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Quantum phase transitions and thermodynamic properties in highly anisotropic magnets
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The systems exhibiting quantum phase transitions~QPT! are investigated within the Ising model in the
transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence
between parameters of these models and of the quantumf4 model is established. A scaling analysis is
performed for the ground-state properties. The influence of the external ‘‘longitudinal’’ magnetic field on the
ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-
temperature properties are considered with the use of the scaling analysis for the effective classical model
proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the
magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of depen-
dences of observable quantities on the bare splitting~or magnetic field! and renormalized splitting turn out to
be different. A comparison with numerical calculations and experimental data on systems demonstrating
magnetic and structural transitions~e.g., into a singlet state! is performed.@S0163-1829~98!09329-1#
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I. INTRODUCTION

The interest in quantum models of anisotropic spin a
pseudospin systems is connected with what they describ
miscellaneous magnetic and structural transitions. Exam
of such transitions are transitions into singlet magnetic s
in TbSb, Pr, Pr3Tl ~see Ref. 1 and references therei!,
NiSi2F6 ~see, e.g., Ref. 2!, and orientational and metamag
netic phase transitions under magnetic field.3,4

The simplest model for the systems demonstrating
ground-state quantum phase transition~QPT! is the Ising
model in the transverse field. This model is convenient
description of structural transitions in quantum crystals.5–7 It
can also be applied to describe magnetic systems where
lowest and next energy levels are singlets. A more com
cated first-principles model for spin systems in a strong cr
tal field is the Heisenberg model with an easy-plane sing
site anisotropy; it is applicable in the case where the next
lowest energy level is a doublet. As well as the transver
field Ising model, this model also demonstrates a QPT~the
ground-state magnetization vanishes with increasing the
isotropy parameter!.

A number of approximate methods were applied to stu
the transverse-field Ising model8–18 at d.1 and the Heisen-
berg model with easy-axis anisotropy.19–23However, most of
these methods~except for numerical ones! are applicable
only not too close to the QPT. In particular, they lead
Gaussian values of the QPT critical exponents. Thus ana
cal consideration of the ground-state and finite-tempera
properties in the vicinity of the QPT is still an open proble

The case where the system is close to the QPT is cha
terized by a small ground-state moment and low transit
temperature. Such a situation is reminiscent of weak itine
magnets.24 An analysis of the ground-state QPT was p
formed in Refs. 25,26. It was shown that the upper criti
dimensionality for such transitions isdc

1542z with z being
the dynamical critical exponent. This conclusion has a g
eral character. In the present paper we consider only sys
with z51, which holds for the transverse-field Ising mod
PRB 580163-1829/98/58~9!/5509~20!/$15.00
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and anisotropy-induced QPT in the Heisenberg model.~Note
that this is not the case for the QPT induced by magn
field in degenerate systems with an.1 component order
parameter since herez52, see Ref. 27.! Thus ford>3 the
critical exponents are the Gaussian ones, while ford,3 they
deviate from the corresponding mean-field values and ca
calculated with the use of the 32« expansion. For the criti-
cal dimensionalityd53 the ground-state properties conta
logarithmic corrections.

Sachdev28 proposed a three-stage method of treat
finite-temperature properties of the systems near the QPT
the first stage, ground-state renormalizations are perform
At the second stage, the nonzero Matsubara frequencies
integrated out to obtain an effective classical action. Fina
perturbation theory for the effective classical model is a
plied. This method ensures correct analytical properties
the resulting theory. While ground-state renormalizations
nonuniversal, finite-temperature properties, being expres
through quantum-renormalized ground-state parameters,
out to be universal.

The approach of Ref. 28 is based on a continuum mo
namely, the quantumf4 model. This model is sufficient to
express finite-temperature properties near the QPT thro
the nonuniversal ground-state properties, but insufficien
obtain correct results for the latter properties. A conveni
method to consider the lattice spin systems near their crit
dimensionality is the expansion in the formal quasiclass
parameter 1/S. Its applicability is connected with the fact tha
neardc the effective interaction of spin waves is small~ex-
cept for a narrow critical region where the« expansion can
be easily developed to correct the description of the criti
behavior!. For the Heisenberg model such a situation occ
for temperature transition near the lower critical dimensio
ality dc

252. This provides for success of th
renormalization-group~RG! approach for the description o
thermodynamics ofd52 ~Ref. 29! and d521« ~Refs.
30,29! Heisenberg magnets, and also quasi-two-dimensio
~2D! and anisotropic 2D magnets31 not too close toTc .
5509 © 1998 The American Physical Society
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For the QPT in highly anisotropic spin systems the 1S
expansion works well near theuppercritical dimensionality
dc

153. In this case there are excitations, which are alm
gapless near the QPT~they are analogous to the spin-wa
excitations in Heisenberg magnets!. Besides that, for the or
dered degenerate systems~with n>2) there are always
Goldstone modes with zero energy gap and the 1/S expan-
sion becomes applicable at arbitrary anisotropy below
critical value. The situation is more complicated for fini
temperatures, since close to the temperature transition
system behaves as a corresponding classical magnet
therefore the picture of excitation spectrum differs from th
at T50.

The aim of the present paper is to apply the abo
discussed concepts for calculating ground-state and fin
temperature properties of the transverse-field Ising mo
(n51) and Heisenberg model with strong easy-plane ani
ropy (n52). To this end we apply perturbation theo
~which is in fact an expansion in 1/S) to the original lattice
models~not to their continuum analogs!, which enables us to
calculate nonuniversal ground-state quantum renorma
tions. After that we combine perturbation results for sho
wave fluctuations with the results of the 32« RG approach
for the long-wave fluctuations to correct the results of p
turbation theory. Finally, we consider finite-temperatu
properties within the RG approach for the effective co
tinuum classical model.

The plan of the paper is as follows. In Sec. II we discu
the Ising model in the transverse field. We consider co
sponding mean-field results, construct the perturba
theory in 1/S, and apply a scaling approach to investiga
ground-state and thermodynamic properties, in particular
influence of external magnetic field. In Sec. III the Heise
berg model with easy-plane anisotropy is considered i
similar way. In Sec. IV we discuss the results obtained a
compare them with experimental data on systems exhibi
structural and magnetic transitions. Some details of calc
tions are presented in Appendixes.

II. TRANSVERSE-FIELD ISING MODEL

A. The formulation of the model
and the mean-field approximation

We consider the Hamiltonian of the Ising model in t
transverse fieldV

H52
I

2(̂i j &
Si

xSj
x2V(

i
Si

z , ~1!

whereI is the exchange parameter. This model can desc
singlet magnetic systems. A derivation of such a model
Heisenberg magnets with strong single-site anisotropy is
sented in Appendix A. The model~1! also describes struc
tural transition in quantum crystals~cooperative Jahn-Telle
effect, see Ref. 7! where the two lowest energy levels a
singlets. In this caseI 5D2, V5D1, where D1,2 is the
energy-level splitting atT50 andT.Tc , respectively. For
further purposes it will be useful to consider the model~1!
for arbitrary values of~pseudo-! spin S.

At V50 the model~1! coincides with the Ising mode
and thus the order parameterS̄[^Sx&5S in the ground state
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With increasingV, model~1! demonstrates a quantum pha
transition whereS̄ vanishes. The one-dimensionalS51/2
transverse-field Ising model in the ground state can be so
rigorously.32 In particular, it can be reduced to the two
dimensional Ising problem at finite temperatures,33 so that
critical exponents for both the phase transitions coinci
The transverse-field Ising model withd.1 requires approxi-
mate methods.

The mean-field~MF! approximation6,8 yields the critical
field V0[I 0S, and the equation for the order parameter
V,V0 reads

V0

He
BS~He /T!51, ~2!

where

BS~x!5~111/2S!coth~111/2S!x2~1/2S!coth~x/2S!,

B1/2~x!5~1/2!tanh~x/2!, ~3!

is the Brillouin function,He5(V21V0
2S̄2/S2)1/2, I 052Id.

Owing to the fieldV, the value of^Sz& is finite in both
ordered and disordered phase and reads

^Sz&5
VS

He
BS~He /T!. ~4!

It should be noted that atV,V0 we have simply^Sz&
5SV/V0. The critical temperature whereS̄ vanishes is de-
termined for the physically important caseS51/2 by

Tc
MF5

V

2 tanh21~V/V0!
.

V

ln@2/~12V/V0!#
~5!

~the last approximation is valid for 12V/V0!1). Thus the
MF theory predicts a very weak inverse-logarithmic depe
dence for the critical temperature near the QPT in arbitr
dimensionality. This contradicts the results of the scal
approach26,28both above and below the upper critical dime
sionality dc

153.
To improve the MF approximation, one has to take in

account the collective excitations which are analogous
spin-wave excitations in Heisenberg magnets. The spect
of these excitations in the random-phase approximation
the form6

Eq
25V@V2I q^S

z&#1I 0
2S̄2 ~6!

in both ordered and disordered phases. Near the QPT@at
S̄(T50)!1], these excitations become almost gapless
give dominant contributions to physical properties.

The result of account of the collective excitations to fi
order in 1/R ~where R is the radius of exchange
interaction!15 for d53 reads

Tc;R 3/2A12V/V0. ~7!

This has a correct square-root behavior~see, e.g., Ref. 28!.
However, the logarithmic corrections, that occur ford53,
are not reproduced by the result~7!. Besides that, the 1/R
expansion does not enable one to determine correctly
coefficient in Eq.~7! for not too largeR.
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Another approach used in Ref. 11 is to consider the e
tations ~6! self-consistently within the random-phas
approximation~RPA! decoupling scheme for the sequence
equations of motion. Unlike the 1/R expansion, this proce
dure gives the possibility of taking into account the react
of the RPA excitation spectrum~6! on the deviation of the
critical field fromV0. Corrections to mean-field ground-sta
parameters turn out to be small enough, but at finite temp
tures the RPA magnetization shows a double-value beha
with first-order temperature phase transition. Authors of R
11 consider also a generalization of RPA, the two-site s
consistent approximation~TSCA! which gives the possibility
of including partially correlation effects. This approximatio
gives more satisfactory results than RPA. However, it p
dicts first-order character not only for the temperature tr
sition, but also for the QPT.

One should mention also the papers12,13 where high-
temperature series expansions~HTSE! and ground-state per
turbation theory~GSPT! were used. Although these expa
sions gives consistent results for the critical field, th
applicability near the QPT is questionable. Recently so
results of GSPT and HTSE have been confirmed by num
cal correlated-basis-function analysis.17,18

Below we use the 1/S expansion to treat ground-state a
finite-temperature properties of the transverse-field Is
model. Unlike the 1/R expansion, it takes into account th
‘‘spin-wave’’ excitations already in the zeroth-order of pe
turbation theory. Contrary to the RPA,11 this is a systematic
expansion, and therefore scaling corrections can be ea
calculated. It should be also noted that the 1/S expansion
differs from the ground-state perturbation theory used in R
13 where the expansions in powers ofV/I andI /V are used
for the ordered and disordered phases, respectively. Ind
the 1/S expansion treats both the terms in the Hamilton
~1! on equal footing and thus yields physically correct resu
already in the first order in 1/S.

B. Ground-state properties within the 1/S perturbation theory

To construct perturbation expansion in a convenient fo
we use the spin coherent-state approach.34 The partition
function is presented in terms of a path integral,

Z5E Dp exp@2~Sdyn1Sst!#, ~8!

where

Sdyn5 iS(
i
E

0

1/T

dt~12cosq i !
]w i

]t
,

Sst52E
0

1/T

dtF IS2

2 (̂
i j &

pxipx j1VS(
i

pziG , ~9!

are static and dynamic parts of the action,pi

5$pxi ,pyi ,pzi% is a three-component vector field withpi
2

5111/S, q i andw i are the polar and azimuthal angles ofpi
in an arbitrarily chosen coordinate system~which does not
need to coincide with thepx-py-pz coordinate system!. Fur-
ther we additionally rotate the coordinate system through
angleu determined by
i-

f

n

a-
or
f.
f-

-
-

r
e
ri-

g

ily

f.

ed,
n
s

e

sinu5^px&/^upu& ~10!

around thepy axis ~in the disordered phaseu50 and the
rotated coordinate system coincides with the original one!.

The calculation of the two-point vertex functionG(q,v)
of the fieldsp̃x , p̃y ~the tilde sign is referred to the rotate
coordinate system!, which is connected with matrix Green’
function G of these fields by the relationG(q,v)
5G21(q,v), is performed for both ordered and disorder
phases in Appendix B and yields to first order in 1/S the
result

G6~q,vn!

5S S2~ I 02I q1I 0D6
2 ! iSvn~wS1X0/21Y0/2!

iSvn~wS1X0/21Y0/2! I 0S2D6
D ,

~11!

wherewS5(111/2S)21,

X05
1

2S(q

1

A12I q /I 0

, Y05
1

2S(q
A12I q /I 0, ~12!

D6 and D6 are the dimensionless temperature-depend
energy gap and the renormalization factor for the excha
parameter in the disordered and ordered phases, respect
their concrete expressions being specified below. The ma
static uniform spin susceptibility in the rotated coordina
system is expressed in terms ofG as

x̃ i j 5S2G i j
21~0,0!, ~13!

wherei , j 5x,y. The renormalized spin-wave spectrum is d
termined by the condition detG(q,2iEq)50 and has the
form

Ẽq5S@111/2S2~X01Y0!/2#AI 0D6~ I 02I q1I 0D6
2 !.

~14!

The quantum-renormalized critical fieldVc is given by

Vc

V0
511

1

2S
2

1

4S(q

2I 01I q

AI 0~ I 02I q!
. ~15!

The last two terms in this expression yield the first-order 1S
correction to the mean-field value ofVc . For S51/2 the
numerical calculation of the integral in Eq.~15! yields the
result Vc52.44I in the 3D case andVc51.10I in the 2D
case. Thus the critical field is strongly renormalized by qu
tum fluctuations both in the 3D and 2D cases. The criti
field values obtained are considerably smaller than the
responding RPA results,11 Vc52.88I and Vc51.83I , and
somewhat smaller than those obtained by HTSE~Ref. 12!
and GSPT,13 Vc52.58I and Vc51.54I . This demonstrates
that the considered first-order 1/S perturbation theory over-
estimates the effects of quantum fluctuations~especially in
the 2D case!, but treats these fluctuations more correctly th
RPA.

In the disordered phase witĥpx&50 (V.Vc) the ex-
pressions for the ground-state energy gap and factorD1

have the form
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D1
2 ~ t1,0!5

t1

12t1
~12X08!@11A1~ t1!#,

A1~ t !5
1

4St(q
H 2I 01I q~11t !

AI 0@ I 02I q~12t !#
2

2I 01I q

AI 0~ I 02I q!
J ,

~16!

and

D1~ t1!5
11Y02X0

12t1
@11t1A1~ t1!#, ~17!

where

t1512Vc /V ~18!

and

X085
1

2S(q

I q

AI 0~ I 02I q!
.

In the ordered phase (V,Vc) we obtain

D2
2 ~ t2,0!5t2~12X08!@11A2~ t2!#,

A2~ t !522~12t !A1~ t !2
12t

8S (
q

@2I 01I q~11t !#2

I 0
1/2@ I 02~12t !I q#3/2

,

~19!

and

D2~ t2!511Y02X0 , ~20!

where

t2512~V/Vc!
2. ~21!

Consider now the observable quantities. The expres
for the order parameterS̄(t2 ,T)[S^px& at T50, V,Vc
reads

S̄~ t2,0!5St2
1/2@11B~ t2!#1/2@111/2S2~X01Y0!/2#,

B~ t !522~12t !A1~ t !. ~22!

In the limiting case of zero transverse field we have
trivial result S̄5S, and the energy spectrum reduces to
mean-field form,Ẽq5V0. At very largeV@Vc we repro-
duce again the mean-field resultẼq5V. This is a conse-
quence of the fact that in both the limitsV50 andV→`
quantum fluctuations are absent. Thus the 1/S expansion
gives the possibility of obtaining the correct values of t
ground-state parameters for an arbitraryV>0, except for the
region V'Vcwhere the quantum fluctuations are stro
enough to modify considerably the results. A more detai
consideration of this region will be performed below in Se
II D.

For the longitudinal susceptibility we have

xxx5cos2ux̃xx1sinu cosu~x̃xz1x̃zx!1sin2ux̃zz, ~23!

where the tilde sign refers to susceptibilities in the rota
coordinate system~recall that for the disordered phas
n

e
s

d
.

d

u50). For the ordered phase the first summand in Eq.~23!
gives a dominant contribution near the QPT, and using
relation ~13! yields in both the ordered phase near the Q
and disordered phase the expression for the ground-state
susceptibility through the gap in the excitation spectrum

xxx5
1

I 0D6
2 ~ t6,0!

. ~24!

C. Influence of longitudinal magnetic field

To consider the influence of the external magnetic fi
we add to the Hamiltonian the term

DH52H(
i

Si
x . ~25!

The longitudinal magnetic field results in the appearance
nonzero^Si

x& at anyV/I . The influence of both transvers
and external longitudinal fields is, of course, equivale
to applying one effective field which has the valu
(H21V2)1/2 and makes the angle arctan(H/V) with the px
axis. However, it is useful to consider these fields as t
independent ones.

Performing the calculations which are similar to those
Sec. II B and Appendix B we obtain to first order in 1/S the
equation for the angleu of coordinate system rotation

V2V0r ~u!cosu2H cotu50, ~26!

where

r ~u!511
1

2S
2

1

4S(q

2~ I 01I q!w~u!2I qcos2u

AI 0w~u!@ I 0w~u!2I qcos2u#
,

~27!

with w(u)5sin2u1(V/Vc)cosu. For a generalV/Vc the so-
lution of this equation is rather cumbersome. However, n
the QPT~i.e., at 12V/Vc!1), where the angleu is small,
one can expand Eq.~26! in u to obtain

u5H u01H/2@ I 0Sr~0!2V#, uH!u0 ,

uH12dr /3uH , u0!uH!1,
~28!

where u05A2(12V/Vc), uH5(2H/Vc)
1/3, and dr

5r (uH)2r (0).
For the magnetization we derive

S̄55
S̄~H50!1xxxH, uH

2 !12V/Vc ,

S 11
1

2S
2

X01Y0

2 D uH@11B8~uH
2 !#,

12V/Vc!uH
2 !1,

~29!

wherexxx is determined by Eq.~24!, and
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B8~uH
2 !52

1

6SuH
2 (q

F2~ I 01I q!~11uH
2 /2!2I q~12uH

2 !

AI 0@ I 0~11uH
2 !2I q~12uH

2 /2!#

2
2I 01I q

AI 0~ I 02I q!
G . ~30!

The ground-state energy gap is given by

D2
2 .H D2

2 ~H50!, uH
2 !12V/Vc ,

3

2
uH

2 @11A8~uH
2 !#, 12V/Vc!uH

2 !1,
~31!

where

A8~uH
2 !5B8~uH

2 !

2
1

12S(q

~ I 012I q!2

I 0
1/2@ I 0~11uH

2 /2!2I q~12uH
2 !#3/2

.

~32!

The longitudinal susceptibility in the presence of the ma
netic field is still determined by Eq.~23!, and again the first
term gives main contribution near the QPT. Alternative
the same result can be obtained by direct differentiation oS̄
@which is given by Eq.~29!# with respect toH.

D. Ground-state renormalizations near the QPT

The results of the 1/S expansion can be applied only
not too smallt6 . Indeed, atd<3 the functionsA and B
contain terms which are divergent att6→0 as t6

(d23)/2 ~at
d53, logarithmic divergences are present!. The same situa-
tion takes place for the functionsA8 andB8 which are diver-
gent asuH

d23 at uH→0. Thus an«532d expansion can be
developed within the RG approach to treat these divergen
more correctly and to improve thereby the behavior ofD6

and S̄ near the QPT. Further consideration of this section
related to the critical regionu12V/Vcu!1. However, as it
will be clear below, the results can be extrapolated to a
trary V, since in the limitsV!Vc and V@Vc they are
smoothly joined with the results of the 1/S expansion of Sec
II B.

First we pick up the nonuniversal factors fromS̄, D6 by
introducing the quantities

S̄R~ t,T!5@111/2S2~X01Y0!/2#21S̄~ t,T!/S,

D6R~ t,T!5~12X08!21D6~ t,T!. ~33!

Consider the continuum limit of the above theory. The act
S5Sdyn1Sst in this limit takes the form

Scont5
1

2E ddr E
0

c/T

dt@2i p̃x~]p̃y /]t!1p̃y
2

1~¹p̃x!
21m2p̃x

2#1
u

4!E ddr E
0

c/T

dt p̃x
4 , ~34!

where the parametersu, m2, and c, determined in such a
way, are given by
-

,

es

s

i-

n

ucont56d
c0

IS2
z,

ccont5c0 , ~35!

mcont
2 52t1d,

c05(2d)1/2IS being the bare spin-wave velocity,p̃x
2

5(IS2/c0)px
2 , p̃y

25(IS2/c0)py
2 and the factorz (z512t2

in the ordered phase andz51 in the disordered phase! is
introduced to extend the region of applicability of resu
obtained to arbitraryt6 . Note that the coefficients for the
first three terms of the quadratic part of Eq.~34! can always
be chosen equal to their values in Eq.~34! by appropriate
rescaling of px,y and t. The model ~34! is completely
equivalent to the quantumf4 model. Indeed, integrating ou
the fieldpy we obtain

Scont5
1

2E ddr E
0

c/T

dt@~]p̃x!
21m2p̃x

2#

1
u

4!E ddr E
0

c/T

dt p̃x
4 . ~36!

The continuum representation~34! determines the way in
which the original lattice model can be renormalized. F
lowing the standard procedure35 we introduce the renormal
ization factorsZi

6 for the ground-state parameters in the d
ordered and ordered phases by the relations

px5Zx
6pxR , py5Zy

6pyR ,

t65~Z2
6/Z!t6R , g5~Z4

6/Z2!gR , ~37!

where the indicesR denote quantum-renormalized quantitie

g5K42«L«m2«ucont ~38!

is the coupling constant,m is a parameter with the dimen
sionality of inverse length,Kd5@2d21pd/2G(d/2)#21, and
the factor L«5G(11«/2)G(12«/2) @G(z) is the Euler
gamma function# ensures the applicability of the one-loo
order results for not small«.36 For further treatment it is
useful to represent the renormalization factors as

Zi
65ZLi

6 ~g!Zi
cont~gR ,m!, ~39!

whereZi
cont are the corresponding factors for the continuu

model~34! that contain divergent terms~which are indepen-
dent of lattice structure, etc.! and ZLi all the others~lattice
dependent! corrections. It is important that the factorsZLi do
not contain divergences.

The expressions forZ factors in the continuum mode
~34! are well known~see, e.g., Ref. 35!. We use the cutoff
scheme with cutting integrals over quasimomentum atL.
Then to one-loop order we have
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Zx
cont5Zy

cont511O~gR
2 !,

Z2
cont511

gR

2«S 12
m«

L«D , ~40!

Z4
cont511

3gR

2« S 12
m«

L«D .

For our purposes it is convenient to setL5(2d)1/2 ~the lat-
tice constant is assumed to be equal to unity!, rather than to
pass to the limitL→` ~as it is usual in the quantum fiel
theory!. The expressions forZLi can be deduced by compa
ing the above results of perturbation theory for the origi
lattice model~Secs. II B and II C! with the standard pertur
bation results for the continuum model~ 34!, see Ref. 35. We
obtain

ZLx5ZLy51,

~ZL2
6 !21511A6~ t6!1

g

2«S 1

t6
«/2

21D , ~41!

~ZL4
2 !21511A2~ t2!2B~ t2!1

3g

2«S 1

t2
«/2

21D .

Note that, unlike the factorsZi
cont, the quantities~41! are

defined only for integer«. As follows from Eq. ~39!, the
determination of factorsZLi enables one to consider the co
tinuum model~34! with the parameters

m25~ZL2
6 !21mcont

2 , u5~ZL4
6 !21ucont, ~42!

andc5c0(111/2S2X0) instead of the original lattice one
Thus the factorsZLi represent the corrections owing to pas
ing from the cutoff scheme in the original lattice model
that in the continuum model, cf. Ref. 29.

The flow functions for the coupling constant and ener
gap have the standard form35

b~gR!5m
]gR

]m
52«gR1

3

2
gR

2 ,

g~gR!5m
] ln Z2

cont

]m
52

1

2
gR . ~43!

The effective-Hamiltonian parametersgr , tr at the scale
m85mr as determined by these flow functions read

gr5F11
gR

g*
~r2«21!G21

r2«gR ,

tr5F11
gR

g*
~r2«21!G21/3

t6R , ~44!

whereg* 52«/3 is the stable fixed point to one-loop orde
We start the scaling procedure atm5L and stop it at

m85Lt6
1/2 ~thusr5t6

1/2). ForD6 andS̄ we obtain the results
l

-

y

D6R
2 ~ t6,0!5

1

ZL2
6

t6

@11~3gR/2«!~1/t6
«/221!#1/3

, ~45!

S̄R~ t2,0!5t2
1/2AZL4

2

ZL2
2 F11

3gR

2« S 1

t2
«/2

21D G 1/3

, ~46!

where, according to Eqs.~37!, ~40!,

gR5~Z4L
6 !21~2d!2«/2K42«L« . ~47!

In the 3D case

1

«S 1

t«/2
21D→1

2
ln

1

t
, ~48!

so that the QPT critical exponents for the order parame
and the gap~inverse correlation length! are the Gaussian one

b51/2, n51/2, ~49!

and logarithmic corrections are present. At the same time
the 2D case we obtain

b51/3, n57/12, ~50!

which are standard one-loop results for the one-compon
f4 theory ind1153 dimensions.

In a strong enough longitudinal magnetic field (
2V/Vc!uH

2 !1), we obtain

D2R
2 ~uH,0!5

2

3ZL28

1

@11~3gR/2«!~1/uH
« 21!#1/3

,

S̄R~uH,0!5uHAZL4
8

ZL28
F11

3gR

2« S 1

uH
«

21D G 1/3

, ~51!

where

ZL2
8 511A8~uH

2 !1
g

2«S 1

uH
«

21D ,

ZL4
8 511A8~uH

2 !2B8~uH
2 !1

3g

2«S 1

uH
«

21D . ~52!

Thus, as well as for the dependences of ground-state pro
ties ont, in the 3D case one has the mean-field value

d53, ~53!

and the logarithmic corrections are present. Atd52 we ob-
tain the critical exponent

d59/2. ~54!

Note that the scaling relations atd52 are slightly violated
since the corresponding value of« is in fact not small and
the « expansion is applicable with a poor accuracy. Ho
ever, this violation is not too large~the valued55 can be
calculated taking into account that the critical exponenth
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50 to one-loop order!, which indicates that the one-loo
approximation gives adequate results even in this case.

The ground-state parameters at zero longitudinal magn
field are shown and compared with RPA~Ref. 11! and GSPT
~Ref. 13! results in Fig. 1 for the 3D case and in Fig. 2 f
the 2D case. The primes mean that corrected values ofVc
obtained from GSPT~see above!, instead of those from the
first-order 1/S expansion, are used in the calculations. T
1/S results forVc are marked by arrows. One can see th
unlike the results of RPA and 1/S expansions, RG result
have a correct critical behavior with critical exponents giv
by Eqs.~49! and~50!; besides that, they are very close to t
GSPT result ford53. Ford52 the difference between RG8

and GSPT results increases, which demonstrates that t«
expansion has a poor accuracy here. Far from the quan
phase transition, the RG results coincide with those ofS
perturbation theory.

FIG. 1. Ground-state energy gapẼ0(V) (V.Vc , a! and order

parameterS̄(V) (V,Vc , b! for the 3D transverse-field Ising
model in different approaches. The valueVc52.58I is used for
calculating the 1/S8 and RG8 curves. The arrow shows the value
the critical fieldVc , obtained by 1/S expansion.
tic

e
t,

m

E. Finite-temperature properties near the QPT

At finite temperature the situation is more complicate
since not only ‘‘spin-wave’’ excitations, considered in prev
ous sections, contribute to thermodynamic properties.
V/Vc!1 we haveTc;IS2 and the phase transition occu
due to vanishing of̂ upu&. The dominant excitations in this
case are domain walls. Another situation occurs near
QPT (12V/Vc!1) where the temperature phase transiti
is connected with the rotation of^p& in the spin space, while
its absolute value is only slightly changed with temperatu
The dominant excitations here are the ‘‘spin-wave’’ exci
tions, except for a narrow critical region close toTc . At
intermediate values ofV both effects, the rotation of^p& and
temperature variation of its absolute value, are importa
Thus the 1/S expansion can be applied to describe the te
perature phase transition only near the QPT.

Being rewritten through the quantum-renormaliz
ground-state parameters, finite-temperature properties

FIG. 2. Ground-state energy gapẼ0(V) (V.Vc ,a! and order

parameterS̄(V) (V,Vc , b! for the 2D transverse-field Ising
model in different approaches. The notations used are the sam
in Fig. 1.
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the QPT are universal. The finite-temperature order par
eter and energy gaps obey the scaling laws

S̄2~ t2 ,T!5S̄2~ t2,0! f S T

cD20
D , ~55a!

D6~ t6 ,T!5D6~ t6,0!g6S T

cD60
D , ~55b!

whereD605D6(t,0), f and g6 are universal scaling func
tions with f (0)5g6(0)51. The transition temperature i
determined by zero of the functionf (T/cD20) or, equiva-
lently, of g2(T/cD20). As discussed in Ref. 28, the func
tions g1(x) and g2(x) are connected by the procedure
analytical continuation. Due to universality of scaling fun
tions ~55a!, ~55b!, the continuum limit of developed theory
i.e., the action~34!, can be used when treating the finit
temperature properties.

Consider first the perturbation approach. We obtain

D1
2 ~ t1 ,T!5D1

2 ~ t1,0!1
u

2dS 2T

c D d21

FdS c2d

4T2
t1D

~56!

for the disordered phase and

S̄R
2~ t2 ,T!5S̄R

2~ t2,0!2
u

4dS 2T

c D d21

FdS c2d

2T2
t2D ,

~57a!

D2
2 ~ t2 ,T!5S̄R

2~ t2 ,T!FD2
2 ~ t2,0!

S̄R
2~ t2,0!

1
3u

4 S 2T

c D d23

Fd8S c2d

2T2
t2D G , ~57b!

for the ordered phase, where

Fd~x!5KdE
0

`qd21dq

Aq21x
~cothAq21x21!, F3~0!5

1

24
,

andFd8(x) is the derivative with respect tox. Thus we have
for the static susceptibility in the disordered phase
ID1!T!I ~Refs. 26,28!

xxx5
1

I 0

1

D1
2 ~ t,0!1g~2T/c!d21

~58!

with g53I 0Fd(0)/4c.
At T>I thermodynamic properties cannot be determin

correctly from the above approach since in this tempera
region higher-order terms in the 1/S expansion contribute to
the partition function and such an expansion becomes in
plicable. However, one can expect that atT@I the thermo-
dynamics is the same as for the well-studied Ising model
particular, the susceptibility obeys the Curie law
-

t

d
re

p-

n

xxx5
S~S11!

3T
~59!

on both sides of the QPT.
The equation for the transition temperature reads

S̄2~ t2,0!5
u

4dS 2Tc

c D d21

FdS c2d

2Tc
2

t2D . ~60!

Since at smallt2 andd<3 one has from Eq.~22! S̄2(t2,0)
}(t2)(d21)/2, we obtain

Tc}At2, 1,d<3, ~61!

where the coefficient of proportionality is determined by t
solution of Eq.~60!. For d.3 we derive

Tc}~ t2!1/~d21!, d.3. ~62!

The mean-field logarithmic behavior~5! is reproduced only
for d→`.

Consider now the renormalization of the finite
temperature properties atd<3. To this end we use the ap
proach of Ref. 28, which treats the renormalization of t
effective classical model. The disordered phase was con
ered in detail in Ref. 28. Instead of the analytical continu
tion of these results to the ordered phase, we perform di
calculation of finite-temperature properties in the orde
phase. This gives the possibility of calculating correctly t
value ofTc not too close to the QPT and also of describi
finite-temperature properties atT,Tc . The generalization of
the approach of Ref. 28 to the ordered phase is trivial.
integrate out all the modes with nonzero Matsubara frequ
cies from the finite-temperature partition function to obta
the effective action for the field

P5E
0

c/T

dt px , ~63!

which corresponds to thevn50 mode, in the form

Scl5
c

2TE ddr @K~¹P̃!21RP̃2#1
P̄

3!

cU

T E ddr P̃3

1
1

4!

cU

T E ddr P̃41•••. ~64!

Here P̃5P2P̄, P̄ is determined by the condition of ab

sence in Eq.~64! of terms that are linear inP̃. The param-
eters of the model~64! are given by

R~T!5
1

3
U~T!P̄2~T! ~65!

and ford53
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P̄2~T!5
18

u F S̄R
2~ t2,0!2

1

3

8p2gR

11~3gR/2!ln~1/D20!S T

c D 2

F̃3S 3D20
2 c2

2T2 D G , ~66!

U~T!5
8p2gR

11~3gR/2!ln~1/D20!F11
6p2gR

11~3gR/2!ln~1/D0!
F̃38S 3D20

2 c2

2T2 D G , ~67!
-
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g

where

F̃3~x!5K3E
0

`

q2dqFcothAq21x21

Aq21x
2

1

q21x
1

1

q2G ,

~68!

F̃38(x) means the derivative with respect tox, and we have
represented Eqs.~66! and~67! in the scaling form by replac
ing t2→D20

2 in arguments ofF3(x), F38(x). Near the QPT
~i.e., for smallD20) function R(T) coincides with that de-
termined by continuation from paramagnetic phase, a
should be. The value ofK(T) will be needed only in zeroth
loop order,K51.

The critical temperature is determined by the condit

P̄(Tc)50. Closely enough to the critical point@at
ln(1/D20)@1] we have

Tc5
3

2p
cD20A6 ln~1/D20!, ~69!

in agreement with Ref. 28@our definition of D2 differs
(2d)1/2c times from that used in Ref. 28#. At the same time,
the expansion in the bare splitting~magnetic field! yields

Tc}cAt2ln1/3~1/t2!}S̄R~ t2,0!, ~70!

where the coefficient of proportionality can be determin
numerically from Eqs.~45! and ~69!. Thus, due to ground
state renormalizations, the dependences ofTc on the bare
and renormalized splittings turn out to be different in form

The resulting classical action~104! is renormalized in a
standard way.35 One can introduce the renormalization co
stants for finite-temperature theory by

R5~Z2
T/ZT!Rr , P5ZTP r , U5

me

K42eLe
~Z4

T/ZT2!Ur ,

~71!

where the index ‘‘r ’’ stands for the quantities renormalize
by temperature fluctuations, ande511«. The expressions
for Z factors are the same as for the ground-state renorm
ization factors~40! with the replacement«→e. Formulas of
RG transformation also have the same form~44! as for the
ground-state properties witht→R, g→U, etc. However,
now already atd53 («50), we havee51 and thus thee
expansion can be used only approximately.

For the energy gap we obtain in this way the express

D2
2 ~ t2 ,T!5

R~T!

6 F11
3TK3L1U~T!

2cR1/2~T!
G21/3

, ~72!
it

d

l-

n

where we have sete51. For the temperature-depende
magnetization we obtain

S̄R
2~ t2 ,T!5

uR~T!

6U~T!F11
3TK3L1U~T!

2cR1/2~T!
G 2/3

. ~73!

The values of the temperature-transition critical exponen

bT51/3, nT57/12, ~74!

coincide with those of 2D quantum phase transition~50!.
The calculated dependenceTc(V) is shown and com-

pared with the mean-field and HTSE results12 in Fig. 3. One
can see that near the QPT the dependenceTc(V) calculated
from Eq. ~66! is in excellent agreement with HTSE data. A
the same time, far from the QPT our approach gives m
larger values ofTc , as discussed in the beginning of th
present section. The inflection point of the curveTc(V),
V* 50.35I 0, may be approximately related to the transver
field value where the ‘‘non-spin-wave’’ excitations becom
important for description of finite-temperature properties.

For d52 the system is far from its upper critical dimen
sionality (e52) and e expansion becomes inapplicabl
Therefore we can perform only ground-state renormali
tions in the results of perturbation theory~57a! and~57b!. In
this case the critical exponents of the temperature phase
sition still have their Gaussian values. However, universa
hypothesis predicts that the temperature phase-trans
critical exponents coincide with those for the 2D Isin
model,

FIG. 3. Transition temperature as a function ofV/I 0 for the 3D
transverse-field Ising model in different approaches.
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bT51/8, nT51. ~75!

With account of the ground-state renormalizations, the re
~61! for the critical temperature near the quantum phase t
sition (1/D20@1) takes the form

Tc}D20 , ~76!

while

Tc}~ t2!5/12 ~77!

in terms of bare splitting~or external transverse magnet
field!. The correct description of thermodynamics belowTc
in the 2D case is still an open problem.

III. THE HEISENBERG MODEL WITH STRONG
EASY-PLANE ANISOTROPY

A. Ground-state properties

We start from the general Hamiltonian of a spin system
crystal field which induces the single-site anisotropy,

H5Vcf2
I
2(̂i j &

JiJj , ~78!

whereVcf is the crystal-field potential,J are momentum op-
erators,I is the exchange integral, and the direction of sp
alignment will be supposed along thez axis. In this section
we consider the single-site easy-plane anisotropy which
responds to

Vcf5D(
i

~Ji
x!2, ~79!

whereD.0 is the anisotropy parameter. For integer valu
of J the lowest level is singlet. In this case with increasingD
the model~79! demonstrates at some valueDc a second-
order phase transition from the phase with collinear fer
magnetic order̂Jz&Þ0 to the disordered phase. At the sam
time, the quadrupole order parameter

Q[3^~Jx!2&2J~J11! ~80!

is nonzero in both the phases. For half-integer values oJ,
such a transition is absent since the lowest state is two
degenerate. In the classical limitJ→` with J being the in-
teger, we haveDc;J(J11)I→`, so that integer and half
integer values ofJ become indistinguishable.

For integerJ the ground state isuA&5u0̃&, and first ex-
cited state is doubletuB1&5u1̃&, uB2&5u21̃& whereuM̃ & are
the eigenstates ofJx. ForJ51 passing to the eigenstatesuM &
of Jz yields

uA&5
1

A2
~ u1&2u21&),

uB1&5u0&, uB2&5
1

A2
~ u1&1u21&). ~81!

To consider the vicinity of the QPT, we have to gener
ize the theory developed in the previous section on
singlet-doublet case. Further we restrict ourselves to the
lt
n-

n

r-

s

-

ld

-
e
se

J51. In the initial spin space, the QPT in the model~78!
with Eq. ~79! is not of orientational character: the spins a
ways lie in the easy plane. Thus the spin-wave theory in
standard form cannot properly describe the model~78! near
such a transition~see, e.g., Ref. 40!. However, as discusse
in Refs. 22,23, this transition can be viewed as an orien
tional one in the complete SU~3! space which includes the
SU~2! spin subspace. The most convenient way to cons
the rotations in the extended SU~3! space is to rewrite the
Hamiltonian~78! with the crystal field~79! in terms of the
Hubbard operatorsXi

mn5umi&^ni u,

H5
D

2(
i

~Xi
001Xi

1,211Xi
21,1!2

I
2(̂i j & @~Xi

101Xi
021!

3~Xj
011Xj

210!1~Xi
112Xi

21,21!~Xi
112Xj

21,21!#.

~82!

The rotation through ‘‘angle’’u in SU~3! space is performed
by the unitary transformation operatorU(u) ~see Appendix
C!.

Following the strategy described in Sec. II, we define
ground-state critical value ofDc from the condition sinu
51 which yields

Dc

2I0
511

3l

2
2l(

k

6I01Ik1Ik
2/I0

2Ek
0

, ~83!

where Ek
052AI0(I02Ik), l(51) is the formal expansion

parameter. The critical value obtained from Eq.~83! in the
3D case isDc/2I050.73, which turns out to coincide with
the result of HTSE.21 For the ground-state magnetization w
obtain

^Jz&T50
2 5t2@11B~ t2!#, ~84!

B~ t2!52
l

t2
(

k
F2

2I01~22h2!Ik

Eka

1
~11h!I02Ik1hIk

2/I0

Ekb
2

6I01Ik1Ik
2/I0

Ek
0 G ,

~85!

where the excitation spectrumEka,b is given by Eqs.~C12!,
~C13!, andt2512(D/Dc)

2, h5(12t2)1/2. The excitations
of a type have a gap; they are analogous to the excitation
the transverse-field Ising model, considered in the previ
section. The excitations ofb type are gapless due to spont
neous breaking of rotational symmetry in they-z plane of
spin space; these excitations are specific forn>2 systems.
Near the QPT we haveEkb'Ek

0 and we return to the pertur
bation result~B19! for the transverse-field Ising model wit
Ek5Eka being the critical mode. However, the renormaliz
tion of Eq. ~85! is performed in a different way in compar
son with the transverse-field Ising model because of ano
symmetry of the model~see below!. The energy for the criti-
cal modea to first order inl has the form

Ẽka52AI0~11B01B1!~I02Ik1I0D2
2 !, ~86!
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whereD2 in the ordered phase is given by

D2
2 ~ t2,0!5t2@11A~ t2!#,

A~ t2!5A01A1 , ~87!

andA0,1, B0,1 are determined by~C17a!–~C17d!.
In the presence of the longitudinal magnetic field, i.e.,

the fieldH, directed along thez axis, both modesa andb
become gapped, since this field breaks the rotational sym
try. As well as for the transverse-field Ising model, we c
expect that at the intermediate magnetic field valu
12D/Dc!(H/Dc)

2/3!1 the ground-state properties ne
the QPT will be determined by the magnetic field rather th
by t6 . In this region we obtain the energy spectra

Eka
2 54I0@I0~11uH

2 !2Ik~12uH
2 /2!#,

Ekb
2 5@2~I02Ik!1uH

2 ~I01Ik!/2#@2I01uH
2 ~I02Ik!/2#,

~88!

where uH5(4H/Dc)
1/3. Performing the calculations whic

are similar to those for the transverse-field Ising model,
obtain the result

S̄5uH@11B8~uH
2 !#, ~89!

where

B8~uH
2 !52

l

3uH
2 (k

F2
2~I01Ik!~11uH

2 /2!2Ik~12uH
2 !

Eka

1
~21uH

2 /2!I02Ik1~12uH
2 /2!Ik

2/I0

Ekb

2
6I01Ik1Ik

2/I0

Ek
0 G . ~90!

A more complicated situation takes place in the case
the transverse field directed along thex axis.22,40 This field
induces a deviation of spins from easy plane. With incre
ing the field value there occurs a cascade ofJ second-order
phase transitions from ferromagnetically ordered phases
^Jz&Þ0, ^Jx&Þ0 to phases which are ordered only along t
x axis (̂ Jz&50, ^Jx&Þ0) and vice versa. The reason for th
is the modification of the level scheme in the magnetic fi
directed along the hard axis: in the case where lowest sta
doublet the long-range order along thez axis is present,
while in the case of singlet ground state it is evidently a
sent. We do not consider these transitions here~see discus-
sion of such transitions in Refs. 22,40,37!.

B. Ground-state renormalizations

The above theory can be easily reformulated in the pa
integral formalism. The partition function has the form

Z5E D@a,a†,b,b†#expH a†
]a

]t
1b†

]b

]t
2H~a,a†,b,b†!J ,

~91!

whereH(a,a†,b,b†) is the average of the boson Ham
tonian over the coherent statesua,b& ~Ref. 34! ~see also Ref.
f

e-

s

n

e

f

s-

th

d
is

-

-

41!. The continuum limit of the theory can be obtained if w
introduce real variablespx,y andQx,y instead of the complex
onesa,b by the relations

a5px1 iQx ,

b5Qy1 ipy . ~92!

@Note thatpx andpy correspond toSz andSy in the original
spin space, and two additional variablesQx,y arise due to
passing from SU~2! to SU~3! space#. We obtain

Scont5
1

2E0

c/T

dtE ddr @22iQ̃x~]p̃x /]t!12iQ̃y~]p̃y /]t!

1Q̃21~¹p̃!21m2p̃2#1
u

4!E0

c/T

dtE ddr p̃4

1hE
0

c/T

dtE ddr p̃x , ~93!

where we have introduced the notationsp̃25(I/c0)p2,Q̃2

5(I0 /c0)Q2, h5H/(Ic0)1/2, the bare spin-wave velocity is
given byc052A2dI, and we have included in Eq.~93! the
term connected with the external magnetic fieldH along the
Sz axis. The parameters of this model, determined by
continuum limit, read

mcont
2 52t2d,

ucont56d~c0 /I!lz, ~94!

ccont5c0 ,

with z512t2 in the ordered phase under consideratio
Proceeding in the same way as in the previous section
integrate overQx,y . Then we obtain the action of the stan
dard two-component quantumf4 theory in an external field,

Scont5
1

2E0

c/T

dtE ddr @~]p̃!21m2p̃2#1
u

4!E0

c/T

dtE ddr p̃4

1hE
0

c/T

dtE ddr p̃x . ~95!

There is a crucial difference from the one-compone
model of the previous section, which is due to existence
the ordered phase of the gapless Goldstone mode atH50.
This mode changes the renormalization conditions sinc
leads to infrared divergences.39 To treat these divergences
we take the value of magnetic fieldH finite, but small
enough to satisfy (H/Dc)

2/3!12D/Dc . The renormaliza-
tion of the action~95! is considered in Appendix D. We
obtain for effective Hamiltonian parameters at the scaleLr,
L5(2d)1/2 the results (d53)

gr
215gR

21@11~3gR/4!ln~1/t2!1~gR/6!ln~1/r!#,

tr
215tR

21@11~3gR/4!ln~1/t2!1~gR/6!ln~1/r!#

3@11~5gR/6!ln~1/t2!#23/5F0~gR ,t2
2 !, ~96!

where the functionF0(g,x) is given by Eq.~D6!, and
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gR5K4
21ZL4

2 ucont ~97!

is the renormalized coupling constant. For the nonunive
Z factors we have

ZL51,

~ZL2
2 !21511Ã~ t2!1

g

4
ln

1

t2
, ~98!

~ZL4
2 !21511Ã~ t2!2B~ t2!1

3g

4
ln

1

t2
,

whereA(t2), B(t2) are given by Eqs.~85!, ~87!, the tilde
sign means that the contributions of the Goldstone modb
should be excluded fromA(t2).

Putting in the above expressionsr5h̃1/2, where h̃

5H/@I0J̄R(H50)#, we have for the magnetization atd53
the result

J̄R~ t2,0!5AZL4
2 t2

ZL2
2 F11

5gR

6
ln

1

t2
G3/10

F0
1/2~gR ,t2

2 !

~99!

~the terms divergent inH are canceled inJ̄R). The RG result
for the ground-state parameter at zero magnetic field in
3D case is shown and compared with mean-field and fi
order 1/S expansion results in Fig. 4. One can see a con

FIG. 4. The order parameterS̄(V) (V,Vc) for the 3D easy-
plane ferromagnet in mean-field theory, 1/S expansion, and the RG
approach.
al

e
t-
-

erable difference in the 1/S-expansion and RG results ne
the quantum phase transition.

The gap fora-type excitations, which determines the lo
gitudinal susceptibility, reads

D2
2 ~ t2,0!512Q0

2/ln~1/h̃!, ~100!

Q0
25

t2

ZL2
2 F11

5gR

6
ln

1

t2
G3/5F0~gR ,t2

2 !

gR
5ZL4

2
J̄R

2~ t2,0!

gR
.

Up to some nonuniversal factorZr we have in the one-loop
orderQ05Zr(rs/6dc)1/2 with rs being the ground-state spi
stiffness. AtH→0 the gap vanishes as ln21(I0 /H), which is
a consequence of degeneracy of the system.

For intermediate values of the external magnetic field, i
at 12D/Dc!(H/Dc)

2/3!1, a characteristic scale for bot
types of excitations is 1/uH , and the expressions for reno
malization factorsZi

cont have the form, which is standard i
the two-componentf4 model.35 Then we obtain for the mag
netization

J̄R~uH,0!5uHAZL48

ZL28
@11~5gR/6!ln~1/uH

2 !#3/10 ~101!

with

ZL4
8 /ZL2

8 512B8~uH
2 !1g ln

1

uH
. ~102!

C. Finite-temperature properties

Using perturbation theory we obtain for the finite
temperature magnetization the result~see Appendix C!

^Jz&25^Jz&T50
2 2

I0l

2c0
S 2T

c0
D d21F3FdS c0

2d

2T2
t2D 1Fd~0!G ,

~103!

where t2512(D/Dc)
2. The first and second terms in th

square brackets correspond to contributions ofa- andb-type
excitations, respectively. At extremely low temperatur
T!I0t2 the contribution of thea excitations is exponen
tially small and the temperature-dependent part of the m
netization is determined entirely by the first term in t
square brackets of Eq.~103!. At temperaturesT@I0t2 the
situation changes and both types of excitations give the s
temperature dependence, the contribution of the modea be-
ing three times larger.

Consider now the renormalization of the finite
temperature theory. Integrating out the fieldp(q,vn) with
vnÞ0 from action~95! we obtain the action of the effectiv
classical model
Scl5
c

2T(
q

H q2P̃qP̃2q1FR~T!1
3h

P̄~T!
G P̃xqP̃x,2q1

h

P̄~T!
P̃yqP̃y,2qJ 1

P̄

3!

cU

T (
q1q2q3

~P̃q1
P̃q2

!Px,q3
d~q11q21q3!

1•••1
1

4!

cU

T (
q1q2q3q4

~P̃q1
P̃q2

!~P̃q3
P̃q4

!d~q11q21q31q4!1•••, ~104!
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where the fieldP̃5P1(P̄,0) is now a two-component one
and the dots stand for higher-order terms. For the parame
of the model~104! we have

R~T!5
1

3
P̄2~T!U~T! ~105!

and ford53

P̄2~T!5
18gR

u FQ0
22

32p2

9 S T

c D 2

F̃3~0!G ,
U~T!5

8p2gR

ln~1/h̃!
F11

20p2gR

3ln~1/h̃!
F̃38S h̃2c2

4T2 D G . ~106!

Note that both R(T) and U(T) vanish at H→0 as

ln21(I0 /H) due to quantum fluctuations, whileP̄(T) is fi-
nite in this limit. The value ofTc , as determined by the

conditionP̄(Tc)50, reads

Tc5
3A3

2p
cQ0 , ~107!

whereQ0 is given by Eq.~87!. Thus the result~107! coin-
cides with that obtained in Ref. 28 up to the nonuniver
factorZr . As well as for the 3D transverse-field Ising mod
in one-loop order the transition temperature turns out to
proportional to the ground-state magnetization.

It should be noted that, owing to the presence of
gapless Goldstone mode, the model~104! is applicable at
T5Tc only very close to the QPT, unlike the correspondi
model ~64! for the one-component case. Thus one can
ZL25ZL451. The calculated dependenceTc(D) is shown
and compared with HTSE data21 in Fig. 5. Note that, unlike
the transverse-field Ising model, no replacement ofVc is
required since, as discussed above, its values from 1/S ex-
pansion and HTSE coincide. As well as for the on

FIG. 5. Transition temperature as a function ofD/I0 for the 3D
easy-plane ferromagnet in different approaches.
rs
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component case, the result~107! agrees well with HTSE data
closely enough to the QPT. A more complete treatment
be performed by considering quasi-momentum-depend
vertices in Eq.~104!. This is a complicated task which is no
considered in the present paper.

For the same reason, model~104! cannot be used for de
termining magnetization belowTc . However, one can expec
from scaling relations that the standard value of the tw
component three-dimensionalf4 theory critical exponent
takes place

bT5
1

2
2

3e

2~n18!
57/20, ~108!

which is practically the same as in the one-component c
(bT51/3). Unlike the one-component case, the logarithm
correction toS̄(t2 ,T) is expected near the temperature pha
transition due to the gapless Goldstone mode.

For d52 the contribution of the gapless mode is logarit
mically divergent and therefore the long-range order at fin
temperatures is absent, unlike the case of the transverse
Ising model.

IV. CONCLUSIONS

In the present paper we have considered systems
demonstrate in the ground state a quantum phase trans
~QPT!. Near the QPT the saturation momentS̄0 is small, but
the Curie constant in Eq.~59! is not suppressed. We hav
Tc}S̄0 which is determined by the value of the dynamic
critical exponent, z51. The susceptibility ~58! in the
intermediate-temperature regionD0!T/I !1 is governed by
the small ground-state energy gapD0 and demonstrates
1/Td21 behavior. In the strong enough longitudinal magne
field D0!(H/IS)1/3!1 the ground-state parameters are d
termined by magnetic-field value rather than by closenes
the QPT. The corresponding dependences have been
tained. Our approach gives the possibility of investigati
both nonuniversal and universal renormalizations of
ground-state parameters. The ground-state renormaliza
turn out to be important in the vicinity of the QPT. Thus th
results for thermodynamic quantities~e.g., transition tem-
perature! have different forms as functions of renormalize
splitting and bare transverse~external magnetic! field, see
Eqs. ~69!,~70! and ~76!,~77!. This should be taken into ac
count when treating experimental data.

The discussed class of magnets is similar in some resp
to weak itinerant magnets. Note that for weak itinerant f
romagnets we haveTc}S̄0

3/2 ~see, e.g., Ref. 24!, which is due
to the fact that the main contribution to thermodynam
comes from paramagnons (z53). As well as for the consid-
ered localized-moment systems, calculation of nonunive
ground-state parameters for itinerant magnets is of inter
in particular for different forms of bare electron density
states.

Now we discuss the experimental situation for some s
tems exhibiting magnetic and structural transitions. T
compound DyVO4 demonstrates a structural phase transit
at TD514 K. The low-lying energy levels in the spectrum
this system are two Kramers doublets with the splittingD1
527 cm21 at T50 andD259 cm21 at T.TD . Neglecting
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the Kramers degeneracy one can describe this system b
transverse-field Ising model withV/I 51/3 ~see Ref. 7!. The
corresponding point inV/I -Tc coordinates is marked in Fig
3. This point lies exactly on the HTSE curve and therefo
HTSE results are applicable in this region ofV/I . One can
see that DyVO4 lies far from the QPT, so that the abov
developed theory is not applicable for this system.

Other systems, which are well described by t
transverse-field Ising model, are the ferroelectric quant
crystals like KH2PO4~see, e.g., Ref. 5!. However, to our
knowledge, corresponding detailed data on the ground-s
order parameters are absent. To fit experimental data on
Tc of Ref. 5, we need explicit dependence of the tunnel
parameterV on pressure.

There are very few experimental data on singlet-sing
systems demonstrating magnetic phase transitions. The
tem LiTbxY12xF4 ~Ref. 42! is usually assumed to be chara
terized by long-range exchange interactions and there
well described by the mean-field theory. The singlet-doub
case is represented by the system NiSi2F6 which is aJ51
easy-plane Heisenberg magnet. The anisotropy consta
changed under pressure and thus the value ofD/Dc can be
varied near unity in the experiment. The pressure dep
dence of the anisotropy constant was measu
experimentally.2 However, to our knowledge, the data on t
pressure dependence of exchange parameters are abse
though it is supposed to be considerable.21 There are also
few experimental data on the ground-state magnetiza
near QPT. Atp58.6 Kbar, one has the experimental valu
J̄(T50)50.3 andTc5110 mK.43 The calculation according
to Eq. ~107! yields I590 mK which is nearly twice large
than thep50 value,I540 mK.44 Praseodymium in the dhc
phase contains both ‘‘cubic’’ and ‘‘hexagonal’’ sites,1,45 so
that separation of different contributions makes an additio
problem. Generalization of our approach to the singlet-trip
case in connection with the Pr ions in the cubic crystal fi
will be presented elsewhere.

Generally, the 1/S perturbation theory combined wit
field-theoretical scaling analysis enables one to obtain a
scription of the ground-state properties of the transverse-fi
Ising model, which is in a good agreement with the results
the fourth-order ground-state perturbation theory13 for all the
values ofV. The only fitting parameter used is the critic
field valueVc . The finite-temperature properties are cons
ered with the use of the approach of Ref. 28. The sa
analysis for theS51 easy-plane Heisenberg model is pe
formed within the expansion in the formal parameterl
(51) which plays the role of 1/S. In this case, besides th
critical mode, there is a gapless Goldstone mode, which c
siderably modifies the conditions of renormalizations. T
consideration of the QPT in degenerate systems induce
the external magnetic field within the approach used is
interest. In particular, in the case of single-site anisotro
oscillations of the effective moment with increasing ma
netic field or temperature are expected in such systems
S.1.

It is of interest to apply the approach used to various
and 2D systems demonstrating orientational and metam
netic phase transition with changing the external magn
field or anisotropy, e.g., for yttrium garnets4 and magnetic
the
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films.46 Depending on a concrete physical situation, su
systems can be described by the strongly anisotro
transverse-field Ising model or Heisenberg model with sm
anisotropy.

APPENDIX A: MAPPING OF THE ANISOTROPIC
HEISENBERG MODEL ONTO THE TRANSVERSE-FIELD

ISING MODEL

In this appendix we discuss the possibility of a mappi
procedure of the anisotropic Heisenberg model~78! onto the
transverse-field Ising model. We consider only one import
case where the lowest level ofVcf is a singlet and there is a
QPT to the disordered phase at strong enoughVcf . Provided
that the first excited state is also a singlet, neglecting
energy levels except lowest and first excited states, we
introduce the pseudospin-1/2 operatorsS, to obtain1,10

Vcf52D(
i

Si
z , Ji

z52aSi
x , ~A1!

wherea5^AuJzuB& is the matrix element ofJ, uA&, anduB&
are the lowest and first excited states,D is the energy gap
between these states.@It should be noted that the left-han
sides of Eqs.~A1! act in real-spin space, while right-han
sides in pseudospin space. Thus the equality signs are
only in the sense of identity of averages.# Then we obtain the
transverse-field Ising model withI 54a2I and V5D. The
order parameter of the Heisenberg model^Jz& is connected
with the order parameter in the transverse-field Ising mo
by

^Jz&52a^Sx&. ~A2!

Consider now the case where the excited state is a m
tiplet with the statesuBm&, m51 . . .N21. Neglecting the
degeneracy of the upper energy level, one can use the s
mapping~A1! if we choosea25(m51

N21^AuJzuBm&2. However,
in this case the original SU(N) spin space is projected ont
SU~2! pseudospin space, and thusN22 degrees of freedom
are neglected. Thus this approach does not give the poss
ity of taking into account properly the symmetry of the orig
nal model and therefore can be applied only outside the c
cal region. To obtain a correct description of such system
the critical region one should consider the transition in
complete SU(N) space. The above consideration shows th
in principle, the transverse-field Ising model~1! can qualita-
tively describe singlet magnets even in the case where
exchange interactions in the true momentum space are
tropic, as in model~78!.

APPENDIX B: CALCULATION OF SPIN GREEN’S
FUNCTION AND ORDER PARAMETER

OF THE TRANSVERSE-FIELD ISING MODEL
WITHIN THE 1/ S EXPANSION

Consider first the disordered phase where^px&50. Rep-
resentingpzi5(111/S2pxi

2 2pyi
2 )1/2 and assuminĝpx,y

2 &
;1/S ~the validity of this statement will be checked below!,
we expand square root to second order in 1/S to obtain
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Sdyn5
iSwS

2 (
i
E

0

1/T

dtS pxi

]pyi

]t
2pyi

]pxi

]t D1
iS

8 (
i
E

0

1/T

dt~pxi
2 1pyi

2 !S pxi

]pyi

]t
2pyi

]pxi

]t D , ~B1!

Sst52
1

2E0

1/T

dtF IS2(̂
i j &

pxipx j1~TP2VSwS!(
i

~pxi
2 1pyi

2 !2
VS

4 (
i

~pxi
2 1pyi

2 !2G , ~B2!

wherewS5(111/2S)21 andP5(vn
1 (vn being the Matsubara frequencies! is a formally divergent quantity which come

from the measure of integration, this divergence will be canceled in final results.47 To first order in 1/S ~we suppose thatV
;Vc;I 0S), we obtain by standard perturbation theory methods the matrix two-point vertex function ofpx , py fields in the
form

G~q,vn!5S VSS wS1
3X1Y

2 D1SY2TP2I qS
2 iSvnS wS1

X1Y

2 D
iSvnS wS1

Y1X

2 D VSS wS1
3Y1X

2 D1SY2TP
D , ~B3!

where

X5^pxi
2 &5T(

q,vn

V/S

vn
21Eq

2
,

Y5^pyi
2 &5T(

q,vn

V/S2I q

vn
21Eq

2
, ~B4!

and

Y5 i ^pxi~]pyi /]t!&5
T

S(
q,vn

vn
2

vn
21Eq

2
, ~B5!

with Eq5AV(V2SIq) being the bare ‘‘spin-wave’’ spectrum in the disordered phase.~One can easily verify thatX,Y are of
the order of 1/S, as it was supposed in the beginning!. Using the identity

VSX1SY2TP5I 0S2X8, ~B6!

where

X85^pxipx j&5
TV

I 0S(
q,vn

I q

vn
21Eq

2
~B7!

to eliminate the divergences, we derive

G~q,vn!5S VSS wS1
X1Y

2 D1I 0S2X82I qS
2 iSvnS wS1

X1Y

2 D
iSvnS wS1

Y1X

2 D VSS wS1
3Y2X

2 D1I 0S2X8
D . ~B8!

The value ofVc is determined by the conditionGxx(0,0)50. However, the averages~B4! and ~B7! which determine 1/S
corrections toG(q,vn) are V dependent themselves. For consistency, we have to calculate these averages with the
order valueVc5I 0S. Then we obtain the result forVc Eq. ~15! of the main text. At an arbitraryV we perform the replacemen
V→I 0S(V/Vc) in Eqs.~B4! and ~B7!, which changesG(q,vn) in the order of 1/S2 only and gives the possibility of taking
into account consistently the shift ofVc owing to quantum fluctuations. Substituting the result forVc into Eq.~B8!, we obtain
the results~11!, ~16!, and~17!.

In the ordered phase we rotate the coordinate system through the angleu around thepy axis and again, in new coordinate
expandp̃z in powers ofp̃x ,p̃y(p̃y5py). Then we obtain to fourth order
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Sst52
IS2

2 (̂
i j &

E
0

1/T

dtF2p̃xiwS
21sin 2u1p̃xip̃x jcos2u2~p̃xi

2 1p̃x j
2 !sin2u1

1

2
p̃x j~p̃xi

2 1p̃yi
2 !sin 2u

1
~p̃xi

2 1p̃yi
2 !~p̃x j

2 1p̃y j
2 !2~p̃xi

2 1p̃yi
2 !2

4
sin2uG2VS(

i
E

0

1/T

dtF p̃xisinu2
p̃xi

2 1p̃yi
2

2
wScosu2

~p̃xi
2 1p̃yi

2 !2

8
cosuG

1
TP
2 (

i
E

0

1/T

dt~p̃xi
2 1p̃yi

2 !, ~B9!

Sdyn having the same form~B1! as in the disordered phase with the replacementp→p̃. Determining the angleu from the
condition ^p̃x&50 we obtain

cosu5
V

I 0SF11
1

2S
2

X12X81Y

2 G21

, ~B10!

where

X5^p̃xi
2 &5T(

q,vn

I 0

vn
21Eq

2
,

X85^p̃xip̃x j&5T(
q,vn

I q

vn
21Eq

2
, ~B11!

Y5^p̃yi
2 &5T(

q,vn

I 02hI q

vn
21Eq

2
.

Eq5SAI 0(I 02hI q) andh5(V/I 0S)2. Besides the averages Eq.~B11!, we introduce the quantity

Y5 i ^p̃xi~]p̃yi /]t!&5
T

S(
q,vn

vn
2

vn
21Eq

2
. ~B12!

For the two-point vertex function of the fieldsp̃x ,p̃y we have

G~q,vn!5S I 0S2~11X2hX8!2I qS
2W1Fqn1SY2TP iSvnS wS1

X1Y

2 D
iSvnS wS1

Y1X

2 D I 0S2~11Y2hX8!1SY2TP
D , ~B13!
ic
y.

e

where

W5h~wS1X12X81Y!1~12h!X8. ~B14!

The term with

Fqn52
S4

2T
h~12h! (

k,vm

@~2I kI k1q14I qI k

12I k1q
2 1I q

2!Mxxxx~k,q!1I q
2M yyyy~k,q!

12I q~ I q12I k!Mxyxy~k,q!#, ~B15!

wherek5(k,vm), q5(q,vn) and

Mabgd~k,q!5^p̃a~k!p̃b~2k!&^p̃g~k1q!p̃d~2k2q!&,
~B16!

(a,b,g,d5x,y) arises due to the contribution of the cub
term in Eq.~B9! in the second order of perturbation theor
This term has the same order in 1/S as other terms and
should be retained. Using the identity

I 0S2X1SY2TP5I 0S2hX8, ~B17!

which is an analog of Eq.~B6! for the ordered phase, w
obtain

G~q,vn!

5S S2~ I 02WIq!1Fqn iSvn~wS1X/21Y/2!

iSvn~wS1X/21Y/2! I 0S2~11Y2X!
D .

~B18!

Performing again the replacementV→I 0S(V/Vc) in Eq.
~B11! and reexpressing Eq.~B18! in terms ofVc , we obtain
the results~11!, ~19!, and ~20! of the main text. For the
temperature-dependent order parameter we obtain
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S̄[S^px&5Ssinu^p̃x&

5SH 12h2
h

2S(q

2I 01hI q

AI 0~ I 02hI q!
coth

SAI 0~ I 02hI q!

2T

1
h

2S(q

2I 01I q

AI 0~ I 02I q!
J 1/2S 11

1

2S
2

X01Y0

2 D . ~B19!

Note that near the QPT the last multiplier in this express
is close to unity and only slightly temperature depende
Thus it can be replaced by its zero-temperature value.

APPENDIX C: ROTATION IN SU „3… SPACE FOR THE
EASY-PLANE HEISENBERG MODEL

Following Refs. 20,22,23 we perform in the Hamiltonia
~82! the unitary transformation
n
t.

X̃i
pq5U†~u!Xi

pqU~u! ~C1!

with

U~u!5exp@u~X21,12X1,21!/2#

511@cos~u/2!21#~X21,211X1,1!

1sin~u/2!~X21,12X1,21!. ~C2!

Then the Hamiltonian takes the form

H5H ~1!1H ~2! ~C3!

with
son

of
H ~1!5
1

2(i
@~D sinu12I 0cos2u!~2Xi

111Xi
00!1DXi

001~D22I0sinu!cosu~Xi
1,211Xi

21,1!#,

H ~2!52
I
2(̂i j & @cosu~2Xi

111Xi
00!2sinu~Xi

1,211Xi
21,1!#@cosu~2Xj

111Xj
00!2sinu~Xj

1,211Xj
21,1!#

2
I
2(̂i j & (

s561
@2Xi

0sXj
s01s sinu~Xi

0sXj
0s1Xi

s0Xj
s0!1cosu~X2s0Xs01X0,2sX0s!#, ~C4!

whereI052dI and we have dropped the tilde sign at theX operators. Further we represent Hubbard operators via bo
ones22,23

X1,215a†~12la†a2lb†b!1/2,

X0,215b†~12la†a2lb†b!1/2, ~C5!

X105a†b, X005b†b, X115a†a,

wherel(51) is the parameter introduced to construct perturbation theory~cf. the Holstein-Primakoff expansion in the case
a Heisenberg magnet!. Then we obtain the Hamiltonian of the bosons

H5H11H21H31H41•••, ~C6!

where

H15
1

2
cosu~D22I0sinu!(

i
~ai

†1ai ! ~C7!

H25~D sinu12I 0cos2u!(
i

ai
†ai1@D~11sinu!/21I 0cos2u#(

i
bi

†bi

2
I
2(̂i j & @sin2u~ai

†1ai !~aj
†1aj !12bi

†bj2sinu~bi
†bj

†1bibj !# ~C8!

H352
1

2
cosu~D22I0sinu!(

i
@ai

†~ai
†ai1bi

†bi !1~ai
†ai1bi

†bi !ai #

1I cosu(̂
i j &

@sinu~2ai
†ai1bi

†bi !~aj
†1aj !2~biaj

†bj1bi
†bj

†aj !# ~C9!
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H452
I
2(̂i j & @sin2u~ai

†ai12bi
†bi !~aj

†aj12bj
†bj !12ai

†ajbj
†bi2cos2u~bi

†1bi !~aj
†ajbj

†1bj
†bj

†bj1H.c.!1cos 2u~aiajbi
†bj

†

1H.c.!2~ai
†aj

†ajaj1ai
†bj

†bjaj1H.c.!1cos 2u~ai
†ai

†aiaj
†1ai

†bi
†biaj

†1H.c.!#, ~C10!

and we have omitted terms containing more than four Bose operators. Diagonalizing the quadratic partH2 of the Hamiltonian
~C6! we obtain

H25(
k

~Ekaak
†ak1Ekbbk

†bk!, ~C11!

where the spectra of excitations are given by

Eka52AI0~I02h2Ik!, ~C12!

Ekb5A~11h!~I02Ik!@I02Ik1h~I01Ik!#, ~C13!

h5sinu5D/Dc . The angleu is determined by the condition̂ai&50. To first order in the formal parameterl we have

sinu5
D

2I 0
@12l~R11R2!#21, ~C14!

R1~T!52(
k

2I 01~22h2!I k

2Eka
~112Nkb!21,

R2~T!5(
k

~11h!I 02I k1hI k
2/I 0

2Ekb
~112Nka!2

1

2
. ~C15!

The excitation spectrum for modea to first order inl is given by

Ẽk,a52AI0~11B01B1!~I02Ik1I0D2
2 !, ~C16!

where

D2
2 5~11A01A1!~12h2!

and

A05l(
k

Fh2gk24gk24

Eka
1

gk~11h1h2!/~11h!2~h11!

Ekb
G , ~C17a!

B052
l

2(k
F8~11gk!220h2gk111h4gk

Eka
1

2~11h!22gk12h3gk
2

Ekb
G , ~C17b!

A152h2l(
k

~5/2!~22h2gk!214~22h2gk!h2gk1~5/2!~h2gk!2

Eka
3

1
l

2(k

~h211!~11h2gk!21~h211!~hgk!214h~11h2gk!~hgk!

Ekb
3

~C17c!

B15
l

2
~12h2!(

k
F4h2~22h2gk!

Eka
3

1
~11h2gk!22~hgk!2

Ekb
3 G . ~C17d!
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The modeb is a Goldstone type and is gapless to arbitr
order inl. Therefore we do not consider the renormalizat
of its energy.

APPENDIX D: RENORMALIZATION
OF THE TWO-COMPONENT f4 MODEL

WITH SPONTANEOUSLY BROKEN SYMMETRY

In this appendix we consider the renormalization of
action ~95! in the ordered phase,m2,0. Introducing the
quantity k2522m2.0 and performing the shiftpx→px
1p0 we obtain

S5
1

2E0

c/T

dtE ddr @~]p!21~k213h̃!px
21h̃py

2#

1
u

4!E0

c/T

dtE ddr ~4px1p2!p2, ~D1!

where h̃5h/p̄0, p̄05(3k2/u)1/2, and p05p̄0(11h̃/k2) is
determined by the requirement of absence in the actio
terms that are linear inpx . In these notations the conditio
of smallness of the magnetic field ish̃1/2!k ~the condition of
closeness to the QPTk!L is also assumed!. Under these
conditions, the action~D1! has two characteristic length
1/h̃1/2 and 1/k. This situation is the same as in the theory
crossover phenomena.38 Further we follow Ref. 38 to includ
exactly the smaller characteristic length into theZ factors.
Then we obtain to one-loop order

Zcont511O~g2!,

Z2
cont511

g

2«

1

~11k2/m2!«/2
1

g

6«
2

2g

3«

m«

L«
, ~D2!

Z4
cont511

3g

2«

1

~11k2/m2!«/2
1

g

6«
2

5g

3«

m«

L«
.

~note that the Ward identities guarantee that the structu
the interaction term is preserved by renormalizations,
one renormalization constant is sufficient to renormalize
four-particle vertex functions, see, e.g., Ref. 35!. The flow
functions for the effective-Hamiltonian parameters are

b~g,k/m!52«g1
3g2

2

1

11k2/m2
1

g2

6
,

g~g,k/m!52
g

2

1

11k2/m2
2

g

6
. ~D3!

Setting in these expressions«50, performing the integra
tion, and supposing that scaling starts atm@k, we obtain the
effective-Hamiltonian parameters at the scalemr
d

y

of

f

of
d
ll

1

gr
5

1

g
2

3

4
ln~r21k2/m2!2

1

6
ln r,

kr
25k2expF g

2E1

r

dr8S r8

r821k2/m2
1

1

3r8D
3

1

12~g/6!ln r82~3g/4!ln~r821k2/m2!
G . ~D4!

Our plan now is to use these scaling formulas to reach
scalemr;h̃1/2!k. For these values ofr formulas~D4! are
simplified:

gr
215g21@12~3g/2!ln~k/m!2~g/6!ln r#,

kr
225k22@12~3g/2!ln~k/m!2~g/6!ln r#

3@12~5g/3!ln~k/m!#23/5F0~g,k2/m2!, ~D5!

whereF0(g,x) is given by

ln F0~g,x!5
g

12E0

1dy

y F4y1x

y1x

3
1

12~g/12!ln y2~3g/4!ln~x1y!

2
u~x2y!

12~g/12!ln y2~3g/4!ln x

2
4u~y2x!

12~5g/6!ln yG , ~D6!

andu(x) is the step function. At extremely smallx we have
F(g,x).exp(1/ln2x).1. The result~D5! with F(g,k2/m2)
51 can be obtained more directly if we perform the scal
procedure in two steps: at the first stepr@k/m and the flow
functions are the same as for the two-component isotr
f4 model, while at the second stepr!k/m and the flow
functions include only contributions of the Goldstone mod
The scaling formulas are joined atr5k/m. However, this
procedure does not give the possibility of describing c
rectly the contribution of the crossover regionr;k/m. At
finite but small« we obtain in a similar way

gr
215g21@11~3g/2«!~k2«/m2«21!1~g/6«!~r2«21!#,

~D7!

kr
225k22@11~3g/2«!~k2«/m2«21!1~g/6«!~r2«21!#

3@12~5g/3«!~k2«/m2«21!#23/5F«~g,k2/m2!
~D8!

with some functionF«(g,x).1. Putting in the above resul
m5L5(2d)1/2, we obtain the result~96! of the main text.
,
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