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Impedance spectroscopy of brushite composites and a scaling approach
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The conductivity of composites prepared from ceramics is studied. The conductivity has an ionic character
and the complex impedance behaves similar to many other inhomogeneous ionic systems. The dependence on
the frequency is nonanalytical in form and can be described with some exponents that appear to depend on the
concentration. We develop a Monte Carlo algorithm and perform a comprehensive computer simulation of the
system. A network analysis reproduces the behavior of the complex impedance so that we can connect
experimentally measured quantities to the internal structure of the system. Our theory predicts the values of the
exponents and gives their dependence on the structure of a particular system. The most important parameter is
the width of the distribution of the local conductivities. When the width increases, the exponents describing the
frequency behavior reach universal values that are independent of the particular features of the system. The
developed theory can be applied to understand impedance spectroscopy data for various inhomogeneous ionic
conductors and some electronic conductors as well.
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. INTRODUCTION chemical formula CaHPQ2H,0. This calcium dihydrated
hydrogen phosphate has a monoclinic crystal structure with
Impedance spectroscopy is a rather simple and very infoffour molecules for an elementary cell and is known as
mative tool for studying various properties of inhomoge-pryshite’” When dried, brushite is an insulator. However,
neous systemsThe impedance spectra of ionic conductorsyyhen the pellets have been kept in a humid or ambient at-
are especially interesting and important since the electric CUlmosphere, they have a well-defined conductivity. The con-
rent flow in such conductors is accompanied by a mass tra”ﬁ’uctivity of the “wet” composites may be attributed to a
fer. This results in various physical and electrochemical Pro%hin water layer adsorbed on brushite grains where some wa-
cesses: aging, diffusion limited impedance behavior,[er molecules dissociate as, say: HOH, allowing charge
(Warburg impedange etc. (see Refs. 2—6, and references transfer through the syste*f*ﬁ,lo ’ '

there in. On the other hand, numerous processes taking Experimentally we find that the fr nev dependen f
place in inhomogeneous ionic conductors make the interpre- perimentally we at the frequency dependence o

tation of the impedance spectroscopy data a difficult probt'® cOmplex impedancg(w) for the wet brushite samples

lem. At this moment, there is neither an analytical theory nof'as @ form that has been associated for a long time with ionic
comprehensive computer simulations that allow us to congonductivity for various inhomogeneous syste(sse, e.g.,
nect the measured spectra to microscopical properties of if?efs. 2-5, and references thejeih is often convenient to
homogeneous ionic conductors. The effective properties apresent impedance data in the form of the Nyquist plot, i.e.,
inhomogeneous ionic conductors are not only interestinghe parametric plot oZ(w) in the complex plang¢Z,Z,}.
physical problems but also the subject of great practical imThen the curveZ;(w),Z,(w)} looks similar to a depressed
portance. Let us just mention a few examples. Many biologi-semicircle. Though this depression has been observed for a
cal objects are essentially inhomogeneous ionic conductoréong time, this dispersive behavior is still poorly understood
Solid and liquid inhomogeneous ionic conductors are theand there is no quantitative theory to connect the depressed
bases for various batteries. The conductivity and dielectricemicircle dispersion to the microscopical structure of a sys-
response of the brine-saturated rocks are also inhomogéem. In the absence of a proper theory, the complex imped-
neous ionic conductor problems. ance measurements can be used for engineering problems,

In this paper, we consider a simple physical system thabut it is difficult to make definite conclusions about the in-
shares many features of inhomogeneous ionic conductorgernal structure of the inhomogeneous system. Usually the
We investigate the complex impedanc®(w)=2;(w) dispersion behavior of the complex impedance in ionic sys-
+iZ,(w) of the pellets prepared by compacting a powder oftems is well approximated by the following empirical
calcium dihydrated hydrogen-phosphates granules havingquation*>
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1 ditions, the frequency behavior of the effective conductivity
Z(w)“m. (1) s different than the one obtained by classical percolation.
! Namely, the critical exponenta increases up toa
wherea; is some noninteger exponent sometimes called the=0.90-0.98(see Ref. 16, and references theyeiBuch a
Debye parametéf and r; stands for an effective relaxation prominent difference in dispersive behaviors for the classic
time. In general, these parameters depend on the observaedd quantum systems is a consequence of the different dis-
system. It is quite reasonable to suppose that the effectivgibutions of local currents. For classical percolation, the spa-
relaxation timer, is different for different systems; for some tial distribution of local currents is determined by the self-
systems, it may also depend strongly on temperatsee, similar structure of the infinite cluster for all spatial scales
e.g., Ref. 2 What may seem more surprising is that theless than the percolation correlation length On the other
“critical exponent” «, also varies, from one to one half hand, the structure of local currents in the quantum tunneling
depending on the material. The termw(;)“? even has a percolating systems is determined by the spatial pefjouf
special name in electrochemical literature: The Cole elemerthe effective Abraham-Miller networt For concentrations
or a constant phase elemef@PB.>° The CPE was intro- p<p,, the period¢é,—the tunneling correlation length—is
duced in electrochemistry science to take into account thenuch larger than the percolation correlation lengtkr £,
continuous distribution of electric equivalent circuits. Re->a,, wherea, is the average grain siZé.Therefore, we
cently, Wang and Batés' have interpreted thei §)*: be-  here have another example of the dispersive behavior of an
haviors as resulting from the distribution of activation ener-inhomogeneous system where the critical exponehis a
gies E, associated with a large variety of ionic jumps well-defined unique value.
between two sites. A similar approach was proposed to simu- |n each case, the critical dispersive behavior of the form
late the electrode and interface electrical respofises. o(w)*xw® is achieved when the corresponding correlation
To easily understand the origin of théa()** behaviors |ength & is much larger than a microscopical sclé?
experimentally observed in electrochemistry, it is necessaryherefore, the critical dispersion of the complex impedance
to recall that the effective local ionic patiical electrical  does not depend on particular microscopical features of the
nety can be built from R,C) electrical local circuits having system. Let us recall that all critical systems can be divided
various values oR andC and linked together in parallel and into different classes of universality so that the critical expo-
in series. If theR, C values are statistically distributed with nents(a, for examplé have unique values for each class. It
very different extreme values, then the macroscopic evolufollows from the above discussion that to explain the variety
tion is obviously characterized by a function having a varia-of the critical exponents: observed in ionic conductors, we
tion ranging from pure conductive-independent behavior have to assume that each of them should belong to a different
to pure capacitiveso-dependent behavior. This might be ex- class of universality.
pressed by writing the macroscopic result as depending on Le Mehaute and co-workers in Ref. 5 have assumed that
w1 with a4 between 0 and 1. the total voltage drop across an inhomogeneous ionic con-
Nonanalytical behavior of the form® is typically for the  ductor is determined by a voltage drop across some critical
response functions of an inhomogeneous system near thirface. In other words, the total resistance of the system is
critical point where the size of inhomogeneity—the correla-concentrated in the critical surface where the currents even-
tion length—goes to infinity. In our case, all characteristictually cross on the way from one electrode to another. If this
times in the system are involved in the dispersion behaior. critical surface has a fractal structure, it is possible to show,
As a first example, conductivityr of classical percolating using noninteger differential methdd! that the complex
composites has the dispersiotfw)xw® for concentrations impedance has the nonanalytical form given by @g. Then
of the conducting component close to the percolation the critical exponentr depends on the fractal dimension of
thresholdp, . In this case the critical exponeatis equal to  the hypothetical critical surfacéLe Mehaute surface). Le
a=t/(s+t), wheret is the critical exponent for the effective Mehaute surfaces are supposed to have different fractal di-
static conductivityo(p) just above the percolation thresh- mensions for different inhomogeneous ionic conductors: the
old o(p)=(p—p.)', andsis another critical exponent gov- different solid state ionic conductors considered in Ref. 5
erning the divergence of the effective dielectric constanbelong to different classes of universalityee also Ref. 4,
£o(p) near the percolation threshoig(p)=|p—p.|~° (see, and references therginMoreover, it was shown in Ref. 5
e.g., Ref. 15 Critical exponents andt are well defined and that the critical exponent varies with temperature and time
equal to 0.8 and 2.0, respectively, for three-dimensi¢sa) of storage(aging processso that the systems should change
percolating systems. Therefore, the critical exponent their class of universality. The problem with such an inter-
~0.7 is also well defined for the classical 3D percolatingpretation of the nonanalytical dispersion behavior of ionic
composites. It follows from this that the 3D classical perco-conducting systems is to connect the properties of the Le
lation theory cannot explain the variety of the indexe Mehaute surface, e.g., its fractal dimension, with the internal
inhomogeneous ionic conductors. structure of the system. This problem has not yet been
This could be linked to quantum effects in real percolat-solved.
ing composites with electronic conductivity: the static con- To complete this brief survey on dispersion behavior of
ductivity does not vanish immediately for concentratigns the ac conductivity of the fornr;(w)xw®, where the expo-
smaller than the percolation threshget p... In the absence nenta may depend on the parameters of the system, let us
of a conducting channel spanning through the system, theecall the behavior of amorphous semiconductors in the fre-
quantum tunneling of the electrons between finite conductingluency range, say, 105%<w<10®s ! (see, e.g., Ref. 18,
clusters leads to a finite bulk conductivity. Under such con-and references therginA fractional power law in the fre-
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guency dependence of the dielectric response is also seenused in a computer simulation of the system. A special and
various dielectric materialésee, e.g., Refs. 1 and 1Nu- extremely effective numerical method which we call exact
merous theoretical approaches to this problem have beegrmerical renormalization has been developed to calculate
developed:'81°Most of them are based on the one particlethe complex impedance of the brushite composites. The re-
approximation when each electron is considered as indepesults of our computer simulations allow us to develop a scal-
dently interacting with an external electric field. Therefore,ing theory of the effective complex impedanZéw). The
these approaches cannot be directly applied to ionic systentBeory describes the dispersive behavior and explains the
where the nonanalytical dispersion behavior of the complexiramatic changes of the relaxation timevith concentration
impedance starts from very low frequencies and is essentiallp. It appears that there are two “critical” exponents in the
a collective process. Application of the one particle approaclsystem. One isx; which can be found in Eq(l) and the
to the amorphous and heavily doped semiconductors is alsather a, which governs the behavior of the impedance or of
somewhat controversial since the internal field does not nedhe effective conductivityre(w)<w® in the high frequency
essarily coincide with the external one and may fluctuatdimit «>1/7;. Correspondingly, there are two time scales,
strongly over the system. This problem may be especiallyr; and 7. The impedance dispersion follows Eg) for the
important for systems with a giant effective dielectric con-frequenciesw>=1/7;, and switches to asymptotic behavior
stant(see, e.g., Ref. 20 oo(w)xw® for 1/r;, <wo1/7. Our theory gives strong evi-

To understand the origin of this nonanalytical behavior ofdence that exponenis; and « take their universal values
the complex impedancé(w), we have prepared brushite «;~0.86 anda=1 in the limit of strong disorder.
composites by adding polymépolyphenylsulfuy particles Under different conditions, the exponents and « are
to brushite grains. In this way, we introduce a well- just some fitting parameters that can be used to approximate
controlled parameter, namely, the volume concentragioh  the effective impedance behavior as a function of the fre-
polymer particles. When the polymer concentratigrin- quency w. Yet, the dispersive behavior of the impedance
creases, the volume concentration of the brushite grains art{ w) is very well fitted by the nonanalytical frequency de-
pores p=1—q decreases. Correspondingly, the effectivependenceZ(w)xw® when changed by many orders of mag-
static conductivityoe(p) also decreases and vanishes at anitude. We propose a scaling equation for the complex im-
concentratiorp equal to the percolation threshagid, which  pedanceZ(w) that reproduces its dispersion behavior in the
has been measured to pg=0.23. As was stated above, the entire frequency range.
conductivity of the brushite-polymer system is due to the We then briefly describe the experimental method and
thin water layer adsorbed on brushite grains; it is then quiteompare the experimental data with theory. It appears that
natural that the percolation threshold takes the vagbye the analytical equation obtained from the computer data well
=0.23, which is typical for 3D percolating composites. reproduces the dispersive behavior of the complex imped-

The anomalous dispersion of the complex impedancanceZ(p,w) obtained in the experiment. We obtain the de-
Z(w), shown in Eq.1), takes place for all studied concen- pendence of the exponents, a and the effective relaxation
trations, fromp=1 down to the percolation thresholul, ratest,, 7 on the concentration of the conducting grams
=0.23, but the parameters of the dispersion curve changand other parameters of the system such as temperature, for
dramatically. First, the onset of the anomalous dispersiomxample. Finally, we show in the discussion that the main
shifts toward smaller frequency by many orders of magnifeatures of the dispersive behavior of many others inhomo-
tude when the concentratigndecreases. That is, the effec- geneous ionic conductors can be explained qualitatively from
tive relaxation timer; increases toward the percolation the approach developed in this paper as soon as a local con-
threshold. Then the critical exponeat, also changes with ductivity can be defined.
concentration. This behavior of the complex impedance
Z(p,w) is quite unusual. Since the brushite grains are re-
sponsible for the effective conductivity,(p,w) of the com-
posites, we could expect, in agreement with percolation
theory!® thatZ(p, ) is just proportional to some function of Let us start by studying the origin of charge transfer in
the concentrationZ(p,w)>*z,(w)f(p). The impedance brushite composites. Dried brushite composites have a con-
z,(w) has the meaning of the impedance of a brushite graimluctivity close to zero. If kept at room conditions or, better,
(or contact between the graipsvhile the functionf(p) is  in a humid atmosphere, they acquire a well-defined conduc-
such thatf(1)=1 for p=1 and there is an asymptotic be- tivity. For example, the pure brushite composite1) has
havior f(p) > (p—p.) ! for p close to the percolation thresh- a low frequency conductivity of 1:410* sec'? (here and in
old p.. Therefore, the frequency dependence of the impedthe rest of the paper we use cgs unitshas been shown that
anceZ(p,w) should be the same for all concentrations Wwhat is observed is the conductivity of the thin water layer
<p=1. It could be argued that, for sufficient high frequen- adsorbed on the brushite graMsThe adsorbed water has
cies, the displacement currents flowing in the dielectricbeen measured as 0.01-0.0315% weigh? of the bulk com-
grains and pores should be taken into account. Neverthelegsgsite. Taking into account the average size of the brushite
this cannot change, under any circumstance, the relaxatioggrains @,=1.8X 102 cm) and the density of the brushite
time 7, in Eq. (1) by several orders of magnitude. (pp=2.31 g/cri) we obtain the average thickness of the wa-

The paper is organized as follows. First we consider thder layer,dy~10"’ cm. Since the average distance between
conductivity of the brushite composites on the microscopicamolecules of watef, is equal tol ;=3x 108 cm (Ref. 21)
level and find the most plausible pattern of the local conducthe adsorbed water layers are only a few molecules thick.
tivity distribution. The obtained local conductivities are then Depending on the humidity rate, these layers might be more

II. MICROSCOPICAL CONSIDERATIONS
ON THE LOCAL CONDUCTIVITY
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or less discontinuous. Dykhne propc€ethat for a low hu- [—Ef,o(r)/2KT]. Hence, the local surface conductivity

midity rate the water does not cover the brushite grain in acrg(r)~np(r)exr[—Ep(r)/kT] fluctuates strongly over the

continuous film but forms “lakes” on its surface. The lakes rushite surface. Note that the Debye radiys estimated
may have ramified structure due to the inhomogeneities O?rom the average proton concentratiag is small enough

the surface. Obviously, only lakes common to 2 grains parq, . 4x10~7 cm) to warrant the introduction of local con-
ticipate in the global conductivity. When the humidity in- ductivity o(r). We will not discuss the problem of the con-
creases, the water lakes grow as well as the contact aregyctivity of a single brushite grain in detail. Instead, we pre-
Finally, the adsorbed water on one grain forms an infinitescribe it some effective conductaneg that is assumed to be
percolating cluster and the brushite grain reaches the effegnore or less the same for all the grains in average.
tive surface conductivityry as it takes place in our experi- The effective conductivityr, of the brushite composites
ment. is then determined mostly by the contacts between different
Let us now study thisr, conductivity. We assume that brushite graing3D percolation. The excitation energy,
the conductivity of the water layer is mostly determined byfor a proton jumping from one brushite grain to another is
proton conductivity and allowing the relaxation distance forabout (or larger thap the affinity energyE. =Dy so that
a proton to be about, we obtain that the proton concentra- Ec/kT>1. The contacts between the brushite grains have
tion in the layer is about,=8x 10" cm~3. In other words, different sizes and shapes and the affinity enddgyis sub-
there are about fOprotons per square centimeter of the jeCt to Strong fluctuations. It would appear reasonable that
brushite grain. Such a significant concentration of protonghe jumping energyE. fluctuates strongly from contact to
can be linked to the fact that the effective enefgy, for ~ contact. Therefore, the contact conductivitiasexp
dissociation of the water molecule,@—H™ +OH™ is much (—Ec/KT) are distributed in an exponentially wide range of

smaller on the brushite surface than, o in bulk water. Cor- magnitudes. We adopt the simplest possible assumption that
0 ' the jumping energyE, is distributed uniformly in some in-

respondingly, the proton concentratioexp(~E} o/2T)  terval AE, around the average vali&,. Then the contact
is much enhanced with respect to the bulk water. We camonductance&; can be rewritten in the following form:
write the following chemical equation for the equilibrium

state: HO(adsorbegi—H ' (surface+OH (adsorbeyl from 2 =X oexp(—AX;), ()
which it follows that the effective dissociation energy is where the prefactorY, is equal to Xgxexg—(Ey
equal to ESHZOE EH20+ DHZO—DHO+ Dy, where DHZO, —AE/2)/kT], the dimensionless parameteris E./kT and

Dyo, and Dy are the surface energies for the water mol-is largex>1 (askT at room temperature is 2.5 mgVand
ecules, hydroxyl ions, and protons, respectively. The brushiteandom parameters take values in the range<0x;<1.

grains have acid properties and strongly attract hydroxyl It is possible to shod that any interstitial defect in the
ions. As a first approximation, the energy, o needed to mhqmogenequs COUdUCIOFS gives rise to a_qorrespondlng ca-
separate OF from H* in bulk and the energy needed to pacitance switched in parallel to the interstitial conductance.

separate OH from the surface of the grain might be consid- This capacitance appears to _be indepeno_lent of the interstitial
ered as similarD .~ should be close t& A specific conductance. In our case, it is the capacitance of the contact
HO H,0 -

between two brushite grains. If we take into account the

mechanism of the surface reactions has been proposed Wynact capacitance, we obtain that for finite frequendiie
Ref. 23 where the energ,c is given, which is almost ,niact conductanceE; now becomes

equal to the dissociation energy, o (in the bulk, while the '
energy Dy is about the energy of a hydrogen bond, i.e.,
D,4=0.1-0.3 eV. The adsorption ener@y o, as follows

from our experimental data, is Sma”- and |S of the order Ofwhere the geometrica| fact@ has dimension of |engt(‘re-
room temperature. From the above discussion, it follows thaghember that in cgs units a capacitance has length dimension
the surface dissociation ener@@zo is much smaller than andoy=3,/C. To simplify, we assume that the factBris

the bulk vaIueEHzo and consequently, the concentratiop the same f(_Jr all brushite—brushitg con;acts. Finally, one
of the protons is strongly enhanced in the surface layer. A§hould take into account the bulk dielectric constanf the
soon as a proton is dissociated from a water molecule, it caRrushite composites. This quantity becomes important when
move rather freely over the surface of the brushite grain. Th&1€ frequencyw exceeds the value of the characteristic con-
activation energy for surface motidB, is in general less tact conduct|y|tyao and the brushite grains become discon-
than the affinity energp,,. Note that we do not take into Nected effectively. _ o _ _
account the direct Coulombic interactions between charged 1h€ electric current in the ionic system is accompanied

particles since the average energy of that interactiofgeénerally by a mass transfer. In our particular system, the

e? nodo~ 10°2 eV is less than other characteristic energies,cations(mOSt probably protongischarge at the cathode and

including the thermal energy at room temperature. form, e.g., hydrogen molecules that may escape from the

All the above estimations are very crude since the surfacé?ﬁte.m' 'I]:lo corrf]p(re]nsate' for thﬁ d?ﬁdt of the chationshsome
of the brushite grains is inhomogeneous: the thickness of thiffusion flow of the cations should come to the cathode.

water layer as well as the energy of dissociatigfy,, the Suppose thaty is the characteristic time for the d_n‘fu.smn
. R 2 process. When the frequenayof the external electric field
affinity energyDy, and the activation energl,, fluctuate g |arger than the characteristic diffusion frequeney 1/7

over the surface. Because the ratio5§ o(r)/kT>1, one  the diffusion processes are unimportant since the cathode
can write the local proton concentration as(r)~exp and anode switch places too fast for any transfer to take

Si(w)=C —le—: +ogexp(—\X) |, 3
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place. For frequencies<1/7y4 the diffusion imposes addi-
tional restrictions on the number of discharged particles and,
therefore, on the current flowing through the system. We will
not consider the diffusive limited conductivitfWarburg
impedanc¥* and restrict ourselves to the frequencies
>1/74 in this paper.

lll. COMPUTER SIMULATION: PHYSICAL MODEL OF
BRUSHITE COMPOSITES AND EXACT NUMERICAL

RENORMALIZATION METHOD a b

A. Physical considerations ) -
FIG. 1. Exact numerical renormalizatigENR) procedure for

In the previous section, we proposed that contact conduGiecimating site 4. Note that the number of neighbors of site 3 in-
tances between the brushite grains should be distributed agreases from 2 to 3.

cording to Eq.(3). Such an exponential distribution of the
local conductivitiesa(r) is common for many inhomoge- ,; tq generate the random numbegsand obtain the con-
neous ionic conductors, provided that the notion of localy,ctivities of the conducting bonds according to E5).
conductivity has a meaning. Indeed, the charge transfer in \ye now have to introduce the external electric fiéld
the ionic conductors is typically an activation process. The:{E E,,E,} in the computer simulations. The Kirchhoff

. . . X1byil-z .
local activation energ¥(r) is usually much larger than the  oqations used to find the effective conductivity are obtained
thermal energyT and fluctuates over the _m_homogene_ousby discretizing the charge conservation 1&wo(V ¢4) =0,
ionic system. Therefore, the local conductivity ﬂ”Ct“at'OnSwheregol and o are the local potential and conductivity on
can be written asr(r) ~exg —Ed(r)/kT]. the mesh. The charge conservation law can also be written as

To calculate the effective conductivity of the brushite -o(E—V ) =0, whereE is an external electric field while
composites and obtain insight into the dispersion behavior OZ is the fluctuaiing potential with volume averag¥ ¢)

the system with the exponentially distributed local conduc-_ 0. When we discretize this equation on a cubic lattice the

tivities, we arrange elements with conductances given by Equyerng) field is represented by batteries in series with each

(3) in a cubic Ia'gtlce. Thus we obtain the followlng system conducting bond: their electromotive forcd&aMF's) will be

for a computer simulation: each l_:)qnd of the cubic lattice Caqequal toE, for x bonds,E, for y bonds, andE, for z bonds.

be either broken or has conductivity The introduction of the external electric field by EMF’s in-
© cluded in all conducting bonds allows us to set cycle bound-

op=—Ii 4—+goexp(—)\xi), (4) ary conditions in all directions. Thus, our finite size perco-

77 lating systems have no boundaries at all: finite size effects

with parametei > 1 andx; distributed uniformly between 0 aré much reduced for cycle conditions in comparison with
- - : other approaches discussed in the literattfé-2°Note that

and 1. Note that we skip the geometrical fac®m Eq. (4) pp! ea I Iner .

in comparison with Eq(3) since it is assumed to be the samethel equatioV <p}=0 and its discretization on the Iatt!c_e are

for all conducting elements and consequently does not affedtlfilled automatically for the chosen boundary conditions.

the dispersion behavior of the effective complex conductiv- 1 he simulation of a three-dimensional percolating system

ity. The broken bonds in the cubic lattice represent the p0|yW|th exponentially dlstrlbL_Jted local conduct|V|t|_es is a diffi-

mer grains and their conductivity is assumed to be zero. Thi§ult computer problem since we should consider a system

simple computer model does not include the conductance darge enough to achieve the statlsuc_al I|m|t..To tackle the

the brushite grain, the capacitive conductance of the polymeproblem we have developed an algorithm which we call ex-

grains, etc. These quantities should fluctuate much less th&#ft numerical renormalizatioENR). This algorithm can be

the contact conductivities, hence, they cannot qualitativelFonsidered as an outgrowth of Refs. 26 and 27.

change the dispersive behavior which we are interested in. In

Sec. V, we will discuss some of these complexities in the B. Computer simulations

scaling theory when we compare the experimental data with o ' .
our computer results. To gain insight into the ENR method, let us first consider

Thus, we have a percolating system where the real part & simple system of five conducting sites as shown in Fig. 1.

the conducting elements is distributed in an exponentially’V€ Write the charge conservation law, the Kirchhoff equa-
large ranger, exp(—\)<Re(s;) <o, \> 1. Below, we will tions, for each sité shown in Fig. 1 in the following form:

measure the frequenay and effective conductivityr, in
terms of oy. Then the dimensionless conductivity of the D _
conducting bond takes the following form: J. oij(¢;— ¢it+Ejj) =0, (6)

= —low +exp —\X;), 5 . . . . -
7i @ o ) ©) where ¢; is the potential of a sitg oy; is the conductivity of

where o’ = w/(4mo) is the reduced frequency. We use athe bond between the sitésandj, andE;; is the EMF in-

random number generator to put the conducting bonds witlsluded in the bondi,j} representing the external field. The
probability p and broken bonds with probability-1p in the ~ summation in Eq(6) goes over alj sites that are neighbors
cubic lattice. Then, again, we use a random number generde the sitei. From Eq.(6), we can express the potential of a
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a the same as in Fig. 1, but sites 3 and 5 have no external
I 2 terminal. After decimation of sites 3—5, we lose the dissipa-
a tion due to mesh currents. Yet, the response to an external
5 QD 3 \1\3/1) signal is the same for the diagrams in Fig&a)2and 2b). By
- solving the Kirchhoff equations it may be shown that the
4 difference in the energy dissipatio in the original and

renormalized systems is independent of the voltages applied
to the external terminals. Thus, for the diagrams shown in
Figs. 1a) and Xb), the difference in the dissipatiof,,

a b arising due to the decimation of site 4, is given by the fol-
lowing equation:

FIG. 2. Exact numerical renormalization procedure for decimat-
ing sites 3 and 4. The response to an external field or current is the (E4i—E4j+Ejj )20 04 Tij
same in(a) and (b), but the dissipation due to the loop currents Q4:E
(1-4-5 and (1-2-3-9 is lost.

0 040 4jF O 204 ’ (10
where the summations over indexe$, andk are still over
particular siteg, in terms of the potentials of the other sites. all neighbors of the eliminated site 4. The system of Egs.
Thus, e.g., the potentiab, of site 4 in Fig. 1 is equal to (8)—(10) forms the closed system of our ENR procedure.

To calculate the conductivity of the percolation system
2j04j(h;—Eyj) discussed above we apply ENR transformations, site by site,
4_T' ™ to the system. Since we use full cyclic boundary conditions,
o _ _ ~ we remove all the sites from the system. When eliminating
where the summation is over all nelghbors of site 4, that ISsite m, we calculate the dissipatic@m connected to the cir-
the index takes value$l,2,3,3. The potentialp, appears in  cular currents flowing through this site using E&0). When
the Kirchhoff equations for site 4 and for its neighbors. Sub-|| the sites are eliminated by means of the ENR procedure,

stituting ¢, given by Eq.(7) we exclude the potentiap,  we obtain the full dissipation in syste@ by adding all local
from the total set of Kirchhoff equations. Thus, we excludedissipations:

site 4 from the system. The conductivities of the bonds be-

tween the neighbors andj of the excluded site 4 change N
under this transformation taking new values QZ% Qm.» (12)
o = g 4 14740 ®) whereN is the total number of sites. Then the effective con-
T S0y ductivity of the systemr, comes from the following equa-

where the summation is still over all neighbors of site 4.t|on
Note that even disconnected neighbors 1 and 3 of site 4 oE2=Q, (12)
(013=0) are connected now: the sites that were connected
indirectly via site 4 become connected directly after thewhereEj=E;+ Ef,+ EZ is the square of the external field.
elimination of this site. This decimation process is a gener- In practical calculations, we put the amplitude of the ex-
alization of the nodal method. ternal field E, equal toEy={1,1,1} for dc as well as ac

The EMF's E;; that were standing in the bonds of the current. In the former case, local conductivitieg together
original system also change after the elimination of site 4with effective conductivityo, ascribe complex values and
EMF E;;, standing in a bond between neighborandj of ~ parameteiQ loses the meaning of energy dissipation. Since
eliminated site 4, takes the new value we consider a quasistatic case, E@—(10) still hold for ac

current. Moreover, it is easy to verify that Eq$1) and(12)
ij still give the complex effective conductivity, .
1- U_f] (Eqj—Eai), ©) Let us now consider how the ENR procedure works for a
system at percolation threshold when the infinite conducting

whered’; is given by Eq(8). The new value&]; of EMF's  cluster is strongly ramified and has a blob-link structtire.
depend on the initial EMF'E;; but also on EMF'sE,; and  When we eliminate siten from the system by ENR, the
E,; which stood in the bondsidand 4. number of neighbors for the other sites in general increases

Thus instead of the initial system of five sites shown insince the sites connected indirectly via sitenow have a
Fig. 1(a) we obtain the new renormalized four-site systemdirect connection to each other. For example, the decimation
shown in Fig. 1b). Since the transformations given by Egs. of site 4 increases the number of neighbors for site 3 in Fig.
(8) and (9) are exact, the new system is equivalent to thel from 2 to 3. In a regular lattice, the application of ENR will
initial one: the response of both systems to the currents anéad to an exponential increase of the bonds per site. There-
voltages applied to the external termindks,b,c,d} is the fore the number of operatiori&nd computer timefor one
same. However, the energy dissipation between original ansite decimation increases with the number of eliminated
renormalized systems is different. When we remove a sitsites. The situation changes near the percolation threshold
from the system, we lose the dissipation associated with thdue to the characteristic blob-link structure of the infinite
circular currents flowing through the eliminated site. We il- cluster. Consider a blob of sideconsisting of sites that are
lustrate this in Fig. 2, where the site configuration is almostconnected by conducting bondisee Fig. 8), where four

O-ij
EX=E, -+
j %
J Uij
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that the system size and number of realizations in our calcu-

b
lations are larger than in all previous works that we know of.
We point out that the self-similar blob-link structure of
b b the infinite percolating cluster, sketched in Fig. 3, is an ap-
proximation designed to represent geometrically the funda-
—_ — mental property of scale invariance of a physical system near
‘ a critical point!* The scale invariance—"scaling” of the
a a critical systems is a well-adopted hypothesis that is the basis
a

of the modern theory of critical phenomena. However, it is

very difficult to observe this scaling directly in experiments
or computer simulations. Now we can reverse the above ar-

guments and conclude that the exiting efficiency of the ENR
FIG. 3. Exact numerical renormalization procedure applied toprocedure can be considered as a confirmation of the self-

the blob-link structure of the infinite percolating cluster. In the first similar structure of the infinite cluster as well as finite clus-
step of ENR we decimate all blobs with sizes from 1Lt¢a) and  ters in a percolating system. Therefore, the success of ENR
(b). In the next step, the blobs with size frdmto 2L are eliminated  shows that a percolating system is scale invariant at the per-
(b) and (c). colation threshold. Yet, the system does not remain the same
in the process of ENR. The average number of conducting

blobs are representedSuppose that the blob is connected toPond per sité\. increases gradually starting frolg=2 and
the rest of the percolating system by two bonds only. If wechievingN =6 at the last stages of the numerical renormal-
eliminate all sites of the blob but one by ENR, this last siteiZation of the system with size,=128. This just means that
has two neighbors. Note that the result of exact renormalizalV& cannot find an exaeinalyticalrenormalization procedure
tion does not depend on the internal structure of the eIimifolr our perlcolitlng systerrﬁanéi other critical phdenpme);]a
nated blob. We can apply exact renormalization to all blobd lternatively, if we want to keefN, constant during the
of size L, reducing each of them to one site. Due to thedeclmanon, we have to work with a dimensiddarger than

self-similar structure of the backbone of the infinite (or equal t9 the critical dlmens_|ordC=6.
cluster!>26:2%3%he resulting structure repeats the structure of The ENR procedure can still be used far away from the

the initial backbone. but the distance between new sites inp_)ercolation threshold. For concentrations of the conducting
! : L componenip=<1, the ENR procedure cannot remove all the
creases fm”_‘ 1“1 The ENR applied to a §elf-5|m||ar back— sites. Nevertheless, the elimination of only a part of the sites
bone260f an infinite conducting cluster is illustrated by Fig.,creases the number of neighbors in the rest of the sites. The
3(b).” When we reduce all blobs of side using the ENR  renormalization of bond conductivities in the system is an-
procedure, the structure of the blobs of siZe 2 substan-  5iper important result of ENR. In other words, ENR in-
tially simplified. At the next steps of ENR, we can eliminate creases the connectivity of the system and mixes conductivi-
blobs of size 2 and so on, until the size, of the whole ties of the conducting bonds. Therefore it smoothes the
system is obtainefisee Fig. &)]. In practical calculations original exponential distribution of the local conductivities
we do not bother to simplify the system before we start thegiven by Eq.(4). After applying the ENR procedure, we can
ENR procedure. Thus we do not eliminate the finite clustersuccessfully use the well-known relaxation metliege, e.g.,
in the system or extract a backbone from an infinite clusteRef. 24 to find the effective conductivity of the system with
since we have found that ENR decimates all the sites verp<1. Otherwise, the convergence of the relaxation method
quickly. cannot be achieved in the original system if the parameter
It follows that the ENR procedure requirdbx Lg opera- in Eq. (4) is greater thar\=5.
tions to decimate all the sites in a percolating system of size

LO and dimenSionalit}d and, Consequently, to calculate its IV. RESULTS OF THE COMPUTER SIMULATION AND

effective conductivity. We can compare this estimate with SCALING THEORY FOR THE DISPERSIVE
the number of operations in other exact methods: the transfer BEHAVIOR OF INHOMOGENEOUS
matrix method® takes aboutNe«L/ operations and the IONIC CONDUCTORS

Frank-Lobb algorithrf? takes Noch operations, however,
this algorithm works for 2D systems only. For example, the
ENR procedure takes about five minutes on a computer such
as a Pentium 200 to calculate the effective conductivity of a In this section, we present the results of the computer
percolating system with size 128128x 128 and concentra- simulation of a 3D percolating system, namely, the cubic
tion p close to the percolation threshold. lattice with a concentration of conducting bonds equab,to

To test the ENR we have calculated the conductivity of athe other bonds being broken. Randomly distributed con-
percolating system with identical conducting bonds at theducting bonds, representing the contacts between brushite
percolation threshold for different system sizds,  grains, have conductivities distributed over an exponentially
=16,32,64,128. The conductivity was averaged over 6400arge range according to E¢G). We neglect polarization of
1600, 400, and 100 trials, respectively. From these calculathe polymer grains in comparison with the contact conduc-
tions we estimate the critical expondrfor the conductivity tances and put the conductivity of the “dielectric” equal to
using finite size scaling> Thus, we obtaint=2.05+0.01  zero even at finite frequency. The paramétén Eq. (5) has
which is close to the known value=2.0. Note, however, been chosen to be equal %=10, which corresponds

A. Power-law dispersion of the complex impedance
in the entire concentration range
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FIG. 4. Real part of the effective conductivity, obtained from
computer simulations as a function of the reduced frequericfor
different concentrations of the conducting boqds$a) p=0.26,(b)
p=0.27,(c) p=0.3,(d) p=0.5,(e) p=1.0.

FIG. 6. Exponentx for the dispersion of the effective conduc-
tivity o.>w®. @: computer simulations#: result of estimation
according to Eq(25).

onset of the dispersion(w')xw’'® is also in qualitative
roughly to the experimental conductivity distribution in the agreement with our experimental data discussed in the next
brushite composites as will be shown in the next section. Isection. We also determine that the effective relaxation time
fact, the main conclusions of this section do not depend o1}, is the inverse proportional of the frequenejj, where the
the particular value of the paramet_leras_soon as pr][ imaginary part of the complex resistivityp,(')
>1. We use the ENR method described in the previous sec-. az(w’)/[of(w’)Jrai(w’)] is a maximum: this approxi-

tiqn to calc_ulate the effective complex condu_ctiviné: 71 mately corresponds to the onset of the dispersiongfo’).
—io, for this model. The results for the effective conductiv- Thus, the defined relaxation timg increases exponentially

ity oy(e’) and the reduced dielectric constas(w') g the concentratiop decreases, as shown in Fig. 7.
fTJr?c?t(ig)né/ ‘c‘)’f rzzjeusggv;/rne Izeilgifa;s ,4[:2 tsf{er?j?é):ucstgliig,a?s Finally, in Fig. 8 we present the reduced effective com-
9 plex resistivity p'(p,0’')=p(p,w")/p(p,0)=p1(p,»’)

Eqg. (5)], for different concentrationp. Remember that the Fiph(p,w’) in the form of the Nyquist plot. The impedance

percolation threshold is equal i =0.2493...(Ref. 15 for . . - .
the bond percolation problem defined on the cubic lattice. diagram shows gwell-defmed depressed ’sem|,C|rcIe with the
so-called damping parameteB=max,[ps(p,»")/p(p,0)]

The real part of the effective conductivity;(w’) (see ™ ; .
Fig. 4) increases by many orders of magnitude with increas™ 0.4. Note that the points for all concentrations collapse to a
ing frequencyw’. In the frequency region where; (') single curve though the frequency behavior of the effective
increases significantly its dependence on the frequency cé?cggfrgzg\g;y q’?](is1:11;3’)0rg:aear?g;t?nggfg;eE;;%rrsﬂgféﬁp\tlvzorne-cal|
be well approximated by the power-law equatiof(') that botha and 7 depend on the concentratipn(see Fig. 4.

xw'® We determine that the “critical exponent as the Let | te that Nvauist plots | inf i h
maximum  value of the slope, ie. a(p) et us also note that Nyquist plots lose information when

_ / / : d to frequency dependence. The Nyquist plot in Fig.
=maxdIn[o(p,0’)]/dIn(w")}, . Thus the defined exponent compare ) C .
a(p) increases froma=0.4 for p=1 to @=0.75 for p 8 can be approximated by the well-known empirical equation

—p. as shown in Fig. 6. Such an increase of the critical(l) (see Refs. 1-bwhich can be written in the following

exponentw is in qualitative agreement with the experimental form:

data, as we will see. p(0)
We can see from Fig. 4 that the onset of the power-law p(w')= T Ciaa
behavior shifts about five orders of magnitude toward small (mla'm)

frequencies yvhen the concentra.tpdgcrg.ases from= 1t0  Then we find that the exponent, = (4/)arctan()=0.86
the percolation thresholg.. This significant shift of the whateverp. Therefore, there are two relaxation time scales,
71 In EQ. (13) and 7, which corresponds to the maximum

(13
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FIG. 5. Effective dielectric constant obtained from computer

simulations as a function of the reduced frequencyfor different FIG. 7. Effective relaxation timer for the dispersion of the
concentrations of the conducting bongs (a) p=0.26, (b) p effective conductivityo .« w® obtained from computer simulations
=0.27,(c) p=0.3,(d) p=0.5,(e) p=1.0. as a function of the concentration of the conducting bgmds
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P'z where the critical exponernt= v+ nsv. So, if we take into
account only the red bonds and identical conducting bonds,
the critical exponent i$= v+ 1=1.881° This value of the
exponent is not far away from the value=2.05 calculated
above.

Now, let us take into account the distribution of the con-
ducting bonds given by Ed5). We still calculate near the
percolation thresholg.. We also assume that the dimen-
sionless frequencyw’ in Eq. (5) is small enough|w’
<exp(—\)]. From now on we takerp=1. To find the con-
ductance of a macrobond in a Skal-Shklovskii-De Gennes

FIG. 8. Nyquist plot of the reduced resistiviyy. Computer ~ superlattice we follow the procedure outlined in Ref. 33. Let
data collapse on the single curve obtained from &), which ~ us consider a macrobond which connects two nodes sepa-
gives essentially the same Nyquist plot for all concentratimns rated by the distancg,. We first “switch off” all elemen-

tary conducting bonds in the macrobond. Then we restore the
slope ofoy(w) in Fig. 4. There are two exponents ande  elementary bonds in the macrobond starting with the one
to describe the dispersion for the frequenciesl/m; and  having the largest modulus of conductivity. We continue the

0.5

0.25

0 0.5 1.0

wx1/7, respectively. The exponertis nonuniversal. procedure until a conducting path spans between the two
ends of the macrobond. The smallest conductivities included
B. Frequency dependence of the impedance in vicinity in this first conducting path have value.,=—iw’+exp
to percolation threshold (—\xy), where the concentratiox, is equal to the percola-

. . . tion thresholdx.=p./p for the percolating problem that is
Let us now start the interpretation of the numerical ré-c ot by the backbone itséf23! The conductance of the

SU|tS.' For different phenomena, we can Qef|ne different COlrmacrobond is determined by the conductance of the first path
relation lengths. If the size of the system is large compared t

. T ) r€dince all other bonds that are inserted afterwards have
this specific correlation length, the system can be considere L :

. Smaller conductivities in absolute value thap. That is, we
as homogeneous for this phenomenon.

To understand the behavior of the effective complex con>ubpoOse that the electric current chooses a single path con-

ductivity o(p,’) in the considered system, it is instructive sisting of bonds with the largest conductivities in any blob of
e\ ; SN the backbone. In analogy to the well-known relatibg
to start with concentratiop close to the percolation thresh- ~ ", =" " ,
old p.. At this concentration, the backbone of the infinite =p » it IS natural to suppose that lengthof the first con-
cluster of the conducting channels can be viewed as a Skalducting path also has a scaling dependence on the correlation
Shklovskii-De Gennes superlattiGeconsisting of nodes length, i.e.,L=&7. This new critical exponeny is, in gen-
connecting via macrobonds. The macrobonds have selfral, larger than the critical exponent for the shortest path
similar blobs—link structures such as that shown in Fig. 3.7= 75, since the first conducting path consists of the bonds
Macrobonds necessarily include single connected parts—reghich have the largest conductivities. These bonds do not
bonds. The geometrical distance between neighboring nodégcessarily coincide with those in the shortest path between
in the Skal—Shklovskii—-De Gennes superlattice is the percoiwo nodes in the superlattice. The value of the expongnt
lation correlation lengtté,=ag(p—p.) ", wherea, is the will be determined below. Since the first conductance path
microscopical scale for the problefe.g., the average size of consists of bonds connected in series, its conductar(té
brushite grainsand critical exponent is equal toy=0.88  can be estimated as(L)=((p)cL) ", where(p). is the
for 3D systems® From now on we will measure all the average complex resistivity of the bonds belonging to the
distances in terms o, (i.e., puta,=1). The lengthL of  path. The conductivities of the bonds in the first path are still
the shortest path between two nodes in the superlattice ®istributed according to Ed5), but the random variableg
certainly larger than the geometrical distangg between —are now in the rangeQx;<p./p. The average of the bond
them. The following equation holds for this lengtl=¢", resistivity pj=1/o;=[ —io’+exp(-Ax)] " is then obtained
where the critical exponeng>1 (Refs. 15, 31, and 32If as
only the red bonds are taken into account, the critical expo- Do /p
nentys is equal tons=1/v~1.14(Refs. 15, 31, and J2that (p)e= f [—iw +exp(—Ax)] tdx
is, the length of a macrobond in the superlattice is much 0
larger than the geome:‘trical distances betweep its ends ip 1-iw' exgA(p./p)]
Ls/é,— < for concentrationg— p.. For a percolating sys- = - In( — )
tem with identical conducting elements the conductance of a Pch @ 1-le
macrobond between two nodes in the Skal—Shklovskii—Derrom this equation, it follows that the effective complex con-
Gennes superlatticer(L;) can be estimated as(Lg) ductivity o2 U(L)/§p=(<p>cL§p)7l of the percolating sys-

=0o/Ls, Where oy is the conductivity of the conducting tem with exponentially distributed conductivities and con-
element. A percolating system is considered homogeneousntrationsp close top, is equal to
for scales larger than the correlation length. Therefore,
the effective conductivityr, is estimates to be 0" A AP —io'(p—pe)tT 7
oe(pw')=A— — —,
_ p N{l-iew exdgA(p:/p)l}H(1-iw"))
se=0(LlE=00t, " P=00o(p-po), (19 ‘ (16)

(15
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FIG. 10. Nyquist plot of the reduced resistivity obtained

computer simulations exactly at the percolation threshold as a funexactly at the percolation threshold. The pointsXer 20, 15, 10.0,

tion of reduced frequency’ for different values of parametex:
+:A=20%: A=15, X: A=10.0,0: A=5.0.

5.0 collapse on the single curve that is given by E@) and are
independent of parametarfor A>4. The dashed line is Nyquist
plot from Eq.(18) for A=2. The dotted line is the universal value

where A is some numerical coefficient. Remember that weof damping parameteg=1In 3.

have takerry=1. When frequency goes to zero the effective
conductivity approaches the static limit

a _ )\pc (1+n)v
Ue(p)—AT(p—pc) 7rexd —N(pe/p)],  (17)

where the concentration of the conducting componeig
still supposed to be close to the percolation thresipgld

C. Scaling consideration at the percolation threshold

Exactly at the percolation threshojol=p., we should
substitute the system siteto the correlation lengtl, in the
equation aeo<(<p>cL§p)*l according to the finite size
arguments?® Then Eq.(16) takes the following form:

i AL~ (17
IN{[1—iw exp )]/ (1—iw )}’

oo(L,w")ex

(18

Using the ENR method, we have calculated the static con
ductivity oo(L)=0(L,0) at the percolation threshold for
different values of the system sikeand for different param-
eters\. The static conductivityro(L) appears to agree best
with the equationo(L)=\ exp(—\)/L1*7, which follows
from Eg. (18) in the limit " —0. From these calculations,
we estimate that critical exponeng is equal to n=1.5
+0.1.

In Fig. 9, we present the effective conductivity(w’)
calculated at the percolation threshold for the fixed 64
and different values of the reduced frequencyand param-

wl~exg—N2In(\)], A>1. (19
We can introduce the relaxation time= 1/w,, which corre-
sponds to the power-law dispersion of the complex imped-
anceZ(w')*(w")*. Substitutingw/, given by Eq.(19) in the
expression for the exponent={d In[o(w’))d IN(®")}, =4

we obtain the following equation:

4\
a=1—

>
N+’ A>1,

(20

which actually stands for all parametexs 1. Equation(20)
givesa=0.64 forA =10 in good agreement with the results
of our computer simulation for concentratioplose to the
percolation thresholg@.. (see Fig. §. It follows from Eq.(20)

that the exponent achieves its asymptotic value=1 for
\—oo; this value can only be considered as univefaddich
means that it is independent of the particular features of the
system when the parametex becomes very large.

Consider now the Nyquist plots of the reduced complex
resistivity p'(L,w")=pi(L,0")+ipy(L,0")=0c(L,0)/
o(L,w") calculated using the ENR procedure fprp..
They are presented on Fig. 10 together with the curve ob-
tained from Eq.(18). We observe that all data are superim-
posed on the curve fitted by EL8). The damping param-
eter is equal to B=ma{psL,0')], /pL,0’—0)
=0.41 for the curve in Fig. 10 and exponen{ in Eq. (13)
is then equal tax;=0.86. The imaginary part of the reduced

eter\. We can see that the obtained effective conductivity€SIStivity py(w) is a maximum for the frequency
follows Eq. (18) for the entire frequency range even though @o=1/71. From analysis of Eg(18), we obtain in the limit

Eqg. (18) was obtained forw'<exp(—\) only. This means

AS>1:

that the same path gives the most important contribution to

the conductance of a macrobond no matter what the value of w{~{A-+O[exp(—\)]}exp(—\),

the frequency is. If we adopt this suggestion, we can estimat
the critical exponent to bet=»(1+ 7)~2.2 which agrees
with the result of Sec. IIl.

Since Eq.(18) fits the computer data very well, we
use this equation to calculate the exponeat «
=max,{dIn[o(’)]/dIn(w')}. We  solve equation
& In[o(w))dIn(w')?>=0 numerically and obtain that the
maximum is achieved at frequeney,, which can be ap-
proximated with very good accuracy as

A=1.98029..=2,

e (21

whereA is the solution of the equationA/(1+A?)—In(1

+A%)=0. Substitutingwy~2.0 exp-\) back into Eq.(18),
we obtain the following expression for the damping param-
eter 8 as a function of the disorder parameler

1
4(1—e™ M)

5
1+4e 2

In A>1.

B (22
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It follows from these equations that the damping paramgter the previously determined effective relaxation tiniese Fig.

achieves its asymptotic valyeé=In(5)/4~0.4 very rapidly 7) and substitute them in E¢25). The obtained “theoreti-

with increasing parameter .. The exponent a4  cal” values for the exponen&(p) are shown in Fig. 6 by

= (4/m)arctan($) reaches its asymptotic value squares. There is rather good agreement between the expo-

nentq originated directly from the computer simulations and

that from Eq.(25). This would mean that Eq$19)—(25) can

2 be applied to any inhomogeneous system with exponentially
distributed local conductivities as soon as the notion of local

zlr?ady at)\”>4. Thl.JS' Ilt IS not ?“fg.”s'”g tha(tj Tg Zomput(tar: conductivity can be introduced. The effective relaxation time
ata are all on a single curve in Figs. © an - Again, eTl has been obtained from a Nyquist plot whereas the expo-
asymptotic value of the exponent; can be considered as

o ! ; . nent o determines the power-law behavior of the effective
universal” as soon as the disorder is large enough.

; . conductivity og(w)=1/p(w)*w® for frequencies much
It follows from the above consideration that there are two y b :
o . I han 1#, [cf. Egs.(1 21) for A>1]. Still th
characteristic time scales in the systemexp(/2 In\) and arger than 14, [cf. Bgs.(19) and(21) for A>1]. Siill these

m=exp\/2> 7. given by Eqs.(19) and (20), correspond- guantities appear to be connected to damping parargedsr

ingly. The frequency dependence of the complex impedance
Z(w') is quite different in these two scales. For the frequen-
ciesw’x1/7, it is power-law dispersioZ;«Z,xw’'* while

for w'«l/7; imaginary part of the impedanc@,(w’)
reaches a maximum at the frequengy= 1/, and the whole We return now to our system analysis for an arbitrary
dispersion behavior can be imaged as a depressed semicirélencentratiorp of the conducting bonds. As one might ex-
in the {Z,,Z,} Nyquist plot. It is worth noting that system pect, the static conductivity5(p) given by Eq.(17) is de-
behavior becomes universal footh time scales when the termined by the smallest critical conductivity.=exp
disorder in the system increases. [—A\(p./p)] obtained from the first conducting path through a

For small values of the parameter(ordered systems or macrobond. The conductivities in the first conducting path
rather large temperatureEq. (22) gives the damping param- are distributed by Eq5) where the random variables take
eter 8 in the following form: values in the interval & x;<p./p. Then the length’ of the
segments of the conducting path between two critical con-
ductivities can be estimated aSx\p./p. Therefore, the
above considerations of the percolating system with expo-
nentially distributed conductivities hold when the length of
the first conducting path= &7 is much larger than the length
9 this means that the percolation correlation length must be
large enough&,>[\(p./p)]1Y".

We turn now to the opposite case, namely, we consider
concentrationsp of the conducting bonds such that the
percolation correlation length is relatively small

<[\ (pc/p)]¥7, but still &p>1. Recall that we are inter-

sted in systems with parameber 1. Let us start with small
frequenciesw’ <exp(—\). To estimate the effective con-
ductivity oq.(p,0’) we consider a system with size
L>[N(p./p)]Y7> &p. We again switch off all the conduct-
%g bonds in the system and then restore them starting with
the largest modulus of the conductivity, in order of de-
%‘reasing values. Suppose that we restorextipart of the
conducting bonds to its original form, therefore we restore
the bonds with conductivities|—iw’+exp(—AX)|<|d
<|—-iw'+1]|. At concentratiork= X, the first conducting path

. , .
the .charactenstl_c frgquency)o(,p) corresponding _to. t.he spans the system. The volume concentration of the restored
maximum of the imaginary paft; of the complex resistivity 54 js equal tap, therefore the critical concentratioq is

71(p) =1wo(p). On the other hand Eq21) gives wo(Pe)  equal tox.=p./p. 1% The resistance of the first conduct-
=1/7(pc) =2 exp(-\). We can define the effective param- jng path is estimated to be that for a macrobésee discus-
eter\, for the entire concentration range from the equationsjon after Eq(14)]. Therefore, the path resistance is propor-
1ri(p)=2 exd—A(p)], which giveshe(p)=—In[27(P)].  tional to(p).L 7, where(p), is given by Eq.(15), andL” is
Substituting the thus defined effective parametgfp) in  the effective length of the path. Then the conductivity of the

4 In5
a=— arctar6 —) =0.86 (23

D. Scaling equation for the complex impedance
in the entire concentration range

)\2

B=5—7g ML, (24)

which gives the damping paramet@=3 for A=0, i.e.,
when all conducting elements have the same conductivity s
that the dispersion behavior of the complex resistivity re-
duces to simple Debye relaxation. Indeed, B¢ 3 we ob-
tain @;=1. In Fig. 10 we show the Nyquist plot of the re-
duced resistivityp'(w') obtained from EQq.(18) for an
intermediate case, namely, for=2. The corresponding
curve goes somewhat higher than the curves for the larg
values of the parametarand is a less depressed semicircle.
It follows from Egs.(20) and (22) that exponentsr and
a4 obtained from thes(w’) dependence and the Nyquist
plot, correspondingly, are not independent. The exact form
of Egs.(20) and(22) have been obtained for systems at the
percolation threshold. Let us suppose for a moment that Eq
(20) and (22) can be applied not only for the system at the
percolation thresholg=p. but for all concentratiop. We
have defined the effective relaxation timgas the inverse of

Eq (20), we obtain the fOIIOWing equation: whole system is estimated to be
4In[27,(p)]
a(p)_l_ In [le(p)]+7T ) (25) Ue(XC)EW, (26)

which connects the exponentand the effective relaxation where the average resistivity). is still given by Eq.(15).
time 71(p) for any arbitrary concentratiop=p.. We take = When we restore more and more bonds, they form the Skal—
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Shklovskii—-De Gennes superlattice. The period of the super- In the limit p=1 andw’=0 the effective conductivity
lattice periodé, decreases as the concentrationf the re-  given by Eq.(28) becomesog(1,0)xexp(—Ap)/(Apo)Y” (A
stored conducting bonds increases. The effective=1), which is similar to the well-known resultr.=exp
conductivityoe(X)=1/((p)céx ) increases with decreasing (—\pg)/(\py)” for the static conductivity of a regular lattice
&, until the characteristic size with exponentially distributed bond conductivit#sHow-

£.=(Axo) V75 £ @27 &vern in the earlier workg only the red bonds in a macro-

¢ ¢ P bond were considered, whereas we now take into account the

is reached. This new characteristic length is related to currenyhole blob-link structure of the backbone. Consequently, we
inhomogeneities. The conductance of a macrobond with sizgptain a new critical exponent 4fnstead of the exponent
é&x=§&: can be estimated as.=1/((p)c£{)=1/((p)cAXc)  for the percolation correlation length. It is not surprising that
~exp(-Axp). If we go on restoring the conducting bonds, gq. (28) derived originally for concentrations close to the
..e., switch on the bonds with conductivitielgr;|<exp  percolation threshold gives exact results for 1. The ge-
(=), the effective conductivity will not change since the ometry of the percolating system is essentially the same for
new bonds have conductances smaller than the macrobomghth limiting cases since the system can be viewed as a regu-
conductances.. Therefore, the effective conductivity for |ar |attice of the conducting bonds. The only difference is
the concentrationp corresponding to the correlation length that for p=1 the period of the lattice is equal to a micro-
£p<&. can be obtained from Eq16) if we substitute the scopical scale, while for p—p, it is equal to the percola-
conductivity correlation lengtt.=(Axc)"” to the percola- tion correlation length¢,. Nevertheless, this difference is
tion correlation lengthé,«(p—pc)~". Thus, we obtain the jnessential as soon as the current inhomogeneity sgaie
following equation for the effective conductivityg(p,»')  larger than the scale of geometric inhomogenéity ép-
in the concentration range corresponding to the condition The effective conductivitiesr? and 02, given by Egs.
Ep<é&c: (16) and (28), respectively, have the same form at concen-

p\ Y7 e tration p*, corresponding to the_cqnditio,szgc_. _That is,
Ug(p,w,): B( _) where the scale for the geometric inhomogenéjys equal
n<

{1-iw'exgdN(p:/p)1} ' to the scale of the electric current inhomogenédity To
— calculate the effective conductivity, in the entire region of
(1-ie") the concentration we use the simplest interpolation equation
@8 o= (02l T+ ol (e T+ €577), which takes the
whereB is another numerical factor. form

c

N —ipAo’
7P ) SR T0” exN (o D) (1 1@))[(p—po)  7TAT (Npo/p) T /B

(29

whereA andB are numerical factors that appeared before inused for a much wider frequency range, namely, for
Egs.(16) and(28), respectively. o' <exp(=\p./p). Indeed, the derivation of Eq(28) is

We show in Fig. 11 the effective static conductivity based on the separation of the conducting bond of those with
o«(p,0) given by Eq.(29) together with results of the com- conductivities |oj|=|—iw’+exp(-Ax)|=0, and |o|=
puter simulations. The factoms and B have been chosen to |—i®’+exp(—\x)|<o., where the critical conductivityr,
be equal toA=0.035 andB=2.1, respectively. There is IS equal too.=exp(—Ap./p). It was shown that conducting
good agreement between computer data and the results Bpnds with/oj|= o are responsible for the effective conduc-
interpolated Eq.(29). Note that there is no concentration

range in Fig. 11 where the conductivity is linear with respect In(c")
to the concentratiop, as predicted by perturbation thedty

and effective medium theoriésInstead, the behavior of the 0F
static conductivityo, looks similar to scaling lawor > (p

—pe)t with the exponent aboutt=2 in the entire range of 5t

the concentration. This result can be understood if we recall
that the spatial scale of the current inhomogenegty
=max¢,.&;} is larger than microscopical scakg, for all -10
concentrationg in the considered percolating system with . . . In(Ap)
exponentially distributed local conductivities. P
We showed above that E(L6) (concentration range such -4 2 0
that&,> &) describes the results of the computer simulations  F|G. 11. Effective static conductivity of the percolating system
well for the entire range of frequency. Equation (28) with exponentially distributed local conductivity®: computer
(condition ¢{,<¢;) was originally derived for the reduced simulations, the line is the static conductivity given by E2§) for
frequencyw’ <exp(—\). It is easy to show that it can be A=10, w=0,A=0.035,B=2.1.
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tivity of the system. If the frequency is such that<o, w>0o.. Therefore, the term o§=2p/Lo<(§g“(p>)*l
the above separation does not change and, therefore, theresisould be added to E¢R8) for the effective conductivityr?
no effect on the derivation of Eq628) and(29). to extend this equation for the entire frequency range. We

To find the effective conductivity for larger frequencies .5 a1so add the same term to the effective conductivty

(w’>a¢) let us consider again a system with size- given by Eq.(16), which holds foré,> &, i.e., for concen-

>&p. The number of conducting channeik, Whlch_span trationsp near the percolation threshgtd . Indeed, the con-
the system from, say, top to bottom, can be estimated as . . c L
uctivity o resembles the conductivityg for p—p, and

Npoc(L/£y)2. For o' <o, only Nex(L/£)?<N, channels ! . _
have conductivitiego;|= o, which are responsible for the the addition ofoy to Eg.(16) just leads to some renormal-
effective conductivity. Their contribution to the conductanceization of the numerical factoh. _

S, of the system is estimated 3s=L/(£""(p).), where From the above discussion, it follows that we just have to
(p). is given by Eq.(15). The otherN,—N.~N, channels add the_ conduptivi_tyrg to the int_erpolating equatiof29) to
contain nearlyall conductivities and, therefore, their contri- extend its application to the entire frequency range. Thus, we
bution to the conductance can be written asEp obtain the following equation for the effective complex con-
=Np/(L§{,’+l<p>)EL/(S,’ZH(p)), where(p) is the bond re-  ductivity [recall that all conductivities and frequencies are
sistivity averaged on all channels. However, this conducimeasured in terms of the conductivity, appearing in Eq.
tanceX, becomes important when the frequency increases4)]

N —ipAo’
TP ) I T e (oL 1@ (P~ Po) = 7TAT (Npo /)" V77E]
—iNw’ P—Pe (1+7n)v (kpc)7(1+l/n)
T n1-Te expn)l(1-ie)] (1—pc) (1_ B ’ (30

wherep is the volume concentration of the conducting com-be coincidental. Let us stress again that the existence of an
ponent in the percolating systef®.g., brushite grainsp. is  analytical equation which is valid for the entire concentration
the actual percolation threshold in the considered systemiggion (P.<p=1) and all frequencies is accounted for by
o' =wl(4moy) is the reduced frequency of the external acthe current and field inhomogeneity scale and far exceeds the
field, A ando, are parameters of the exponential distributionmicroscopical scal@,. Moreover, the inhomogeneity scale

of the local conductivities in the systefsee Eq(4), param- IS large as compared ta, for all concentrations and for
eter \>1], »=1.5 is the critical exponent found in the almost all frequencies. Note that agreement between com-

/;

present workpy=0.88 is the critical exponent for the perco- PUtér data and the theory is somehow inferior &f—o
lation correlation length, and=0.035 andB=2.1 are nu- when the inhomogeneity scale shrinks to the microscopical
merical coefficients. The numerical coefficient in the |astscaleao.
term of Eq.(30) has been chosen so that the effective con-
ductivity oo(p,0’) resembles the exact resuity(1l,0’ V. EXPERIMENTAL RESULTS AND COMPARISON
—w)=—iw’, which holds for the considered system. A WITH THE THEORY
scaling equation of the form of E30) can be used to esti-
mate complex impedance of any physical system with expo-
nentially distributed local conductivities. The brushite composite samples used for measurements
However, we should note that EO) was obtained in a are pellets, 20 mm in diameter and 1-3 mm in thickness.
somewhat rough approximation since all the elements of th&hey were pressed at 1.6 kbar for 20 min and are composed
system which are not included in the Abraham-Miller net-of two mixed powders of brushite and polym@olyphenyl-
work are assumed to be connected in series. On the othsulfur). The average size of the brushite and polymer grains
hand, it is well known that resistive elements that are nois 18 um and 42um, respectively. For electric measurement,
incorporated in the backbone for the most part in series withwe use an EGG devicémodel 273A coupled with a
the C elements in usuaR-C percolating systems. We will Schlumberger 1255 Sl locked-in amplifier. The electrodes
show that the assumptions made in order to obtain(&g). are gold and the frequency range for the measurements of the
from Eq.(29) prove themselves in practical calculations. Thecomplex impedancé(w) is [10~* Hz,1¢% Hz]. The details
precise description of the complex effective conductivity of aof the experimental procedure can be found elsewhere.
percolating system with an exponentially wide distributed The brushite powder was first dried in an oven. Immedi-
real part of the local conductivity deserves further considerately after compacting, the samples have no dc conductivity;
ation. they behave as insulators. After being stored for a few days
Figures 4, 5, and 8 show that E(B0) reproduces the at room atmosphere, they acquire a well-defined conductiv-
numerical results of the computer simulation in the entireity, as reported below, which does not change during the
concentration and frequency range. The resemblance canntocess of measurement. We will refer to this set of samples

A. Dry brushite composites
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FIG. 13. Effective static conductivity of the percolating system
FIG. 12. Nyquist plot of the complex impedancé(w) with exponentially distributed local conductivit@®: dry brushite

=Z,(w)+iZ,(w) for the brushite composite with concentratipn — composites, line is given by Eq9) for different Ap=p—p. and
=0.4. for \=10.1, =0, A=0.035,B=2.1.

as dry samples, and most of the experimental results prd29 to be the same as those we used to describe the com-
sented here were obtained from these samples. To verify theuter datasee Fig. 11 Therefore we are left with only one
suggestion that the finite conductivity can be attributed to ditting parametei which is found to bex=10.1. Then Eq.
thin layer of absorbed water on the brushite grains we havé29) exactly reproduces the experimental results for the re-
prepared another series of composites—wet samples. Thiiced static conductivity’(p). This allows us to assume
wet samples were prepared in the same conditions, but witthat in the static case the contact conductiviigsbetween
a brushite powder kept in a water saturated enclosure for 4the brushite grains are distributed exponentialty,
h before compacting. Thus, the obtained wet composites oy exp(—Ax), wherex=10.1, and the random variables
have a dc conductivity of about two orders of magnitudex; take values €& x;<1 [see Eq.(4)]. The prefactoro
larger than that of the dry sampl&s° can be estimated from the experimental vakgl)=1.1
The volume concentratiop of the brushite grains and X10* sec*[1.3x10 8(Q cm™1)] and Eq.(29) to be equal
pores is equal tp=1.0, 0.84, 0.67, 0.49, 0.4, 0.3, and 0.27t0 o,=4.1X 10° sec . For the exponential distributed local
for the dry samples. The Nyquist plot of the complex imped-conductivities, the spatial scale for the electric current inho-
anceZ(w)=2Z,(w)+iZ,(w) of a sample with brushite con- mogeneity exceeds the microscopical scale in the problem,
centrationp=0.40 is shown in Fig. 12. We can observe anamely, the average size of the brushite grains, significantly
depressed semicircle that is completed by an increase of bofbr all concentrationgp. Consequently, we obtain a “scal-
Z,(w) andZ,(w) parts of the impedancé(w) at small fre- ing” behavior of the static conductivity, as a function pf
guenciegright part of Fig. 12. Such a Nyquist plot is typical for the entire concentration range frgms+ 1 until the perco-
for many inhomogeneous ionic conductdege, e.g., Refs. lation thresholdp=p,.
1-5. It is commonly accepted that the increaseZgf{w) The Nyquist plots of the reduced complex impedance
andZ,(w) at low frequencies is due to processes at the elecp’ (w) =pj(w) +ipy(w)=Z(w)/Z(0) are shown in Fig. 14
trodes(Warburg impedance behavior, discussed at the end dbr all values of the concentratiom We have omitted the
Sec. l). We are not interested in electrode processes in thitow frequency experimental pointsght part of the Nyquist
paper and will, from now on, omit the low frequency points plot), which are related to the Warburg impedance behavior.
and only keep higher frequencies where the Nyquist plots foAll other experimental points are situated on a single de-
our samples have a well-developed semicircle shape. pressed semicircle, which is well reproduced by B§). We
We extrapolate the semicircle impedance data to obtaistill use parameter&=0.035 andB=2.1 which were the
the static conductivity of the brushite composites themselves,
apart from electrode effects. Two methods for the extrapola- P'z
tion have been used: direct extrapolation and the fitting of a
Nyquist plot by empirical equatiofil). Both methods give
essentially the same results shown in Fig. 13 where we plot
reduced static conductivity’ (p) = o (p)/o(1) as a function
of Ap=p—p.. We chose for this series of samples the per-
colation thresholg.= 0.23. It is not surprising that the static
conductivity in Fig. 13 follows the power-law behaviet
«(Ap)! for concentrations close to the percolation threshold.
What may be more surprising is that the critical behavior
o'« (Ap)! starts atp=1 and holds in thentire concentra- 0 0.5 1.0
tion range. To understand the origin of the concentration g, 14, Nyquist plot of the reduced resistivity. Experimen-
variation of the static conductivity, we fit the experimentalta| data for the brushite composites collapse on the single curve
data by Eq.(29) obtained in the previous section for a per- obtained from Eq(30), which gives essentially the same Nyquist
colating system with exponentially distributed local conduc-plot for all concentrationg. The parameters in Eq30) are \
tivities. We put the numerical coefficiens andB in Eq. =10.1,w=0, A=0.035,B=2.1.

0.5

0.25
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FIG. 15. Effective relaxation time; for brushite composites as
a function of the concentratiom Relaxation timer, is obtained as FIG. 16. Real part of the effective conductivity; for brushite
71=1lwg, where the frequency, corresponds to the maximum of composites as a function of the frequeney different series of
the imaginary part of the resistivity;(w). experimental points correspond to different concentrati¢asp
=0.27,(b) p=0.3,(c) p=0.4.

best found for the computer data in Sec. IV. The parameter

A=10.1 was determined above from the concentration de=2o.xagyexp(—\). Therefore, the relaxation time is pro-
pendence of the static conductivity. Note that E80) is  portional to; = l/wyxexp()/og. When concentratiop in-
written for the dimensionless frequenay. To find the ac- creases above the percolation threshold, we have a larger
tual dependence of the effective conductivitgsistivity) on  choice of conducting elements in the system to build up the
the frequency it is necessary to introduce toeresponding conducting channels. Still, the contacts between the grains
characteristic frequency* in Eq. (30). Below, we deter- which are essential for the effective conductivity, can be con-
mine the characteristic frequency* for this series of sidered as connected in series but the lowest contact conduc-
samples. However, as soon as we have only one depressivty increases. The lowest contact conductivitgritical
semicircle in the Nyquist plot, the shape of the plot does notonductivity, which is important for the effective conductiv-
depend on the characteristic frequency. A changesfn ity can be written aso.=1/p;(w—0)=0q exd —\(p./p)]
causes the points to move along the curve only. Therefordsee Eq.(15]. Correspondingly, the relaxation time;

we use Eq.(30) as it is and obtain that all experimental «1/o.xexdA(p./p)l/oy decreases exponentially when the
points collapse on the theoretical curve. Figure 14 shows thatoncentrationp of the brushite grains increases. When the
the damping parameteB=maxpj(w)] is essentially the concentratiorp increases further, the lowest static conduc-
same for all concentrationg being studied in the experi- tivities in the system may be shunted not only by their own
ment. The experimental value of the paramgger0.4 cor-  Capacitances but by the intergranular capacitances between
responds to the “universal” valug=In(5)/4 which we pro- other brushite grains. These contact conductivities do not
pose for systems with exponentially distributed localParticipate in dc conductivity but they become important for
conductivities. frequencies larger than the critical conductivity>o..

We can define the effective relaxation timg for the  Then the relaxation time saturates somewhat f@>0.6.
complex impedance or conductivity ag=1/w,, wherewq In Fig. 16 we show the frequency dependence of the real
is the frequency wherein the imaginary pas{) is a maxi- partoy .of the complex effective conduc_tlvm;re for the con-
mum. This definition of the relaxation time agrees with thecentrationg=0.4, 0.3, and 0.27. The high frequency part of
empirical equation13) often used for fitting experimental the measurements corresponding to the condiionl/r; is
data'~® The defined relaxation time, is shown in Fig. 15 more r_eliable for these lowest concentrations. We observe
for different concentrationp. We observe that, increases from Fig. 16 that the beginning of the dispersionwf(w)
by several orders of magnitude as the concentraiate-  Shifts to larger frequencies when increasing the concen-
creases towards the percolation threshold. This behavior dfation p and that the exponente, defined by
the relaxation timer, is similar to the one obtained in the @=maxXdIn[oy(w)}/dIn(w)},, is different for different con-
computer simulationésee Fig. 7and can be explained in the Ccentrations. We compare the experimental data with results
following way. All contacts between the grains that are esgiven by Eq.(30), obtained in Sec. IV in dimensionless
sential for the effective conductivity are connected in seriedorm. For the real composites, this equation takes the follow-
for the concentrations of the conducting comporenushite ~ ing form:
graing close to the percolation threshqgid as we speculated
in Sec. IV. Then the effective static conductivity is deter-
mined by the lowest contact conductivity,= oy exp(—A\).

At finite frequencyw, the intergranular capacitances shuntwhere the dimensionless conductivity (p, w/ ©*) is given

the contact conductivities. The dispersion of the effectiveby Eq. (30), conductivity oo=4.0X 10° sec! was deter-
conductivity begins when the lowest conductivities aremined above from the behavior of static conductivity
shunted by the capacitance, which occurs for frequengies o¢(p,0), and parametes* is a characteristic frequency. The
> o . Considering the percolating systempat p. we have parameterp.=0.23,A=0.035,B=2.1, and\=10.1 in Eq.
shown[see discussion at E(R1)] that the imaginary part of (31) are the ones used to reproduce the static conductivity
the complex resistivity is maximum for the frequenay oo(p,0) (see Fig. 13 Therefore, we have only one fitting

Ue(pvw):UoU;(va/W*)a (31)
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FIG. 17. Effective static conductivity of the percolating system  FIG. 18. Nyquist plot of the reduced resistivipy for the wet
with exponentially distributed local conductivit®: wet brushite ~ brushite composites at two different concentratid®sp=0.25 and
composites, line is given by EGR9) for \=7.9, w=0, A=0.035, ®: p=0.76. The curves are obtained from HEg9) taking into

P'1

B=2.1. account the conductivity of the brushite grain itself given by Eq.
(32).
o 30 NS}
parametero* which we find equalsw* =6.6x 10° sec . Tg=— : 99 : S—
Thus the obtained effective conductivitys(p,) is in wg IN{[1—i(w/wg)exp(Ag) J/[1-i(w/wg)]} @2

agreement with the experimental data for the low frequency

region in Fig. 16, but it saturates at higher frequencies Whilq,vherega , w; , and\ 4 are fitting parameters. This constant
the measured conductivity grows monotonically. This dis-phase elemeriCPB has the same number of parameters as
crepancy may be due to the conductivity of the brushitethe widely used CPE given by E€f). In contrast to the old
grains themselves which we have not taken into account. Tene, the suggested CPE has proper asymptotic behavior
be more precise, we do not take into account the conductivity: »* for the frequenciesny<w<wq exp,) with exponent
of the absorbed water layer around a brushite grain assuming connected to the damping paramefby Egs.(20) and
that its impedance is much smaller than the contact imped22). We suppose that parameter§ , oq, and\4 are the
ance. For the frequencies>1/7, the ratio of imaginary to same for all brushite grains and connect the CPE’s given by
real parts of the effective conductivity, inverse loss tangentEq. (32) in series with each contact conductivity. The Ny-
becomes larger than 1 and the current in the contact flowguist plot of such a system depends on the ratio of the pa-
mainly through the intergranular capacitance. Then the graifametersog , wg to that for a contact between grains. A
conductances which are in series with the contacts can leagbod fit gives the values\;=6.0, a*/og =0.14, and
to an increase of the real part of the effective conductivity. w*/w; =1.5x10°. Thus, we obtain reasonable agreement
with the experimental data in Fig. 18. However, due to our
hypotheses, the conductivity of one brushite grain cannot be
B. Wet brushite composites found unambiguously from our experimental data. The pur-
ose of the theoretical curve in Fig. 18 is to demonstrate that

series of wet brushite composites in the manner describe e behavior of the effective impedance can be rather com-

above. The static conductivity of wet samples is about t\NoD.“.Cated’ even if each component of Fhe system has conduc-
. tivity that obeys the universal behavior. That is, each com-
orders of magnitude larger than that of dry samples. Th

) o S .. ponent of our system has a Nyquist plot in the form of the
reduced static con(_JIuct|V|t3_/ of the W_et composites is again i epressed semicircle with damping parame2er0.4 while
good agreement w!th scaling equati®9), as shown in Elg. the resulting plot is rather sophisticated.

17, where percolation threshopd =0.24 and parametex is
now equal ton=28.1. The static conductivity, at the con-
centrationp=0.8, which has been taken as a reference, is
oo(p=0.8)=3.9x10° sec 1. The decrease of the parameter
N\ in comparison with dry samples corresponds to the in- Our theory reproduces the main features of the impedance
crease of the static conductivity: the better the contacts bespectroscopy of the brushite composites, at least qualita-
tween the brushite grains the smaller their fluctuations. tively. The theoretical approach developed in this work can
The Nyquist plot of the complex impedance of wet be applied to other inhomogeneous ionic conductors. Brush-
samples plotted in Fig. 18 shows a well-developed kick inite composites are somewhat artificial systems since we in-
the high frequency part of the curve. We attribute this kick totroduce a well-defined parameter, namely, the concentration
the conductivity of the brushite grains and include this con-of an insulating component—polymer grains. This has been
ductivity in series with the contact conductivity in E0).  done in order to verify the theory.
The usual procedure in the impedance spectroscopy for this One of the inhomogeneous systems with ionic conductiv-
situation is to fit the impedance of each element in the sysity to which our theory can be applied is porous sedimentary
tem by constant phase elements with the impedance given bpcks whose pores are filled with waiesee Refs. 15 and 36,
Eqg. (1). Instead, we take the conductivity of a brushite grainand references therginThe conductivity behavior of the
o4 to be in the following form: rocks implies that the pore space is infinitely connected

To verify the above suggestion we have prepared anoth

VI. DISCUSSION: APPLICATION OF THE THEORY
TO OTHER INHOMOGENEOUS SYSTEMS
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down to zero porosity. Seet al. suggested that pores form lation has to be made between numere(s) data for these
fractal or self-similar structures. The bulk conductivity of the systems and their rearrangement in form the Nyquist plot. It
porous rocks can be attributed to the interlayer between theould be very interesting to see if Eq20) and(22) provide
rock itself and the water-filled pore. In this interlayer, the @ qualitative description of the impedance spectroscopy data
water can easily dissociate in the manner discussed in Sec. ffT @morphous and heavily doped semiconductors.
making proton conductivity along _the interlayer possible. VII. CONCLUSIONS
Since the pores have a variety of sizes and shapes, the local
conductivity might be suggested to fluctuate in exponentially We have performed a comprehensive theoretical and ex-
large range. If we adopted the suggestion that pores, i.eperimental study of brushite percolating composites which
conducting channels, form some fractal or self-similar struchave ionic conductivity. The investigation of the percolating
ture the result of the developed theory can be taken int§ystems allows us to introduce a well controlled parameter,
account for the complex impedance behavior of brine satub@mely, the concentration of the conducting component, and
rated rocks. Thus the strongly increasing behavior of the redP Study the dispersive behavior of the complex impedance
dielectric constant at low frequencies, seen in many of thes@$ & function of this well controlled parameter. The Nyquist
porous rocks, resembles that of the brushite compositeRlot of the complex impedance is a depressed semicircle
shown in Fig. 5. Certainly, the structures of the pores do no¥hose points, for all concentrations of the conducting com-
necessarily match the structures of the percolation clusters,RPnent, are on a single curve. Along with this, the relaxation
fact which should be considered carefully for a quantitativelime increases exponentially when the concentration of the
analysis of the impedance behavior. brushlte_grams de.cr.eases towards the percolation threshold.
We have shown that it is very instructive to compare the! € static conductivity dependence shows the power-law be-
results given by the Nyquist plot and the behavior of thehavior typical for_perco_latmg sys_tems but, in contrast to
effective conductivityo, (or resistivity at sufficient high Usual conductor-dielectric composites, the power-law behav-
frequenciesw> 1/7;, where 7, is the effective relaxation 107 holds for the ent_|r_e concentr_atlon range. At_ﬂmte fre-
time. We propose that as soon as the Nyquist plot is a wellduéncy, 'ghe conductivity has a dlspe.rsmn behavior that can
defined depressed semicircle, the high frequency conductiy!S0 be fitted by some power law with an exponent which
ity behaves as a power law,x»® and vice versdsee Egs. depeno_ls, in general, on the co_ncentratlon of brushl_te.
(19) and (21) to compare the corresponding time and fre- We mt_roduced a microscopical _rr_l(_)del for brushite com-
quency scalds A change in the relaxation time, will lead posites W|th_local complex cpnduct|y|t|es, the real part being
to a corresponding variation of the exponenaccording to  distributed in an exponentially wide range. A computer
Eq. (25). When the relaxation time increases, the expoment Simulation of the system has been performed. We use a very
should also increase, approaching its “universal” vae efficient algorithm to tackle the problem of a composite with
=1. Note that the damping parametgrshould reach its exponentlally distributed Iocal_ conductlvmes. In addltlo_n to
universal valued=In(5)/4 much earlier. In such a way, the the calculation of the effective properties, our algorithm

effective parametex . and, therefore, the distribution of the shows that a percolating system is self-similar at the perco-
local conductivities. can be determined. lation threshold. The computer simulations reproduce the

This approach can be generalized to inhomogeneous squ-ain features qf the experimentally qbserved complex im-
tems withelectronicconductivity, e.g., metal-dielectric per- pedanc_e behavior in brushite composites.
colating systems in the vicinity abr below the percolation . Starting from our computer results, we devgl_o_ped a scal-
threshold. The exact nature of the contact conductivities id"9 theory for th.e effective complex conductlw(}mped—
not important: it may be quantum tunnelitidirect or hop- anceg. The most important feature of our system is that the

ping) or just bad contacts. As soon as the static conductivi?C/€ Of the spatial inhomogeneity of the local fields and
is smaller(by several orders of magnitudthan the conduc- currents remains large for any concentration of the conduct-

tivity of the metal component, the frequency behavior should"9 component. This allowed us to suggest a scaling equation
be as shown on Figs. 4 and 5. Then exporechanges with for the effective conductivity. This equation exactly repro-

the relaxation time according to E@5). Indeed, in a very duces the unusual behaviors of the static conductivity ob-
recent experimeri authors report that the behaviors of the S€Tved either experimentally or numerically. This equation

real parts of the effective conductivity and effective dielec-91Ves the frequency behavior of the complex impedance in
tric constant are very similar to those in Figs. 4 and 5. Thehe entire concentration range. The deve_loped theory links
parameteh may be very large for processes involving quan-the impedance spectroscopy data to the internal structure of
tum tunneling. Thus, substituting the experimental value oithe system. Thus_, it predicts that ok_)served exponents for the
exponenta=0.95 given in Ref. 37 for some samples in Eq dispersion behavior of the complex impedance are connected
(20), we obtai.n the effective baramemg~ 80. Moreover “and dependent, in a rather simple way, on the distribution of
one can observe the variation of the expon@Mith relax.  the local parameters. The theoretical results obtained in this
ation time 7. As in brushite composites, the relaxation time WOrk can be used to describe the effective properties of any

in these systems depends on the concentratiohthe con- system with an exponentially distributed local conductivity,
ducting components i.e., most of the inhomogeneous ionic conductors and some

The application of the concept of local conductivity to disordered electronic conductors as well.
amorphous and heavily doped semiconductors is somewhat
controversial since these systems have an essentially micro-
scopic disorder. Therefore, our theoretical results may not be This work was supported by France-NATO Grant No.
directly applied to these systems. Still we believe that correr-239856.
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