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Impedance spectroscopy of brushite composites and a scaling approach
to the dispersion behavior of inhomogeneous ionic conductors
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The conductivity of composites prepared from ceramics is studied. The conductivity has an ionic character
and the complex impedance behaves similar to many other inhomogeneous ionic systems. The dependence on
the frequency is nonanalytical in form and can be described with some exponents that appear to depend on the
concentration. We develop a Monte Carlo algorithm and perform a comprehensive computer simulation of the
system. A network analysis reproduces the behavior of the complex impedance so that we can connect
experimentally measured quantities to the internal structure of the system. Our theory predicts the values of the
exponents and gives their dependence on the structure of a particular system. The most important parameter is
the width of the distribution of the local conductivities. When the width increases, the exponents describing the
frequency behavior reach universal values that are independent of the particular features of the system. The
developed theory can be applied to understand impedance spectroscopy data for various inhomogeneous ionic
conductors and some electronic conductors as well.
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I. INTRODUCTION

Impedance spectroscopy is a rather simple and very in
mative tool for studying various properties of inhomog
neous systems.1 The impedance spectra of ionic conducto
are especially interesting and important since the electric
rent flow in such conductors is accompanied by a mass tr
fer. This results in various physical and electrochemical p
cesses: aging, diffusion limited impedance behav
~Warburg impedance!, etc. ~see Refs. 2–6, and referenc
there in!. On the other hand, numerous processes tak
place in inhomogeneous ionic conductors make the inter
tation of the impedance spectroscopy data a difficult pr
lem. At this moment, there is neither an analytical theory
comprehensive computer simulations that allow us to c
nect the measured spectra to microscopical properties o
homogeneous ionic conductors. The effective properties
inhomogeneous ionic conductors are not only interes
physical problems but also the subject of great practical
portance. Let us just mention a few examples. Many biolo
cal objects are essentially inhomogeneous ionic conduc
Solid and liquid inhomogeneous ionic conductors are
bases for various batteries. The conductivity and dielec
response of the brine-saturated rocks are also inhom
neous ionic conductor problems.

In this paper, we consider a simple physical system t
shares many features of inhomogeneous ionic conduc
We investigate the complex impedanceZ(v)5Z1(v)
1 iZ2(v) of the pellets prepared by compacting a powder
calcium dihydrated hydrogen-phosphates granules ha
PRB 580163-1829/98/58~9!/5390~18!/$15.00
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chemical formula CaHPO4•2H2O. This calcium dihydrated
hydrogen phosphate has a monoclinic crystal structure w
four molecules for an elementary cell and is known
brushite.7 When dried, brushite is an insulator. Howeve
when the pellets have been kept in a humid or ambient
mosphere, they have a well-defined conductivity. The c
ductivity of the ‘‘wet’’ composites may be attributed to
thin water layer adsorbed on brushite grains where some
ter molecules dissociate as, say, H11OH2, allowing charge
transfer through the system.8–10

Experimentally we find that the frequency dependence
the complex impedanceZ(v) for the wet brushite sample
has a form that has been associated for a long time with io
conductivity for various inhomogeneous systems~see, e.g.,
Refs. 2–5, and references therein!. It is often convenient to
present impedance data in the form of the Nyquist plot, i
the parametric plot ofZ(v) in the complex plane$Z1 ,Z2%.
Then the curve$Z1(v),Z2(v)% looks similar to a depresse
semicircle. Though this depression has been observed f
long time, this dispersive behavior is still poorly understo
and there is no quantitative theory to connect the depres
semicircle dispersion to the microscopical structure of a s
tem. In the absence of a proper theory, the complex imp
ance measurements can be used for engineering probl
but it is difficult to make definite conclusions about the i
ternal structure of the inhomogeneous system. Usually
dispersion behavior of the complex impedance in ionic s
tems is well approximated by the following empiric
equation:1–5
5390 © 1998 The American Physical Society
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Z~v!}
1

11~2 ivt1!a1
, ~1!

wherea1 is some noninteger exponent sometimes called
Debye parameter1,2 andt1 stands for an effective relaxatio
time. In general, these parameters depend on the obse
system. It is quite reasonable to suppose that the effec
relaxation timet1 is different for different systems; for som
systems, it may also depend strongly on temperature~see,
e.g., Ref. 2!. What may seem more surprising is that t
‘‘critical exponent’’ a1 also varies, from one to one ha
depending on the material. The term (ivt1)a1 even has a
special name in electrochemical literature: The Cole elem
or a constant phase element~CPE!.2–5 The CPE was intro-
duced in electrochemistry science to take into account
continuous distribution of electric equivalent circuits. R
cently, Wang and Bates11,12 have interpreted the (iv)a1 be-
haviors as resulting from the distribution of activation en
gies Eact associated with a large variety of ionic jump
between two sites. A similar approach was proposed to si
late the electrode and interface electrical responses.13

To easily understand the origin of the (iv)a1 behaviors
experimentally observed in electrochemistry, it is necess
to recall that the effective local ionic paths~local electrical
nets! can be built from (R,C) electrical local circuits having
various values ofR andC and linked together in parallel an
in series. If theR, C values are statistically distributed wit
very different extreme values, then the macroscopic evo
tion is obviously characterized by a function having a var
tion ranging from pure conductivev-independent behavio
to pure capacitivev-dependent behavior. This might be e
pressed by writing the macroscopic result as depending
va1 with a1 between 0 and 1.

Nonanalytical behavior of the formva is typically for the
response functions of an inhomogeneous system near
critical point where the size of inhomogeneity—the corre
tion length—goes to infinity. In our case, all characteris
times in the system are involved in the dispersion behavio14

As a first example, conductivitys of classical percolating
composites has the dispersions(v)}va for concentrations
of the conducting componentp close to the percolation
thresholdpc . In this case the critical exponenta is equal to
a5t/(s1t), wheret is the critical exponent for the effectiv
static conductivityse(p) just above the percolation thresh
old se(p)}(p2pc)

t, ands is another critical exponent gov
erning the divergence of the effective dielectric const
«e(p) near the percolation threshold«e(p)}up2pcu2s ~see,
e.g., Ref. 15!. Critical exponentss andt are well defined and
equal to 0.8 and 2.0, respectively, for three-dimensional~3D!
percolating systems. Therefore, the critical exponenta
'0.7 is also well defined for the classical 3D percolati
composites. It follows from this that the 3D classical perc
lation theory cannot explain the variety of the indexesa in
inhomogeneous ionic conductors.

This could be linked to quantum effects in real percol
ing composites with electronic conductivity: the static co
ductivity does not vanish immediately for concentrationsp
smaller than the percolation thresholdp,pc . In the absence
of a conducting channel spanning through the system,
quantum tunneling of the electrons between finite conduc
clusters leads to a finite bulk conductivity. Under such co
e
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ditions, the frequency behavior of the effective conductiv
is different than the one obtained by classical percolati
Namely, the critical exponenta increases up toa
'0.90– 0.98~see Ref. 16, and references therein!. Such a
prominent difference in dispersive behaviors for the clas
and quantum systems is a consequence of the different
tributions of local currents. For classical percolation, the s
tial distribution of local currents is determined by the se
similar structure of the infinite cluster for all spatial scal
less than the percolation correlation lengthjp . On the other
hand, the structure of local currents in the quantum tunne
percolating systems is determined by the spatial periodj t of
the effective Abraham-Miller network.16 For concentrations
p,pc , the periodj t—the tunneling correlation length—i
much larger than the percolation correlation lengthj t@jp
@a0 , wherea0 is the average grain size.16 Therefore, we
here have another example of the dispersive behavior o
inhomogeneous system where the critical exponenta has a
well-defined unique value.

In each case, the critical dispersive behavior of the fo
s(v)}va is achieved when the corresponding correlati
length j is much larger than a microscopical scale.14,15

Therefore, the critical dispersion of the complex impedan
does not depend on particular microscopical features of
system. Let us recall that all critical systems can be divid
into different classes of universality so that the critical exp
nents~a, for example! have unique values for each class.
follows from the above discussion that to explain the vari
of the critical exponentsa observed in ionic conductors, w
have to assume that each of them should belong to a diffe
class of universality.

Le Mehaute and co-workers in Ref. 5 have assumed
the total voltage drop across an inhomogeneous ionic c
ductor is determined by a voltage drop across some crit
surface. In other words, the total resistance of the system
concentrated in the critical surface where the currents ev
tually cross on the way from one electrode to another. If t
critical surface has a fractal structure, it is possible to sh
using noninteger differential method,5,17 that the complex
impedance has the nonanalytical form given by Eq.~1!. Then
the critical exponenta depends on the fractal dimension
the hypothetical critical surface~‘‘Le Mehaute surface’’!. Le
Mehaute surfaces are supposed to have different fracta
mensions for different inhomogeneous ionic conductors:
different solid state ionic conductors considered in Ref
belong to different classes of universality~see also Ref. 4,
and references therein!. Moreover, it was shown in Ref. 5
that the critical exponenta varies with temperature and tim
of storage~aging process! so that the systems should chan
their class of universality. The problem with such an inte
pretation of the nonanalytical dispersion behavior of ion
conducting systems is to connect the properties of the
Mehaute surface, e.g., its fractal dimension, with the inter
structure of the system. This problem has not yet be
solved.

To complete this brief survey on dispersion behavior
the ac conductivity of the forms1(v)}va, where the expo-
nent a may depend on the parameters of the system, le
recall the behavior of amorphous semiconductors in the
quency range, say, 10 s21,v,108 s21 ~see, e.g., Ref. 18
and references therein!. A fractional power law in the fre-
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quency dependence of the dielectric response is also se
various dielectric materials~see, e.g., Refs. 1 and 19!. Nu-
merous theoretical approaches to this problem have b
developed.1,18,19Most of them are based on the one partic
approximation when each electron is considered as inde
dently interacting with an external electric field. Therefo
these approaches cannot be directly applied to ionic syst
where the nonanalytical dispersion behavior of the comp
impedance starts from very low frequencies and is essent
a collective process. Application of the one particle appro
to the amorphous and heavily doped semiconductors is
somewhat controversial since the internal field does not n
essarily coincide with the external one and may fluctu
strongly over the system. This problem may be especi
important for systems with a giant effective dielectric co
stant~see, e.g., Ref. 20!.

To understand the origin of this nonanalytical behavior
the complex impedanceZ(v), we have prepared brushit
composites by adding polymer~polyphenylsulfur! particles
to brushite grains. In this way, we introduce a we
controlled parameter, namely, the volume concentrationq of
polymer particles. When the polymer concentrationq in-
creases, the volume concentration of the brushite grains
pores p512q decreases. Correspondingly, the effect
static conductivityse(p) also decreases and vanishes a
concentrationp equal to the percolation thresholdpc , which
has been measured to bepc>0.23. As was stated above, th
conductivity of the brushite-polymer system is due to t
thin water layer adsorbed on brushite grains; it is then q
natural that the percolation threshold takes the valuepc
50.23, which is typical for 3D percolating composites.

The anomalous dispersion of the complex impeda
Z(v), shown in Eq.~1!, takes place for all studied concen
trations, from p51 down to the percolation thresholdpc
50.23, but the parameters of the dispersion curve cha
dramatically. First, the onset of the anomalous dispers
shifts toward smaller frequency by many orders of mag
tude when the concentrationp decreases. That is, the effe
tive relaxation timet1 increases toward the percolatio
threshold. Then the critical exponenta1 also changes with
concentration. This behavior of the complex impedan
Z(p,v) is quite unusual. Since the brushite grains are
sponsible for the effective conductivityse(p,v) of the com-
posites, we could expect, in agreement with percolat
theory,15 thatZ(p,v) is just proportional to some function o
the concentration Z(p,v)}zb(v) f (p). The impedance
zb(v) has the meaning of the impedance of a brushite g
~or contact between the grains!, while the functionf (p) is
such thatf (1)51 for p51 and there is an asymptotic be
havior f (p)}(p2pc)

2t for p close to the percolation thresh
old pc . Therefore, the frequency dependence of the imp
anceZ(p,v) should be the same for all concentrationspc
,p<1. It could be argued that, for sufficient high freque
cies, the displacement currents flowing in the dielec
grains and pores should be taken into account. Neverthe
this cannot change, under any circumstance, the relaxa
time t1 in Eq. ~1! by several orders of magnitude.

The paper is organized as follows. First we consider
conductivity of the brushite composites on the microscop
level and find the most plausible pattern of the local cond
tivity distribution. The obtained local conductivities are th
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used in a computer simulation of the system. A special a
extremely effective numerical method which we call exa
numerical renormalization has been developed to calcu
the complex impedance of the brushite composites. The
sults of our computer simulations allow us to develop a sc
ing theory of the effective complex impedanceZ(v). The
theory describes the dispersive behavior and explains
dramatic changes of the relaxation timet with concentration
p. It appears that there are two ‘‘critical’’ exponents in th
system. One isa1 which can be found in Eq.~1! and the
othera, which governs the behavior of the impedance or
the effective conductivityse(v)}va in the high frequency
limit v@1/t1 . Correspondingly, there are two time scale
t1 and t. The impedance dispersion follows Eq.~1! for the
frequenciesv}1/t1 , and switches to asymptotic behavio
se(v)}va for 1/t1 , !v}1/t. Our theory gives strong evi
dence that exponentsa1 and a take their universal values
a1'0.86 anda51 in the limit of strong disorder.

Under different conditions, the exponentsa1 and a are
just some fitting parameters that can be used to approxim
the effective impedance behavior as a function of the f
quency v. Yet, the dispersive behavior of the impedan
Z(v) is very well fitted by the nonanalytical frequency d
pendenceZ(v)}va when changed by many orders of ma
nitude. We propose a scaling equation for the complex
pedanceZ(v) that reproduces its dispersion behavior in t
entire frequency range.

We then briefly describe the experimental method a
compare the experimental data with theory. It appears
the analytical equation obtained from the computer data w
reproduces the dispersive behavior of the complex imp
anceZ(p,v) obtained in the experiment. We obtain the d
pendence of the exponentsa1 , a and the effective relaxation
ratest1 , t on the concentration of the conducting grainsp
and other parameters of the system such as temperature
example. Finally, we show in the discussion that the m
features of the dispersive behavior of many others inhom
geneous ionic conductors can be explained qualitatively fr
the approach developed in this paper as soon as a local
ductivity can be defined.

II. MICROSCOPICAL CONSIDERATIONS
ON THE LOCAL CONDUCTIVITY

Let us start by studying the origin of charge transfer
brushite composites. Dried brushite composites have a c
ductivity close to zero. If kept at room conditions or, bette
in a humid atmosphere, they acquire a well-defined cond
tivity. For example, the pure brushite composite (p51) has
a low frequency conductivity of 1.13104 sec21 ~here and in
the rest of the paper we use cgs units!. It has been shown tha
what is observed is the conductivity of the thin water lay
adsorbed on the brushite grains.14 The adsorbed water ha
been measured as 0.01–0.02 %~by weight! of the bulk com-
posite. Taking into account the average size of the brus
grains (a0>1.831023 cm) and the density of the brushit
(rb52.31 g/cm3) we obtain the average thickness of the w
ter layer,d0;1027 cm. Since the average distance betwe
molecules of waterl 0 is equal tol 0>331028 cm ~Ref. 21!
the adsorbed water layers are only a few molecules th
Depending on the humidity rate, these layers might be m
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or less discontinuous. Dykhne proposes22 that for a low hu-
midity rate the water does not cover the brushite grain i
continuous film but forms ‘‘lakes’’ on its surface. The lake
may have ramified structure due to the inhomogeneities
the surface. Obviously, only lakes common to 2 grains p
ticipate in the global conductivity. When the humidity in
creases, the water lakes grow as well as the contact a
Finally, the adsorbed water on one grain forms an infin
percolating cluster and the brushite grain reaches the e
tive surface conductivitysg as it takes place in our exper
ment.

Let us now study thissg conductivity. We assume tha
the conductivity of the water layer is mostly determined
proton conductivity and allowing the relaxation distance
a proton to be aboutl 0 , we obtain that the proton concentr
tion in the layer is aboutnp>831014 cm23. In other words,
there are about 109 protons per square centimeter of th
brushite grain. Such a significant concentration of proto
can be linked to the fact that the effective energyEH2O

s for

dissociation of the water molecule H2O→H11OH2 is much
smaller on the brushite surface thanEH2O in bulk water. Cor-

respondingly, the proton concentrationnp}exp(2EH2O
s /2T)

is much enhanced with respect to the bulk water. We
write the following chemical equation for the equilibrium
state: H2O~adsorbed!↔H1~surface!1OH2~adsorbed!, from
which it follows that the effective dissociation energy
equal to EH2O

s >EH2O1DH2O2DHO1DH , where DH2O,

DHO, and DH are the surface energies for the water m
ecules, hydroxyl ions, and protons, respectively. The brus
grains have acid properties and strongly attract hydro
ions. As a first approximation, the energyEH2O needed to

separate OH2 from H1 in bulk and the energy needed
separate OH2 from the surface of the grain might be consi
ered as similar:DHO should be close toEH2O. A specific
mechanism of the surface reactions has been propose
Ref. 23 where the energyDHO is given, which is almost
equal to the dissociation energyEH2O ~in the bulk!, while the

energy DH is about the energy of a hydrogen bond, i.
DH50.1– 0.3 eV. The adsorption energyDH2O, as follows
from our experimental data, is small and is of the order
room temperature. From the above discussion, it follows
the surface dissociation energyEH2O

s is much smaller than

the bulk valueEH2O and consequently, the concentrationnp

of the protons is strongly enhanced in the surface layer.
soon as a proton is dissociated from a water molecule, it
move rather freely over the surface of the brushite grain. T
activation energy for surface motionEp is in general less
than the affinity energyDH . Note that we do not take into
account the direct Coulombic interactions between char
particles since the average energy of that interac
e2Anpd0;1022 eV is less than other characteristic energi
including the thermal energy at room temperature.

All the above estimations are very crude since the surf
of the brushite grains is inhomogeneous: the thickness of
water layer as well as the energy of dissociationEH2O

s , the

affinity energyDH , and the activation energyEp fluctuate
over the surface. Because the ratio isEH2O

s (r )/kT@1, one

can write the local proton concentration asnp(r );exp
a
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@2EH2O
s (r )/2kT#. Hence, the local surface conductivit

sg(r );np(r )exp@2Ep(r )/kT# fluctuates strongly over the
brushite surface. Note that the Debye radiusr D estimated
from the average proton concentrationnp is small enough
(r D;431027 cm) to warrant the introduction of local con
ductivity s~r !. We will not discuss the problem of the con
ductivity of a single brushite grain in detail. Instead, we p
scribe it some effective conductancesg that is assumed to be
more or less the same for all the grains in average.

The effective conductivityse of the brushite composite
is then determined mostly by the contacts between differ
brushite grains~3D percolation!. The excitation energyEc
for a proton jumping from one brushite grain to another
about ~or larger than! the affinity energyEc>DH so that
Ec /kT@1. The contacts between the brushite grains h
different sizes and shapes and the affinity energyDH is sub-
ject to strong fluctuations. It would appear reasonable t
the jumping energyEc fluctuates strongly from contact t
contact. Therefore, the contact conductivitiess i}exp
(2Ec /kT) are distributed in an exponentially wide range
magnitudes. We adopt the simplest possible assumption
the jumping energyEc is distributed uniformly in some in-
terval DEc around the average valueEc0 . Then the contact
conductancesS i can be rewritten in the following form:

S i>S0exp~2lxi !, ~2!

where the prefactorS0 is equal to S0}exp@2(Ec0
2DEc/2)/kT#, the dimensionless parameterl is Ec /kT and
is largel@1 ~as kT at room temperature is 2.5 meV!, and
random parametersxi take values in the range 0,xi,1.

It is possible to show20 that any interstitial defect in the
inhomogeneous conductors gives rise to a corresponding
pacitance switched in parallel to the interstitial conductan
This capacitance appears to be independent of the inters
conductance. In our case, it is the capacitance of the con
between two brushite grains. If we take into account
contact capacitance, we obtain that for finite frequencyv the
contact conductanceS i now becomes

S i~v!>CF2
iv

4p
1s0exp~2lxi !G , ~3!

where the geometrical factorC has dimension of length~re-
member that in cgs units a capacitance has length dimens!
ands05S0 /C. To simplify, we assume that the factorC is
the same for all brushite-brushite contacts. Finally, o
should take into account the bulk dielectric constant« of the
brushite composites. This quantity becomes important w
the frequencyv exceeds the value of the characteristic co
tact conductivitys0 and the brushite grains become disco
nected effectively.

The electric current in the ionic system is accompan
generally by a mass transfer. In our particular system,
cations~most probably protons! discharge at the cathode an
form, e.g., hydrogen molecules that may escape from
system. To compensate for the deficit of the cations so
diffusion flow of the cations should come to the cathod
Suppose thattd is the characteristic time for the diffusio
process. When the frequencyv of the external electric field
is larger than the characteristic diffusion frequencyv.1/td
the diffusion processes are unimportant since the cath
and anode switch places too fast for any transfer to t
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place. For frequenciesv,1/td the diffusion imposes addi
tional restrictions on the number of discharged particles a
therefore, on the current flowing through the system. We w
not consider the diffusive limited conductivity~Warburg
impedance!24 and restrict ourselves to the frequenciesv
.1/td in this paper.

III. COMPUTER SIMULATION: PHYSICAL MODEL OF
BRUSHITE COMPOSITES AND EXACT NUMERICAL

RENORMALIZATION METHOD

A. Physical considerations

In the previous section, we proposed that contact cond
tances between the brushite grains should be distributed
cording to Eq.~3!. Such an exponential distribution of th
local conductivitiess~r ! is common for many inhomoge
neous ionic conductors, provided that the notion of lo
conductivity has a meaning. Indeed, the charge transfe
the ionic conductors is typically an activation process. T
local activation energyEc(r ) is usually much larger than th
thermal energyT and fluctuates over the inhomogeneo
ionic system. Therefore, the local conductivity fluctuatio
can be written ass(r );exp@2Ec(r )/kT#.

To calculate the effective conductivity of the brush
composites and obtain insight into the dispersion behavio
the system with the exponentially distributed local cond
tivities, we arrange elements with conductances given by
~3! in a cubic lattice. Thus we obtain the following syste
for a computer simulation: each bond of the cubic lattice c
be either broken or has conductivity

s i52 i
v

4p
1s0exp~2lxi !, ~4!

with parameterl@1 andxi distributed uniformly between 0
and 1. Note that we skip the geometrical factorC in Eq. ~4!
in comparison with Eq.~3! since it is assumed to be the sam
for all conducting elements and consequently does not af
the dispersion behavior of the effective complex conduc
ity. The broken bonds in the cubic lattice represent the po
mer grains and their conductivity is assumed to be zero. T
simple computer model does not include the conductanc
the brushite grain, the capacitive conductance of the poly
grains, etc. These quantities should fluctuate much less
the contact conductivities, hence, they cannot qualitativ
change the dispersive behavior which we are interested in
Sec. V, we will discuss some of these complexities in
scaling theory when we compare the experimental data w
our computer results.

Thus, we have a percolating system where the real pa
the conducting elements is distributed in an exponenti
large ranges0 exp(2l)<Re(si)<s0, l@1. Below, we will
measure the frequencyv and effective conductivityse in
terms of s0 . Then the dimensionless conductivity of th
conducting bond takes the following form:

s i52 iv81exp~2lxi !, ~5!

wherev85v/(4ps0) is the reduced frequency. We use
random number generator to put the conducting bonds w
probability p and broken bonds with probability 12p in the
cubic lattice. Then, again, we use a random number gen
d,
ll
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tor to generate the random numbersxi and obtain the con-
ductivities of the conducting bonds according to Eq.~5!.

We now have to introduce the external electric fieldE
5$Ex ,Ey ,Ez% in the computer simulations. The Kirchho
equations used to find the effective conductivity are obtain
by discretizing the charge conservation law¹•s(¹w1)50,
wherew1 and s are the local potential and conductivity o
the mesh. The charge conservation law can also be writte
¹•s(E2¹w)50, whereE is an external electric field while
w is the fluctuating potential with volume average^¹w&
50. When we discretize this equation on a cubic lattice
external field is represented by batteries in series with e
conducting bond: their electromotive forces~EMF’s! will be
equal toEx for x bonds,Ey for y bonds, andEz for z bonds.
The introduction of the external electric field by EMF’s in
cluded in all conducting bonds allows us to set cycle bou
ary conditions in all directions. Thus, our finite size perc
lating systems have no boundaries at all: finite size effe
are much reduced for cycle conditions in comparison w
other approaches discussed in the literature.15,24–26Note that
the equation̂¹w&50 and its discretization on the lattice a
fulfilled automatically for the chosen boundary conditions

The simulation of a three-dimensional percolating syst
with exponentially distributed local conductivities is a diffi
cult computer problem since we should consider a sys
large enough to achieve the statistical limit. To tackle t
problem we have developed an algorithm which we call
act numerical renormalization~ENR!. This algorithm can be
considered as an outgrowth of Refs. 26 and 27.

B. Computer simulations

To gain insight into the ENR method, let us first consid
a simple system of five conducting sites as shown in Fig
We write the charge conservation law, the Kirchhoff equ
tions, for each sitei shown in Fig. 1 in the following form:

(
j

s i j ~f j2f i1Ei j !50, ~6!

wheref i is the potential of a sitei, s i j is the conductivity of
the bond between the sitesi and j, andEi j is the EMF in-
cluded in the bond$ i , j % representing the external field. Th
summation in Eq.~6! goes over allj sites that are neighbor
to the sitei. From Eq.~6!, we can express the potential of

FIG. 1. Exact numerical renormalization~ENR! procedure for
decimating site 4. Note that the number of neighbors of site 3
creases from 2 to 3.
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particular sitefk in terms of the potentials of the other site
Thus, e.g., the potentialf4 of site 4 in Fig. 1 is equal to

f45
( js4 j~f j2E4 j !

( js4 j
, ~7!

where the summation is over all neighbors of site 4, that
the indexj takes values$1,2,3,5%. The potentialf4 appears in
the Kirchhoff equations for site 4 and for its neighbors. Su
stituting f4 given by Eq.~7! we exclude the potentialf4
from the total set of Kirchhoff equations. Thus, we exclu
site 4 from the system. The conductivities of the bonds
tween the neighborsi and j of the excluded site 4 chang
under this transformation taking new values

s i j* 5s i j 1
s i4s4 j

( js4 j
, ~8!

where the summation is still over all neighbors of site
Note that even disconnected neighbors 1 and 3 of sit
(s1350) are connected now: the sites that were connec
indirectly via site 4 become connected directly after t
elimination of this site. This decimation process is a gen
alization of the nodal method.28

The EMF’s Ei j that were standing in the bonds of th
original system also change after the elimination of site
EMF Ei j , standing in a bond between neighborsi and j of
eliminated site 4, takes the new value

Ei j* 5Ei j

s i j

s i j*
1S 12

s i j

s i j*
D ~E4 j2E4i !, ~9!

wheres i j* is given by Eq.~8!. The new valuesEi j* of EMF’s
depend on the initial EMF’sEi j but also on EMF’sE4 j and
E4i which stood in the bonds 4i and 4j .

Thus instead of the initial system of five sites shown
Fig. 1~a! we obtain the new renormalized four-site syste
shown in Fig. 1~b!. Since the transformations given by Eq
~8! and ~9! are exact, the new system is equivalent to
initial one: the response of both systems to the currents
voltages applied to the external terminals$a,b,c,d% is the
same. However, the energy dissipation between original
renormalized systems is different. When we remove a
from the system, we lose the dissipation associated with
circular currents flowing through the eliminated site. We
lustrate this in Fig. 2, where the site configuration is alm

FIG. 2. Exact numerical renormalization procedure for decim
ing sites 3 and 4. The response to an external field or current is
same in~a! and ~b!, but the dissipation due to the loop curren
~1-4-5! and ~1-2-3-4! is lost.
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the same as in Fig. 1, but sites 3 and 5 have no exte
terminal. After decimation of sites 3–5, we lose the dissip
tion due to mesh currents. Yet, the response to an exte
signal is the same for the diagrams in Figs. 2~a! and 2~b!. By
solving the Kirchhoff equations it may be shown that t
difference in the energy dissipationQ in the original and
renormalized systems is independent of the voltages app
to the external terminals. Thus, for the diagrams shown
Figs. 1~a! and 1~b!, the difference in the dissipationQ4 ,
arising due to the decimation of site 4, is given by the f
lowing equation:

Q45(
i , j

~E4i2E4 j1Ei j !
2s4is4 js i j

s4is4 j1s i j (ks4k
, ~10!

where the summations over indexesi, j, andk are still over
all neighbors of the eliminated site 4. The system of E
~8!–~10! forms the closed system of our ENR procedure.

To calculate the conductivity of the percolation syste
discussed above we apply ENR transformations, site by
to the system. Since we use full cyclic boundary conditio
we remove all the sites from the system. When eliminat
site m, we calculate the dissipationQm connected to the cir-
cular currents flowing through this site using Eq.~10!. When
all the sites are eliminated by means of the ENR proced
we obtain the full dissipation in systemQ by adding all local
dissipations:

Q5(
m

N

Qm , ~11!

whereN is the total number of sites. Then the effective co
ductivity of the systemse comes from the following equa
tion:

seE0
25Q, ~12!

whereE0
25Ex

21Ey
21Ez

2 is the square of the external field.
In practical calculations, we put the amplitude of the e

ternal field E0 equal to E05$1,1,1% for dc as well as ac
current. In the former case, local conductivitiess i j together
with effective conductivityse ascribe complex values an
parameterQ loses the meaning of energy dissipation. Sin
we consider a quasistatic case, Eqs.~8!–~10! still hold for ac
current. Moreover, it is easy to verify that Eqs.~11! and~12!
still give the complex effective conductivityse .

Let us now consider how the ENR procedure works fo
system at percolation threshold when the infinite conduct
cluster is strongly ramified and has a blob-link structure15

When we eliminate sitem from the system by ENR, the
number of neighbors for the other sites in general increa
since the sites connected indirectly via sitem now have a
direct connection to each other. For example, the decima
of site 4 increases the number of neighbors for site 3 in F
1 from 2 to 3. In a regular lattice, the application of ENR w
lead to an exponential increase of the bonds per site. Th
fore the number of operations~and computer time! for one
site decimation increases with the number of elimina
sites. The situation changes near the percolation thres
due to the characteristic blob-link structure of the infin
cluster. Consider a blob of sizeL consisting of sites that are
connected by conducting bonds@see Fig. 3~a!, where four
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blobs are represented#. Suppose that the blob is connected
the rest of the percolating system by two bonds only. If
eliminate all sites of the blob but one by ENR, this last s
has two neighbors. Note that the result of exact renormal
tion does not depend on the internal structure of the eli
nated blob. We can apply exact renormalization to all blo
of size L, reducing each of them to one site. Due to t
self-similar structure of the backbone of the infini
cluster,15,26,29,30the resulting structure repeats the structure
the initial backbone, but the distance between new sites
creases from 1 toL. The ENR applied to a self-similar back
bone of an infinite conducting cluster is illustrated by F
3~b!.26 When we reduce all blobs of sizeL using the ENR
procedure, the structure of the blobs of size 2L is substan-
tially simplified. At the next steps of ENR, we can elimina
blobs of size 2L and so on, until the sizeL0 of the whole
system is obtained@see Fig. 3~c!#. In practical calculations
we do not bother to simplify the system before we start
ENR procedure. Thus we do not eliminate the finite clust
in the system or extract a backbone from an infinite clus
since we have found that ENR decimates all the sites v
quickly.

It follows that the ENR procedure requiresN}L0
d opera-

tions to decimate all the sites in a percolating system of s
L0 and dimensionalityd and, consequently, to calculate i
effective conductivity. We can compare this estimate w
the number of operations in other exact methods: the tran
matrix method15 takes aboutN}L0

7 operations and the
Frank-Lobb algorithm25 takes N}L0

4 operations, however
this algorithm works for 2D systems only. For example, t
ENR procedure takes about five minutes on a computer s
as a Pentium 200 to calculate the effective conductivity o
percolating system with size 12831283128 and concentra
tion p close to the percolation threshold.

To test the ENR we have calculated the conductivity o
percolating system with identical conducting bonds at
percolation threshold for different system sizesL0
516,32,64,128. The conductivity was averaged over 64
1600, 400, and 100 trials, respectively. From these calc
tions we estimate the critical exponentt for the conductivity
using finite size scaling.15 Thus, we obtaint52.0560.01
which is close to the known valuet52.0. Note, however,

FIG. 3. Exact numerical renormalization procedure applied
the blob-link structure of the infinite percolating cluster. In the fi
step of ENR we decimate all blobs with sizes from 1 toL ~a! and
~b!. In the next step, the blobs with size fromL to 2L are eliminated
~b! and ~c!.
e

a-
i-
s

f
n-

.

e
s
r

ry

e

er

ch
a

a
e

0,
a-

that the system size and number of realizations in our ca
lations are larger than in all previous works that we know

We point out that the self-similar blob-link structure o
the infinite percolating cluster, sketched in Fig. 3, is an a
proximation designed to represent geometrically the fun
mental property of scale invariance of a physical system n
a critical point.14 The scale invariance—‘‘scaling’’ of the
critical systems is a well-adopted hypothesis that is the b
of the modern theory of critical phenomena. However, it
very difficult to observe this scaling directly in experimen
or computer simulations. Now we can reverse the above
guments and conclude that the exiting efficiency of the E
procedure can be considered as a confirmation of the s
similar structure of the infinite cluster as well as finite clu
ters in a percolating system. Therefore, the success of E
shows that a percolating system is scale invariant at the
colation threshold. Yet, the system does not remain the s
in the process of ENR. The average number of conduc
bond per siteNc increases gradually starting fromNc>2 and
achievingNc>6 at the last stages of the numerical renorm
ization of the system with sizeL05128. This just means tha
we cannot find an exactanalyticalrenormalization procedure
for our percolating systems~and other critical phenomena!.
Alternatively, if we want to keepNc constant during the
decimation, we have to work with a dimensiond larger than
~or equal to! the critical dimensiondc56.

The ENR procedure can still be used far away from
percolation threshold. For concentrations of the conduct
componentp<1, the ENR procedure cannot remove all t
sites. Nevertheless, the elimination of only a part of the s
increases the number of neighbors in the rest of the sites.
renormalization of bond conductivities in the system is a
other important result of ENR. In other words, ENR i
creases the connectivity of the system and mixes conduc
ties of the conducting bonds. Therefore it smoothes
original exponential distribution of the local conductivitie
given by Eq.~4!. After applying the ENR procedure, we ca
successfully use the well-known relaxation method~see, e.g.,
Ref. 24! to find the effective conductivity of the system wit
p<1. Otherwise, the convergence of the relaxation meth
cannot be achieved in the original system if the parametel
in Eq. ~4! is greater thanl>5.

IV. RESULTS OF THE COMPUTER SIMULATION AND
SCALING THEORY FOR THE DISPERSIVE

BEHAVIOR OF INHOMOGENEOUS
IONIC CONDUCTORS

A. Power-law dispersion of the complex impedance
in the entire concentration range

In this section, we present the results of the compu
simulation of a 3D percolating system, namely, the cu
lattice with a concentration of conducting bonds equal top,
the other bonds being broken. Randomly distributed c
ducting bonds, representing the contacts between brus
grains, have conductivities distributed over an exponentia
large range according to Eq.~5!. We neglect polarization of
the polymer grains in comparison with the contact cond
tances and put the conductivity of the ‘‘dielectric’’ equal
zero even at finite frequency. The parameterl in Eq. ~5! has
been chosen to be equal tol510, which corresponds

o
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roughly to the experimental conductivity distribution in th
brushite composites as will be shown in the next section
fact, the main conclusions of this section do not depend
the particular value of the parameterl as soon as exp(l)
@1. We use the ENR method described in the previous s
tion to calculate the effective complex conductivityse5s1
2 is2 for this model. The results for the effective conducti
ity s1(v8) and the reduced dielectric constant«(v8)
5s2(v8)/v8 are shown in Figs. 4 and 5, respectively,
functions of reduced frequenciesv8 @see the discussion a
Eq. ~5!#, for different concentrationsp. Remember that the
percolation threshold is equal topc50.2493...~Ref. 15! for
the bond percolation problem defined on the cubic lattice

The real part of the effective conductivitys1(v8) ~see
Fig. 4! increases by many orders of magnitude with incre
ing frequencyv8. In the frequency region wheres1(v8)
increases significantly its dependence on the frequency
be well approximated by the power-law equations1(v8)
}v8a. We determine that the ‘‘critical exponent’’a as the
maximum value of the slope, i.e., a(p)
5max$] ln@s(p,v8)#/] ln(v8)%v8 . Thus the defined exponen
a(p) increases froma>0.4 for p51 to a>0.75 for p
→pc as shown in Fig. 6. Such an increase of the criti
exponenta is in qualitative agreement with the experimen
data, as we will see.

We can see from Fig. 4 that the onset of the power-l
behavior shifts about five orders of magnitude toward sm
frequencies when the concentrationp decreases fromp51 to
the percolation thresholdpc . This significant shift of the

FIG. 4. Real part of the effective conductivitys1 obtained from
computer simulations as a function of the reduced frequencyv8 for
different concentrations of the conducting bondsp: ~a! p50.26,~b!
p50.27, ~c! p50.3, ~d! p50.5, ~e! p51.0.

FIG. 5. Effective dielectric constant« obtained from computer
simulations as a function of the reduced frequencyv8 for different
concentrations of the conducting bondsp: ~a! p50.26, ~b! p
50.27, ~c! p50.3, ~d! p50.5, ~e! p51.0.
n
n

c-

-

an

l
l

ll

onset of the dispersions1(v8)}v8a is also in qualitative
agreement with our experimental data discussed in the
section. We also determine that the effective relaxation ti
t1 is the inverse proportional of the frequencyv08 , where the
imaginary part of the complex resistivityr2(v8)
5s2(v8)/@s1

2(v8)1s2
2(v8)# is a maximum: this approxi-

mately corresponds to the onset of the dispersion ofs1(v8).
Thus, the defined relaxation timet1 increases exponentially
as the concentrationp decreases, as shown in Fig. 7.

Finally, in Fig. 8 we present the reduced effective co
plex resistivity r8(p,v8)5r(p,v8)/r(p,0)5r18(p,v8)
1 ir28(p,v8) in the form of the Nyquist plot. The impedanc
diagram shows a well-defined depressed semicircle with
so-called damping parameterb5maxv8@r28(p,v8)/r(p,0)#
>0.4. Note that the points for all concentrations collapse t
single curve though the frequency behavior of the effect
conductivity se(p,v8) are quite different for different con
centrations. This discrepancy may be understood if we re
that botha andt depend on the concentrationp ~see Fig. 4!.
Let us also note that Nyquist plots lose information wh
compared to frequency dependence. The Nyquist plot in
8 can be approximated by the well-known empirical equat
~1! ~see Refs. 1–5! which can be written in the following
form:

r8~v8!5
r~0!

11~2 iv8t1!a1
. ~13!

Then we find that the exponenta1>(4/p)arctan(2b)>0.86
whateverp. Therefore, there are two relaxation time scal
t1 in Eq. ~13! and t, which corresponds to the maximum

FIG. 7. Effective relaxation timet for the dispersion of the
effective conductivityse}va obtained from computer simulation
as a function of the concentration of the conducting bondsp.

FIG. 6. Exponenta for the dispersion of the effective conduc
tivity se}va. d: computer simulations,l: result of estimation
according to Eq.~25!.
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slope ofs1(v) in Fig. 4. There are two exponentsa1 anda
to describe the dispersion for the frequenciesv}1/t1 and
v}1/t, respectively. The exponenta is nonuniversal.

B. Frequency dependence of the impedance in vicinity
to percolation threshold

Let us now start the interpretation of the numerical
sults. For different phenomena, we can define different c
relation lengths. If the size of the system is large compare
this specific correlation length, the system can be conside
as homogeneous for this phenomenon.

To understand the behavior of the effective complex c
ductivity se(p,v8) in the considered system, it is instructiv
to start with concentrationp close to the percolation thresh
old pc . At this concentration, the backbone of the infin
cluster of the conducting channels can be viewed as a S
Shklovskii–De Gennes superlattice15 consisting of nodes
connecting via macrobonds. The macrobonds have s
similar blobs—link structures such as that shown in Fig.
Macrobonds necessarily include single connected parts—
bonds. The geometrical distance between neighboring no
in the Skal–Shklovskii–De Gennes superlattice is the pe
lation correlation lengthjp>a0(p2pc)

2n, wherea0 is the
microscopical scale for the problem~e.g., the average size o
brushite grains! and critical exponentn is equal ton>0.88
for 3D systems.15 From now on we will measure all th
distances in terms ofa0 ~i.e., puta051!. The lengthLs of
the shortest path between two nodes in the superlattic
certainly larger than the geometrical distancejp between
them. The following equation holds for this lengthLs>jp

hs,
where the critical exponenths.1 ~Refs. 15, 31, and 32!. If
only the red bonds are taken into account, the critical ex
nenths is equal tohs51/n'1.14~Refs. 15, 31, and 32!, that
is, the length of a macrobond in the superlattice is mu
larger than the geometrical distances between its e
Ls /jp→` for concentrationsp→pc . For a percolating sys
tem with identical conducting elements the conductance
macrobond between two nodes in the Skal–Shklovskii–
Gennes superlattices(Ls) can be estimated ass(Ls)
>s0 /Ls , where s0 is the conductivity of the conducting
element. A percolating system is considered homogene
for scales larger than the correlation lengthjp . Therefore,
the effective conductivityse is estimates to be

se>s~Ls!/jp5s0jp
2~11hs!>s0~p2pc!

t, ~14!

FIG. 8. Nyquist plot of the reduced resistivityr8. Computer
data collapse on the single curve obtained from Eq.~30!, which
gives essentially the same Nyquist plot for all concentrationsp.
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where the critical exponentt5n1hsn. So, if we take into
account only the red bonds and identical conducting bon
the critical exponent ist5n11>1.88.15 This value of the
exponentt is not far away from the valuet>2.05 calculated
above.

Now, let us take into account the distribution of the co
ducting bonds given by Eq.~5!. We still calculate near the
percolation thresholdpc . We also assume that the dime
sionless frequencyv8 in Eq. ~5! is small enough@v8
<exp(2l)#. From now on we takes051. To find the con-
ductance of a macrobond in a Skal–Shklovskii–De Gen
superlattice we follow the procedure outlined in Ref. 33. L
us consider a macrobond which connects two nodes s
rated by the distancejp . We first ‘‘switch off’’ all elemen-
tary conducting bonds in the macrobond. Then we restore
elementary bonds in the macrobond starting with the o
having the largest modulus of conductivity. We continue t
procedure until a conducting path spans between the
ends of the macrobond. The smallest conductivities inclu
in this first conducting path have valuesc52 iv81exp
(2lxc), where the concentrationxc is equal to the percola
tion thresholdxc5pc /p for the percolating problem that i
set by the backbone itself.15,26,31 The conductance of the
macrobond is determined by the conductance of the first p
since all other bonds that are inserted afterwards h
smaller conductivities in absolute value thansc . That is, we
suppose that the electric current chooses a single path
sisting of bonds with the largest conductivities in any blob
the backbone. In analogy to the well-known relationLs

>jp
hs, it is natural to suppose that lengthL of the first con-

ducting path also has a scaling dependence on the correl
length, i.e.,L}jp

h . This new critical exponenth is, in gen-
eral, larger than the critical exponent for the shortest p
h>hs , since the first conducting path consists of the bon
which have the largest conductivities. These bonds do
necessarily coincide with those in the shortest path betw
two nodes in the superlattice. The value of the exponenh
will be determined below. Since the first conductance p
consists of bonds connected in series, its conductances(L)
can be estimated ass(L)5(^r&cL)21, where ^r&c is the
average complex resistivity of the bonds belonging to
path. The conductivities of the bonds in the first path are s
distributed according to Eq.~5!, but the random variablesxi
are now in the range 0,xi,pc /p. The average of the bond
resistivity r i51/s i5@2 iv81exp(2lxi)#

21 is then obtained
as

^r&c5E
0

pc /p

@2 iv81exp~2lx!#21dx

>
ip

pclv8
lnS 12 iv8 exp@l~pc /p!#

12 iv8 D . ~15!

From this equation, it follows that the effective complex co
ductivity se

a}s(L)/jp5(^r&cLjp)21 of the percolating sys-
tem with exponentially distributed conductivities and co
centrationsp close topc is equal to

se
a~p,v8!5A

lpc

p

2 iv8~p2pc!
~11h!n

ln„$12 iv8 exp@l~pc /p!#%/~12 iv8!…
,

~16!
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whereA is some numerical coefficient. Remember that
have takens051. When frequency goes to zero the effecti
conductivity approaches the static limit

se
a~p!5A

lpc

p
~p2pc!

~11h!nexp@2l~pc /p!#, ~17!

where the concentration of the conducting componentp is
still supposed to be close to the percolation thresholdpc .

C. Scaling consideration at the percolation threshold

Exactly at the percolation thresholdp5pc , we should
substitute the system sizeL to the correlation lengthjp in the
equation se}(^r&cLjp)21 according to the finite size
arguments.15 Then Eq.~16! takes the following form:

se~L,v8!}
2 iv8lL2~11h!

ln$@12 iv exp~l!#/~12 iv8!%
, ~18!

Using the ENR method, we have calculated the static c
ductivity se(L)5se(L,0) at the percolation threshold fo
different values of the system sizeL and for different param-
etersl. The static conductivityse(L) appears to agree be
with the equationse(L)>l exp(2l)/L11h, which follows
from Eq. ~18! in the limit v8→0. From these calculations
we estimate that critical exponenth is equal to h51.5
60.1.

In Fig. 9, we present the effective conductivityse(v8)
calculated at the percolation threshold for the fixedL564
and different values of the reduced frequencyv8 and param-
eter l. We can see that the obtained effective conductiv
follows Eq. ~18! for the entire frequency range even thou
Eq. ~18! was obtained forv8,exp(2l) only. This means
that the same path gives the most important contribution
the conductance of a macrobond no matter what the valu
the frequency is. If we adopt this suggestion, we can estim
the critical exponentt to be t5n(11h)'2.2 which agrees
with the result of Sec. III.

Since Eq. ~18! fits the computer data very well, w
use this equation to calculate the exponenta: a
5maxv8$] ln@s(v8)#/] ln(v8)%. We solve equation
]2 ln@s(v8)#/] ln(v8)250 numerically and obtain that th
maximum is achieved at frequencyva8 , which can be ap-
proximated with very good accuracy as

FIG. 9. Real part of the effective conductivitys1 obtained from
computer simulations exactly at the percolation threshold as a f
tion of reduced frequencyv8 for different values of parameterl:
1: l520,* : l515, 3: l510.0,s: l55.0.
e
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y

to
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te

va8'exp@2l/2 ln~l!#, l@1. ~19!

We can introduce the relaxation timet51/va8 which corre-
sponds to the power-law dispersion of the complex imp
anceZ(v8)}(v8)a. Substitutingva8 given by Eq.~19! in the
expression for the exponenta5$] ln@s(v8)#/] ln(v8)%v85v

a8

we obtain the following equation:

a512
4l

l21p2 , l@1, ~20!

which actually stands for all parametersl.1. Equation~20!
givesa50.64 forl510 in good agreement with the resul
of our computer simulation for concentrationsp close to the
percolation thresholdpc ~see Fig. 6!. It follows from Eq.~20!
that the exponenta achieves its asymptotic valuea51 for
l→`; this value can only be considered as universal~which
means that it is independent of the particular features of
system! when the parameterl becomes very large.

Consider now the Nyquist plots of the reduced comp
resistivity r8(L,v8)5r18(L,v8)1 ir28(L,v8)5s(L,0)/
s(L,v8) calculated using the ENR procedure forp5pc .
They are presented on Fig. 10 together with the curve
tained from Eq.~18!. We observe that all data are superim
posed on the curve fitted by Eq.~18!. The damping param-
eter is equal to b5max@r28(L,v8)#v8 /r18(L,v8→0)
>0.41 for the curve in Fig. 10 and exponenta1 in Eq. ~13!
is then equal toa150.86. The imaginary part of the reduce
resistivity r28(v) is a maximum for the frequency
v0851/t1 . From analysis of Eq.~18!, we obtain in the limit
l@1:

v08'$A1O@exp~2l!#%exp~2l!, A51.980 29...'2,
~21!

whereA is the solution of the equation 2A2/(11A2)2 ln(1
1A2)50. Substitutingv08'2.0 exp(2l) back into Eq.~18!,
we obtain the following expression for the damping para
eterb as a function of the disorder parameterl:

b>
1

4~12e2l!
lnS 5

114e22lD , l@1. ~22!

c-
FIG. 10. Nyquist plot of the reduced resistivityr8 obtained

exactly at the percolation threshold. The points forl520, 15, 10.0,
5.0 collapse on the single curve that is given by Eq.~18! and are
independent of parameterl for l.4. The dashed line is Nyquis
plot from Eq.~18! for l52. The dotted line is the universal valu

of damping parameterb5 ln 5
2.
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It follows from these equations that the damping parameteb
achieves its asymptotic valueb5 ln(5)/4'0.4 very rapidly
with increasing parameter l. The exponent a1
5(4/p)arctan(2b) reaches its asymptotic value

a15
4

p
arctanS ln 5

2 D>0.86 ~23!

already atl>4. Thus, it is not surprising that the comput
data are all on a single curve in Figs. 8 and 10. Again,
asymptotic value of the exponenta1 can be considered a
‘‘universal’’ as soon as the disorder is large enough.

It follows from the above consideration that there are t
characteristic time scales in the systemt>exp(l/2 ln l) and
t1>expl/2@t, given by Eqs.~19! and ~20!, correspond-
ingly. The frequency dependence of the complex impeda
Z(v8) is quite different in these two scales. For the freque
ciesv8}1/t, it is power-law dispersionZ1}Z2}v8a while
for v8}1/t1 imaginary part of the impedanceZ2(v8)
reaches a maximum at the frequencyv851/t1 and the whole
dispersion behavior can be imaged as a depressed semi
in the $Z1 ,Z2% Nyquist plot. It is worth noting that system
behavior becomes universal forboth time scales when the
disorder in the system increases.

For small values of the parameterl ~ordered systems o
rather large temperature!, Eq. ~22! gives the damping param
eterb in the following form:

b>
1

2
2

l2

48
, l,1, ~24!

which gives the damping parameterb5 1
2 for l50, i.e.,

when all conducting elements have the same conductivit
that the dispersion behavior of the complex resistivity
duces to simple Debye relaxation. Indeed, forb5 1

2 we ob-
tain a151. In Fig. 10 we show the Nyquist plot of the re
duced resistivityr8(v8) obtained from Eq.~18! for an
intermediate case, namely, forl52. The corresponding
curve goes somewhat higher than the curves for the la
values of the parameterl and is a less depressed semicirc

It follows from Eqs.~20! and ~22! that exponentsa and
a1 obtained from thes(v8) dependence and the Nyqui
plot, correspondingly, are not independent. The exact fo
of Eqs.~20! and ~22! have been obtained for systems at t
percolation threshold. Let us suppose for a moment that E
~20! and ~22! can be applied not only for the system at t
percolation thresholdp5pc but for all concentrationp. We
have defined the effective relaxation timet1 as the inverse of
the characteristic frequencyv08(p) corresponding to the
maximum of the imaginary partr28 of the complex resistivity
t1(p)51/v08(p). On the other hand Eq.~21! gives v08(pc)
51/t1(pc)52 exp(2l). We can define the effective param
eterle for the entire concentration range from the equat
1/t1(p)52 exp@2le(p)#, which gives le(p)52 ln@2t1(p)#.
Substituting the thus defined effective parameterle(p) in
Eq. ~20!, we obtain the following equation:

a~p!512
4 ln@2t1~p!#

ln2@2t1~p!#1p2 , ~25!

which connects the exponenta and the effective relaxation
time t1(p) for any arbitrary concentrationp>pc . We take
e
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the previously determined effective relaxation times~see Fig.
7! and substitute them in Eq.~25!. The obtained ‘‘theoreti-
cal’’ values for the exponenta(p) are shown in Fig. 6 by
squares. There is rather good agreement between the e
nenta originated directly from the computer simulations a
that from Eq.~25!. This would mean that Eqs.~19!–~25! can
be applied to any inhomogeneous system with exponenti
distributed local conductivities as soon as the notion of lo
conductivity can be introduced. The effective relaxation tim
t1 has been obtained from a Nyquist plot whereas the ex
nent a determines the power-law behavior of the effecti
conductivity se(v)51/re(v)}va for frequencies much
larger than 1/t1 @cf. Eqs.~19! and~21! for l@1#. Still these
quantities appear to be connected to damping parameterb as
well.

D. Scaling equation for the complex impedance
in the entire concentration range

We return now to our system analysis for an arbitra
concentrationp of the conducting bonds. As one might e
pect, the static conductivityse

a(p) given by Eq.~17! is de-
termined by the smallest critical conductivitysc>exp
@2l(pc /p)# obtained from the first conducting path through
macrobond. The conductivities in the first conducting pa
are distributed by Eq.~5! where the random variablesxi take
values in the interval 0,xi,pc /p. Then the lengthl of the
segments of the conducting path between two critical c
ductivities can be estimated asl }lpc /p. Therefore, the
above considerations of the percolating system with ex
nentially distributed conductivities hold when the length
the first conducting pathL}jp

h is much larger than the lengt
l , this means that the percolation correlation length mus
large enough:jp@@l(pc /p)#1/h.

We turn now to the opposite case, namely, we consi
concentrationsp of the conducting bonds such that th
percolation correlation length is relatively sma
jp!@l(pc /p)#1/h, but still jp@1. Recall that we are inter
ested in systems with parameterl@1. Let us start with small
frequenciesv8,exp(2l). To estimate the effective con
ductivity se(p,v8) we consider a system with siz
L@@l(pc /p)#1/h@jp . We again switch off all the conduct
ing bonds in the system and then restore them starting w
the largest modulus of the conductivitys i in order of de-
creasing values. Suppose that we restore thex part of the
conducting bonds to its original form, therefore we resto
the bonds with conductivitiesu2 iv81exp(2lx)u,usiu
,u2iv811u. At concentrationx5xc the first conducting path
spans the system. The volume concentration of the rest
bonds is equal toxp, therefore the critical concentrationxc is
equal toxc5pc /p.15,19,34The resistance of the first conduc
ing path is estimated to be that for a macrobond@see discus-
sion after Eq.~14!#. Therefore, the path resistance is propo
tional to ^r&cL

h, where^r&c is given by Eq.~15!, andLh is
the effective length of the path. Then the conductivity of t
whole system is estimated to be

se~xc!>
1

^r&cL
11h , ~26!

where the average resistivity^r&c is still given by Eq.~15!.
When we restore more and more bonds, they form the Sk
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Shklovskii–De Gennes superlattice. The period of the sup
lattice periodjx decreases as the concentrationx of the re-
stored conducting bonds increases. The effec
conductivityse(x)>1/(^r&cjx

11h) increases with decreasin
jx until the characteristic size

jc>~lxc!
1/h@jp ~27!

is reached. This new characteristic length is related to cur
inhomogeneities. The conductance of a macrobond with
jx>jc can be estimated assc>1/(^r&cjx

h)>1/(^r&clxc)
;exp(2lxc). If we go on restoring the conducting bond
i.e., switch on the bonds with conductivitiesus i u,exp
(2lxc), the effective conductivity will not change since th
new bonds have conductances smaller than the macro
conductancesc . Therefore, the effective conductivity fo
the concentrationsp corresponding to the correlation leng
jp,jc can be obtained from Eq.~16! if we substitute the
conductivity correlation lengthjc>(lxc)

1/h to the percola-
tion correlation lengthjp}(p2pc)

2n. Thus, we obtain the
following equation for the effective conductivityse

b(p,v8)
in the concentration range corresponding to the condi
jp,jc :

se
b~p,v8!5BS p

lpc
D 1/h 2 iv8

lnX$12 iv8exp@l~pc /p!#%

~12 iv8!
C ,

~28!

whereB is another numerical factor.
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In the limit p51 and v850 the effective conductivity
given by Eq.~28! becomesse(1,0)}exp(2lpc)/(lpc)

1/h (l
@1), which is similar to the well-known resultse}exp
(2lpc)/(lpc)

n for the static conductivity of a regular lattic
with exponentially distributed bond conductivities.33 How-
ever, in the earlier works33 only the red bonds in a macro
bond were considered, whereas we now take into accoun
whole blob-link structure of the backbone. Consequently,
obtain a new critical exponent 1/h instead of the exponentn
for the percolation correlation length. It is not surprising th
Eq. ~28! derived originally for concentrations close to th
percolation threshold gives exact results forp51. The ge-
ometry of the percolating system is essentially the same
both limiting cases since the system can be viewed as a r
lar lattice of the conducting bonds. The only difference
that for p51 the period of the lattice is equal to a micro
scopical scalea0 while for p→pc it is equal to the percola-
tion correlation lengthjp . Nevertheless, this difference i
inessential as soon as the current inhomogeneity scalejc is
larger than the scale of geometric inhomogeneityjc.jp .

The effective conductivitiesse
a and se

b , given by Eqs.
~16! and ~28!, respectively, have the same form at conce
tration p* , corresponding to the conditionjp5jc . That is,
where the scale for the geometric inhomogeneityjp is equal
to the scale of the electric current inhomogeneityjc . To
calculate the effective conductivityse in the entire region of
the concentration we use the simplest interpolation equa
se5(se

ajp
11h1se

bjc
11h)/(jp

11h1jc
11h), which takes the

form
se~p,v8!5
2 ipclv8

p ln„$12 iv8 exp@l~pc /p!#%/~12 iv8! …@~p2pc!
2~11h!n/A1~lpc /p!111/h/B#

, ~29!
for

with

c-

m

whereA andB are numerical factors that appeared before
Eqs.~16! and ~28!, respectively.

We show in Fig. 11 the effective static conductivi
se(p,0) given by Eq.~29! together with results of the com
puter simulations. The factorsA andB have been chosen t
be equal toA50.035 andB52.1, respectively. There is
good agreement between computer data and the resul
interpolated Eq.~29!. Note that there is no concentratio
range in Fig. 11 where the conductivity is linear with resp
to the concentrationp, as predicted by perturbation theory35

and effective medium theories.15 Instead, the behavior of th
static conductivityse looks similar to scaling lawse}(p
2pc)

t with the exponentt aboutt>2 in the entire range o
the concentration. This result can be understood if we re
that the spatial scale of the current inhomogeneityj
5max$jp ,jc% is larger than microscopical scalea0 for all
concentrationsp in the considered percolating system wi
exponentially distributed local conductivities.

We showed above that Eq.~16! ~concentration range suc
thatjp.jc! describes the results of the computer simulatio
well for the entire range of frequencyv. Equation ~28!
~condition jp,jc! was originally derived for the reduce
frequencyv8,exp(2l). It is easy to show that it can b
n

of

t

ll

s

used for a much wider frequency range, namely,
v8,exp(2lpc /p). Indeed, the derivation of Eq.~28! is
based on the separation of the conducting bond of those
conductivities us i u[u2 iv81exp(2lxi)u>sc and us i u[
u2 iv81exp(2lxi)u,sc , where the critical conductivitysc
is equal tosc5exp(2lpc /p). It was shown that conducting
bonds withus i u>sc are responsible for the effective condu

FIG. 11. Effective static conductivity of the percolating syste
with exponentially distributed local conductivity.d: computer
simulations, the line is the static conductivity given by Eq.~29! for
l510, v50, A50.035,B52.1.
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tivity of the system. If the frequency is such thatv8,sc ,
the above separation does not change and, therefore, th
no effect on the derivation of Eqs.~28! and ~29!.

To find the effective conductivity for larger frequencie
(v8.sc) let us consider again a system with sizeL@jc
@jp . The number of conducting channelsNp which span
the system from, say, top to bottom, can be estimated
Np}(L/jp)2. For v8,sc , only Nc}(L/jc)

2!Np channels
have conductivitiesus i u>sc which are responsible for th
effective conductivity. Their contribution to the conductan
S of the system is estimated asSc>L/(jc

11h^r&c), where
^r&c is given by Eq.~15!. The otherNp2Nc'Np channels
contain nearlyall conductivities and, therefore, their contr
bution to the conductanceS can be written asSp

5Np /(Ljp
h11^r&)>L/(jp

h11^r&), where^r& is the bond re-
sistivity averaged on all channels. However, this cond
tanceSp becomes important when the frequency increas
m
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v.sc . Therefore, the term se
c5Sp /L}(jp

h11^r&)21

should be added to Eq.~28! for the effective conductivityse
b

to extend this equation for the entire frequency range.
can also add the same term to the effective conductivityse

a

given by Eq.~16!, which holds forjp@jc , i.e., for concen-
trationsp near the percolation thresholdpc . Indeed, the con-
ductivity se

c resembles the conductivityse
a for p→pc and

the addition ofse
c to Eq. ~16! just leads to some renorma

ization of the numerical factorA.
From the above discussion, it follows that we just have

add the conductivityse
c to the interpolating equation~29! to

extend its application to the entire frequency range. Thus,
obtain the following equation for the effective complex co
ductivity @recall that all conductivities and frequencies a
measured in terms of the conductivitys0 appearing in Eq.
~4!#
se~p,v8!5
2 ipclv8

p ln„$12 iv8 exp@l~pc /p!#%/~12 iv8!…@~p2pc!
2~11h!n/A1~lpc /p!111/h/B#

1
2 ilv8

ln$@12 iv8 exp~l!#/~12 iv8!% S p2pc

12pc
D ~11h!nS 12

~lpc!
2~111/h!

B D , ~30!
f an
on
y
the

le
r
om-

ical

ents
ss.
sed

ins
nt,

es
f the

di-
ity;
ays
tiv-
the
les
wherep is the volume concentration of the conducting co
ponent in the percolating system~e.g., brushite grains!, pc is
the actual percolation threshold in the considered syst
v85v/(4ps0) is the reduced frequency of the external
field, l ands0 are parameters of the exponential distributi
of the local conductivities in the system@see Eq.~4!, param-
eter l@1#, h>1.5 is the critical exponent found in th
present work,n>0.88 is the critical exponent for the perco
lation correlation length, andA50.035 andB52.1 are nu-
merical coefficients. The numerical coefficient in the la
term of Eq.~30! has been chosen so that the effective c
ductivity se(p,v8) resembles the exact resultse(1,v8
→`)>2 iv8, which holds for the considered system.
scaling equation of the form of Eq.~30! can be used to esti
mate complex impedance of any physical system with ex
nentially distributed local conductivities.

However, we should note that Eq.~30! was obtained in a
somewhat rough approximation since all the elements of
system which are not included in the Abraham-Miller n
work are assumed to be connected in series. On the o
hand, it is well known that resistive elements that are
incorporated in the backbone for the most part in series w
the C elements in usualR-C percolating systems. We wil
show that the assumptions made in order to obtain Eq.~30!
from Eq.~29! prove themselves in practical calculations. T
precise description of the complex effective conductivity o
percolating system with an exponentially wide distribut
real part of the local conductivity deserves further consid
ation.

Figures 4, 5, and 8 show that Eq.~30! reproduces the
numerical results of the computer simulation in the en
concentration and frequency range. The resemblance ca
-
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be coincidental. Let us stress again that the existence o
analytical equation which is valid for the entire concentrati
region (pc<p<1) and all frequencies is accounted for b
the current and field inhomogeneity scale and far exceeds
microscopical scalea0 . Moreover, the inhomogeneity sca
is large as compared toa0 for all concentrations and fo
almost all frequencies. Note that agreement between c
puter data and the theory is somehow inferior forv8→`
when the inhomogeneity scale shrinks to the microscop
scalea0 .

V. EXPERIMENTAL RESULTS AND COMPARISON
WITH THE THEORY

A. Dry brushite composites

The brushite composite samples used for measurem
are pellets, 20 mm in diameter and 1–3 mm in thickne
They were pressed at 1.6 kbar for 20 min and are compo
of two mixed powders of brushite and polymer~polyphenyl-
sulfur!. The average size of the brushite and polymer gra
is 18mm and 42mm, respectively. For electric measureme
we use an EGG device~model 273A! coupled with a
Schlumberger 1255 SI locked-in amplifier. The electrod
are gold and the frequency range for the measurements o
complex impedanceZ(v) is @1021 Hz,104 Hz#. The details
of the experimental procedure can be found elsewhere.8

The brushite powder was first dried in an oven. Imme
ately after compacting, the samples have no dc conductiv
they behave as insulators. After being stored for a few d
at room atmosphere, they acquire a well-defined conduc
ity, as reported below, which does not change during
process of measurement. We will refer to this set of samp
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as dry samples, and most of the experimental results
sented here were obtained from these samples. To verify
suggestion that the finite conductivity can be attributed t
thin layer of absorbed water on the brushite grains we h
prepared another series of composites—wet samples.
wet samples were prepared in the same conditions, but
a brushite powder kept in a water saturated enclosure fo
h before compacting. Thus, the obtained wet compos
have a dc conductivity of about two orders of magnitu
larger than that of the dry samples.8–10

The volume concentrationp of the brushite grains and
pores is equal top51.0, 0.84, 0.67, 0.49, 0.4, 0.3, and 0.2
for the dry samples. The Nyquist plot of the complex impe
anceZ(v)5Z1(v)1 iZ2(v) of a sample with brushite con
centrationp50.40 is shown in Fig. 12. We can observe
depressed semicircle that is completed by an increase of
Z1(v) andZ2(v) parts of the impedanceZ(v) at small fre-
quencies~right part of Fig. 12!. Such a Nyquist plot is typica
for many inhomogeneous ionic conductors~see, e.g., Refs
1–5!. It is commonly accepted that the increase ofZ1(v)
andZ2(v) at low frequencies is due to processes at the e
trodes~Warburg impedance behavior, discussed at the en
Sec. II!. We are not interested in electrode processes in
paper and will, from now on, omit the low frequency poin
and only keep higher frequencies where the Nyquist plots
our samples have a well-developed semicircle shape.

We extrapolate the semicircle impedance data to ob
the static conductivity of the brushite composites themselv
apart from electrode effects. Two methods for the extrapo
tion have been used: direct extrapolation and the fitting o
Nyquist plot by empirical equation~1!. Both methods give
essentially the same results shown in Fig. 13 where we
reduced static conductivitys8(p)5s(p)/s(1) as a function
of Dp5p2pc . We chose for this series of samples the p
colation thresholdpc50.23. It is not surprising that the stat
conductivity in Fig. 13 follows the power-law behaviors8
}(Dp) t for concentrations close to the percolation thresho
What may be more surprising is that the critical behav
s8}(Dp) t starts atp51 and holds in theentire concentra-
tion range. To understand the origin of the concentrat
variation of the static conductivity, we fit the experimen
data by Eq.~29! obtained in the previous section for a pe
colating system with exponentially distributed local condu
tivities. We put the numerical coefficientsA and B in Eq.

FIG. 12. Nyquist plot of the complex impedanceZ(v)
5Z1(v)1 iZ2(v) for the brushite composite with concentrationp
50.4.
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~29! to be the same as those we used to describe the c
puter data~see Fig. 11!. Therefore we are left with only one
fitting parameterl which is found to bel510.1. Then Eq.
~29! exactly reproduces the experimental results for the
duced static conductivitys8(p). This allows us to assume
that in the static case the contact conductivitiess i between
the brushite grains are distributed exponentiallys i
}s0 exp(2lxi), where l510.1, and the random variable
xi take values 0,xi,1 @see Eq.~4!#. The prefactors0
can be estimated from the experimental values(1)51.1
3104 sec21 @1.331028(V cm21)# and Eq.~29! to be equal
to s054.13105 sec21. For the exponential distributed loca
conductivities, the spatial scale for the electric current inh
mogeneity exceeds the microscopical scale in the probl
namely, the average size of the brushite grains, significa
for all concentrationsp. Consequently, we obtain a ‘‘sca
ing’’ behavior of the static conductivity, as a function ofp,
for the entire concentration range fromp51 until the perco-
lation thresholdp5pc .

The Nyquist plots of the reduced complex impedan
r8(v)5r18(v)1 ir28(v)5Z(v)/Z(0) are shown in Fig. 14
for all values of the concentrationp. We have omitted the
low frequency experimental points~right part of the Nyquist
plot!, which are related to the Warburg impedance behav
All other experimental points are situated on a single
pressed semicircle, which is well reproduced by Eq.~30!. We
still use parametersA50.035 andB52.1 which were the

FIG. 13. Effective static conductivity of the percolating syste
with exponentially distributed local conductivity.d: dry brushite
composites, line is given by Eq.~29! for different Dp5p2pc and
for l510.1,v50, A50.035,B52.1.

FIG. 14. Nyquist plot of the reduced resistivityr8. Experimen-
tal data for the brushite composites collapse on the single cu
obtained from Eq.~30!, which gives essentially the same Nyqui
plot for all concentrationsp. The parameters in Eq.~30! are l
510.1,v50, A50.035,B52.1.
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best found for the computer data in Sec. IV. The param
l510.1 was determined above from the concentration
pendence of the static conductivity. Note that Eq.~30! is
written for the dimensionless frequencyv8. To find the ac-
tual dependence of the effective conductivity~resistivity! on
the frequency it is necessary to introduce thecorresponding
characteristic frequencyv* in Eq. ~30!. Below, we deter-
mine the characteristic frequencyv* for this series of
samples. However, as soon as we have only one depre
semicircle in the Nyquist plot, the shape of the plot does
depend on the characteristic frequency. A change inv*
causes the points to move along the curve only. Theref
we use Eq.~30! as it is and obtain that all experiment
points collapse on the theoretical curve. Figure 14 shows
the damping parameterb5max@r28(v)# is essentially the
same for all concentrationsp being studied in the experi
ment. The experimental value of the parameterb'0.4 cor-
responds to the ‘‘universal’’ valueb5 ln(5)/4 which we pro-
pose for systems with exponentially distributed loc
conductivities.

We can define the effective relaxation timet1 for the
complex impedance or conductivity ast151/v0 , wherev0

is the frequency wherein the imaginary partr28(v) is a maxi-
mum. This definition of the relaxation time agrees with t
empirical equation~13! often used for fitting experimenta
data.1–5 The defined relaxation timet1 is shown in Fig. 15
for different concentrationsp. We observe thatt1 increases
by several orders of magnitude as the concentrationp de-
creases towards the percolation threshold. This behavio
the relaxation timet1 is similar to the one obtained in th
computer simulations~see Fig. 7! and can be explained in th
following way. All contacts between the grains that are
sential for the effective conductivity are connected in ser
for the concentrations of the conducting component~brushite
grains! close to the percolation thresholdpc as we speculated
in Sec. IV. Then the effective static conductivity is dete
mined by the lowest contact conductivitysc>s0 exp(2l).
At finite frequencyv, the intergranular capacitances shu
the contact conductivities. The dispersion of the effect
conductivity begins when the lowest conductivities a
shunted by the capacitance, which occurs for frequenciev
.sc . Considering the percolating system atp5pc we have
shown@see discussion at Eq.~21!# that the imaginary part o
the complex resistivity is maximum for the frequencyv0

FIG. 15. Effective relaxation timet1 for brushite composites a
a function of the concentrationp. Relaxation timet1 is obtained as
t151/v0 , where the frequencyv0 corresponds to the maximum o
the imaginary part of the resistivityr28(v).
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>2sc}s0 exp(2l). Therefore, the relaxation timet1 is pro-
portional tot151/v0}exp(l)/s0. When concentrationp in-
creases above the percolation threshold, we have a la
choice of conducting elements in the system to build up
conducting channels. Still, the contacts between the gr
which are essential for the effective conductivity, can be c
sidered as connected in series but the lowest contact con
tivity increases. The lowest contact conductivity~critical
conductivity!, which is important for the effective conductiv
ity can be written assc51/rc(v→0)>s0 exp@2l(pc /p)#
@see Eq. ~15!#. Correspondingly, the relaxation timet1
}1/sc}exp@l(pc /p)#/s0 decreases exponentially when th
concentrationp of the brushite grains increases. When t
concentrationp increases further, the lowest static condu
tivities in the system may be shunted not only by their o
capacitances but by the intergranular capacitances betw
other brushite grains. These contact conductivities do
participate in dc conductivity but they become important
frequencies larger than the critical conductivityv.sc .
Then the relaxation timet saturates somewhat forp.0.6.

In Fig. 16 we show the frequency dependence of the r
parts1 of the complex effective conductivityse for the con-
centrationsp50.4, 0.3, and 0.27. The high frequency part
the measurements corresponding to the conditionv.1/t1 is
more reliable for these lowest concentrations. We obse
from Fig. 16 that the beginning of the dispersion ofs1(v)
shifts to larger frequencies when increasing the conc
tration p and that the exponenta, defined by
a5max$] ln@s1(v)#/] ln(v)%v , is different for different con-
centrations. We compare the experimental data with res
given by Eq. ~30!, obtained in Sec. IV in dimensionles
form. For the real composites, this equation takes the follo
ing form:

se~p,v!5s0se* ~p,v/v* !, ~31!

where the dimensionless conductivityse* (p,v/v* ) is given
by Eq. ~30!, conductivity s054.03105 sec21 was deter-
mined above from the behavior of static conductiv
se(p,0), and parameterv* is a characteristic frequency. Th
parameterspc50.23,A50.035,B52.1, andl510.1 in Eq.
~31! are the ones used to reproduce the static conducti
se(p,0) ~see Fig. 13!. Therefore, we have only one fittin

FIG. 16. Real part of the effective conductivitys1 for brushite
composites as a function of the frequencyv; different series of
experimental points correspond to different concentrations:~a! p
50.27, ~b! p50.3, ~c! p50.4.
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parameterv* which we find equalsv* 56.63103 sec21.
Thus the obtained effective conductivityse(p,v) is in
agreement with the experimental data for the low freque
region in Fig. 16, but it saturates at higher frequencies w
the measured conductivity grows monotonically. This d
crepancy may be due to the conductivity of the brush
grains themselves which we have not taken into account
be more precise, we do not take into account the conducti
of the absorbed water layer around a brushite grain assum
that its impedance is much smaller than the contact imp
ance. For the frequenciesv.1/t1 the ratio of imaginary to
real parts of the effective conductivity, inverse loss tange
becomes larger than 1 and the current in the contact fl
mainly through the intergranular capacitance. Then the g
conductances which are in series with the contacts can
to an increase of the real part of the effective conductivit

B. Wet brushite composites

To verify the above suggestion we have prepared ano
series of wet brushite composites in the manner descr
above. The static conductivity of wet samples is about t
orders of magnitude larger than that of dry samples. T
reduced static conductivity of the wet composites is again
good agreement with scaling equation~29!, as shown in Fig.
17, where percolation thresholdpc50.24 and parameterl is
now equal tol58.1. The static conductivityse at the con-
centrationp50.8, which has been taken as a reference
se(p50.8)53.93105 sec21. The decrease of the paramet
l in comparison with dry samples corresponds to the
crease of the static conductivity: the better the contacts
tween the brushite grains the smaller their fluctuations.

The Nyquist plot of the complex impedance of w
samples plotted in Fig. 18 shows a well-developed kick
the high frequency part of the curve. We attribute this kick
the conductivity of the brushite grains and include this co
ductivity in series with the contact conductivity in Eq.~30!.
The usual procedure in the impedance spectroscopy for
situation is to fit the impedance of each element in the s
tem by constant phase elements with the impedance give
Eq. ~1!. Instead, we take the conductivity of a brushite gra
sg to be in the following form:

FIG. 17. Effective static conductivity of the percolating syste
with exponentially distributed local conductivity.d: wet brushite
composites, line is given by Eq.~29! for l57.9, v50, A50.035,
B52.1.
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sg5
isg* lgv

vg* ln$@12 i ~v/vg* !exp~lg!#/@12 i ~v/vg* !#%
,

~32!

wheresg* , vg* , andlg are fitting parameters. This consta
phase element~CPE! has the same number of parameters
the widely used CPE given by Eq.~1!. In contrast to the old
one, the suggested CPE has proper asymptotic behavis
}va for the frequenciesvg,v,vg exp(lg) with exponent
a connected to the damping parameterb by Eqs.~20! and
~22!. We suppose that parameterssg* , vg , andlg are the
same for all brushite grains and connect the CPE’s given
Eq. ~32! in series with each contact conductivity. The N
quist plot of such a system depends on the ratio of the
rameterssg* , vg* to that for a contact between grains.
good fit gives the valueslg56.0, s* /sg* 50.14, and
v* /vg* 51.53102. Thus, we obtain reasonable agreeme
with the experimental data in Fig. 18. However, due to o
hypotheses, the conductivity of one brushite grain canno
found unambiguously from our experimental data. The p
pose of the theoretical curve in Fig. 18 is to demonstrate
the behavior of the effective impedance can be rather c
plicated, even if each component of the system has cond
tivity that obeys the universal behavior. That is, each co
ponent of our system has a Nyquist plot in the form of t
depressed semicircle with damping parameterb>0.4 while
the resulting plot is rather sophisticated.

VI. DISCUSSION: APPLICATION OF THE THEORY
TO OTHER INHOMOGENEOUS SYSTEMS

Our theory reproduces the main features of the impeda
spectroscopy of the brushite composites, at least qua
tively. The theoretical approach developed in this work c
be applied to other inhomogeneous ionic conductors. Bru
ite composites are somewhat artificial systems since we
troduce a well-defined parameter, namely, the concentra
of an insulating component—polymer grains. This has be
done in order to verify the theory.

One of the inhomogeneous systems with ionic conduc
ity to which our theory can be applied is porous sediment
rocks whose pores are filled with water~see Refs. 15 and 36
and references therein!. The conductivity behavior of the
rocks implies that the pore space is infinitely connec

FIG. 18. Nyquist plot of the reduced resistivityr8 for the wet
brushite composites at two different concentrations.d: p50.25 and
l: p50.76. The curves are obtained from Eq.~29! taking into
account the conductivity of the brushite grain itself given by E
~32!.
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down to zero porosity. Senet al. suggested that pores form
fractal or self-similar structures. The bulk conductivity of th
porous rocks can be attributed to the interlayer between
rock itself and the water-filled pore. In this interlayer, t
water can easily dissociate in the manner discussed in Se
making proton conductivity along the interlayer possib
Since the pores have a variety of sizes and shapes, the
conductivity might be suggested to fluctuate in exponentia
large range. If we adopted the suggestion that pores,
conducting channels, form some fractal or self-similar str
ture the result of the developed theory can be taken
account for the complex impedance behavior of brine sa
rated rocks. Thus the strongly increasing behavior of the
dielectric constant at low frequencies, seen in many of th
porous rocks, resembles that of the brushite compos
shown in Fig. 5. Certainly, the structures of the pores do
necessarily match the structures of the percolation cluste
fact which should be considered carefully for a quantitat
analysis of the impedance behavior.

We have shown that it is very instructive to compare
results given by the Nyquist plot and the behavior of t
effective conductivityse ~or resistivity! at sufficient high
frequenciesv@1/t1 , where t1 is the effective relaxation
time. We propose that as soon as the Nyquist plot is a w
defined depressed semicircle, the high frequency condu
ity behaves as a power lawse}va and vice versa@see Eqs.
~19! and ~21! to compare the corresponding time and fr
quency scales#. A change in the relaxation timet1 will lead
to a corresponding variation of the exponenta according to
Eq. ~25!. When the relaxation time increases, the exponena
should also increase, approaching its ‘‘universal’’ valuea
51. Note that the damping parameterb should reach its
universal valueb5 ln(5)/4 much earlier. In such a way, th
effective parameterle and, therefore, the distribution of th
local conductivities, can be determined.

This approach can be generalized to inhomogeneous
tems withelectronicconductivity, e.g., metal-dielectric per
colating systems in the vicinity of~or below! the percolation
threshold. The exact nature of the contact conductivitie
not important: it may be quantum tunneling~direct or hop-
ping! or just bad contacts. As soon as the static conducti
is smaller~by several orders of magnitude! than the conduc-
tivity of the metal component, the frequency behavior sho
be as shown on Figs. 4 and 5. Then exponenta changes with
the relaxation time according to Eq.~25!. Indeed, in a very
recent experiment,36 authors report that the behaviors of th
real parts of the effective conductivity and effective diele
tric constant are very similar to those in Figs. 4 and 5. T
parameterl may be very large for processes involving qua
tum tunneling. Thus, substituting the experimental value
exponenta50.95 given in Ref. 37 for some samples in E
~20!, we obtain the effective parameterle;80. Moreover,
one can observe the variation of the exponenta with relax-
ation timet. As in brushite composites, the relaxation tim
in these systems depends on the concentrationp of the con-
ducting components.

The application of the concept of local conductivity
amorphous and heavily doped semiconductors is somew
controversial since these systems have an essentially m
scopic disorder. Therefore, our theoretical results may no
directly applied to these systems. Still we believe that co
e
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lation has to be made between numerouss~v! data for these
systems and their rearrangement in form the Nyquist plo
would be very interesting to see if Eqs.~20! and~22! provide
a qualitative description of the impedance spectroscopy d
for amorphous and heavily doped semiconductors.

VII. CONCLUSIONS

We have performed a comprehensive theoretical and
perimental study of brushite percolating composites wh
have ionic conductivity. The investigation of the percolati
systems allows us to introduce a well controlled parame
namely, the concentration of the conducting component,
to study the dispersive behavior of the complex impeda
as a function of this well controlled parameter. The Nyqu
plot of the complex impedance is a depressed semici
whose points, for all concentrations of the conducting co
ponent, are on a single curve. Along with this, the relaxat
time increases exponentially when the concentration of
brushite grains decreases towards the percolation thresh
The static conductivity dependence shows the power-law
havior typical for percolating systems but, in contrast
usual conductor-dielectric composites, the power-law beh
ior holds for the entire concentration range. At finite fr
quency, the conductivity has a dispersion behavior that
also be fitted by some power law with an exponent wh
depends, in general, on the concentration of brushite.

We introduced a microscopical model for brushite co
posites with local complex conductivities, the real part be
distributed in an exponentially wide range. A comput
simulation of the system has been performed. We use a
efficient algorithm to tackle the problem of a composite w
exponentially distributed local conductivities. In addition
the calculation of the effective properties, our algorith
shows that a percolating system is self-similar at the per
lation threshold. The computer simulations reproduce
main features of the experimentally observed complex
pedance behavior in brushite composites.

Starting from our computer results, we developed a sc
ing theory for the effective complex conductivity~imped-
ance!. The most important feature of our system is that t
scale of the spatial inhomogeneity of the local fields a
currents remains large for any concentration of the cond
ing component. This allowed us to suggest a scaling equa
for the effective conductivity. This equation exactly repr
duces the unusual behaviors of the static conductivity
served either experimentally or numerically. This equat
gives the frequency behavior of the complex impedance
the entire concentration range. The developed theory li
the impedance spectroscopy data to the internal structur
the system. Thus, it predicts that observed exponents for
dispersion behavior of the complex impedance are conne
and dependent, in a rather simple way, on the distribution
the local parameters. The theoretical results obtained in
work can be used to describe the effective properties of
system with an exponentially distributed local conductivi
i.e., most of the inhomogeneous ionic conductors and so
disordered electronic conductors as well.
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