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Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain
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The kink dynamics of the damped Frenkel-Kontorova~discrete sine-Gordon! chain driven by a constant
external force is investigated. Resonant steplike transitions of the average velocity occur due to the competition
between the moving kinks and their radiated phasonlike modes. A mean-field consideration is introduced to
give a precise prediction of the resonant steps. Slip-stick motion and spatiotemporal dynamics on those
resonant steps are discussed. Our results can be applied to studies of the fluxon dynamics of one-dimensional
Josephson-junction arrays and ladders, dislocations, tribology, and other fields.@S0163-1829~98!04833-4#
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I. INTRODUCTION

Much attention has been paid in the past twenty year
simple many-body systems with an effort to disentangle
complexity of macroscopic systems with competing inter
tions. The well-known Frenkel-Kontorova~FK! model,
which describes a chain of atoms interacting with near
neighboring forces and subject to a periodic substrate po
tial, is one of the simplest capable of capturing the essen
complexities.1–3 In dimensionless form, the Hamiltonian o
the FK chain reads

H5(
j 51

N F1

2
pi

21V~xj !1U~xj 112xj !G , ~1!

wherexj denotes the position of theith element in the chain
and pi is the corresponding momentum. The first term re
resents the kinetic energy per element.V(x) describes the
substrate potential, which is assumed to be a periodic fo
i.e., V(x)5V(x1b) with b the substrate period.U(xj 11
2xj ) describes the interaction between the nearest-neig
elements, which is either convex or nonconvex, depend
on the studied physical systems. The formula in the Ham
tonian ~1! contains both substrate interactions and mut
couplings between elements, which may lead to complica
spatially modulated structures. Spatially modulated patte
have been experimentally observed in many condensed
ter physical systems, such as ferromagnetic phases of the
earths and their compounds, long-period structures of bin
alloys, graphite intercalation compounds or the polyty
phases of spinelloids, micas, perovskites and ot
materials.4 In general, the physical origin of this spatial
modulated behavior is the competing interactions in the f
energy of systems. The FK model is one of the simpl
options among many models which describe this kind
PRB 580163-1829/98/58~9!/5453~9!/$15.00
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competitions. The standard FK chain can be described
terms of the following choices:

V~xj !5dF12cosS 2pxj

b D G ,
U~xj 11 ,xj !5

1

2
K~xj 112xj2a!2, ~2!

where d, K, a, and b denote the potential barrier heigh
coupling strength, spring constant, and the substrate pe
respectively. The commensurability of the frustrationd
5 b/a may strongly affect the spatial structure of the syste
The ground state of the FK model has been fully investiga
over the last few years, and the commensura
incommensurate phase transitions were found and theo
cally described.3 The theory developed by Aubry2 stands as
one of the deepest achievements in theoretical compre
sion of the physics of modulated phases. The response
this system to dc~Ref. 5!, ac, or both forces6 in dissipative
~inertialess! cases were also explored, where the dynam
Aubry’s phase transitions and Shapiro steps~dynamical
mode locking! were observed. All these studies reflect t
intrinsic properties of the FK model and reveal some ess
tial features of spatially modulated systems.

The dynamical FK model was applied to many field
such as charge-density waves~CDW!,7 tribology and surface
problems,8 self-organized criticality~SOC!,9 and Josephson
junction arrays~JJA! ~Ref. 10! and ladders~JJL!.11 Actually,
the FK model is a discretized version of the sine-Gord
~SG! systems. In an experimental environment, one has
consider the effects of external influences, such as diss
tions, fluctuations, and external fields, thus it is more reas
able to include all these effects. In this paper, we disc
only the spatiotemporal dynamics of a damped~inertia! stan-
5453 © 1998 The American Physical Society
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dard FK chain influenced by a dc external force. It
shown22 that the weak noise can only slightly smooth t
resonances discussed below, and the influence of an ac
will induce more complicated spatiotamporal patterns. T
dynamics in the dissipative~overdamped! limit under the
influence of both dc and ac forces were fully discussed
relation to CDW problems and the ac effects in experime
of Josephson-junction ladder arrays,7–11which were found to
correspond to the dynamical Aubry’s phase transition a
Shapiro steps, respectively. However, the inertial effects
some cases might be significant and cannot be igno
moreover, in the underdamped region, inertial effects
come dominant, multistability leads to the so-called hyst
esis effects, hence the system will exhibit complicated S
tiotemporal patterns. We will focus on the underdamp
case. The equation of motion discussed here can be wr
as

ẍ j1g ẋ j1sinxj5K~xj 1122xj1xj 21!1F, ~3!

whereg is the damping coefficient,K the coupling constant
andF the external bias. The frustrationd does not appear in
Eq. ~3!, but it plays a significant role in the dynamics of E
~3!. A mechanical realization is a chain ofN identical
damped pendula that are driven by a uniform torque
coupled by torsional springs.12 For very large coupling and
number of elements, the system~3! can be well described by
the continuum SG equation. It is shown that13 when the ex-
ternal applied force varies, the velocity of the SG chain ha
critical value vc52pdAK that separates two kinds of dy
namics~kinks!. Whenv,vc , the motion is that of localized
solitons, which is called thelow-velocity regime, and thev
2F relation in this regime is a continuous line. Whenv
.vc , the motion is characterized by the whirling wave, i.
the moving kink is strongly extended, we call this regime t
high-velocity regime. There exists an unstable region b
tween these two regimes, which corresponds to the gap
the v2F characteristics. These two regimes exist for bo
discrete cases and continuum cases, but the dynamics i
duced by discreteness may be a distinct feature, which
not happen for the continuum cases. The whirling-instabi
induced resonances in the high-velocity regime were w
described in Ref. 14. We will focus on the dynamics in t
low-velocity regime, which is the consequence of anot
kind of mechanism. We shall give a precise mean-field
scription of resonances in this regime.

The paper is arranged as follows. In Sec. II, the dynam
in the low-velocity regime are theoretically discussed, wh
we will introduce a mean-field treatment which is proved
be perfectly effective.15 This treatment results in a comple
description of the resonance behavior in the low-velocity
gime. Section III is devoted to numerical simulations. W
show that the theory proposed in Sec. II agrees very w
with numerical results by varying the mean-field parame
In Sec. IV, the physical meaning of the mean-field consid
ation is discussed, which is related to Aubry’s CI phase tr
sition. Section V gives a discussion on prohibited resonan
and give a resonance prohibition criterion. The high-veloc
whirling mode will lead to the solitary-wave instability o
some low-velocity steps. Spatiotemporal dynamics on lo
velocity steps are discussed in Sec. VI. It is shown that th
rce
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kinds of motions, i.e., periodic, quasiperiodic, and chao
can be observed on steps. We summarize the results
propose future topics in Sec. VII.

Numerical simulations will be used to study the sp
tiotemporal dynamics in this paper. The fourth-order Run
Kutta integration algorithm is used and the time step is
justed according to the numerical accuracy. Perio
boundary conditions are added, i.e.,xj 1N(t)5xj (t)12pM ,
whereM is an integer that counts the net number of kin
trapped in the ring, therefore the frustration isd5 M /N and
the spring constant will bea52pd. We mainly discuss the
average velocity of the chain, which is a good candidate
studying the response of the FK chain to external forces.
averaged velocity of the chain is defined asv
5(1/N)( j 51

N ^ẋ j&, where^ & denotes the time average.

II. KINK-RADIATION INDUCED PHASE LOCKING:
RESONANT STEPS

The key consequence introduced by the discretenes
the chain is that the solitary wave will radiate sma
amplitude linear waves when it moves. The mechanism
hind this behavior is the competition between the harmo
chain and the periodic substrate. Due to the discretenes
the chain, it will collide with the substrate when it move
For the continuum SG systems, the attractors in the lo
velocity regime are traveling waves. Such is also the case
the discrete version, the wave is composed of a moving k
and its radiated phonon waves in its wake. This is shown
our numerical experiments. The phenomenon of the radia
by a moving kink was discussed by Currieet al.,16 Peyrard
and Kruskal,17 and other authors18 in numerical studies, and
also found in experiments on Josephson-junction arrays.10 In
some cases the kink motion and its radiated waves can
come phase-locked and then lead to quantized velocity of
chain under a constant force. This occurs when the lin
modes are separately excited, for if many different modes
excited simultaneously the resonance will overlap and t
discrete velocity cannot be observed. It should be noted
the kink shape will strongly affect the final results, as can
seen below.

Theoretical considerations were explored by seve
authors,10,14 but some drawbacks and even mistakes exis
their discussions. First, the equation of motion was direc
linearized to discuss the linear waves radiated by mov
kinks. One should be aware that the linearization should
used around themoving kink, thus the direct linearization is
not correct. Second, an approximation was made of the k
directly from a 2p form. This consideration is too crude t
grasp the crucial points. In fact, only in some limiting cas
for example,M51 and very largeN, i.e., d→0, is this ap-
proximation valid. For finite frustrationd , the kink appar-
ently is not a 2p form, thus the effect of kink solution shoul
be considered. Third, all previous discussions did not c
sidersubharmonic resonances, which may be very importan
for finite frustration~multiple trapped kinks! cases, thus the
resonance condition should include the subharmonic ca
Based on the considerations of all the above points, le
give a more precise description of quantized velocities.

Assuming the static kink solution is$xj* %, j 51, . . . ,N,
when it moves along the chain and linear phonon waves
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radiated in its wake due to the discreteness, then we
linearize the equation of motion~3! around the moving kink
xj* (t) by insertingxj (t)5xj* (t)1uj (t) into Eq. ~3! and get

ü j1gu̇ j1@cos~xj* !#uj5K~uj 1122uj1uj 21!. ~4!

For sufficiently small dampingg, we can neglect the dissi
pative term in Eq.~4! and consider the conservative case.
fact, the dissipation effect can be compensated by exte
driving force. We intend to get the dispersion relation of t
linear phonons. The difficulty in Eq.~4! lies in the lattice
dependence of the kink solution xj* . An alternative way to
overcome this difficulty is to introduce the mean-field tre
ment, i.e., we replace the term cos(xj* ) by an averaged quan
tity

b5
1

N (
j 51

N

cos~xj* !, ~5!

where we call the parameterb a contraction factor. One
should note that hereb is time independent, because it on
depends on thetopological structure of the static kink.~We
also find the dependence ofb on the external drivingF,
leading to an additional contraction effect. However, t
present approximation already gives a very precise pre
tion. This effect will be discussed elsewhere.! In fact, this
parameter does describe the contraction effect of the k
solution. Ford→0, e.g.,M51 and very largeN, the kink
solution can be approximated by the 2p form

xj* ~ t !5H 0 for j ,vt,

2p for j .vt.
~6!

Then we immediately getb51 by using Eq.~5!. This is the
case discussed by Watanabeet al., but the story does not en
here. As will be shown below, the frustration plays a cruc
role in the chain dynamics. Now let us insert the linear ph
non modeuj (t)5exp@i(vlt1kpj)# into Eq. ~4! and use Eq.
~5! instead of the lattice-dependent term cos(xj* ) to get the
dispersion relation

v l5Ab14K sin2S 1

2
kpD . ~7!

The circulation frequency of the moving kink isvk52p/T
5^v& , the resonance between these two frequencies lea
the discrete velocity of the chain. The resonance condi
reads

m1vk5m2v l , ~8!

when the kink rotating frequency and its linear mode beco
phase locked. The geometry constraint implies that the w
number should satisfykp52pdm1 /m2. Then we get the
resonant velocity steps

v~m1 ,m2!5vk5
m2

m1
Ab14K sin2S m1dp

m2
D , ~9!

where (m1 ,m2) is an integer pair that describes the res
nance between kinks and linear waves andd is the frustra-
tion. The result we obtained here considers all the points
mentioned above, which is a complete resonant velo
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spectrum. The significance of Eq.~9! lies in the fact that it
considers the commensurability effect induced by the wi
ing numberd, and moreover this formula relates only to th
frustrationd, implying that the resonance is not a finite-si
effect, but the discreteness effect. The resonance cond
~8! is the main point, however, it is very strange that
authors only used the integer resonancem251. In fact, one
may frequently observe higher order resonant steps,
shown below. By considering both the correct resonance
terion and commensurability effect, formula~9! gives a com-
plete description of all possible quantized velocities.

III. NUMERICAL RESULTS

We performed numerical simulations of the system~3! for
different numbers of particles and other different paramet
In Fig. 1, thev2F relations are given forN58, g50.1 and
different numbers of trapped kinksM51, 2, and 3. First we
notice that all curves have resonant steps~plateaus!, which
are the consequences of the locking between the mo
kink and its linear phonons. In many regions a given drivi
force corresponds to several velocities, indicating the e
tence of multistability. Hysteresis can be observed when
adiabatically changes the external driving force, which is
direct consequence of many attractors~metastable states!.
Keeping in mind that for the continuum SG system, thev
2F curve in low-velocity regime is a continuous line, th
transition between resonant steps will result in the disc
tinuousness of the velocity line, replaced by many quanti
values. We label the resonances on steps by a pair of inte
(m1 ,m2) in terms of the theoretical formula~9!; all the steps
can be well predicted by using Eq.~9! if we chooseb50.55,

FIG. 1. Thev-F characteristics forK51.0, g50.1, N58, and
M5 1, 2, 3. Resonances can be observed on the step transition
steps are labeled by using a pair of integers that describe the
nance between the moving localized soliton and its radia
phonons. These resonances are given by Eq.~9!. The agreement is
quite good. Several resonances are labeled on one step, be
they are nearly degenerated.
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TABLE I. A comparison between numerical resonant steps and theoretical predictions. All paramet
the same as those used in Fig.1. It can be clearly shown that the mean-field treatment predicts all
resonances much better than previous predictions.

Resonance (m1 ,m2) Numerical results Mean-field prediction Previous prediction

~a! d51/8, b50.55
3:1 0.640 0.637 0.700
4:1 0.525 0.533 0.559
5:1 0.395 0.398 0.420
6:1 0.260 0.266 0.289
7:1 0.150 0.152 0.180
7:2 0.605 0.599 Unpredicted

~b! d52/8, b50.25
2:1 1.000 1.030 1.118
3:1 0.501 0.500 0.577
5:2 0.751 0.766 Unpredicted
5:3 1.125 1.197 Unpredicted
7:3 0.850 0.855 Unpredicted
7:4 1.125 1.157 Unpredicted
8:5 1.230 1.229 Unpredicted
12:5 0.850 0.819 Unpredicted

~c! d53/8, b50.15
1:1 1.800 1.888 2.100
2:1 0.720 0.733 0.866
3:1 0.250 0.286 0.420
3:2 1.368 1.333 Unpredicted
4:1 0.510 0.509 0.559
5:1 0.131 0.172 0.252
7:2 0.510 0.488 Unpredicted
8:5 1.210 1.213 Unpredicted
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0.25, and 0.15 forM51, 2, and 3, respectively. Subharmon
resonances can be frequently found forM.1, i.e., these
resonances can be easily excited and locked when the
more than one kink trapped in the ring. To make a clea
comparison, Table I lists the resonances observed in Fig.
can be clearly shown that Eq.~9! obtained above gives no
only a much better prediction of (m1,1) resonances than pre
vious predictionv5 (1/m1)A114Ksin2(m1dp) ~Ref. 14! but
also precisely predicts high-order resonances.

Figure 2 shows several modes of motion of one of
particles in the chain for different cases. In~a!, we give an
evolution of a 16-particle chain with only one kink trappe
inside and for a small drive. Only positive part is shown. It
observed that the velocity has a higher peak and some lo
peaks. Higher peak indicates that the particle hops from
potential well to another, and the nearest lower peak is
influence of the coupling showing the hopping of the neare
neighbor particle. Obviously the propagation of the coupl
effects decays exponentially, then the chain exhibits a s
stick motion. With increasingF, the influence of adjacen
particles becomes large.~b! gives a 5:1 resonance forN58
andM53, where the particle hops once in each period t
contains five peaks. Additionally, the multikink effect b
comes evident, which is shown in~c! for a larger force. This
is a high-order resonance.

One should be aware that each point on thev2F curve
perhaps corresponds to several attractors, not just a s
attractor as pointed out by other authors. One may find b
is
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e
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th

m1 :m2 andnm1 :nm2 (n.1) resonances at the same val
of driving force when starting from different initial condi
tions which correspond to the same value of the aver
velocity. This indicates that many kinds of spatiotempo
patterns can be found. Moreover, when the resonant va
are very close to each other, the velocity steps are alm
degenerate and these very close modes may also int
each other to result in complicated motions.

For the weaker coupling strengthK, more resonances ca
be excited. In Fig. 3, we give thev2F plot for different
couplingsK52, 1, 0.25, and 0.1. One finds the steps can
easily distinguished from each other for largerK. WhenK
decreases, resonances will become vague and overlapp
that the steps cannot be well distinguished. ForK→0, the
behavior of the chain approaches that of uncoupled partic
thus bistable solutions can be observed.19

An interesting problem relates to the dynamical manif
tation of an incommensurate chain, for example, when
winding numberd is the golden meandG5(A521)/2. We
mentioned that the resonant steps are only related to
winding number and independent of the number of partic
One may use the Fibonacci sequence to approach the go
mean, i.e.,d5 5

8 , 8
13 , 13

21 , 21
34 , . . . ,→dG . In Fig. 4, thev-F

characteristics are numerically calculated for the Fibona
approach to the golden mean. Different damping parame
are adopted, but this will not affect the value of the step. T
is proved in numerical computations. One can easily find
main resonant steps coincide with each other for differ
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N and M . This result proves that the resonant steps o
depend on the winding numberd5 M /N .

IV. PHYSICAL INTERPRETATION OF THE MEAN-FIELD
TREATMENT

It is shown from the above discussions that our theoret
result can precisely predict all possible resonant steps,
one may find thatb varies for different frustrationd. Then a
natural question arises: what is the relation between the
traction factor and the winding number? Does the contr
tion factor have some physical meaning? We focus on
exploration of this problem.

Because the property ofb depends only on the form o
the static kink, let us study the dissipative case

ẋ j52cos~xj !1K~xj 1122xj1xj 21!1F. ~10!

In the absence ofF, Eq. ~10! is used to numerically explore
the ground states of the FK chain.2 In fact, the static kink just
corresponds to the ground state, which has been fully stu
in recent years. Bearing this in mind, let us recall the stud

FIG. 2. The evolution of one particle in the chain forK51.0,
g50.1, and other different parameters:~a! N516, M51, F
50.05;~b! N58, M53, F50.02;~c! N58, M53, F50.15. Slip-
stick motion can be observed in~a!; high peak is the hopping from
one well to another well, low peaks are the influence
neighboring-particle hoppings; the perturbation decays expon
tially. ~b! shows a 5:1 resonance, while~c! gives a high-order reso
nance.
y
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s

of dissipative dc-driven dynamics of the FK chain. It w
found that5 there exists a critical depinning forceFc , below
which the chain will be pinned and above which the cha
will slide. For a commensurate chain~rationald), Fc.0 for
all K, while for the irrationald, there exists a criticalK,
whenK.Kc the chain is pinned and whenK,Kc the chain
slides. By averaging Eq.~10! on latticesj , one can get

^ẋ j&52^cos~xj !&1F. ~11!

f
n-

FIG. 3. Thev-F relations forN513, M58, g50.05, andK
52.0, 1.0, 0.25, 0.1. It is shown that resonant steps can be cle
distinguished for larger coupling while the high- and low-veloc
regimes will connect for weak couplings; resonances will
smoothed and disappear.

FIG. 4. Thev-F relations for the approaching ofd to the golden
mean dG5(A521)/2 by using the Fibonacci sequenced
5

5
8 , 8

13 , 13
21 , 21

34 , . . . , for K51.0 and different dampingsg
50.05,0.1,0.2. Different dampings do not affect the step positio
Main steps for different cases agree well with each other.
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Only whenF.Fc can the static kink move freely along th
chain, hence we readily get

b5^cos~xj* !&5Fc , ~12!

that is,b is the depinning force that is needed to overco
the Pierels-Nabarro~PN! barrier and move continuously th
static kink along the chain.2 This connection is very interest
ing because knowledge of Aubry’s CI phase transitions n
can be directly applied to this dynamical case. For exam
b is directly related to the lowest phonon frequency for t
FK eigenspectrum by the scaling relationb}vG

2 .
In Fig. 5, we give the relations between the contract

factor b and the frustrationd for different coupling con-
stants. The curves are symmetric, about 0.5. This is a co
quence of the symmetry of the chain. It is shown that
curves are not monotonical, i.e., many peaks can be
served. These peaks are none other than the rational
nances. The most significant resonances lie at 0:1, 1:1,
1:2, and other resonances can also be observed for mod
K. In fact, these resonances build a Farey tree. This me
all resonances can be found by using the Farey sequ
pn /qn , pn11 /qn11→ (pn1pn11)/(qn1qn11). With in-
creasing couplingK, the curve becomes lower, the contra
tion factor for the golden-mean winding numberd ap-
proaches 0. It is expected that there exists a criticalKc ,
whenK.Kc , b50 for dG . In fact, Aubry’s transition from
the pinned state to a sliding state occurs. In this case,
kink has the translational symmetry, thus the summation
be replaced by the integral for largeN in Eq. ~5!, b
5*0

2pcos(x* )dx*50. In the previous section, the values ofb
we chose to predict resonant steps agree very well with
b2d line for K51.0. It is interesting that a similar plo
between the depinning force and the frustration was obta
numerically and experimentally by Ustinovet al.10 for ex-
plorations of the fluxon dynamics in the Josephson-junct
arrays, where the frustration corresponds to the magn
field. This also confirms our conclusion.

FIG. 5. The mean-field contraction factorb varying with the
frustrationd. The curves are symmetric aboutd51/2. The factor
decreases when increasing the couplingK. Peaks are rational reso
nances, which form a Farey tree.
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The maximum velocity occurs on the 1:1 resonant st
i.e.,

vmax~d,K !5Ab~d,K !14K sin2~dp!, ~13!

which is a function ofd and K. Because the contractio
factor b is a highly nonlinear function of the frustrationd,
the relation between the maximum velocity and the frust
tion is also complicated. In Fig. 6 we give the relatio
vmax2d for different coupling strengthsK. It can be found
that the relation is rather complicated for smallK, where the
contraction factor cannot be neglected, while for stron
couplings, the dominant factor is the sinusoidal term, wh
the relation is approximately sinusoidal,vmax}sindp. How-
ever, at the edges of all the curves, the relations are non
ear, whereb plays a dominant role.

V. RESONANCE PROHIBITION CRITERION

The agreement between theoretical and numerical res
is quite good, as found from the above discussions. One
also find that not all the resonances can be observed from
numerical curves, i.e., the resonances are incomplete. Se
reasons can lead to the disappearance of some steps.
the dissipative effect should be taken into account. La
dampingg can smooth those weaker resonances. Second
coupling strength also plays a role in the disappearanc
some weaker resonances. This can be easily understood
the SG dynamics. For stronger couplings, the discretenes
the chain becomes weak. However, the above two effects
all parametric, i.e., whether the steps can be obser
strongly depends on the parameter region one choose
fact, a third reason, an intrinsic reason, should not be
nored. That is, kink-radiation induced resonances can o
occur in the low-velocity regime. Therefore a criterio
should be

v~m1 ,m2!<vc52pdAK, ~14!

which means that the anticipated steps that exceedsvc will
not be observed, wherevc is the boundary between the low
and high-velocity regimes, which is pointed out in Sec. I. B
inserting Eq.~9! into Eq. ~14! and settingX5 m1dp/m2,
whereXP@dp,`) ~becausem2<m1), we obtain the form

FIG. 6. The maximum velocityvmax varies with the frustrationd
for the coupling strengthK50.5, 1.0, and 10.0. The effect of th
contraction factor cannot be ignored for smallerK. Nonlinear re-
gions can also be observed at the edges of the curves.
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X22
b

4K
>sin2X and XP@dp,`!. ~15!

In Fig. 7 we plot the two functionsf (x)5X22 b/4K and
sin2X for b51, 0.5, and 0~dotted lines from lower to upper!,
respectively. Forb50, the point of intersection of the two
curves is 0, above which the inequality satisfies autom
cally. In this case, all possible resonances can be foundb
51 occurs ford→0 or 1, where the intersection point
approximatelyX050.95. In numerical simulations, we us
usually a finite number of particles, thus the frustration
really small whenM is very small andN is very large. For
example, in the cased51/N, there are some disappeare
main steps (m251). The disappeared steps satisfym1dp
5 m1p/N <X0, which leads tom1<NX0 /p.0.95N/p. For
N58, m1,3, which is in good agreement with the observ
tion of Fig. 1. In Fig. 8, we give the numericalv2F char-
acteristics forN516, M51. Both low- and high-velocity
regimes are shown. The steps above the dotted horizo
line are whirling-mode-instability induced resonance

FIG. 7. Plot of the two functionsf (x)5sin2x and f (x)5x2

2 b/4K for K51.0 andb51.0, 0.5, and 0.0~dotted lines from
below!.

FIG. 8. Thev-F plot for N516 andM51, whereK51.0, g
50.1. Both low- and high-velocity regimes are shown. Resonan
also occur in the high regime due to the whirling-mode induc
parametric instability. The inset shows the enlarged plot of the lo
velocity regime. All resonances are labeled by using the theore
equation~9!. Resonances (m1,1) wherem1,6 disappear due to the
resonance prohibition criterion given by Eq.~13!.
i-

s

-

tal
,

whose mechanism is different from resonances found in
regimes. Arrows show the jumps between the low and h
regimes. The inset of Fig. 8 is an enlarged plot of steps in
low-velocity regime. One may find that resonances start o
from 6:1. Resonancesm1 :1 satisfyingm1,6 may immerse
in the high regime, which become unstable due to the wh
ing modes. By using our criterion~15!, we getm1<5. This
is the same as the numerical result in Fig. 8.

The critical frustration that indicates the disappearance
resonant steps can be determined by

vmax5vc52pdAK. ~16!

Whenvmax,vc , all steps can be observed. When the frust
tion d is less than a criticaldc , vmax.vc , some steps begin
to immerse into the high-velocity regime and cannot be
served. The critical frustration cannot be theoretica
worked out from Eq.~16!. We can only obtain it from the
numerical computations. ForK50.5, 1.0, and 10.0, we ob
tain dc50.30, 0.222, and 0.1010, respectively.

VI. DYNAMICS ON THE STEPS

The attractors on steps are deformed traveling waves,
the phase-locking between the kink motion and the lin
waves leads to resonant steps. This basic mechanism is
simple, but the spatiotemporal dynamics on steps may
sophisticated. Dynamics on high wave number~largem1) is
a bit simple, because they can be easily excited by a sm
external force. For larger forces, many linear modes can
excited and they can also interact with each other, thus
dynamics become complicated. A quite interesting probl
relates to the dynamics of the transitions between reso
steps. In numerical simulations, we observed three route
motions along a step when one adiabatically increases
driving forceF: Route~1!: periodic→periodic→transition to
new steps; Route~2!: periodic→quasiperiodic→transition to
new steps; Route~3!: periodic→quasiperiodic→chaotic
→transition to new steps.

Route~1! mainly occurs for smallF cases. In this case, o
a resonant step, a moving kink couples to its linear wa
and they are phase locked. Further increase of the driv
force will not further increase the velocity of the chain, th
increase of energy is used toamplify the linear waves, then
at a critical force the large linear wave may cause the re
nance to become unstable and the transition to another
occurs. Here the coupling to linear waves can be conside
as anadditional damping. When the external drive become
larger, several linear modes will interact with each oth
leading to the quasiperiodic or even chaotic motions. T
role of the drive in these cases will be both amplifying t
linear waves andexciting new linear modes. In Fig. 9, we
calculated Poincare´ sections sinx12sinx2 by strobing the
phases whenever the mean phasex̄(t)5(1/N)( j 51

N xj (t)
50 ~mod 2p) for N58, M52 on the 7:3 step. From~a!–
~e!, F50.112, 0.12, 0.13, 0.15, 0.16, and 0.165, respectiv
For a smallerF, the chain exhibits periodic motions, th
section only contains a point; this is not shown in Fig. 9. F
F.0.11, the motion becomes quasiperiodic, correspond
to the emerge of a small closed torus in~a!. Further increases
of external force cause the quasiperiodic motion to beco
more complicated, the closed curve becomesdeformed,
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-
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twisted, and enlarged,indicating that the energy provided b
the external drive is consumed for both exciting new line
phonons and amplifying linear waves. WhenF exceeds a
critical value, the torus breaks, a new periodic moti
emerges again, and then a new resonance occurs, which
responds to the transition to a new resonant step. We
show a route to chaos in Fig. 10 forN58 andM53 on the
3:2 step, whereF varies from 0.162 to 0.213 for the plot
from ~a! to ~l!. This image vividly demonstrates the rou
from the periodic to chaotic motions. We still did not plot th
periodic motion, for it is only a point on the section. The
the point grows and becomes a torus, indicating the prese
of quasiperiodic motion. The torus becomes larger a
twists, as though in the presence of a ‘‘saddle’’ point~it is
not really a saddle point!, then more saddles occur in~g! and
the torus becomes a ‘‘web.’’ Further increasingF leads to
irregular motion. The motions in~k! and~l! become chaotic.
In fact, one may study the interaction of linear modes
these steps. This problem is now under further study.

VII. CONCLUSIONS

This paper dealt with the discreteness effect of the
chain in the low-velocity regime. Small linear phonons c
be radiated when the localized kink moves along the chai
this region. When the velocity of the moving kink and i

FIG. 9. A historic plot of the surface of section sinx22sinx1

where the mean phasex2(t)5 (1/N)( j 51
N xj (t)50 ~mod 2p) for

N58, M52 on the 7:3 step.F50.112, 0.12, 0.13, 0.15, 0.16, an
0.165 for sections~a! to ~e!, respectively. The torus represents qu
siperiodic motion. The size of the torus increases and deforms
increasingF until it breaks into a new point that denotes a period
motion, indicating the transition to another dynamical state.
r

or-
so

ce
d

n

G

in

linear-wave frequency satisfy the resonance condition,
motion will be phase locked and then one can observe
resonant steps in thev2F plot. We gave a mean-field trea
ment of the resonances and a complete description of r
nant steps. Our theoretical formula can precisely predict
the steps observed in numerical simulations. In fact,
showed that the mean-field approximation is physically r
sonable and that the contraction factor correponds to the
pinning force that is necessary to overcome the PN bar
and freely move the static kink along the chain. This direc
connects the present results to Aubry’s CI phase transitio
Commensurability plays a crucial role in the kink dynami
of the discrete FK chain. Due to the gap between the lo
and high-velocity regimes, in some cases not all steps ca
observed. Some steps of them are prohibited to occur
cause they immerse into the high-velocity regime and
come unstable. We derived a step prohibition criterio
which agrees very well with numerical observations. We a
carefully investigated the dynamics on steps and found th
kinds of dynamics of the transitions between the reson
steps. Dynamics on low steps is generally simple, only
single linear mode will participate in the competition, th
the motion is periodic. On higher steps, several linear mo
can be simultaneously excited and they compete and inte
leading to quasiperiodic and chaotic motions. Every jum

-
th

FIG. 10. An illustration of Poincare´ sections sinx22sinx1 for N
58, M53 on the 3:2 step, whereF varies from 0.162 to 0.213 for
the pictures from~a! to ~l!. It vividly demonstrates the bifurcation
from periodic motion to qausiperiodic and chaotic motions. WheF
increases, the torus becomes larger and twists, then forms a
and eventually becomes chaotic.
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from one step to a higher step can only produce perio
motion and when further increasing the drive force the lin
wave is amplified and other modes are also excited, lead
to complicated spatiotemporal patterns.

The damped dynamics of the FK model can be found
many fields of physics, for example in CDW, couple
damped pendula, JJL, and JJA. Special emphasis has
placed on experimental studies of fluxon dynamics in J
and JJL in recent years. The Josephson junction is an ex
lent candidate for the study of nonlinear dynamics and it
been applied in many fields. Resonant steps were also
served in experiments of the current-voltage characteris
for JJL and JJA. Therefore we expect the present results
also be applied to experiments on JJA and JJL. For the
the coupling mechanism is very complicated, as the coup
is usually a sinusoidal form, thus our results can only
applied to experiments of JJL for larger coupling.22

The noise effect on the resonant steps can cause an
,

ic
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n

een
A
el-
s
b-

cs
an
L,
g
e

a-

lous diffusion of the Brownian motions of the damped F
chain.20 This is quite different than the diffusion of an un
coupled group of Brownian particles in biased period
potentials.19,21Another problem relates to the ac dynamics
the damped FK model. Because of competitions of ma
time scales, the dynamics may be complicated. This prob
is currently being studied.
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