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Resonant steps and spatiotemporal dynamics in the damped dc-driven Frenkel-Kontorova chain
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The kink dynamics of the damped Frenkel-Kontorddiscrete sine-Gordgnchain driven by a constant
external force is investigated. Resonant steplike transitions of the average velocity occur due to the competition
between the moving kinks and their radiated phasonlike modes. A mean-field consideration is introduced to
give a precise prediction of the resonant steps. Slip-stick motion and spatiotemporal dynamics on those
resonant steps are discussed. Our results can be applied to studies of the fluxon dynamics of one-dimensional
Josephson-junction arrays and ladders, dislocations, tribology, and other [{&0d$3-182608)04833-4

V(X]):d

I. INTRODUCTION competitions. The standard FK chain can be described in
terms of the following choices:
simple many-body systems with an effort to disentangle the
complexity of macroscopic systems with competing interac-
tions. The well-known Frenkel-KontorovdFK) model,
1
neighboring forces and subject to a periodic substrate poten- U(Xj+1.%) = 5 K(Xj 17X -a)?, v
tial, is one of the simplest capable of capturing the essential
complexitiest— In dimensionless form, the Hamiltonian of whered, K, a, andb denote the potential barrier height,
respectively. The commensurability of the frustratiégh
N1 ) = b/a may strongly affect the spatial structure of the system.
H=2 PV +U X=X |, (1) The ground state of the FK model has been fully investigated
wherex; denotes the position of théh element in the chain incommensurate phase transitions were found and theoreti-
andp; is the corresponding momentum. The first term rep-cally described. The theory developed by Aubftands as
resents the kinetic energy per elemevi{x) describes the one of the deepest achievements in theoretical comprehen-
i.e., V(x)=V(x+b) with b the substrate periodJ(x; this s_ystem to dé¢Ref. 5, ac, or both forcesin dissipative_
—x;) describes the interaction between the nearest-neighbéinertialess cases were also explored, where the dynamical
elements, which is either convex or nonconvex, depending\ubry’s phase transitions and Shapiro stefaynamical
tonian (1) contains both substrate interactions and mutuaintrinsic properties of the FK model and reveal some essen-
couplings between elements, which may lead to complicatefial features of spatially modulated systems. _
spatially modulated structures. Spatially modulated patterns The dynamical FK model was applied to many fields,
ter physical systems, such as ferromagnetic phases of the rgpeoblems self-organized criticalitf SOQ,° and Josephson-
earths and their compounds, long-period structures of binarjunction arraygJJA) (Ref. 10 and ladder$JJL).*! Actually,
alloys, graphite intercalation compounds or the polytypicthe FK model is a discretized version of the sine-Gordon
materials! In general, the physical origin of this spatially consider the effects of external influences, such as dissipa-
modulated behavior is the competing interactions in the fred¢ions, fluctuations, and external fields, thus it is more reason-
energy of systems. The FK model is one of the simplestable to include all these effects. In this paper, we discuss

Much attention has been paid in the past twenty years to —
t-oof ]

which describes a chain of atoms interacting with nearest-
the FK chain reads coupling strength, spring constant, and the substrate period,

=t over the last few vyears, and the commensurate-
substrate potential, which is assumed to be a periodic fornion of the physics of modulated phases. The responses of
on the studied physical systems. The formula in the Hamilmode locking were observed. All these studies reflect the
have been experimentally observed in many condensed maguch as charge-density wav@DW),’ tribology and surface
phases of spinelloids, micas, perovskites and othe(SG systems. In an experimental environment, one has to
options among many models which describe this kind ofonly the spatiotemporal dynamics of a dampertia) stan-
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dard FK chain influenced by a dc external force. It iskinds of motions, i.e., periodic, quasiperiodic, and chaotic,
showrf? that the weak noise can only slightly smooth thecan be observed on steps. We summarize the results and
resonances discussed below, and the influence of an ac forpeopose future topics in Sec. VIl.

will induce more complicated spatiotamporal patterns. The Numerical simulations will be used to study the spa-
dynamics in the dissipativéoverdampep limit under the tiotemporal dynamics in this paper. The fourth-order Runge-
influence of both dc and ac forces were fully discussed irKutta integration algorithm is used and the time step is ad-
relation to CDW problems and the ac effects in experimentgusted according to the numerical accuracy. Periodic
of Josephson-junction ladder arrdys'which were found to  boundary conditions are added, i, () =X;(t) +27M,
correspond to the dynamical Aubry’s phase transition andvhereM is an integer that counts the net number of kinks
Shapiro steps, respectively. However, the inertial effects inrapped in the ring, therefore the frustrationsis M/N and
some cases might be significant and cannot be ignoredhe spring constant will ba=274§. We mainly discuss the
moreover, in the underdamped region, inertial effects beaverage velocity of the chain, which is a good candidate for
come dominant, multistability leads to the so-called hysterstudying the response of the FK chain to external forces. The
esis effects, hence the system will exhibit complicated Spaaveraged velocity of the chain is defined as
tiotemporal patterns. We will focus on the underdamped- (1/NysN . (x.), where( ) denotes the time average.

case. The equation of motion discussed here can be written =

as
II. KINK-RADIATION INDUCED PHASE LOCKING:

, . . RESONANT STEPS
Xj+’ij+S|an:K(Xj+1_2Xj+Xj_l)+F, (3)
The key consequence introduced by the discreteness of
wherey is the damping coefficienK the coupling constant, the chain is that the solitary wave will radiate small-
andF the external bias. The frustratiahdoes not appear in amplitude linear waves when it moves. The mechanism be-
Eq. (3), but it plays a significant role in the dynamics of Eq. hind this behavior is the competition between the harmonic
(3). A mechanical realization is a chain & identical chain and the periodic substrate. Due to the discreteness of
damped pendula that are driven by a uniform torque andhe chain, it will collide with the substrate when it moves.
coupled by torsional sprindg$.For very large coupling and For the continuum SG systems, the attractors in the low-
number of elements, the systdB) can be well described by velocity regime are traveling waves. Such is also the case for
the continuum SG equation. It is shown tHawvhen the ex- the discrete version, the wave is composed of a moving kink
ternal applied force varies, the velocity of the SG chain has and its radiated phonon waves in its wake. This is shown in
critical valuev.=2m8\K that separates two kinds of dy- our numerical experiments. The phenomenon of the radiation
namics(kinks). Whenv <uv.., the motion is that of localized by a moving kink was discussed by Curgtal,'® Peyrard
solitons, which is called théow-velocity regimeand they ~ and Kruskaf,’ and other authof§ in numerical studies, and
—F relation in this regime is a continuous line. When also found in experiments on Josephson-junction arfays.
>v., the motion is characterized by the whirling wave, i.e.,Some cases the kink motion and its radiated waves can be-
the moving kink is strongly extended, we call this regime thecome phase-locked and then lead to quantized velocity of the
high-velocity regime There exists an unstable region be-chain under a constant force. This occurs when the linear
tween these two regimes, which corresponds to the gap ofmodes are separately excited, for if many different modes are
the v —F characteristics. These two regimes exist for bothexcited simultaneously the resonance will overlap and then
discrete cases and continuum cases, but the dynamics intrgiscrete velocity cannot be observed. It should be noted that
duced by discreteness may be a distinct feature, which wilthe kink shape will strongly affect the final results, as can be
not happen for the continuum cases. The whirling-instabilityseen below.
induced resonances in the high-velocity regime were well Theoretical considerations were explored by several
described in Ref. 14. We will focus on the dynamics in theauthors'®but some drawbacks and even mistakes exist in
low-velocity regime, which is the consequence of anothettheir discussions. First, the equation of motion was directly
kind of mechanism. We shall give a precise mean-field delinearized to discuss the linear waves radiated by moving
scription of resonances in this regime. kinks. One should be aware that the linearization should be
The paper is arranged as follows. In Sec. II, the dynamicg!sed around thenoving kink thus the direct linearization is
in the low-velocity regime are theoretically discussed, whergnot correct. Second, an approximation was made of the kink
we will introduce a mean-field treatment which is proved todirectly from a 2r form. This consideration is too crude to
be perfectly effectivé® This treatment results in a complete grasp the crucial points. In fact, only in some limiting cases,
description of the resonance behavior in the low-velocity refor exampleM=1 and very largeN, i.e., §—0, is this ap-
gime. Section Il is devoted to numerical simulations. Weproximation valid. For finite frustratiod , the kink appar-
show that the theory proposed in Sec. Il agrees very weléntly is not a 27 form, thus the effect of kink solution should
with numerical results by varying the mean-field parameterbe considered. Third, all previous discussions did not con-
In Sec. IV, the physical meaning of the mean-field considersidersubharmonic resonanceshich may be very important
ation is discussed, which is related to Aubry’s Cl phase tranfor finite frustration(multiple trapped kinkscases, thus the
sition. Section V gives a discussion on prohibited resonancegsonance condition should include the subharmonic cases.
and give a resonance prohibition criterion. The high-velocityBased on the considerations of all the above points, let us
whirling mode will lead to the solitary-wave instability of give a more precise description of quantized velocities.
some low-velocity steps. Spatiotemporal dynamics on low- Assuming the static kink solution i}, j=1,... N,
velocity steps are discussed in Sec. VI. It is shown that threarhen it moves along the chain and linear phonon waves are
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radiated in its wake due to the discreteness, then we can 0.6 I
linearize the equation of motiof8) around the moving kink 1 M=t s
: : - 41
X¥ (1) by insertingx;(t)=x(t) +u;(t) into Eq.(3) and get 0.4 - @n
i i i i ] .
: ) 3.1)
uj+ yuj+[cod X ) Juj=K(uj 1 —2uj+uj_y). (4 02] 60 62)
- . . 7.1)
For sufficiently small damping/, we can neglect the dissi- 0.0 f
pative term in Eq(4) and consider the conservative case. In 1.5 M—2' ' ' ' (5 3)' 74 '(8 5
fact, the dissipation effect can be compensated by external ) R
driving force. We intend to get the dispersion relation of the 1.0 —— ’
linear phonons. The difficulty in Eq4) lies in thelattice \Y; a2 73 (125)
dependence of the kink solutiOI}W XAn alternative way to 0.5 )
overcome this difficulty is to introduce the mean-field treat- / '
ment, i.e., we replace the term cg§( by an averaged quan- 0.0 ; ' T
i 1.5{ M=3 ” ’
iy IR
1 N 1.0 *”(8,5)
B= NE cogx}), (5) ee(2,1)
=1 i IR
. (3,1

where we call the parametg® a contraction factor. One 0047651 : : , : : :
should note that herg is time independent, because it only 0.00 005 010 015 020 025 030 035
depends on théopological structure of the static kinkWe F
also find the dependence @f on the external driving=, FIG. 1. Thev-F characteristics foK=1.0, y=0.1,N=8, and

leading to an additional contraction effect. However, them= 1, 2, 3. Resonances can be observed on the step transitions. All
present approximation already gives a very precise prediGsteps are labeled by using a pair of integers that describe the reso-
tion. This effect will be discussed elsewhgrén fact, this  nance between the moving localized soliton and its radiated
parameter does describe the contraction effect of the kinkhonons. These resonances are given by(8q.The agreement is
solution. Foré—0, e.g.,M=1 and very largeN, the kink  quite good. Several resonances are labeled on one step, because

solution can be approximated by ther Zorm they are nearly degenerated.
. 0 for j<wt, spectrum. The significance of E() lies in the fact that it
Xj (t)= 27 for j>ut. (6) considers the commensurability effect induced by the wind-

ing numbers, and moreover this formula relates only to the
Then we immediately gg8=1 by using Eq(5). This isthe  frustration 8, implying that the resonance is not a finite-size
case discussed by Watanatieal, but the story does notend effect, but the discreteness effect. The resonance condition
here. As will be shown below, the frustration plays a crucial(8) is the main point, however, it is very strange that all
role in the chain dynamics. Now let us insert the linear pho-authors only used the integer resonante=1. In fact, one
non modeu;(t) =exdi(mt+kpj)] into Eq. (4 and use Eq. may frequently observe higher order resonant steps, as
(5) instead of the lattice-dependent term of$(to get the  shown below. By considering both the correct resonance cri-
dispersion relation terion and commensurability effect, formu®@) gives a com-
plete description of all possible quantized velocities.

w|:\/,8+4Ksin2(%kp). (7)

The circulation frequency of the moving kink ig,=27/T We performed numerical simulations of the syst@nfor
=(v) , the resonance between these two frequencies leads tfifferent numbers of particles and other different parameters.
the discrete velocity of the chain. The resonance conditionn Fig. 1, thev —F relations are given foN=8, y=0.1 and
reads different numbers of trapped kinkd=1, 2, and 3. First we
notice that all curves have resonant st¢piateauy which
Mywg=Mpw), (8)  are the consequences of the locking between the moving

when the kink rotating frequency and its linear mode becom&ink and its linear phonons. In many regions a given driving

phase locked. The geometry constraint implies that the wavforce corresp_onds_ _to several v_elocmes, indicating the exis-
number should satisfkp=2m8m,/m,. Then we get the tence of multistability. Hysteresis can be observed when one
resonant velocity steps adiabatically changes the external driving force, which is a

direct consequence of many attractgreetastable statgs
Keeping in mind that for the continuum SG system, the
), ) —F curve in low-velocity regime is a continuous line, the
transition between resonant steps will result in the discon-
where (m;,m,) is an integer pair that describes the reso-tinuousness of the velocity line, replaced by many quantized
nance between kinks and linear waves ahid the frustra- values. We label the resonances on steps by a pair of integers
tion. The result we obtained here considers all the points wém;,m,) in terms of the theoretical formul@); all the steps
mentioned above, which is a complete resonant velocitgan be well predicted by using E) if we chooseB=0.55,

Ill. NUMERICAL RESULTS

m]_(sﬂ
m;

U(ml,mz):wk:%\/ﬁ+4K S|n2(
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TABLE I. A comparison between numerical resonant steps and theoretical predictions. All parameters are
the same as those used in Fig.1. It can be clearly shown that the mean-field treatment predicts all possible
resonances much better than previous predictions.

Resonancenr(, ,m,) Numerical results Mean-field prediction Previous prediction

(a) 5=1/8, B=0.55

31 0.640 0.637 0.700
4:1 0.525 0.533 0.559
5:1 0.395 0.398 0.420
6:1 0.260 0.266 0.289
7:1 0.150 0.152 0.180
7:2 0.605 0.599 Unpredicted
(b) 6=2/8, p=0.25
2:1 1.000 1.030 1.118
31 0.501 0.500 0.577
5:2 0.751 0.766 Unpredicted
5:3 1.125 1.197 Unpredicted
7:3 0.850 0.855 Unpredicted
74 1.125 1.157 Unpredicted
8:5 1.230 1.229 Unpredicted
12:5 0.850 0.819 Unpredicted
(c) 6=3/8, B=0.15
1:1 1.800 1.888 2.100
2:1 0.720 0.733 0.866
31 0.250 0.286 0.420
3:2 1.368 1.333 Unpredicted
4:1 0.510 0.509 0.559
5:1 0.131 0.172 0.252
7:2 0.510 0.488 Unpredicted
8:5 1.210 1.213 Unpredicted

0.25, and 0.15 foM =1, 2, and 3, respectively. Subharmonic m;:m, andnm;:nm, (n>1) resonances at the same value
resonances can be frequently found fdr>1, i.e., these of driving force when starting from different initial condi-
resonances can be easily excited and locked when there tions which correspond to the same value of the average
more than one kink trapped in the ring. To make a clearewelocity. This indicates that many kinds of spatiotemporal
comparison, Table | lists the resonances observed in Fig. 1. fiatterns can be found. Moreover, when the resonant values
can be clearly shown that E(Q) obtained above gives not are very close to each other, the velocity steps are almost
only a much better prediction ofr{;,1) resonances than pre- degenerate and these very close modes may also interact
vious predictiorv = (1/m,) 1+ 4Ksir?(m,6m) (Ref. 14 but  each other to result in complicated motions.
also precisely predicts high-order resonances. For the weaker coupling strengkh, more resonances can
Figure 2 shows several modes of motion of one of theébe excited. In Fig. 3, we give the—F plot for different
particles in the chain for different cases. (@, we give an  couplingsKk=2, 1, 0.25, and 0.1. One finds the steps can be
evolution of a 16-particle chain with only one kink trapped easily distinguished from each other for largér WhenK
inside and for a small drive. Only positive part is shown. It isdecreases, resonances will become vague and overlapped so
observed that the velocity has a higher peak and some lowé¢hat the steps cannot be well distinguished. Rer 0, the
peaks. Higher peak indicates that the particle hops from onbehavior of the chain approaches that of uncoupled patrticles,
potential well to another, and the nearest lower peak is théhus bistable solutions can be observad.
influence of the coupling showing the hopping of the nearest- An interesting problem relates to the dynamical manifes-
neighbor particle. Obviously the propagation of the couplingtation of an incommensurate chain, for example, when the
effects decays exponentially, then the chain exhibits a slipwinding numbers is the golden meads=(/5—1)/2. We
stick motion. With increasind-, the influence of adjacent mentioned that the resonant steps are only related to the
particles becomes largéb) gives a 5:1 resonance fdf=8  winding number and independent of the number of particles.
andM =3, where the particle hops once in each period thaDne may use the Fibonacci sequence to approach the golden

contains five peaks. Additionally, the multikink effect be- mean, i.e..6=2, &, 3, &, ... —dg. In Fig. 4, thev-F
comes evident, which is shown {n) for a larger force. This characteristics are numerically calculated for the Fibonacci
is a high-order resonance. approach to the golden mean. Different damping parameters

One should be aware that each point on theF curve  are adopted, but this will not affect the value of the step. This
perhaps corresponds to several attractors, not just a singie proved in numerical computations. One can easily find the
attractor as pointed out by other authors. One may find botmain resonant steps coincide with each other for different
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1olll } \ H ( ‘M J J | J | ‘ I H ] distinguished for larger coupling while the high- and low-velocity
\ w gl ‘ r\ “' v S { “J regimes will connect for weak couplings; resonances will be
0.5 d M ! l \ | ‘h | smoothed and disappear
0.0 r T T T . . . . .
2000 250 300 350 400 450 500 of dissipative dc-driven dynamics of the FK chain. It was
t found that there exists a critical depinning forée,, below

which the chain will be pinned and above which the chain

FIG. 2. The evolution of one particle in the chain fik=1.0,
vy=0.1, and other different parameter&@ N=16, M=1, F
=0.05;(b) N=8,M=3,F=0.02;(c) N=8,M=3, F=0.15. Slip-
stick motion can be observed {g); high peak is the hopping from
one well to another well, low peaks are the influence of
neighboring-particle hoppings; the perturbation decays exponen-
tially. (b) shows a 5:1 resonance, whil® gives a high-order reso-
nance.

N and M. This result proves that the resonant steps only
depend on the winding numbé= M/N.

IV. PHYSICAL INTERPRETATION OF THE MEAN-FIELD
TREATMENT

. . . '
It is shown from the above discussions that our theoretical

result can precisely predict all possible resonant steps, bu
one may find thap varies for different frustratiod. Then a
natural question arises: what is the relation between the con
traction factor and the winding number? Does the contrac-
tion factor have some physical meaning? We focus on the
exploration of this problem.

Because the property g8 depends only on the form of
the static kink, let us study the dissipative case

X;= —cog X))+ K(Xj11—2X;+X;_)+F. (10

will slide. For a commensurate chairational 8), F.>0 for
all K, while for the irrationald, there exists a criticak,
whenK>K, the chain is pinned and whéa<K_ the chain
slides. By averaging Eq10) on latticesj, one can get

(x;y=—(cogx))+F. (12)

2.0

1.5 -+

1.0

0.0 F——
0.0

FIG. 4. Thev-F

— T ' T T T T T T
02 03 04 05 06 0.7
F

relations for the approaching éfto the golden

In the absence df, Eq. (10) is used to numerically explore mean §;=(5—1)/2 by using the Fibonacci sequencé

the ground states of the FK chdin fact, the static kink just

_5 8 1321
T 81131211341+ +

for K=1.0 and different dampingsy

corresponds to the ground state, which has been fully studie€ 0.05,0.1,0.2. Different dampings do not affect the step positions.
in recent years. Bearing this in mind, let us recall the studies/ain steps for different cases agree well with each other.
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1.0 , 10

—o—K=0.5
—+— K=0.75
—o—K=1.0

—a— K=1.0 (N=377)
—x— K=2.0
—v—K=5.0
——K=10.0

Vmax

0.0 0.2 0.4 0.6 0.8 1.0

FIG. 6. The maximum velocity ., varies with the frustratiod
for the coupling strengtiK=0.5, 1.0, and 10.0. The effect of the
contraction factor cannot be ignored for smalker Nonlinear re-
gions can also be observed at the edges of the curves.

0.0 0.2 0.4 0.6 0.8 1.0

3 The maximum velocity occurs on the 1:1 resonant step,

FIG. 5. The mean-field contraction fact@ varying with the 1€,

frustration 8. The curves are symmetric aboéit1/2. The factor i
decreases when increasing the coupkgPeaks are rational reso- Umad 8,K) = VB(8,K) +4K sin’(8m), 13
nances, which form a Farey tree.

which is a function ofé and K. Because the contraction
Only whenF>F, can the static kink move freely along the factor 8 is a highly nonlinear function of the frustratios

chain, hence we readily get the relation between the maximum velocity and the frustra-
tion is also complicated. In Fig. 6 we give the relations
B={cogx’))=F, (120  vmax— 9 for different coupling strengthk. It can be found

that the relation is rather complicated for sm&/lwhere the
that is, 8 is the depinning force that is needed to overcomecontraction factor cannot be neglected, while for stronger
the Pierels-NabarréPN) barrier and move continuously the couplings, the dominant factor is the sinusoidal term, where
static kink along the chaifThis connection is very interest- the relation is approximately sinusoidaly,,esindm. How-

ing because knowledge of Aubry’s Cl phase transitions noweyer, at the edges of all the curves, the relations are nonlin-
can be directly applied to this dynamical case. For examplegar, whereg plays a dominant role.

B is directly related to the lowest phonon frequency for the
FK eigenspectrum by the scaling relati@nc wé.
In Fig. 5, we give the relations between the contraction

factor g and the frustrations for different coupling con- The agreement between theoretical and numerical results
stants. The curves are symmetric, about 0.5. This is a consgs quite good, as found from the above discussions. One may
quence of the symmetry of the chain. It is shown that thealso find that not all the resonances can be observed from the
curves are not monotonical, i.e., many peaks can be oumerical curves, i.e., the resonances are incomplete. Several
served. These peaks are none other than the rational res@asons can lead to the disappearance of some steps. First,
nances. The most significant resonances lie at 0:1, 1:1, anfle dissipative effect should be taken into account. Large
1:2, and other resonances can also be observed for moderaigmpingy can smooth those weaker resonances. Second, the
K. In fact, these resonances build a Farey tree. This meansupling strength also plays a role in the disappearance of
all resonances can be found by using the Farey sequeng®me weaker resonances. This can be easily understood from
Pn/Uns Pns1/Gne1— (Pnt Pns1)/(Antdns1). With in-  the SG dynamics. For stronger couplings, the discreteness of
creasing couplind<, the curve becomes lower, the contrac- the chain becomes weak. However, the above two effects are
tion factor for the golden-mean winding numbeér ap-  all parametric, i.e., whether the steps can be observed
proaches 0. It is expected that there exists a critig)  strongly depends on the parameter region one chooses. In
whenK>K., 8=0 for §s. In fact, Aubry’s transition from fact, a third reason, an intrinsic reason, should not be ig-
the pinned state to a sliding state occurs. In this case, theored. That is, kink-radiation induced resonances can only
kink has the translational symmetry, thus the summation canccur in the low-velocity regime. Therefore a criterion
be replaced by the integral for largd in Eq. (5), 8  should be

= [27cos*)dx* =0. In the previous section, the values@f

we chose to predict resonant steps agree very well with the U(ml,mz)sv6=2w5\/R, (14)

B— 6 line for K=1.0. It is interesting that a similar plot

between the depinning force and the frustration was obtaineshich means that the anticipated steps that excegdsill
numerically and experimentally by Ustinat al° for ex-  not be observed, whete, is the boundary between the low-
plorations of the fluxon dynamics in the Josephson-junctiorand high-velocity regimes, which is pointed out in Sec. I. By
arrays, where the frustration corresponds to the magnetigserting Eqg.(9) into Eq. (14) and settingX= m,dm/mj,

field. This also confirms our conclusion. whereX e[ 6m,) (becausen,<m;), we obtain the form

V. RESONANCE PROHIBITION CRITERION
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4.0 7 _ = whose mechanism is different from resonances found in low
3.5 1 f(x)=sin°X regimes. Arrows show the jumps between the low and high
3.0 e f(x)=X?-B/4K regimes. The inset of Fig. 8 is an enlarged plot of steps in the

low-velocity regime. One may find that resonances start only
from 6:1. Resonancen); :1 satisfyingm;<<6 may immerse
in the high regime, which become unstable due to the whirl-
ing modes. By using our criteriofl5), we getm;<5. This
is the same as the numerical result in Fig. 8.

The critical frustration that indicates the disappearance of
resonant steps can be determined by

FIG. 7. Plot of the two functions (x)=sir®x and f(x)=x2 Uma=ve=2mVK. (16

— BI4K for K=1.0 andB=1.0, 0.5, and 0.Qdotted lines from  Whenuv ,»<v., all steps can be observed. When the frustra-

below). tion & is less than a criticab,. , vmacve, SOMe steps begin
to immerse into the high-velocity regime and cannot be ob-
B served. The critical frustration cannot be theoretically

X2— Rasinzx and X e[ 8m,%). (15  worked out from Eq(16). We can only obtain it from the

numerical computations. F&¢=0.5, 1.0, and 10.0, we ob-

tain 6.=0.30, 0.222, and 0.1010, respectively.

In Fig. 7 we plot the two functiong(x)=X?— B/4K and
sir’X for B=1, 0.5, and Qdotted lines from lower to uppgr
respectively. FoiB=0, the point of intersection of the two

curves is 0, above which the inequality satisfies automati- The attractors on steps are deformed traveling waves, and
cally. In this case, all possible resonances can be fopnd. the phase-locking between the kink motion and the linear
=1 occurs for6—0 or 1, where the intersection point is waves leads to resonant steps. This basic mechanism is quite
approximatelyX,=0.95. In numerical simulations, we use simple, but the spatiotemporal dynamics on steps may be
usually a finite number of particles, thus the frustration isspphisticated. Dynamics on high wave numHargem;) is
really small whenM is very small andN is very large. For 3 pit simple, because they can be easily excited by a small
example, in the casé=1/N, there are some disappeared external force. For larger forces, many linear modes can be
main steps ifi,;=1). The disappeared steps satisfyém  excited and they can also interact with each other, thus the
= mym/N <X,, which leads tan;<NX,/7=0.93N/7. For  dynamics become complicated. A quite interesting problem
N=8, m;<3, which is in good agreement with the observa-relates to the dynamics of the transitions between resonant
tion of Fig. 1. In Fig. 8, we give the numerica-F char-  steps. In numerical simulations, we observed three routes of
acteristics forN=16, M=1. Both low- and high-velocity motions along a step when one adiabatically increases the
regimes are shown. The steps above the dotted horizontgkiving forceF: Route(1): periodic—periodic—transition to
line are whirling-mode-instability induced resonances,new steps; Rout€): periodic—quasiperiodie-transition to
new steps; Route(3): periodic—quasiperiodie-~chaotic

VI. DYNAMICS ON THE STEPS

7753 —transition to new steps.
1 Route(1) mainly occurs for smalF cases. In this case, on
6-4°° — e a resonant step, a moving kink couples to its linear waves
Joo| Zon ’ and they are phase locked. Further increase of the driving
5., /,(f;%};" force will not further increase the velocity of the chain, the
1 s increase of energy is used amplify the linear waveshen
4O T e o at a critical force the large linear wave may cause the reso-
1 ____ﬂ nance to become unstable and the transition to another step
Vo34 ’ occurs. Here the coupling to linear waves can be considered
1 as anadditional dampingWhen the external drive becomes
24 - larger, several linear modes will interact with each other,
1 — leading to the quasiperiodic or even chaotic motions. The
14 high-velocity region role of the drive in these cases will be both amplifying the
[ linear waves anaxciting new linear modedn Fig. 9, we
0 —TT7—T7— 7 calculated Poincaresections sir,—sinx, by strobing the

00 01 02 03 £ 04 05 06 07 phases whenever the mean phage)=(1/N)=]L,x(t)
=0 (mod 27) for N=8, M=2 on the 7:3 step. Fror(®)—

FIG. 8. Theu-F plot for N=16 andM =1, whereK=1.0, y (e), F=0.112,0.12, 0.13, _0.15, 016 and_ 0._165, re_spectively.
=0.1. Both low- and high-velocity regimes are shown. Resonance50r @ smallerF, the chain exhibits periodic motions, the
also occur in the high regime due to the whirling-mode inducedS€ction only contains a point; this is not shown in Fig. 9. For
parametric instability. The inset shows the enlarged plot of the lowF>0.11, the motion becomes quasiperiodic, corresponding
velocity regime. All resonances are labeled by using the theoreticdlo the emerge of a small closed torug@. Further increases
equation(9). Resonances;,1) wherem; <6 disappear due to the Of external force cause the quasiperiodic motion to become
resonance prohibition criterion given by Ed.3). more complicated, the closed curve beconmieformed,
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FIG. 9. A historic plot of the surface of section ®jr-sinx, sin(x,)

where the mean phase-(t)= (1/N)EJN:lxj(t):0 (mod 27) for ) ) o, ] ] )
N=8,M=2 on the 7:3 stepF=0.112, 0.12, 0.13, 0.15, 0.16, and FIG. 10. An illustration of Poincarsections sir,—sinx; for N
0.165 for section$a) to (e), respectively. The torus represents qua- =8, M=3 on the 3:2 step, wheté varies from 0.162 to 0.213 for
siperiodic motion. The size of the torus increases and deforms witfhe pictures froma) to (I). It vividly demonstrates the bifurcation
increasingF until it breaks into a new point that denotes a periodic from periodic motion to qausiperiodic and chaotic motions. When
motion, indicating the transition to another dynamical state. increases, the torus becomes larger and twists, then forms a web
and eventually becomes chaotic.
twisted, and enlargedndicating that the energy provided by
the external drive is consumed for both exciting new linearinear-wave frequency satisfy the resonance condition, the
phonons and amplifying linear waves. Whe&nexceeds a motion will be phase locked and then one can observe the
critical value, the torus breaks, a new periodic motionresonant steps in the— F plot. We gave a mean-field treat-
emerges again, and then a new resonance occurs, which cefient of the resonances and a complete description of reso-
responds to the transition to a new resonant step. We alsgant steps. Our theoretical formula can precisely predict all
show a route to chaos in Fig. 10 for=8 andM =3 on the  the steps observed in numerical simulations. In fact, we
3:2 step, wherd= varies from 0.162 to 0.213 for the plots showed that the mean-field approximation is physically rea-
from (a) to (I). This image vividly demonstrates the route sonable and that the contraction factor correponds to the de-
from the periodic to chaotic motions. We still did not plot the pinning force that is necessary to overcome the PN barrier
periodic motion, for it is only a point on the section. Then and freely move the static kink along the chain. This directly
the point grows and becomes a torus, indicating the presen@@nnects the present results to Aubry’s Cl phase transitions.
of quasiperiodic motion. The torus becomes larger andCommensurability plays a crucial role in the kink dynamics
twists, as though in the presence of a “saddle” pditis  of the discrete FK chain. Due to the gap between the low-
not really a saddle pointthen more saddles occur (g) and  and high-velocity regimes, in some cases not all steps can be
the torus becomes a “web.” Further increasifgleads to  observed. Some steps of them are prohibited to occur be-
irregular motion. The motions itk) and(l) become chaotic. cause they immerse into the high-velocity regime and be-
In fact, one may study the interaction of linear modes oncome unstable. We derived a step prohibition criterion,
these steps. This problem is now under further study. which agrees very well with numerical observations. We also
carefully investigated the dynamics on steps and found three
kinds of dynamics of the transitions between the resonant
steps. Dynamics on low steps is generally simple, only a
This paper dealt with the discreteness effect of the SGingle linear mode will participate in the competition, thus
chain in the low-velocity regime. Small linear phonons canthe motion is periodic. On higher steps, several linear modes
be radiated when the localized kink moves along the chain itan be simultaneously excited and they compete and interact,
this region. When the velocity of the moving kink and its leading to quasiperiodic and chaotic motions. Every jump

VIl. CONCLUSIONS
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from one step to a higher step can only produce periodidous diffusion of the Brownian motions of the damped FK
motion and when further increasing the drive force the lineachain?’ This is quite different than the diffusion of an un-
wave is amplified and other modes are also excited, leadingoupled group of Brownian particles in biased periodic
to complicated spatiotemporal patterns. potentials:>?! Another problem relates to the ac dynamics of
The damped dynamics of the FK model can be found inthe damped FK model. Because of competitions of many

many fields of physics, for example in CDW, coupled time scales, the dynamics may be complicated. This problem
damped pendula, JJL, and JJA. Special emphasis has begncurrently being studied.

placed on experimental studies of fluxon dynamics in JJA
and JJL in recent years. The Josephson junction is an excel-
lent candidate for the study of nonlinear dynamics and it has
been applied in many fields. Resonant steps were also ob-
served in experiments of the current-voltage characteristics One of the author§Z.Z.) thanks all the colleagues at the
for JJL and JJA. Therefore we expect the present results cabenter for Nonlinear Studies of Hong Kong Baptist Univer-
also be applied to experiments on JJA and JJL. For the JJisjty for many valuable discussions. This work was supported
the coupling mechanism is very complicated, as the couplingn part by the Research Grant Council RGC and the Hong
is usually a sinusoidal form, thus our results can only beKong Baptist University Faculty Research Grant FRG. It was
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