparent’’ for low-energy excitations in the cha
d
e

-
y

e
n
to

-

et

e
ti-
d

d
y
h
e
is
-

pling betweenS0 and its neighbors (S11S21). We assume
that, as far as low-energy physics is concerned, the singl
rigid and can be broken only virtually by the weak couplin
of S0 to the spin chain. Thus, the stable fixed point may a
be represented schematically as in Fig. 3. From the assu
tion of the rigid singlet, we can integrate it out to get effe
tive interactionsÔ25S1

xS21
x 1S1

yS21
y andÔ35S1

zS21
z for the

low-energy excitations in the spin chain. In the boson rep
sentation they are linear combinations of sin(f/R),
(]f/]x)2, and (]f/]t)2, which are irrelevant operators fo
the spin chain with the parameterD in the range21,D
,0. Hence the model is stable against weak perturbatio
and we conjecture that the above model gives a correct
ture of the strong-coupling fixed point for the case21,D
,0. Although it is impossible to show analytically that th
RG trajectories leaving from the unstable weak-coupl
point reach this fixed point~Figs. 2 and 3!, the numerical
results we show in the next section provide good evide
for our picture.

Assuming that our Kondo model is indeed renormaliz
to the strong-coupling fixed point of Fig. 2, we can obta
leading temperature dependences ofdC anddx as in the last
subsection. Since we know that a leading irrelevant oper
at the fixed point is among the operators sin@f(0)/R#,
@]f(0)/]x#2, and @]f(0)/]t#2, we find that the low-
temperature behavior ofdC is given by Eq.~15! with d
5(4pR2)21. We thus get

dC}H T, 21,D,21/2

T ln~1/T!, D521/2

T1/~2pR2!22, 21/2,D,0.

~20!

When a weak magnetic field is applied toSimp , we obtain
the operators Ôh15hz(S1

z1S21
z ), Ôh25hz

2(S1
1S21

2

1S1
2S21

1 ), andÔh35hx(S1
x1S21

x ) after integrating out the
singlet. Since these operators are not boundary operato
the fixed point of our interest, the scaling dimensions ofÔh2

andÔh3 are different from the open-boundary case. Here
use the bosonization formulas~4a! and~4b! and find that the
dimensions ofÔh2 andÔh3 are (4pR2)21 andpR2, respec-
tively. We then obtain the following low-temperature beha
ior:

dxz~T!2dxz~0!

}5
124pR2

6pR221
T~1/2pR2!21, 2

1

2
,D,0

T2 ln~1/T!, D52
1

2

T2/~126pR2!, 21,D,2
1

2
.

~21a!

d
e

FIG. 3. Schematic picture of the low-energy fixed point.
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dx'}T2pR221. ~21b!

D. Strong-coupling limit of the XY case„D50…

We briefly comment on the low-energy fixed point for th
XY case. Since this is exactly on the border of the two ca
discussed in Secs. II B and II C, we naturally expect tha
picture for the fixed point of theD50 case should be some
thing in between Figs. 1 and 2. That is, the singlet ofSimp
andS0 does not completely cut the hostXXZ spin chain into
two pieces. The weakened connection betweenS1 andS21 is
not healed as in the negativeD case. This is because at th
open-boundary fixed point (JK5`) the operatorS1

1S21
2

1S1
2S21

1 is a marginal operator. We expect that the impur
contribution to the specific heat and the susceptibilities h
the following low-temperature limit:

dC}T, ~22a!

dxz~T!2dxz~0!}T2, ~22b!

dx'~T!} log~1/T!. ~22c!

III. RESULTS OF DMRG CALCULATIONS

A. Numerical methods

In this section we present our numerical results for fin
chains. The Hamiltonian we studied isH01HK , Eqs. ~1!
and~2!. The site indexi in Eq. ~1! runs from2 l to l 21, and
the total number of spins in the hostXXZ chain is L52l
11. We impose the open boundary condition at the left a
right ends of the hostXXZ chain. Using the DMRG method
proposed by White,29 we calculated lowest energy gap an
spin-correlation functions in the ground state. In order
accelerate the numerical calculation, we employed the
proved algorithm proposed by White.30 We also used the
finite-system method to achieve high accuracy. Up to 1
states were kept for each block and the truncation erro
typically 1028. This error is directly related to the accurac
of energy.

As we mention in Introduction, our model may be r
garded as a toy model for the Kondo effect in 1D electr
systems that have charge degrees of freedom as well as
In this context we note that it is much easier to apply
DMRG method to the spin chains than to electronic mod
like the Hubbard model away from half filling, because t
Hilbert space is smaller and the DMRG converges faster
spin chains. We can thus treat large spin systems to re
scaling regime. It seems that for the Kondo effect of el
tronic models the application of Monte Carlo methods9 is
more successful than the DMRG method.31

B. Numerical results for D50.5

As a typical case of 0,D,1 we have chosenD50.5. In
this caseR51/A3p andv53)/4. With this choice we have
computed the lowest energy gapEg for chains of L51
~mod4!. Numerical results of the finite-size gap are shown
Fig. 4. The energy gap is the difference between the low
energy in the sectorStot

z 50 and that in the sectorStot
z 51.

According to the RG analysis in Sec. II B, the ground st
of a sufficiently long chain is described as two decoup
es
a

e

d

o
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0
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n
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e
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r
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-

st

e
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chains, each having (L21)/2 spins, plus a rigid spin single
of S0 andSimp in between them. Note that (L21)/25 l is an
even integer.

To interpret finite-size scaling of the data, let us boson
the two openXXZ chains of lengthl , following Refs. 16 and
32. The mode expansions of the phase fields are given b

fm~x,t !5pR1Q̂m

x

l
1 (

n.0

sin knx

Apn

3~anme2 iknvt1anm
† eiknvt!, ~23!

f̃m~x,t !5f̃0m1Q̂m

vt

l
1 i (

n.0

cosknx

Apn

3~anme2 iknvt2anm
† eiknvt!, ~24!

where kn5pn/ l and the operators obey the commutati
relations @f̃0m ,Q̂n#5 idm,n and @amm ,ann

† #5dm,ndm,n ~m,n
5l or r !. The suffixesl and r stand for the left~Si : i ,0!
and right (Si : i .0! spin chains, respectively. The fieldsf l

and f̃ l (f r and f̃ r! are therefore defined in the negativ
~positive! x region, andf l1f r andf̃ l1f̃ r correspond tof
andf̃ in Eq. ~3!. Note thatf l andf r are different fromf,

andf. . Substituting Eqs.~23! and ~24! into Eq. ~3! yields
the Hamiltonian of them chain

Hm5
pv
l S Q̂m

2

2p
1 (

n.0
nanm

† anm2
1

24D . ~25!

Its energy eigenvalue and eigenfunctions are

Em5
pv
l F2pR2~Sm

z !21 (
n.0

nmnm2
1

24G , ~26!

uSm
z ,$mnm%&5exp~ i2pRSm

z f̃0m!)
n.0

~anm
† !mnm

mnm!
u0&,

~27!

FIG. 4. Energy gapEg as a function of system sizeL for D
50.5. The data points are the gap computed forL517, 25, 33, 49,
65, 94, 129, 157, and 201@L51 ~mod4!#. The dashed line repre
sents the infinite-L limit, Egl 5)p/2.
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whereu0& is a vacuum (anmu0&50). The constantSm
z is noth-

ing but a quantum number of totalSz of each chain. Sincel
is an even integer,Sm

z can take integer values only. Ther
fore, in the limitJK→`, the ground state of the total syste
is the state withSm

z 5mnm50 for m5 l and r . The first ex-
cited states are fourfold degenerate and correspond
(Sl

z ,Sr
z)5(61,0),(0,61) and mnm50. The energy gap in

this limit is then given by

Eg5
pv
l

2pR2, ~28!

which equals)p/2l at D51/2. This gap value is shown a
a dashed line in Fig. 4. It is clear that all the curves in Fig
are gradually approaching the dashed line asL increases.
How the curves finally approach it in theL→` limit is de-
termined by the leading irrelevant operatorÔ1 , whose ex-
plicit form we may take:

Ô1}cos$ i2pR@f̃ r~0,0!2f̃ l~0,0!#%. ~29!

The correction to Eq.~28! due to the operatorÔ1 can be
obtained from a lowest-order perturbation expansion.33 Since
the degenerate first excited statesuSl

z51,Sr
z50& and uSl

z

50,Sr
z51& have a nonzero matrix element,

^Sl
z51,Sr

z50uÔ1uSl
z50,Sr

z51&

}K 0UexpF22pR(
n51

l
1

Apn
~anr2anr

† 2anl1anl
† !GU0L

}L24pR2
, ~30!

the degeneracy of these two states is lifted by an amo
which scales asL24pR2

. The same is true for the other tw
degenerate statesuSl

z521,Sr
z50& and uSl

z50,Sr
z521&. On

the other hand, the ground-state energy does not chang
first-order perturbation. Hence we may expect that the le
ing correction to the energy gap should be proportiona
L24pR2

, which goes to zero faster than the finite-size ga
(}L21). This L dependence is indeed observed in our n
merical data shown in Fig. 5. The data show very cl

FIG. 5. Size dependence of the correction to the energy
Eg

(0) , which is the gap calculated in the limitJK5`. The dashed
line represents the theoretically predictedL24/3 dependence.
to
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power-law behavior with the exponent 4/354pR2, in per-
fect agreement with the theory. This can be regarded a
numerical proof of the presence of the leading irrelevant
erator with the scaling dimension 4pR2 at the strong-
coupling fixed point we discussed in Sec. II B. We note th
the energy gapEg

(0) used in Fig. 5 is the one atJK5`, or
equivalently, the finite-size gap of anXXZ spin chain con-
taining l spins under the open-boundary condition. The r
son why we have usedEg

(0) rather than Eq.~28! is to reduce
the effect of a bulk irrelevant operator cos(2f/R) of dimen-
sion 1/pR253.

Using the DMRG method, we have also calculated
equal-time two-point spin correlation function^Si

xSj
x& in the

ground state forL5201 (Stot
z 50). According to our picture

of the strong-coupling fixed point, the hostXXZ spin chain is
effectively cut by a singlet in the low-energy limit~Fig. 1!.
We naturally expect that correlations across the sing
should be much weaker than correlations within one of
decoupled chains. Our numerical results shown in Figs
and 7 support this idea: A correlation function across
singlet shows power-law dependence oni with an exponent
larger than that for a pureXXZ chain (JK50), 2pR2.

p FIG. 6. Correlation betweenS2 i
x and Si

x calculated forD50.5
andL5201. The dashed line corresponds to the 1/i decay obtained
from the perturbative calculation.

FIG. 7. Correlation betweenSimp
x andSi

x calculated forD50.5
andL5201. The dashed line represents the expectedi 21 behavior.
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The exponents for̂S2 i
x Si

x& and ^Simp
x Si

x& can be obtained
from the following argument. First we consider^S2 i

1 Si
2&,

which is equivalent tô S2 i
x Si

x&. Since it vanishes when th
XXZ chain is completely decoupled, the nonzero contrib
tion is due to the leading irrelevant operatorS1

1S21
2

1S1
2S21

1 . To first order inÔ1 the correlator is

^S2 i
1 Si

2&}E dt^S21
2 ~ t !S2 i

1 ~0!& l^S1
1~ t !Si

2~0!& r , ~31!

where the averages^ & l and^ & r are evaluated for the groun
state of each decoupled chain. Since the scaling dimensio
the boundary operatorS71

6 is 2pR2 and that ofS6 i
7 is pR2,

we expect the correlator to scale as

^S2 i
1 Si

2&} i 26pR211, ~32!

from which we get̂ S2 i
x Si

x&}1/i for D51/2. The results in
Fig. 6 are consistent with this perturbative calculation.

The correlation betweenSimp
x and Si

x can be calculated
using the 1/JK expansion, which can be justified in the low
energy limit. AtJK5` the ground state of the whole syste
is a direct product ofuS&, which is the singlet wave function
of Simp and S0 , and the ground states of the left and rig
decoupled spin chains, which we denote asu l & and ur &. We
calculate the correlation function̂Simp

1 Si
2& to lowest order in

the coupling betweenS0 and its neighboring spinS0
2S1

1 :

^Simp
1 Si

2&;
1

JK
^SuSimp

1 uT&^TuS0
2uS&^r uS1

1Si
2ur &

}~21! i i 23pR2
, ~33!

whereuT& is a triplet state ofSimp andS0 having excitation
energy of orderJK . The exponent 3pR2(51) is a sum of
the dimensions ofS1

1 andSi
2 . The data forJK55 in Fig. 7

are in excellent agreement with the above calculation,
though the data forJK51 is curving, which we think is due
to a crossover to the true scaling regime.

C. Numerical results for D520.5

Here we present the numerical results for negativeD. Us-
ing the DMRG method, we have calculated finite-size g
and spin-correlation functions forD520.5, where R
51/A6p andv53)/8.

Figure 8 shows the finite-size energy gap as a function
the system size forL51 ~mod4!. As in the last section, the
gap is defined as the difference between the lowest energ
the sectorStot

z 50 and that in the sectorStot
z 51. We find that

the normalized gapEgL increases for smallJK , while it
decreases for largeJK . This is consistent with our picture o
the renormalization flows~Fig. 2!. For smallJK the excita-
tion gap is due to fluctuations ofSimp weakly coupled to the
host spin chain. This coupling is renormalized and becom
stronger as we saw in Sec. II A. For largeJK , on the other
hand, the hostXXZ chain is almost cut by a singlet, and th
finite-size gap roughly corresponds to the singlet-to-trip
excitation energy in half chains. AsL increases, or equiva
lently, as the energy scale decreases, the renormalized
pling between the almost decoupled chains becomes la
~‘‘healing’’ !, leading to the decrease of the normalized fini
-
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p
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ou-
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size gap. It is clear that all the curves in Fig. 8 approach
dashed lineEgL5)p/850.680 . . . , which is the value one
expects for a singleXXZ chain of lengthL. Unlike in the
case ofD50.5, however, we have not been able to obta
information on the scaling dimension of a leading irreleva
operator from the numerical data. A log-log plot ofuEg

2Eg
(0)u versusL did not give straight lines corresponding

power-law scaling. This would mean that the systems
have studied (L;200) are not large enough.

Next we show the results of correlation functions that
computed for the ground state of theL5201 system (Stot

z

50). Figures 9 and 10 show the correlation functions
S2 i and Si . The correlator̂ S2 i

x Si
x& is positive and decays

like i 21/3, while ^S2 i
z Si

z& is negative and decays much fast
like i 22. These features are exactly what we expect from
picture of the low-energy fixed point~Figs. 2 and 3!. Since
the spin chain is well connected, the correlation functio
^S2 i

a Si
a& should behave as in a pureXXZ chain without an

impurity spin. That is, exponents of power-law deca
should be the same as those in the pure chain, although
plitudes of the correlators will depend onJK . From Eqs.~4a!
and ~4b! we see that at long distanceSi

z;df/dx and Si
1

FIG. 8. Energy gapEg as a function of system sizeL for D
520.5. The data are taken forL517, 25, 33, 49, 65, 97, 129, 201
and 301. The dashed line represents the infinite-L limit, EgL
5)p/8.

FIG. 9. Correlation function^S2 i
x Si

x& for D520.5 and L
5201. The dashed line corresponds to thei 21/3 decay.
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;(21)iei2pRf̃, whose scaling dimensions are 1 andpR2

51/6. Hence^S2 i
z Si

z& should decay asi 22 and ^S2 i
x Si

x&
} i 21/3, in agreement with the numerical result.34

We next discuss correlations betweenSimp andSi . Since
there is always a short-distance correlation betweenSimp and
S11S21 , we expect ^Simp

a Si
a&}^(S1

a1S21
a )Si

a& with a
smaller constant of proportion for largerJK . Noting that
S1

x1S21
x corresponds to the staggered component in a p

XXZ chain without the spin rotation ofSi ( i .0), we con-
clude that̂ Simp

x Si
x&} i 21/3 and^Simp

z Si
z&} i 22 for large i . Our

numerical results shown in Figs. 11 and 12 show exactly
feature discussed above. Hence we conclude that the num
cal results support our picture of the low-energy fixed po

IV. CONCLUSIONS

In this paper we have studied the Kondo effect due to
extra spin coupled to a gaplessXXZ spin chain. In our mode
the backward spin-flip scattering is always a relevant per
bation. At low energy the impurity spin is screened by a s
in the host chain, and the characteristic energy scale,
Kondo temperatureTK , has a power-law dependence on t
Kondo coupling. From the perturbative RG analysis

FIG. 10. Correlation function̂ S2 i
z Si

z& for D520.5 and L
5201. The dashed line corresponds to thei 22 behavior.

FIG. 11. Correlation betweenSimp
x and Si

x for D520.5 andL
5201. The dashed line corresponds to thei 21/3 behavior.
re
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various limits, we have deduced properties of stron
coupling, low-energy fixed points. In the antiferromagne
side (0,D<1) the hostXXZ chain is cut by the singlet into
two separate chains. On the other hand, in the ferromagn
side (21,D,0) the singlet does not harm the host sp
chain in the low-energy limit. This may be understood qua
tatively by mapping the problem to a spinless fermionic s
tem using the Jordan-Wigner transformation. The fermio
have mutual repulsive~attractive! interactions in the antifer-
romagnetic~ferromagnetic! region. The singlet may then b
viewed as an impurity potential for the fermions, which c
be a relevant or irrelevant perturbation, depending on
sign of the mutual interactions. Employing the known res
for the spinless fermion system,2 we can argue that the hos
spin chain is cut into two pieces in the antiferromagne
case whereas in the other case the singlet does not affec
low-energy properties of the spin chain.

We have used the powerful DMRG method to nume
cally compute finite-size energy gaps and correlation fu
tions. The numerical results are consistent with the R
analysis. ForD50.5, the normalized gap approaches t
value for a chain of half length, and the correlation functi
acrossS0 decays much faster than in a pure spin chain (JK
50). These results are explained successfully based on
RG analysis of the strong-coupling fixed point~Fig. 1!. For
D520.5 we have found that the normalized gap approac
the value for a spin chain without the Kondo impurity. Th
correlation functions also show the same power-law beha
as in the pure spin chain. These results are consistent
our picture of the fixed point where the host spin chain
mains as a single chain through the healing of a coup
weakened by the singlet formation~Figs. 2 and 3!.
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FIG. 12. Correlation betweenSimp
z and Si

z for D520.5 andL
5201. The dashed line corresponds to the expectedi 22 decay.
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