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Quantum phase transitions and thermodynamic properties in highly anisotropic magnets
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The systems exhibiting quantum phase transiti@@BT) are investigated within the Ising model in the
transverse field and Heisenberg model with easy-plane single-site anisotropy. Near QPT a correspondence
between parameters of these models and of the quamifirmodel is established. A scaling analysis is
performed for the ground-state properties. The influence of the external “longitudinal” magnetic field on the
ground-state properties is investigated, and the corresponding magnetic susceptibility is calculated. Finite-
temperature properties are considered with the use of the scaling analysis for the effective classical model
proposed by Sachdev. Analytical results for the ordering temperature and temperature dependences of the
magnetization and energy gap are obtained in the case of a small ground-state moment. The forms of depen-
dences of observable quantities on the bare splitiimgnagnetic fieldd and renormalized splitting turn out to
be different. A comparison with numerical calculations and experimental data on systems demonstrating
magnetic and structural transitiofe.g., into a singlet states performed[S0163-182608)09329-1

I. INTRODUCTION and anisotropy-induced QPT in the Heisenberg magste
that this is not the case for the QPT induced by magnetic
The interest in quantum models of anisotropic spin andield in degenerate systems withra>1 component order
pseudospin systems is connected with what they describe @arameter since hee=2, see Ref. 27.Thus ford=3 the
miscellaneous magnetic and structural transitions. Examplesitical exponents are the Gaussian ones, whilafaB they
of such transitions are transitions into singlet magnetic statgeviate from the corresponding mean-field values and can be
in TbSb, Pr, PyTI (see Ref. 1 and references thelein cajculated with the use of the-3 expansion. For the criti-
NiSi,Fs (see, e.g., Ref.)2and orientational and metamag- ca| dimensionalityd=3 the ground-state properties contain
netic phase transitions under magnetic fiefd. logarithmic corrections.
The simplest model for the systems demonstrating a “g,.nqet? proposed a three-stage method of treating

ground_state quantum ph_ase tra_nS|t|(rmPT)_ is the I;lng finite-temperature properties of the systems near the QPT. At
model in the transverse field. This model is convenient for, : e

L C . - the first stage, ground-state renormalizations are performed.
description of structural transitions in quantum crystaldit

can also be applied to describe magnetic systems where bot the second stage, .the noNZzero Matsupara fre_quen(_:|es are
lowest and next energy levels are singlets. A more compliln egrateq out to obtain an effectl\_/e cIasspaI action. F_mally,
cated first-principles model for spin systems in a strong CrySperturbatlon theory for the effective classical model is ap-

tal field is the Heisenberg model with an easy-plane singleP!i€d- This method ensures correct analytical properties of
site anisotropy: it is applicable in the case where the next-tothe resulting theory. While ground-state renormalizations are
lowest energy level is a doublet. As well as the transversefonuniversal, finite-temperature properties, being expressed
field Ising model, this model also demonstrates a Q€ through quantum-renormalized ground-state parameters, turn
ground-state magnetization vanishes with increasing the arut to be universal.

isotropy parameter The approach of Ref. 28 is based on a continuum model,

A number of approximate methods were applied to studynamely, the quantung* model. This model is sufficient to
the transverse-field Ising modet®atd>1 and the Heisen- express finite-temperature properties near the QPT through
berg model with easy-axis anisotrop{72*However, most of the nonuniversal ground-state properties, but insufficient to
these methodgexcept for numerical ongsare applicable obtain correct results for the latter properties. A convenient
only not too close to the QPT. In particular, they lead tomethod to consider the lattice spin systems near their critical
Gaussian values of the QPT critical exponents. Thus analytidimensionality is the expansion in the formal quasiclassical
cal consideration of the ground-state and finite-temperaturparameter 8. Its applicability is connected with the fact that
properties in the vicinity of the QPT is still an open problem. neard, the effective interaction of spin waves is sm@k-

The case where the system is close to the QPT is characept for a narrow critical region where tkeexpansion can
terized by a small ground-state moment and low transitiorbe easily developed to correct the description of the critical
temperature. Such a situation is reminiscent of weak itinerartehavioj. For the Heisenberg model such a situation occurs
magnet$* An analysis of the ground-state QPT was per-for temperature transition near the lower critical dimension-
formed in Refs. 25,26. It was shown that the upper criticalality d;=2. This provides for success of the
dimensionality for such transitions @& =4—z with z being  renormalization-grougRG) approach for the description of
the dynamical critical exponent. This conclusion has a genthermodynamics ofd=2 (Ref. 29 and d=2+¢ (Refs.
eral character. In the present paper we consider only systen3®,29 Heisenberg magnets, and also quasi-two-dimensional
with z=1, which holds for the transverse-field Ising model (2D) and anisotropic 2D magnétsnot too close tdT .
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For the QPT in highly anisotropic spin systems th& 1/ With increasing(), model(1) demonstrates a quantum phase

expansion works well near theppercritical dimensionality  transition whereS vanishes. The one-dimensiongk 1/2
d, =3. In this case there are excitations, which are almostransverse-field Ising model in the ground state can be solved
gapless near the QP(they are analogous to the spin-wave rigorously®? In particular, it can be reduced to the two-
excitations in Heisenberg magngtBesides that, for the or- dimensional Ising problem at finite temperatuféso that
dered degenerate systeniwith n=2) there are always critical exponents for both the phase transitions coincide.
Goldstone modes with zero energy gap and ti&epan-  The transverse-field Ising model with>1 requires approxi-
sion becomes applicable at arbitrary anisotropy below it$nate methods.
critical value. The situation is more complicated for finite  The mean-field MF) approximatiofi® yields the critical
temperatures, since close to the temperature transition thfgeld 1 ,=1,S, and the equation for the order parameter at
system behaves as a corresponding classical magnet angk (), reads
therefore the picture of excitation spectrum differs from that
atT=0. Qo _

The aim of the present paper is to apply the above- H_eBS(He/T)_l’ @
discussed concepts for calculating ground-state and finite-
temperature properties of the transverse-field Ising modélhere
(n=1) and Heisenberg model with strong easy-plane anisot- _ _
ropy (n=2). To this end we apply perturbation theory Bs(x)=(1+1/25)coth(1+ Li2S)x— (1/25)coth(x/25),
(which is in fact an expansion in 8f to the original lattice By x(X) = (1/2)tank(x/2), 3
models(not to their continuum analogswhich enables us to o
calculate nonuniversal ground-state quantum renormalizés the Brillouin function,H,=(Q2+ Q3S%/S?)2 1,=2Id.
tions. After that we combine perturbation results for short-Owing to the fieldQ), the value of(S?) is finite in both
wave fluctuations with the results of the-2 RG approach ordered and disordered phase and reads
for the long-wave fluctuations to correct the results of per-
turbation theory. Finally, we consider finite-temperature
properties within the RG approach for the effective con-
tinuum classical model. .

The plan of the paper is as follows. In Sec. Il we discusg! Should be noted that af <, we have §|mply_(sz>
the Ising model in the transverse field. We consider corre= S(2/{,. The critical temperature whei® vanishes is de-
sponding mean-field results, construct the perturbatiofiermined for the physically important caSe=1/2 by
theory in 18, and apply a scaling approach to investigate
ground-state and thermodynamic properties, in particular the TMF_ Q _ Q )
influence of external magnetic field. In Sec. Ill the Heisen- ¢ 2tani {(Q/Q)  IN[2(1-Q/Q0)]
berg model with easy-plane anisotropy is considered in a
similar way. In Sec. IV we discuss the results obtained andthe last approximation is valid for-1/Q,<1). Thus the
compare them with experimental data on systems exhibiting/F theory predicts a very weak inverse-logarithmic depen-
structural and magnetic transitions. Some details of calculadence for the critical temperature near the QPT in arbitrary

Qs
(S)= 17 Bs(He/T). 4)

tions are presented in Appendixes. dimensionality. This contradicts the results of the scaling
approacf®?®both above and below the upper critical dimen-
U
Il. TRANSVERSE-FIELD ISING MODEL sionality d; =3. o _
_ To improve the MF approximation, one has to take into
A. The formulation of the model account the collective excitations which are analogous to
and the mean-field approximation spin-wave excitations in Heisenberg magnets. The spectrum
We consider the Hamiltonian of the Ising model in the Of these excitations in the random-phase approximation has
transverse field) the fornf
| E2=0[Q—14(SH)]+125? (6)
H=-3> §5-03 §, ) ! ‘ °
I

(i) in both ordered and disordered phases. Near the (QPT

wherel is the exchange parameter. This model can describe(T=0)<1], these excitations become almost gapless and
singlet magnetic systems. A derivation of such a model fodive dominant contributions to physical properties. _
Heisenberg magnets with strong single-site anisotropy is pre- The _result of account of 'Fhe collectlv_e excitations to first
sented in Appendix A. The modél) also describes struc- order in 1R (where R is the radius of exchange
tural transition in quantum crysta(sooperative Jahn-Teller interaction® for d=3 reads
effect, see Ref. 7where the two lowest energy levels are
singlets. In this casd =A,, Q=A;, where A,, is the Te=R¥1-0/0,. @)
energy-level splitting af =0 andT>T,, respectively. For = Thjs has a correct square-root behavisee, e.g., Ref. 28
further purposes it will be useful to consider the motBl  However, the logarithmic corrections, that occur fbe 3,
for arbitrary values ofpseudo} spin S. are not reproduced by the resif. Besides that, the B

At =0 the model(1) coincides with the Ising model expansion does not enable one to determine correctly the
and thus the order parame®s=(S*) = Sin the ground state. coefficient in Eq.(7) for not too largeR.
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Another approach used in Ref. 11 is to consider the exci- sing={(m)/{| =) (10)
tations (6) self-consistently within the random-phase-
approximation(RPA) decoupling scheme for the sequence ofaround thew, axis (in the disordered phasé=0 and the
equations of motion. Unlike the &/ expansion’ this proce- rotated coordinate SyStem coincides with the Ol’iginal)one
dure gives the possibility of taking into account the reaction The calculation of the two-point vertex functidi(q, )
of the RPA excitation spectrurt6) on the deviation of the of the fieldsw,, 7, (the tilde sign is referred to the rotated
critical field from Q. Corrections to mean-field ground-state coordinate systejnwhich is connected with matrix Green'’s
parameters turn out to be small enough, but at finite temperdunction G of these fields by the relationl'(q,w)
tures the RPA magnetization shows a double-value behavior G~ 1(q, ), is performed for both ordered and disordered
with first-order temperature phase transition. Authors of Refphases in Appendix B and yields to first order ir§the
11 consider also a generalization of RPA, the two-site selfresult
consistent approximatiofTSCA) which gives the possibility
of including partially correlation effects. This approximation I' - (q, wy,)
gives more satisfactory results than RPA. However, it pre- .
dicts first-order character not only for the temperature tran-  _ Sz(lo_quOAzt) ISwn(Ws+Xo/2+ Yo/2)
sition, but also for the QPT. iSwn(Wgt Xo/2+ Yo/2) 1,S°D
One should mention also the pagérs where high-
temperature series expansiditsl SE) and ground-state per-
turbation theory(GSPT) were used. Although these expan- wherewg=(1+1/25) 1,
sions gives consistent results for the critical field, their
applicability near the QPT is questionable. Recently some 1 1 1
results of GSPT and HTSE have been confirmed by numeri- XO:Z_SE —_— YOIZ—SE V1=lg/ly, (12
cal correlated-basis-function analy&is-® a V1-lg/lg a
Below we use the ¥ expansion to treat ground-state and

finite-temperature properties of the transverse-field ISing,or0y gan and the renormalization factor for the exchange
[“0‘?'9'- Unl|,l,<e th.e IIR expansion, it takes into account the parameter in the disordered and ordered phases, respectively,
spin-wave” excitations already in the zeroth-order of per- yqir concrete expressions being specified below. The matrix

turbation theory. Contrary to the RPAfhis is a systematic  gtatic yniform spin susceptibility in the rotated coordinate
expansion, and therefore scaling corrections can be eas'&/stem is expressed in terms fas

calculated. It should be also noted that th& &kpansion

differs from the ground-state perturbation theory used in Ref. Yi=s2T:%0,0) (13)

13 where the expansions in powers®fl andl/(} are used CER

for the ordered and disordered phases, reSpeCtively. |ndee\Qherei ,j =X,y. The renormalized Spin-wave spectrum is de-

the 15 expansion treats both the terms in the Hamiltonianermined by the condition dé(q,—iEy)=0 and has the
(2) on equal footing and thus yields physically correct resultSgorm

already in the first order in &

(11)

A. and D. are the dimensionless temperature-dependent

o _ Eq=S[1+1/2S— (Xo+Yo)/2]\1oD . (1o— 14+ 10A%).
B. Ground-state properties within the 1/S perturbation theory (14

To construct perturbation expansion in a convenient formrpe guantum-renormalized critical fiefd. is given by
we use the spin coherent-state approdcithe partition

function is presented in terms of a path integral, Q 1 1 2lo+1
c q

=1t am -y, ——
Qo 28 43; VIo(lo—1g)

sz Dmexd — (Sgynt Ssd 1, (8) o _ . _
The last two terms in this expression yield the first-ord& 1/
where correction to the mean-field value 6i,. For S=1/2 the
numerical calculation of the integral in E¢L5) yields the
_ ur P result ).=2.44 in the 3D case and).=1.10 in the 2D
Sayn= |SE f dr(1- cosﬂi)a—, case. Thus the critical field is strongly renormalized by quan-
b0 T tum fluctuations both in the 3D and 2D cases. The critical
. field values obtained are considerably smaller than the cor-
Sst:_f dr
0

(15

1S responding RPA resulfd, Q.=2.88 and Q,=1.83, and

2 <IE,> WX‘WXJJFQSZ Tzl ©) somewhat smaller than those obtained by HT&E&f. 12
and GSPT? 0,=2.59 and Q.=1.54. This demonstrates

are static and dynamic parts of the actions;  that the considered first-orderSLperturbation theory over-

={mi,yi, T} is a three-component vector field with’  estimates the effects of quantum fluctuati¢especially in

=1+1/S, 9; andg; are the polar and azimuthal anglesmf  the 2D casg but treats these fluctuations more correctly than

in an arbitrarily chosen coordinate systémhich does not RPA.

need to coincide with ther,-,-7, coordinate systemFur- In the disordered phase withr,)=0 (Q>Q,) the ex-

ther we additionally rotate the coordinate system through th@ressions for the ground-state energy gap and fabtor

angle § determined by have the form
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ty
Ai<t+,0>=H(l—xa)mm(m],
1 219+ 14(1+1) 21+,
A= 7o - ,
. 45% Vlollo=1g(1=t)]  VIo(lo—1g)
(16
and
1+Yo—Xo
D+(t+):?[l+t+A+(t+)]a (17)
where
t.=1-0Q./Q (18
and
1 |
Xp=5a —————.
0 25% Vio(lo—Tg)

In the ordered phas«X<(1.) we obtain
AZ(t_,00=t_(1-Xp)[1+A_(t1)],

1-t [2lg+14(1+1)]?
85E

L()=-2(1-DA. ()~ ,
A_(b) (1-1)A, (1) Y o= (1-01.

19
and
D_(t_)=1+Yo—Xo, (20)
where
t_=1—(Q/Q,)>2 (22)

Consider now the observable quantities. The expression

for the order parameteB(t_ , T)=S(m,) at T=0, Q<Q,
reads

S(t_,00=StY 1+ B(t_) ¥ 1+ 1/25— (X + Yo)/2],

B(t)=—2(1—t)A,(1). (22)
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#=0). For the ordered phase the first summand in (28)

gives a dominant contribution near the QPT, and using the
relation (13) yields in both the ordered phase near the QPT
and disordered phase the expression for the ground-state spin
susceptibility through the gap in the excitation spectrum

1
S 24)
XAt 0) (

C. Influence of longitudinal magnetic field

To consider the influence of the external magnetic field
we add to the Hamiltonian the term

AH=—HD, S~ (25)

The longitudinal magnetic field results in the appearance of
nonzero(S') at anyQ/l. The influence of both transverse
and external longitudinal fields is, of course, equivalent
to applying one effective field which has the value
(H2+Q?%)Y2 and makes the angle arctati()) with the m,
axis. However, it is useful to consider these fields as two
independent ones.

Performing the calculations which are similar to those of
Sec. Il B and Appendix B we obtain to first order irSithe
equation for the anglé of coordinate system rotation

Q—Qgr(6)cosd—H cotd=0, (26)
where

1 2(lg+1g) () —1,c0s8

7257 459 Jioe(0)l1oe(0)—1,00%90]
(27)

with ¢(8) =sirf6-+(Q/Q)cosh. For a general)/Q) the so-
lution of this equation is rather cumbersome. However, near
the QPT(i.e., at 1-Q/Q.<1), where the angl® is small,

r()=1

In the limiting case of zero transverse field we have theone can expand E@26) in # to obtain
trivial result S=S, and the energy spectrum reduces to its

mean-field form,Eq=Qo. At very large (>, we repro-
duce again the mean-field resmﬁgzﬂ. This is a conse-

guence of the fact that in both the limif3=0 and(Q—~

quantum fluctuations are absent. Thus th8 #&kpansion
gives the possibility of obtaining the correct values of the
ground-state parameters for an arbitr@y 0, except for the

B0+ HI2Z[1,S1(0)—Q1, 64<6p, g
b= O+ 251136, o< <1, 8)
where 6,=2(1-Q/Q.), 64=(2H/Q)Y® and o&r

=r(6y)—r(0).
For the magnetization we derive

region Q~Q.where the quantum fluctuations are strong
enough to modify considerably the results. A more detailed

consideration of this region will be performed below in Sec. S(H=0)+ x**H, 02<1-Q/Q,,
IID.
N . — 1 XptY
For the longitudinal susceptibility we have S= ( 1+ 5~ % ou[1+B'(63)], (29

X*=c0g 6>+ sing cosf( x>+ x¥) +sifoy?, (23 1-Q/0 < 3<1,

where the tilde sign refers to susceptibilities in the rotated
coordinate system(recall that for the disordered phase wherey* is determined by Eq.24), and
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B/ (%)= 1 2(lg+ 1) (1+ 63/2) = 14(1— 67)
" 6802 T | VIollo(1+ 62) —I4(1— 65/2)]
2lo+1,
e B (30)
Vio(lo—1g)
The ground-state energy gap is given by
A% (H=0), 02<1-QIQ,,
A2=1{3 31
E¢9§,[1+A’(¢9§,)], 1-Q/Q<03<1, S
where
A'(07)=B'(67)
1 (Ig+21g)?
12555 1571 o(1+ 63/2) — 1 4(1— 63013
(32)

The longitudinal susceptibility in the presence of the mag-

netic field is still determined by Eq23), and again the first

term gives main contribution near the QPT. Alternatively,
the same result can be obtained by direct differentiatiof of

[which is given by Eq(29)] with respect tcH.

D. Ground-state renormalizations near the QPT
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Co
Uconr= 6d @ ¢,

(35

Ccont™ Co,

Mon= 2t +d,
co=(2d)¥2S being the bare spin-wave velocitys>
=(IS%co)m%, mp=(1S?/co) w5 and the factor ({=1—t_
in the ordered phase anfi=1 in the disordered phasés
introduced to extend the region of applicability of results
obtained to arbitraryt... Note that the coefficients for the
first three terms of the quadratic part of E§4) can always
be chosen equal to their values in E84) by appropriate
rescaling of 7, , and 7. The model (34) is completely
equivalent to the quantum* model. Indeed, integrating out
the field 7, we obtain

1 c/T - -
Scom=§f oldrfO dr(dmy) %+ m?m;
(36)

u d c/T ~4
+E d I’fo dr my.

The continuum representatidi34) determines the way in
which the original lattice model can be renormalized. Fol-

The results of the B expansion can be applied only at Jowing the standard proceddrewne introduce the renormal-

not too smallt. . Indeed, atd<3 the functionsA and B
contain terms which are divergent at—0 ast{d~"? (at
d=3, logarithmic divergences are presefthe same situa-
tion takes place for the functiows’ andB’ which are diver-
gent asaﬂ’3 at 6,,—0. Thus anc=3—d expansion can be

ization factorsz;" for the ground-state parameters in the dis-
ordered and ordered phases by the relations

* _ o
Ty=2Zy TR 'n'y—Zy TyR)

developed within the RG approach to treat these divergences

more correctly and to improve thereby the behaviorAof

te=(Z312)ter,  9=(Z51Z*)gr, (37

andS near the QPT. Further consideration of this section is

related to the critical regiofl —Q/Q.<1. However, as it

where the indiceR denote quantum-renormalized quantities,

will be clear below, the results can be extrapolated to arbi-

trary ), since in the limitsQ<<Q. and 1> they are
smoothly joined with the results of theSéxpansion of Sec.
Il B.

First we pick up the nonuniversal factors fr<§nAt by
introducing the quantities

Sy(t, T)=[1+1/25— (Xo+ Yo)/2]1S(t,T)/S,

ALr(t,T)=(1-Xp) *AL(t,T). (33

Consider the continuum limit of the above theory. The action

S=Sgynt Set in this limit takes the form
1 q c/T - ~ -
Scom=§f d I’fo drd2im(dmyldT)+

- - u c/T -
+(wa)2+m2w§]+mf ddrf dr 7, (34)
. 0

where the parametens, m?, and ¢, determined in such a
way, are given by

g=Kg-cLop™ “Ucont (38

is the coupling constanje is a parameter with the dimen-
sionality of inverse lengthK,=[29"1#%"(d/2)]?, and
the factor L ,=I'(1+&/2)['(1—¢&/2) [['(z) is the Euler
gamma functioh ensures the applicability of the one-loop
order results for not smalt.*® For further treatment it is
useful to represent the renormalization factors as

Z7=Z5(9)Z(gr. 1), (39)
whereZ°" are the corresponding factors for the continuum
model (34) that contain divergent tern{svhich are indepen-
dent of lattice structure, ejcand Z,; all the others(lattice
dependentcorrections. It is important that the factats; do
not contain divergences.

The expressions foZ factors in the continuum model
(34) are well known(see, e.g., Ref. 35We use the cutoff
scheme with cutting integrals over quasimomentumAat
Then to one-loop order we have
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Z;ont: Z;:/ont: 1+ O(QZR),

&

Zgont: 1+ g—: 1— % , (40)
30r Me

cont__ + _ )

Zeme1t 5 -

For our purposes it is convenient to set (2d)*? (the lat-
tice constant is assumed to be equal to Ynitther than to
pass to the limitA—oo (as it is usual in the quantum field
theory). The expressions faf, ; can be deduced by compar-

ing the above results of perturbation theory for the original

lattice model(Secs. Il B and Il ¢ with the standard pertur-
bation results for the continuum mode34), see Ref. 35. We
obtain

ZLX:ZLyzll
Z5) t=1+A 9/ 1 1 41
( |_2) =1+ i(tt)"'z @_ ’ ( )
N 39 1
(Z.4) =1+A,(t,)—B(t,)+Z @—1 .

Note that, unlike the factor&™™, the quantities(41) are
defined only for integer. As follows from Eq.(39), the
determination of factorg, ; enables one to consider the con-
tinuum model(34) with the parameters

u=(Zg4)  "Uconts (42)

andc=cy(1+1/25—X,) instead of the original lattice one.

2__ *N—1..2
m _(ZLZ) mcont!

Thus the factorZ, ; represent the corrections owing to pass-
ing from the cutoff scheme in the original lattice model to

that in the continuum model, cf. Ref. 29.
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1 t,
25, [1+(3gg/28) (1852~ 1)1

. 7= 1/3
sR(t,,O):tE’Z\/Z—E“ —1” . (46)

L2

AZo(t.,0)

(45

1

1+ ts/2

30,
2¢e

where, according to Eq$37), (40),

gr=(Z4) "1(2d) "KL, (47)

In the 3D case
1 1 L 1I 48
g ts/Z_ _>§ n?’ ( )

so that the QPT critical exponents for the order parameter
and the gaginverse correlation lengjtare the Gaussian one,
B=1/2,

v=1/2, (49)

and logarithmic corrections are present. At the same time, in
the 2D case we obtain

B=1/3, (50)

which are standard one-loop results for the one-component
¢* theory ind+ 1=3 dimensions.

In a strong enough longitudinal magnetic field (1
-Q/Q.<6%<1), we obtain

v="7/12,

1
A% (64,0)= ,
R(6h.0) 32/, [1+(3gr/2e)(1/65— 1)1
7 1/3
— Ziy 3gr( 1
01,00= 04\ — 1+ = ——1|| . (51
Sr(014,0) = Oy 7, 20 | 4, (51)

where

The flow functions for the coupling constant and energy

gap have the standard fofm

JOR 3
,B(QR):MWZ —&grt Egé,

t
alnzso"
I

The effective-Hamiltonian parameteg;,, t, at the scale
u'=pup as determined by these flow functions read

1
:_EQR-

Y(Gr)=n (43

-1
g _ _
g,=|1+ g—f(p s—l)l P °Or,
g —13
t,= 1+_R(P8_1)1 tir, (44
g*

whereg* =2¢/3 is the stable fixed point to one-loop order.
We start the scaling procedure at=A and stop it at

w'=AtY2 (thusp=t¥?. ForA . andS we obtain the results

) g
— 1 pn2
ZL,=1+A'(63)+ —28(

) 3
Zl = 1+A'(62)—B'(6)+ —

2¢

! 1 (52

0;, '

Thus, as well as for the dependences of ground-state proper-
ties ont, in the 3D case one has the mean-field value

5=3, (53

and the logarithmic corrections are presentdAt2 we ob-
tain the critical exponent

5=9/2. (54

Note that the scaling relations dt=2 are slightly violated
since the corresponding value ofis in fact not small and
the ¢ expansion is applicable with a poor accuracy. How-
ever, this violation is not too largéhe valueé=5 can be
calculated taking into account that the critical exponent
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FIG. 1. Ground-state energy g&p(Q) (2>Q., a and order FIG. 2. Ground-state energy gap(Q) (2>, ,a) and order

parameterS(() (1<, b) for the 3D transverse-field Ising parameterS(Q) (Q<Q., b) for the 2D transverse-field Ising
model in different approaches. The val@ilg,=2.58 is used for  model in different approaches. The notations used are the same as
calculating the 13’ and RG curves. The arrow shows the value of in Fig. 1.

the critical field(}., obtained by 1% expansion.

E. Finite-temperature properties near the QPT

=0 to one-loop order which indicates that the one-loop At finite temperature the situation is more complicated,
approximation gives adequate results even in this case.  since not only “spin-wave” excitations, considered in previ-
The ground-state parameters at zero longitudinal magnetigus sections, contribute to thermodynamic properties. At
field are shown and compared with RPRef. 11 and GSPT /() .<1 we haveT.~IS? and the phase transition occurs
(Ref. 13 results in Fig. 1 for the 3D case and in Fig. 2 for due to vanishing of|z|). The dominant excitations in this
the 2D case. The primes mean that corrected valued.of case are domain walls. Another situation occurs near the
obtained from GSPTsee abovg instead of those from the QPT (1-/Q.<1) where the temperature phase transition
first-order 15 expansion, are used in the calculations. Thejs connected with the rotation ¢#7) in the spin space, while
1/S results for(). are marked by arrows. One can see thatits absolute value is only slightly changed with temperature.
unlike the results of RPA and 3/expansions, RG results The dominant excitations here are the “spin-wave” excita-
have a correct critical behavior with critical exponents giventions, except for a narrow critical region close To. At
by Egs.(49) and(50); besides that, they are very close to thejntermediate values d® both effects, the rotation df=) and
GSPT result fod=3. Ford=2 the difference between RG temperature variation of its absolute value, are important.
and GSPT results increases, which demonstrates that theThus the 1% expansion can be applied to describe the tem-
expansion has a poor accuracy here. Far from the quantuperature phase transition only near the QPT.
phase transition, the RG results coincide with those & 1/ Being rewritten through the quantum-renormalized
perturbation theory. ground-state parameters, finite-temperature properties near
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the QPT are universal. The finite-temperature order param- o S(St1)

eter and energy gaps obey the scaling laws XT="3T (59
— — T on both sides of the QPT.
St T)=S%(t-,0)f o) (553 The equation for the transition temperature reads
- - - CA_O ( — ) 4d C 2T2 ( )

whereA . ,=A.(t,0), f andg. are universal scaling func-
tions with f(0)=g.(0)=1. The transition temperature is Since at smalt_ andd<3 one has from Eq22) Sz(t ,0)
determined by zero of the functio( T/cA_o) or, equiva- o« (t_)@" Y2 we obtain
lently, of g_(T/cA_g). As discussed in Ref. 28, the func-
tions g, (x) andg_(x) are connected by the procedure of
analytical continuation. Due to universality of scaling func-
tions (558, (55b), the continuum limit of developed theory,
i.e., the action(34), can be used when treating the finite-
temperature properties.

Consider first the perturbation approach. We obtain

TCK \/Cy

where the coefficient of proportionality is determined by the
solution of Eq.(60). Ford>3 we derive

1<d<3, (61)

Teoe(t)Ma=D d>3, (62
u(2T\9°1 [c%d
A2 (t, , T)=A%(t,,00+ 2d T) Fq Hu ;I'hedmean—field logarithmic behavi@®) is reproduced only
or d—,
(56) Consider now the renormalization of the finite-

temperature properties dt<3. To this end we use the ap-
proach of Ref. 28, which treats the renormalization of the
effective classical model. The disordered phase was consid-
ered in detail in Ref. 28. Instead of the analytical continua-
' tion of these results to the ordered phase, we perform direct
(579 calculation of finite-temperature properties in the ordered
phase. This gives the possibility of calculating correctly the
value of T, not too close to the QPT and also of describing

for the disordered phase and

S mgi o L2 [
SA(t_,T)=S4(t_,0) 4d(c Fo| St

A?(t_,0)
SA(t_,0)

| Buf2T HF, c2dt
4\ c 2T?

for the ordered phase, where

AZ(t_ T)=S(t_,T)

] , (57b

Fa(x)= de \/_2_ (cothy/g®+x—1), F3(0)= 5.

andF/(x) is the derivative with respect to. Thus we have
for the static susceptibility in the disordered phase at Sclzﬁ

IA . <T<I (Refs. 26,28

1 1
o 58
X T AZ(1,0) + y(2T/c)d 58

with y=31,F4(0)/4c.

finite-temperature properties 8 T, . The generalization of
the approach of Ref. 28 to the ordered phase is trivial. We
integrate out all the modes with nonzero Matsubara frequen-
cies from the finite-temperature partition function to obtain
the effective action for the field

c/T
:f dr 7y, (63
0

which corresponds to the,,=0 mode, in the form

U ~
de173
3|TJdrH

1cU ~
+——f dorIl®+- - . (64)

ddr[K(VIT)2+RI12]+

4T

HereﬁzH—ﬁ, 11 is determined by the condition of ab-
sence in Eq(64) of terms that are linear ibl. The param-

At T=1 thermodynamic properties cannot be determineceters of the mode(64) are given by

correctly from the above approach since in this temperature

region higher-order terms in theS éxpansion contribute to

the partition function and such an expansion becomes inap-

plicable. However, one can expect thatTat| the thermo-

dynamics is the same as for the well-studied Ising model. In

particular, the susceptibility obeys the Curie law and ford=3

1 _
R(T)= §U(T)H2(T) (65
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— 1 872g (T\% 3A2,c?
2 _=° ) - R o 0
= uB{SR(t'O) 3 1+(39R/2)In(1/A_0)\c) o712 )| (66)
82 62 _ [ 3A%,c?
u(T)= "0 |, TOR g 2008 )] (67)
1+(3gR/2)In(1/A,O)L 1+(3ggr/2)In(1/Ag) 272
|
where where we have set=1. For the temperature-dependent
magnetization we obtain
E.00=K foc 2 cothyg?+x—1 1 N 1 "
3(X)=Kz| Q°dq - =l
0 VX Prx 2 T- uR(T)[ , 3TKaLU(T) 73
(68) 6U(T)| 2cRYA(T)

F3(x) means the derivative with respectxpand we have The values of the temperature-transition critical exponents,
represented Eq$66) and(67) in the scaling form by replac-
ing t,—>A2,0 in arguments of 3(x), F5(x). Near the QPT Br=1/3, vr=7/12, (74
(i.e., for smallA_g) function R(T) coincides with that de-
termined by continuation from paramagnetic phase, as i¢oincide with those of 2D quantum phase transiti6).
should be. The value d€(T) will be needed only in zeroth- The calculated dependendg({2) is shown and com-
loop order,K=1. pared with the mean-field and HTSE restflis Fig. 3. One
The critical temperature is determined by the conditioncan see that near the QPT the depend@n¢&) calculated
ﬁ(TC)=0. Closely enough to the critical poinfat from Eq.(6§) is in excellent agreement with HTSE.data. At
In(L/A_o)>1] we have the same time, far from t_he QPT our approac_:h gives much
0
larger values ofT., as discussed in the beginning of the
3 present section. The inflection point of the curvg((}),
TC=2—cA_0\/6 IN(1/A _y), (69) 0*=0.39,, may be approximately related to the transverse-
m field value where the “non-spin-wave” excitations become
in agreement with Ref. 2§our definition of A_ differs important for description of finite-temperature properties.

(2d)Y% times from that used in Ref. 28At the same time, Ford=2 the system is far from its upper critical dimen-

the expansion in the bare splittifgnagnetic fieldl yields sionality (e=2) and e expansion becomes inapplicable.
Therefore we can perform only ground-state renormaliza-

= tions in the results of perturbation thed7g and(57b). In
TCOCC\/t_*Inm( M) SR(t-.0), (70 this case the critical eEponents of the tel?nperature phase tran-
where the coefficient of proportionality can be determinedsition still_have th_eir Gaussian values. However, universallij[y
numerically from Eqs(45) and (69). Thus, due to ground- hypothess predicts t.haF the ‘temperature phase—tran_smon
state renormalizations, the dependenced ofon the bare critical exponents coincide with those for the 2D Ising
and renormalized splittings turn out to be different in form. Model,
The resulting classical actiof104) is renormalized in a

standard way® One can introduce the renormalization con- 1.00 LT T T T T T
stants for finite-temperature theory by L e

€

m

R=(Z}/Z"R,, M=Z"ll,, U= T (232U, , i - ]

4—el-€ (71) DyVO{ i
where the index t” stands for the quantities renormalized E, 0.50 —
by temperature fluctuations, ard=1+¢. The expressions = \ T
for Z factors are the same as for the ground-state renormal- i ; ]
ization factors(40) with the replacement — e. Formulas of - T HTSE | .
RG transformation also have the same fod) as for the s X ]
ground-state properties with—R, g—U, etc. However, RG' | 4
now already atl=3 (¢=0), we havee=1 and thus the - .. MF ' 7
expansion can be used only approximately. 0.00 A R PR R

For the energy gap we obtain in this way the expression 0.00 0.20 0.40 0.60
R  3TKsL,um] *? o
AZ(t_T)= ( )[1 3baU(M) N7 FIG. 3. Transition temperature as a function(dfl , for the 3D

6 { 2cRYAT) transverse-field Ising model in different approaches.
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Br=1/8, vi=1. (759 J=L1. In the initial spin space, the QPT in the modés)
. L with Eq. (79) is not of orientational character: the spins al-
With account of the ground-state renormalizations, the res“Uvays lie in the easy plane. Thus the spin-wave theory in its

(5_1) for the critical temperature near the quantum phase trans;andard form cannot properly describe the ma@é) near
sition (1A _>1) takes the form such a transitiorisee, e.g., Ref. 40However, as discussed

T xA (76) in Refs. 22,23, this transition can be viewed as an orienta-
¢ 0 tional one in the complete SB) space which includes the
while SU(2) spin subspace. The most convenient way to consider
512 the rotations in the extended &) space is to rewrite the
Teoe(t) (77 Hamiltonian (78) with the crystal field(79) in terms of the

in terms of bare splittingor external transverse magnetic Hubbard operatorX{""=|m;)(n;|,
field). The correct description of thermodynamics beldw

in the 2D case is still an open problem. D _ _ z _
penp H= 2 (XX = 23 [0
ij

29
Ill. THE HEISENBERG MODEL WITH STRONG
01, y—1 11 =11y y1l_ y—1,-1
EASY-PLANE ANISOTROPY XXX 0+ (X=X (X=X )]
A. Ground-state properties (82
We start from the general Hamiltonian of a spin system inThe rotation through “angle’d in SU(3) space is performed
crystal field which induces the single-site anisotropy, by the unitary transformation operator(¢) (see Appendix
C).
_v IE 33 78 Following the strategy described in Sec. Il, we define the
H=Ve~ §<ii> iy (78) ground-state critical value dD. from the condition sid
. ) . =1 which yields
whereV; is the crystal-field potential] are momentum op-
er_ators,I is t.he exchange integral, and t_he dire_ction of spin D, 3\ 610+Ik+1ﬁ/fo
alignment will be supposed along tkeaxis. In this section — =1+ ——)\2 — (83
we consider the single-site easy-plane anisotropy which cor- 2Zo 2 K 2E

dst . .
responds to where E{=2Ty(Zo,—Z,), N(=1) is the formal expansion

parameter. The critical value obtained from E&3) in the
Vg=D2 (32, (79 3D case isD./2Z,=0.73, which turns out to coincide with
' the result of HTSE! For the ground-state magnetization we
whereD >0 is the anisotropy parameter. For integer valuesobtain
of J the lowest level is singlet. In this case with increadihg
the model(79) demonstrates at some vall®. a second- (IF_o=t_[1+B(t)], (84)
order phase transition from the phase with collinear ferro-

magnetic ordefJ?)#0 to the disordered phase. At the same A 275+ (2— 7)) I,
time, the quadrupole order parameter B(t_)=— t—Ek) ZT
— X\ 2

Q=3((7)7)~3+1) (80 (1+ ) To— T+ ATy 6T+ T+ 1o Ty
is nonzero in both the phases. For half-integer value$, of + E - 0 ,
such a transition is absent since the lowest state is twofold kp Ex
degenerate. In the classical lindit-~ with J being the in- (85)
teger, we havd ~J(J+1)Z—», so that integer and half- o o
integer values ol become indistinguishable. where the excitation spectruly,, z is given by Eqs(C12),

(C13), andt_=1—(D/D.)?, n=(1—1t_)*2 The excitations
of a type have a gap; they are analogous to the excitations in
the transverse-field Ising model, considered in the previous
section. The excitations @& type are gapless due to sponta-
neous breaking of rotational symmetry in thiez plane of
spin space; these excitations are specificfer2 systems.
|A)= i(|1>_ |—1)), Near the QPT we havg ;~ Ej and we return to the pertur-
NA bation result(B19) for the transverse-field Ising model with
E,=E,, being the critical mode. However, the renormaliza-
1 tion of Eq. (85) is performed in a different way in compari-
[B1)=10), [B2)= T(|1>+ |—1)). (81)  son with the transverse-field Ising model because of another
2 symmetry of the moddjsee below. The energy for the criti-

To consider the vicinity of the QPT, we have to general-C@l modea to first order ink has the form
ize the theory developed in the previous section on the ~ .
singlet-doublet case. Further we restrict ourselves to the case Exa=2VZo(1+Bo+B1)(To— L+ ToA%),  (86)

For integerJ the ground state ifA)=|0), and first ex-
cited state is doubldB;)=[1), |B,)=|—1) where|M) are
the eigenstates df. ForJ=1 passing to the eigenstatés)
of J? yields
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whereA _ in the ordered phase is given by 41). The continuum limit of the theory can be obtained if we
5 introduce real variables, , andQ, , instead of the complex
AZ(t_,0=t_[1+A(t)], onesa,b by the relations
A(t_)=Ag+Aq, (87) a=m,+iQ,,
andAg;, Bg; are determined byC173—(C17d. b=Q,+im,. (92)

In the presence of the longitudinal magnetic field, i.e., of
the fieldH, directed along the axis, both modesx and3  [Note thatw, and, correspond t&* and$’ in the original
become gapped, since this field breaks the rotational symmepin space, and two additional variablg , arise due to
try. As well as for the transverse-field Ising model, we canpassing from S(2) to SU(3) spacé. We obtain
expect that at tzrlwae intermediate magnetic field values 1 porr
1-D/D.<(H/D.)“*<1 the ground-state properties near _L[° d =~ =~
the QP'IE Wi(|| be Ei)etermined b)g/] the magneticpfierl)d rather than SC""‘_EJO dTJ d*r[=2iQu(dmy/d7) +2IQy(dmy d7)
by t. . In this region we obtain the energy spectra

- - - u (cT -
2 2 2 d 4
E2,=4To[ To(1+ 63) ~ T(1— 63/2)], FQH (Vi gy | dffd "

2 _ _ 2 2 _ c/T -
Eks=[2(Zo—Zi) + 05(Zo+ L) 12][2Zo+ 05(Zo Ik)/z(]éS) +hf de 4o T, 93)
0

where 6,,=(4H/D ). Performing the calculations which . o~ ~,
are similar to those for the transverse-field Ising model, Wé/vhere we have introduced the notation$= (Z/co) v*,Q

2 1/2 H H H
obtain the result =(Zy/cg)Q7, h=H/(Zcy) ™4, the bare spin-wave velocity is
! . given byco=2./2dZ, and we have included in E¢93) the

S= Ou[1+B'( Ha)]’ (89) term gonnected with the extern.al magnetic fiblldalpng the
$* axis. The parameters of this model, determined by the
where continuum limit, read
) A 2(To+ T ) (1+ 6412) — T (1— 63) mZ,,= —t_d,
B'(67%)=— ﬁ% 2 =
H “ Ugon=6d(Co /DAL, (94)
(2+ 0212)Iy— T+ (1— 03412) T2 T,
+ E, Ccont™ Co>
B
with {=1-t_ in the ordered phase under consideration.
6Zo+ I+ Iel Iy Proceeding in the same way as in the previous section we

: (90 integrate oveQ, ,. Then we obtain the action of the stan-
dard two-component quantug* theory in an external field,

A more complicated situation takes place in the case of 1 fot u (ot
the transverse field directed along theaxis**“ This field Scont:_J er Ao [ (97 2+ mZa?] + _f de 4
induces a deviation of spins from easy plane. With increas- 2J)o 4! Jo
ing the field value there occurs a cascadd siecond-order ot
phase transitions from ferromagnetically ordered phases with + hJ de ddr 7, (95)
(I%#0,(I)#0 to phases which are ordered only along the 0
x axis ((J*)=0, (J*)#0) and vice versa. The reason for this ) o
is the modification of the level scheme in the magnetic field There is a crucial difference from the one-component
directed along the hard axis: in the case where lowest state f§odel of the previous section, which is due to existence in
doublet the long-range order along tkeaxis is present, the ordered phase of the gapless Goldstone mode=a.
while in the case of singlet ground state it is evidently ab-This mode changes the renormalization conditions since it
sent. We do not consider these transitions Heee discus- |€ads to infrared divergencd$To treat these divergences,
sion of such transitions in Refs. 22,40)37 we take the value of magnetic field finite, but small
enough to satisfy K/D.)?3<1—D/D.. The renormaliza-
tion of the action(95) is considered in Appendix D. We

) ) obtain for effective Hamiltonian parameters at the scefe
The above theory can be easily reformulated in the pathp — (2¢)1/2 the results ¢=3)

integral formalism. The partition function has the form

Ex

B. Ground-state renormalizations

a b 9, =0r'[1+(3gr/4)In(1/t_) +(gr/6)In(1/p)],

— T T T Tt T T
Z fD[a,a ,b,b ]expl’a (97-+b o H(a,a',b,b )],
(91

where H(a,a’,b,b") is the average of the boson Hamil-
tonian over the coherent statigsb) (Ref. 39 (see also Ref. where the functionP(g,x) is given by Eq.(D6), and

t, 1=tx [ 1+ (3gx/4)IN(Lt_ )+ (gr/6)IN(L/p)]
X[1+ (5gx/6)In(1h_)] 35D o(gr,t2),  (96)
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1.00

erable difference in the $#expansion and RG results near
the quantum phase transition.

The gap fora-type excitations, which determines the lon-
gitudinal susceptibility, reads

0.75 —
A%(t_,00=120%/In(1/h), (100

5 1
1+&In—

5Dy(gg,t2) - J2(t_,0)
6 t_ ’

Z, Or ST gR

v Up to some nonuniversal factd@, we have in the one-loop
: order®,=Z,(ps/6dc) 2 with pg belng the ground-state spin
1 stiffness. AtH—>0 the gap vanishes as{Z,/H), which is
' a consequence of degeneracy of the system.
T For intermediate values of the external magnetic field, i.e.,
at 1- D/D,<(H/D.)?3<1, a characteristic scale for both
0.00 0.50 1.00 types of excitations is Bf,, and the expressions for renor-
D/(2lg) malization factorsz®®" have the form, which is standard in
_ the two-componeng* model®® Then we obtain for the mag-
FIG. 4. The order paramet&(() ((2<(.) for the 3D easy- netization
plane ferromagnet in mean-field theorySExpansion, and the RG
approach. _ zl’_4 2 13110
Jr(64,0)= 64 Z—,[1+(59R/6)In(1/6H)] (101

9r=Ky4 "Z 4Ucont @) ) L2
. . . . It
is the renormalized coupling constant. For the nonunlversa\iv

Z factors we have 1
Z,4Z ,=1-B'(6? )+g|n— (102
Z.=1,
5 g 1 C. Finite-temperature properties
(Zp) P =1+A(t )+ 2 (98) Using perturbation theory we obtain for the finite-
temperature magnetization the redigke Appendix €
-1 R )— 9.t
(Z[,) t=1+A(t_)—B(t_)+ 2 Int_, T\ (2T 01 c2d
(392=(PF0~ 5 —) Fa| =t- | +Fq(0) |,
whereA(t_), B(t_) are given by Eqs(85), (87), the tilde 2€o\ Co 2T
sign means that the contributions of the Goldstone mgde (103
should be excluded fromA(t_). wheret_=1—(D/D)?. The first and second terms in the

Putting in the above expressions=h"2 where h square brackets correspond to contributiona-olnd g-type
=H/[IOJ_R(H=O)] we have for the magnetization dt=3 excitations, respectively. At extremely low temperatures

the result T<7Zyt_ the contribution of thea excitations is exponen-
tially small and the temperature-dependent part of the mag-
netization is determined entirely by the first term in the
- Zit-| 5gr, LT3 ., square brackets of Eq103. At temperatured>TZyt _ the
(t0=\ —— 1+ In—| Po7(gr,t%) situation changes and both types of excitations give the same

L2 (99) temperature dependence, the contribution of the mothe-

o ing three times larger.
(the terms divergent il are canceled idg). The RG result Consider now the renormalization of the finite-
for the ground-state parameter at zero magnetic field in theemperature theory. Integrating out the fieldq,w,) with
3D case is shown and compared with mean-field and firste,,# 0 from action(95) we obtain the action of the effective
order 15 expansion results in Fig. 4. One can see a considelassical model

LD P P L UL S W LECL R A S5 S
AT oT< aq (T) ﬁ xqiix,—q ﬁ yatty,—q ﬁquqzqs( a1 a,) Thq; (A1 + G2+ Ga)
1cU ~ ~ ~ o~
toot g 2 (Mg Mg (Mg T, 8(dy + Qo+ da ) + -, (104
: d1029394
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component case, the res(07) agrees well with HTSE data
closely enough to the QPT. A more complete treatment can
be performed by considering quasi-momentum-dependent
vertices in Eq(104). This is a complicated task which is not
considered in the present paper.

For the same reason, mod@&i04) cannot be used for de-
termining magnetization beloWw, . However, one can expect
from scaling relations that the standard value of the two-
component three-dimensiona* theory critical exponent
takes place

0.80 T T

Tel o

_1
P72 20nv8)

which is practically the same as in the one-component case
(Br=1/3). Unlike the one-component case, the logarithmic

correction toS(t_ ,T) is expected near the temperature phase
transition due to the gapless Goldstone mode.
Ford=2 the contribution of the gapless mode is logarith-
FIG. 5. Transition temperature as a functionDfZ, for the 3D Mically divergent and therefore the long-range order at finite
easy-plane ferromagnet in different approaches. temperatures is absent, unlike the case of the transverse-field
Ising model.

where the fieldl= I+ (ﬁ,O) is now a two-component one,
and the dots stand for higher-order terms. For the parameters
of the model(104) we have

=7/20, (108)

0.00 '
0.00 0.50 1.00
D2l

IV. CONCLUSIONS

In the present paper we have considered systems that
demonstrate in the ground state a quantum phase transition
R(T)= Eﬁz(T)U(T) (105  (QPT). Near the QPT the saturation momeitis small, but
3 the Curie constant in Eq59) is not suppressed. We have
and ford=3 T.xSy which is determined by the value of the dynamical
critical exponent,z=1. The susceptibility(58) in the
3272/ T\2_ intermediate-temperature regidp<<T/I <1 is governed by
— ( ) Fs(o)} the small ground-state energy gd&p and demonstrates a
9 1/T9~* behavior. In the strong enough longitudinal magnetic
field Ap<(H/IS)Y3<1 the ground-state parameters are de-
87ngR_ 20m2gn~ [ H2c? termined by magnetic-field value rather than by closeness to
= —{ 1+ —F3 > (1069 the QPT. The corresponding dependences have been ob-
In(1/h)| 3In(1/h) AT tained. Our approach gives the possibility of investigating
Note that both R(T) and U(T) vanish at H—0 as both nonuniversal and universal renormalizations of the
— ground-state parameters. The ground-state renormalizations
turn out to be important in the vicinity of the QPT. Thus the
results for thermodynamic quantitige.g., transition tem-

_ 18gg/
M(T)="=_"03

C

u(m)

In"}(Z,/H) due to quantum fluctuations, whild(T) is fi-
nite in this limit. The value ofT., as determined by the

conditionII(T;) =0, reads perature have different forms as functions of renormalized
splitting and bare transvergexternal magneticfield, see
3\/§ Egs. (69),(70) and (76),(77). This should be taken into ac-
Tczﬁc(% , (107 count when treating experimental data.

The discussed class of magnets is similar in some respects
where®, is given by Eq.(87). Thus the resulf107) coin-  to weak itinerant magnets. Note that for weak itinerant fer-
cides with that obtained in Ref. 28 up to the nonuniversaromagnets we hav'l§Co<§’2 (see, e.g., Ref. 24which is due
factorZ,. As well as for the 3D transverse-field Ising model, to the fact that the main contribution to thermodynamics
in one-loop order the transition temperature turns out to beomes from paramagnonz=3). As well as for the consid-
proportional to the ground-state magnetization. ered localized-moment systems, calculation of nonuniversal
It should be noted that, owing to the presence of theground-state parameters for itinerant magnets is of interest,
gapless Goldstone mode, the mod#04) is applicable at in particular for different forms of bare electron density of
T=T. only very close to the QPT, unlike the correspondingstates.
model (64) for the one-component case. Thus one can set Now we discuss the experimental situation for some sys-
Z,,=7Z,4,=1. The calculated dependendg(D) is shown tems exhibiting magnetic and structural transitions. The
and compared with HTSE défan Fig. 5. Note that, unlike compound DyVQ demonstrates a structural phase transition
the transverse-field Ising model, no replacementlpfis  atTp=14 K. The low-lying energy levels in the spectrum of
required since, as discussed above, its values frddnet/  this system are two Kramers doublets with the splitting
pansion and HTSE coincide. As well as for the one-=27 cm ! atT=0 andA,=9 cm ! at T>Tp. Neglecting
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the Kramers degeneracy one can describe this system by tfitms.*® Depending on a concrete physical situation, such
transverse-field Ising model wit}/I =1/3 (see Ref. Y. The  systems can be described by the strongly anisotropic
corresponding point if)/I-T, coordinates is marked in Fig. transverse-field Ising model or Heisenberg model with small
3. This point lies exactly on the HTSE curve and thereforeanisotropy.

HTSE results are applicable in this region@fl. One can

see that DyVQ lies far from the QPT, so that the above- APPENDIX A: MAPPING OF THE ANISOTROPIC
developed theory is not applicable for this system. HEISENBERG MODEL ONTO THE TRANSVERSE-FIELD
Other systems, which are well described by the ISING MODEL

transverse-field Ising model, are the ferroelectric quantum

crystals like KHPO,(see, e.g., Ref.)5 However, to our ; . .
knowledge, corresponding detailed data on the ground-sta [ocedure O.f the anisotropic Helsenbgrg madae) onto the
ransverse-field Ising model. We consider only one important

order parameters are absent. To fit experimental data on tré%se where the lowest level ¥, is a singlet and there is a
T, of Ref. 5, we need explicit dependence of the tunnelin f 9

parametel) on pressure gQPT to the disordered phase at strong enovgh Provided

that the first excited state is also a singlet, neglecting all

There are very few experimental data on singlet-singleleqy evels except lowest and first excited states, we can
systems demonstrating magnetic phase transitions. The SYSiroduce the pseudospin-1/2 operatygo obtairt20
tem LiTh Y, _,F, (Ref. 49 is usually assumed to be charac-

terized by long-range exchange interactions and therefore
well described by the mean-field theory. The singlet-doublet Vg=—A2 &, J=2aS, (A1)
case is represented by the system pigiwhich is aJ=1 :

easy-plane Heisenberg magnet. The anisotropy constant i . Ao .
changed under pressure and thus the valuB /@, can be wsherea—<A|J B) is _the ma?rlx elemenf[ of, |A), and|B)
are the lowest and first excited statds,is the energy gap

varied near unity in the experiment. The pressure deper-
dence of the anisotropy constant was measure _etween these state[St_ should b_e noted that .the .Ieft—hand
Sides of Eqs(Al) act in real-spin space, while right-hand

experimentally> However, to our knowledge, the data on the Si'lﬂes in pseudospin space. Thus the equality signs are used
pressure dependence of exchange parameters are absent’onl_y in the sense of identity of averagEShen we obtain the

though it is supposed to be consideraBli&here are also H’ansverse—field Ising model with—4a27 and 0= A. The

few experimental data on the ground-state magnetizatio - .
near QPT. Atp=238.6 Kbar, one has the experimental valuesor.der parameter of the H(_e|senberg modi#) IS connected
' with the order parameter in the transverse-field Ising model

J(T=0)=0.3 andT.= 110 mK*® The calculation according by
to Eq. (107 yields Z=90 mK which is nearly twice larger
than thep=0 value, 7= 40 mK** Praseodymium in the dhcp
phase contains both “cubic” and “hexagonal” sitt4® so
that separation of different contributions makes an additional ) ) )
problem. Generalization of our approach to the singlet-triplet  Consider now the case where the excited state is a mul-
case in connection with the Pr ions in the cubic crystal fieldiPlet with the stategB), m=1...N—1. Neglecting the
will be presented elsewhere. degeneracy of the upper energy level, one can use the same
Generally, the B perturbation theory combined with Mapping(Al) if we choosen®=1"1(A|J%Byy)?. However,
field-theoretical scaling analysis enables one to obtain a ddb this case the original SW) spin space is projected onto
scription of the ground-state properties of the transverse-fiel®U(2) pseudospin space, and thiNs-2 degrees of freedom
Ising model, which is in a good agreement with the results ofre neglected. Thus this approach does not give the possibil-
the fourth-order ground-state perturbation thédfygr all the ity of taking into account properly the symmetry of the origi-
values of(). The only fitting parameter used is the critical hal model and therefore can be applied only outside the criti-
field valueQ) . The finite-temperature properties are consid-cal region. To obtain a correct description of such systems in
ered with the use of the approach of Ref. 28. The Sam@e critical region one should consider the transition in the
analysis for theS=1 easy-plane Heisenberg model is per-complete SUN) space. The above consideration shows that,
formed within the expansion in the formal parameter in principle, the transverse-field Ising mod@) can qualita-
(=1) which plays the role of 5. In this case, besides the tively desc_rlbe sm_glet magnets even in the case where _the
critical mode, there is a gapless Goldstone mode, which corXchange interactions in the true momentum space are iso-
siderably modifies the conditions of renormalizations. Thelfopic, as in mode(78).
consideration of the QPT in degenerate systems induced by

the external magnetic field within the approach used is of  AppENDIX B: CALCULATION OF SPIN GREEN'S

In this appendix we discuss the possibility of a mapping

(3 =2a(SY). (A2)

interest. In particular, in the case of single-site anisotropy, FUNCTION AND ORDER PARAMETER
oscillations of the effective moment with increasing mag- OF THE TRANSVERSE-FIELD ISING MODEL
netic field or temperature are expected in such systems with WITHIN THE 1/ S EXPANSION

S>1.

It is of interest to apply the approach used to various 3D Consider first the disordered phase whetg)=0. Rep-
and 2D systems demonstrating orientational and metamagesentingm,;=(1+ 1/S— wfi—wii)”z and assuming{wiﬁ
netic phase transition with changing the external magnetie- 1/S (the validity of this statement will be checked below
field or anisotropy, e.g., for yttrium garnétand magnetic we expand square root to second order i ttf obtain
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iISwg )
N

Ay dmyi| 1S i Ay Iy
yi xi 2 2 y! Xt
Wxi?—ﬂ'yi?)'f'gg j() dT(ﬂ-xi_l—ﬂ-yi)(ﬂ-Xi o7 _Wyi P ), (Bl)

: (B2)

1rur Q
Ss= — Efo dT{ISZGEj) wxiﬂ'xj-l—(TP—QSWS)zi (77)2(i+ wsi)— TSEI (77)2(i+ wii)z
wherewg=(1+1/2S) ! and P=Z,,1 (v, being the Matsubara frequenciés a formally divergent quantity which comes
from the measure of integration, this divergence will be canceled in final ré$itsfirst order in 15 (we suppose thaf
~Q.~1,S), we obtain by standard perturbation theory methods the matrix two-point vertex functiep, af, fields in the
form

3X+Y , X+Y
QS| wg+ +SY -TP—1,5 iSwn| Wt ——
where
QIS
X=(m2)\=T> ——,
(m)=T2 =
Q/S—1
Y=(m2)=T a4 B4
(7o) qE o= (B4)
and
T wﬁ
Y =i{myi(dmyildT))= = _ B5
(mi(dmyil97) = 5 2 o= (85)

with Eq=vVQ ({2 —Sl,) being the bare “spin-wave” spectrum in the disordered phéSee can easily verify thaX,Y are of
the order of 15, as it was supposed in the beginningsing the identity

QSX+SY —TP=1,5°X’, (B6)

where

TQ I

,= . L)y = —_— q
X <7TXI7TXj> I()Sq,zu)n Q)ﬁ—}—Eg (B?)

to eliminate the divergences, we derive

+Y , X+Y
08| wst+ — +1S?X" = 1,8 iSwp| wst+ ——
I'(q,0n)= V4 X B (B8)
iSwn Ws+ 2 QS( Ws+ + | OSZX'

The value ofQ). is determined by the conditioh,,(0,0)=0. However, the averagd84) and (B7) which determine B
corrections tol'(q,w,) are Q) dependent themselves. For consistency, we have to calculate these averages with the zeroth-
order valueQ).=1,S. Then we obtain the result fé2 . Eq. (15) of the main text. At an arbitrar§) we perform the replacement
Q—1,5(02/Q,) in Egs.(B4) and(B7), which changed'(q,w,) in the order of 1%? only and gives the possibility of taking
into account consistently the shift 6, owing to quantum fluctuations. Substituting the resultgrinto Eq.(B8), we obtain
the resultg11), (16), and(17).

In the ordered phase we rotate the coordinate system through thefeaigiand therr, axis and again, in new coordinates,

expandm, in powers ofm, , m (7, = m,). Then we obtain to fourth order
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1S? ~ -~ — o~ 1. ~, -~

= _2> Wxinlsin 20+ 'n'xi7TX]-CO§0— (7T)2(i+ 77)2<j)5in20+ E'”'xj('”'>2<i+ '”'32/i)5in 20
(ij

(2 + 72 (w2 + 72— (72 + 722 ur | T T (2 +72)2

SRR - L 4y' X sindg —QSEJ dr| mysing— ——— y'WSCOSH——Xls ' cosf
i 0

TPw (1T -, -

+72 fo dr(mg+ml), (B9)

Sgyn having the same forn@B1) as in the disordered phase with the replacement 7. Determining the angl® from the
condition(7r,)=0 we obtain

o Q 1 X+2X'+Y]|? B10
cos oS 55 > , (B10)
where
X={( T ,
=TS, = e
<’7TX|7TXJ> Tzwn 2 +E2, (B11)
Y={(m T .
< y|> zwn w2 +E2

Eq=SVlo(lo—7lg) and 7= (Q/1,5)?. Besides the averages E&11), we introduce the quantity

2

Wn

Y=i<”;TXi((9’7VTyi/0”T)>: -I—S-E

: (B12)
q, o wﬁ-f— Eg
For the two-point vertex function of the fields, , 7, we have
2 ’ 2. . X+Y
[0S(L+X=nX") = 1S W+Fq,+SY-TP iSw,| wgt 5
I'(0,wp)= | vix 2 | , (B13)
iSw,| wg+ 5 [6S7(1+Y— X" )+SY-TP
|
where This term has the same order inSlas other terms and
should be retained. Using the identity
W= p(Wg+X+2X'+Y)+(1—n)X'. (B14)
2 — 2 '
which is an analog of Eq(B6) for the ordered phase, we
Fan== 7 7177 2 [(2ldsqt 4ol obtain
21244+ 12 Mool K, 0) +12My (K, ) F@.n)
2 _ .
+ 2141+ 21 )Mk @)1, (B15) B S(lo=WIlg)+Fgn  iSwn(Wwst X/2+Y/2)
iSw,(Ws+ X/2+Y/2) 1,S?(1+Y—X)
wherek=(k,w), q=(g9,0,) and
(B18)

M“ﬁyﬁ(k’q)_<7T“(k)775(_k)><777(k+q)775(_k_(%>i6) Performing again the replacemef¥—I1,S(Q/Q,) in Eq.
(B11) and reexpressing E¢B18) in terms of()., we obtain
(a,B,v,6=Xx,y) arises due to the contribution of the cubic the results(11), (19), and (20) of the main text. For the
term in Eq.(B9) in the second order of perturbation theory. temperature-dependent order parameter we obtain
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S=S(my) = Ssiné(Tr,) XPa=UT(6)XPIU(0) (C1)
7 2lo+nlg SVlo(lo—7nlg) .
= 1-9— = coth with
| > Toto— g 2T
LAY 200+ 1q ]1’2 i_xo+Yo)_ ®19 U( ) =exd 6(X~L1-x1"1)/2]
25°9 \Ig(lo—1y) 25 2 =1+[cog 0/2)— 1](X~ L L4 XY

Note that near the QPT the last multiplier in this expression +sin(g/2)(X~b-xt71), (C2
is close to unity and only slightly temperature dependent.
Thus it can be replaced by its zero-temperature value. N
P y P Then the Hamiltonian takes the form
APPENDIX C: ROTATION IN SU (3) SPACE FOR THE
EASY-PLANE HEISENBERG MODEL H=HD+H 2 (C3)

Following Refs. 20,22,23 we perform in the Hamiltonian
(82) the unitary transformation with

1
H<1>=§2 [(D sing+ 27 4cog 0)(2X 1+ X% + DX+ (D — 2Zysin#) coso( X1+ X~ 1Y,
1

T
H@=— 52 [cosO(2X{™+XP9) —sino(X{ ™~ + X Y ][cosf(2X ]+ X 7% —sin (X~ T+ X )]
{in

T
- 5(2) 2, [2XP7XT0+ o sin60OCT7X]7+ XTOXT) + CosB(X~ 70X 70+ X0 X0, (Ca
ijy o==%

whereZ,=2dZ and we have dropped the tilde sign at tkeoperators. Further we represent Hubbard operators via boson
oneg??

X~ 1=at(1-ra'a—rb'b)*?
X% 1=pf(1-raTa—rb'h)*? (C5)
XP0=3a%h, X%=p'p, Xx1=a'a,

where\ (=1) is the parameter introduced to construct perturbation th@brihe Holstein-Primakoff expansion in the case of
a Heisenberg magnetThen we obtain the Hamiltonian of the bosons

H=Hi+Hy+ Ha+tHa+ -, (Co)

where

Hﬁ%cose(D—ZIOsin 0)2i (al+a) (C7)

H,=(D sing+2Z,cog6) >, ala;+[D(1+sin6)/2+7Zcog6]>, bl
I I

T
- 5(_2) [sirPo(a]+a;)(a] +a;)+2b/b;—sing(bb] +bib;)] (C8)
1)

1
Ha=— 5€086(D — 2Zosin 0)2i [al(ala;+blb)+(ala;+b/b)a]

+Zcosg, [sind(2ala;+bb)(al+a;) - (bja'b;+blbla;)] (C9)
{in
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4= —Z} [sir?6(afa;+2b{b;)(afa; +2bb;) + 2ala;b/b;— cog4(b] +b;) (afa;b] + b/b/b; +H.c) + cos 20(a;a;b/b]
i
+H.c)—(afa/a;aj+a'b/bja;+H.c)+cos %(alalaal +a'blbal +H.c)], (C10

and we have omitted terms containing more than four Bose operators. Diagonalizing the quadraiicqfatte Hamiltonian
(C6) we obtain

HZ:; (Exqary o+ Ekﬁlglﬂk)l (C1y

where the spectra of excitations are given by

Exo=2\Io(Zo— 7°L), (C12
Exg= V(1+ 7)(Zo— T Zo— T+ n(Zo+ L)1, (C13

n=sin#=D/D.. The angled is determined by the conditiofa;)=0. To first order in the formal parametkrwe have
D
sma——[l MRi+Ry)]TE, (C14

210+ (2= 7%)l
RUT)=2> ———— (1+2Ngy) -1,
k ko

1+ p)lo— I+ nl 2 1
Ro(T) =, e D0 g - 2. 19
k kB

The excitation spectrum for mode to first order in\ is given by

Ey a=2VIo(1+Bo+By)(Zo— T+ ToA?), (C16)
where
A2 =(1+Ay+A)(1— 77
and
2y— Ay —4 1+ 9+ 7)1+ n)—(n+1
Aozxz[ﬂ')’k %4, w1ty 7)(1+75)— (7 ), (€173
K Exa =
Mo [8(1+ 1) =202 v+ 11ty 2(1+ )= 2w+ 279°y¢
BO:_EE[ = + = , (C17b
k Ko kB
(5/2(2= 7* 1) 2+ 42— * v ) nP v+ (512) (7% ) 2
A;=27°\ 2
Eka
2+1)(1+ 2+ (n?+1 2+an(1+
—E (7" + DA+ 7= 7)™+ (2" + D) (77 +4n(1+ 72— ) (7¥) (170
Evg
A 4n*(2- 77')’k) (1+ 7= y)%= (77)?
Bi=5(1-7)2> (C17d

Eve Eig
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The modeg is a Goldstone type and is gapless to arbitrary 3 s o o 1
order in\. Therefore we do not consider the renormalization 0. o Z'”(P + K pt)— g'n P
of its energy. P

! 1
APPENDIX D: RENORMALIZATION k2= K%ex Qf”dp, _r .-
OF THE TWO-COMPONENT ¢* MODEL 2)1 024 12l 2 3p’
WITH SPONTANEOUSLY BROKEN SYMMETRY
In this appendix we consider the renormalization of the X ! . (D4)
action (95) in the ordered phasen®<0. Introducing the 1= (a/6)Ino’ — (3a/)IN( 0 2+ K2/ 12
quantity k>=—2m?>0 and performing the shiftr,— r, (9/6)inp"=(3g/4)In(p "+ /")
+ 1y we obtain Our plan now is to use these scaling formulas to reach the
1 port scaleup~h'2< k. For these values ¢f formulas(D4) are
S=§J. dtfd%U&ﬁV+IK2+3ﬁhﬁ+ﬁwﬂ simplified:
0
9, '=9""[1-(39/2)In(x/ )~ (9/6)In p],
uer f I (4w + o) 7P D1
+— +
a1, dr | dr(4mt m)ar, (B1) K, 2=k [1—(39/2)In(x/ )~ (g/6)Inp]
wherehi=h/my, mo=(3x2/U) 2 and my=mo(1+h/k?) is X[1-(59/3)In(x/ )]~ D o(g,x*/u?), (D)
determined by the requirement of absence in the action O\Ivheretb (9.x) is given b
terms that are linear iar,. In these notations the condition olg: 9 y
of smallness of the magnetic fieldh$/’< « (the condition of g (1dy[4y+x
closeness to the QP%X<A is also assumed Under these In®y(g,x) = 1 07 VX
conditions, the actio{D1) has two characteristic lengths,
1/h*2 and 1k. This situation is the same as in the theory of 1
crossover phenomer&Further we follow Ref. 38 to include X 1—(g/12)Iny—(3g/4)In(x+Y)
exactly the smaller characteristic length into thefactors.
Then we obtain to one-loop order B 6(X—y)
7M1+ O(g?), 1-(g/12)Iny—(3g/4)Inx
460(y—x)
1 2 & T T BRIl (D6)

2y,,2\¢el2 e
28 (14 K% u?) 6o 3s A and 0(x) is the step function. At extremely smallwe have

d(g,x)=exp(1/Ir*x)=1. The result(D5) with ®(g,x?/u?)
Zeont_ 1 4 3_9 1 i 9 59 :U«_E =1 can be obtained more directly if we perform the scaling
4 28 (1+ k¥ u?)e?  6e  3e A¢ procedure in two steps: at the first siep «/u and the flow
) » functions are the same as for the two-component isotropic
(note that the Ward identities guarantee that the structure Céj:l model, while at the second stgp<x/u and the flow

the interaction term is preserved by renormalizations, angnctions include only contributions of the Goldstone modes.
one renormalization constant is sufficient to renormalize aII-|-he scaling formulas are joined at= «/u. However, this

four-particle vertex functions, see, e.g., Ref).3bhe flow

- : >EEy procedure does not give the possibility of describing cor-
functions for the effective-Hamiltonian parameters are

rectly the contribution of the crossover regipn- x/w. At
finite but smalle we obtain in a similar way

(gl )= Lt ¢
PO )= 0 o 6 g, ' =g [ 1+(3g/26) (x*Ip "~ 1)+ (gl6e) (p~*~ 1],
(D7)
g 1 g -2_ -2 —& - —&
NOklp)=—5 ——F——=. (D3) K, ‘=K [L1+(39/2e)(k *Ipn *=1)+(g/6e)(p °—1)]
21l+wfip® O —ey, - ~3/5 2/,2
Setting in these expressiors=0, performing the integra- 1= (5gRe) (= DR (9, 1 )(D8)

tion, and supposing that scaling startsu&t «, we obtain the  with some functiond (g,x)=1. Putting in the above results

effective-Hamiltonian parameters at the scale w=A=(2d)'2 we obtain the result96) of the main text.
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