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Pinned states in Josephson arrays: A general stability theorem
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Using the lumped circuit equations, we derive a stability criterion for superconducting pinned states in
two-dimensional arrays of Josephson junctions. The analysis neglects quantum, thermal, and inductive effects,
but allows disordered junctions, arbitrary network connectivity, and arbitrary spatial patterns of applied mag-
netic flux and dc current injection. We prove that a pinned state is linearly stable if and only if its correspond-
ing stiffness matrix is positive definite. This algebraic condition can be used to predict the critical current and
frustration at which depinning occursS0163-182608)04133-7

Collective pinning occurs in a wide variety of coupled guaranteed to be stable. We also prove that depinning can
physical systems. Examples include vortices in type-1l supernever occur via a Hopf bifurcation; only zero-eigenvalue bi-
conductors, cracks and dislocations in solids, and chargdurcations are possible.
density waves in quasi-one-dimensional metals. each Our analysis is based on several simplifying assumptions.
case, when the system is subjected to an external constahifst, we neglect thermal fluctuations; that is, we assume
drive, it remains motionless until the drive exceeds a critica€r0 temperature. Second, we assume that the superconduct-
value (the depinning threshojdafter which the system be- INg islands in the array are large enough that quantum
gins to move. The pinning is collective in the sense that itcharging effects are negligible. Thus, the phageof the
involves interactions among many coupled subsystems, typf;omplex macroscopic wave function at each island is a well-

cally in the presence of disorder. Hence, it is often difficult tod.efined classical variable. Third, we assume that the junc-

predict the depinning threshold theoretically. tions between islands are small enough that they can be_ap—
Here we study collective pinning for a relatively tractable proximated as lumped elements. Therefore, the jun(_:tlon
) : . between two island$ and m can be described by a point
class of model systems: two-dimensioi2D) arrays of Jo- . . )
. . . : . . gauge-invariant phase difference
sephson junctions. Besides their technological applicafions;
Josephson arrays can be used to explore fundamental ques- 20 [m
tions in statistical mechanidsuch as phase transitionsnd bi=6,— em_ch A-dl, 1)
0Jl

in nonlinear dynamicqsuch as synchronization and spa-

tiotemporal pattern formatior? In addition, they have been where A is the total magnetic vector potential aribl
proposed as clean models for layered and granular high- —p/(2¢) is the quantum of magnetic flux. Fourth, we model
superconductor§® As such, their depinning could be rel- ggch junction by the standard RCSJ equivalent cifcdiit
evant to the understanding of the onset of resistance in thgith superconducting, resistive, and capacitive channels in

current-voltage characteristics of high-samples. parallel. Then the junction dynamics obeys a damped driven
Several advances have occurred recently in thgendulum equation

numerical”’~® and analytica 12 investigation of 2D Jo-

sephson arrays, thanks in part to an influx of ideas from wibi+ yidi+ i sing=i?, 2
nonlinear dynamics. In this paper, we analyze depinning in

2D arrays from this perspective. Using a compact matrixwith effective mass u;=®,C;/(27l), damping v;
notation, we show that the linear stability problem for pinned=®o/(27Ril o), and restoring strength;=1; /1. The ca-
states can be mapped onto the classical mechanical problepacitanceC;, resistanceR;, and critical currentl; are

of small oscillations in a network of coupled, damped linearfabrication- and material-dependent parameters that charac-
oscillators. The results apply to 2D arrays of any given to-terize junctioni. The drive is given by the normalized cur-
pology. There are also no restrictions on the capacitancesentiib, measured in units df.o=(l;), the average critical
resistances, or critical currents of the junctions, nor on theurrent of the junctions in the array.

spatial patterns of dc current injection and applied magnetic In dealing with arrays, it is useful to introduce a vector-
flux. Our main result is that a pinned state is stable if andnatrix notatiorf*'*1*where the variables are now vectors
only if its corresponding stiffness matrik is positive defi-  of three types: node vectors of dimensior(e.g., 8); edge

nite. This matrixK changes with the pinned configuration vectors of dimensior (e.g., ¢ andi®); and cell vectors of
and depends on the connectivity and disorder of the array. Alimensionc defined at each plaquetté@lore preciselyn is
corollary is that any pinned state with all phaseég <w/2is  the number of independent nodes, after one node is grounded

0163-1829/98/5®)/52154)/$15.00 PRB 58 5215 © 1998 The American Physical Society



5216 BRIEF REPORTS PRB 58

and taken as a referent®.The edge and node variables are  From now on, we focus on the pinned states of the array.
related through arexXn edge-node connectivity matriA  These correspond to static configuratioés of Eq. (7),
that encodes the topology of the array, including its boundgiven implicitly by

ary conditions such as the preserice absenceof edges.

Similarly, aneXc edge-cell matrixB transforms between ATy Sin(AG* — @) =i €]
edge and cell variables, in what amounts to taking a discrete
curl. Typically this nonlinear algebraic syste8) has multiple
Within this framework’ the nonlinear constitutive Id@b solutions. Each solution depends parametrically on the exter-
can be compactly written as nal current vectoi®* and the applied flux vectdf. (In the
usual experimental setup, these are determined by the scalars
Wb+ b+ psing=it, 3) l4 and f, respectively. As i® or F are varied, the linear

stability of a given static configuratio#* can change. This

whereu = diag(u;), andy and 5 are similarly defined diag- Signals the transition to another state of the system. If the
onal matrices. Each junction is allowed to have a differenf’eW state is still pinned, the transition corresponds to a static

capacitance, resistance, and critical current, as recorded [garrangement of phases and currents; on the other hand, if
the matrices, y, and 7. the new state is time-dependent, it corresponds to depinning

When junctions are interconnected to form a network,and the onset of resistand@ecause our analysis is local, it
there exist topological constraints that can be expressed fFannot distinguish between these two types of transitions.

terms of the connectivity matrices and B. First, the cur- To study the stability of the pinned states, et 6* + a
rents must satisfy Kirchhoff's current Iafv wherea is a small perturbation. Linearizing E() about¢*
yields
ATi b_ i ext, (4) ) .
Ma+Ga+Ka=0, 9

where the vector®™ gives the balance of normalized current

at each node, and reflects the particular scheme of curreMthere
injection and extraction for each experimental device. For
instance, in the usual experimental setup, where a uniform dc M=ATuA, G=ATyA, K=ATzC*A (10
currentl 4 is injected(extractedl at the bottom(top) nodes,
all the components of** will be zero except those at the
bottom (top) boundary, which will be equal tby, (—149-
Our analysis, however, is valid for an arbitrary injection
scheme, as long as the bias currents are time-independent.

The second topological constraint is the flux quantization , diagonal matrix of the cosines of the phases of the given

in each pell of the array. We assume the simplest case whe(g, ;. configuration. BottM and G are symmetric, positive
all self-fields due to inductance effects are neglected. Thef sinite matrices. sinca is a topology matrix and; and y

the flux quantization is given by are diagonal matrices with positive masses and damping co-
efficients on the diagonaf. However, K is not necessarily
positive definite since the cosines on the diagonaCbfare

not necessarily positive. We stress that the stiffness mitrix

where/ is a cell vector of integertopological vortlcme_s; is_different for each pinned state, and it also changes para-
that have no dynamical relevance, and can be redefined as

zero with no loss of generality. The cell vectorF records metrlcally with the extemally tunable parameters. .
the external flux through each r;laquette measured in units of Equation (9) is fam|l_|ar_from_the classical mechanical
the flux quantum. In experiments, the eiternal magnetic fielcgmblem of smaI_I oscﬂ_lanons in a network of coup_led,
: quantum. in exp ; 1ag amped harmonic oscillatof3. But the present stability
is often spatially uniform across the array. Theris a con-

stant vector with valué= /. Our analysis holds more problem is not as trivial as it might seem. Ordinarily one
ex .

o . . _assumes thaf is positive definite, but that need not be true
generally for any time-independent spatial pattern of apphecﬁere Also, recall that when damping is present, normal
flux. ) ’ ’

For the no-inductance case assumed here, the transformm-OdeS cannot be used o decouple the system; _in mathemat-
tion (1) between junction and island phases is,given in vecto?§la| terms, one _cannot simultaneously diagonalize the three
form by symmetnp matr_lce_sM, G, andK. Therefore we analyze Eq.
(9) from first principles.
A given pinned state is linearly stable if and only if the
P=Ao-o, (6) perturbationa(t) decays to zero for all initial conditions.
Equivalently, all the eigenvalues of E(@) must have strictly

negative real parts. The characteristic equation

are the mass, damping, and stiffness matrices, respectively,
and

C* =diag cos¢;]) (11

BT+ 27F=2m{=0, (5)

whereg is a time-independent edge flux vector, fixed by our
choice of gauge but subject ®"¢=2=F, which follows
directly from Eq.(5) noting thatBTA=0, from the definition
of the topological matrice¥: From Eqgs.(3), (4), and(6), we

obtain the governing vector equation of the system: cannot be solved explicitly, but one can still extract useful
) _ information about the eigenvalues, as follows. Suppose that
ATuAO+ATyAO+ ATy SiNAI— @)= (7)  Eg. (12) holds for some\. Then there exists #possibly

deiN°M+AG+K)=0 (12)
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compley eigenvectox# 0 such thah>Mx+AGx+Kx=0.  from Eq. (15), A(p)=0 for somep would imply detK)
Mult_iplying on the left by the complex conjugate transpose—q contrary to assumption. Thugp)>0 for all p. Setting
x" yields p=1 yields the desired result that E4.2) has a root>0.
One consequence of this theorem is an implicit formula

N’m+rg+k=0, (13 for the stability threshold of a pinned sta#&. As we vary
where m=x"Mx, g=x'Gx, andk=x"Kx are scalars that the applied current or magnetic field} and its associated
depend orx. Thus, matrix K will change. The theorem implies th#* loses

stability precisely wherkK =AT7C* A ceases to be positive
—g+gZ—4km definite. This threshold is reached when the following alge-
N=————— (14  braic condition is first satisfied:

2m

The key point is tham>0 andg>0 for all x, sinceM and detK)=de(AT7C*A)=0. (16)

G are real and symmetritience Hermitianpositive definite  Hence, the stability threshold fof* is determinedexclu-
matrices. On the other han is not necessarily positive sjvely by the array topology, by the injection scheme and
definite, sok can have either Sign. k>0, there are two bias Curren[(throughieXI), by the app“ed magnetic field,
subcases: ifi>— 4km<0, the eigenvalues are complex con- and by the disorder in the junctions’ critical currefiga the
jugates with ReX)=—g/(2m)<0; otherwise the eigenval- matrix 5). On the other hand, it does not depend on the mass
ues are both real and negative. In either case, the eigenvaluggpacitanceand damping matrice and G. This means

for k>0 lie in the left half plane and therefore Correspond tOthat Overdamped and underdamped Systems have identical
stable modes. On the other handk# 0, thenA <0, A, depinning thresholds.

>0 so thex . mode is unstable. Finally, k=0, then _ Another corollary is that if
<0, A,=0, and thex . mode is neutral.
An important qualitative conclusion from these formulas cos¢ >0, Vi, (17

is that any eigenvalue of E(L2) must be either pure real, or i . .
complex with strictly negative real part. In particular, pure then that configuration is stable. This follows from the fact
imaginary eigenvalues are forbidden. An immediate conselhat the diagonal matriyC* of such a configuration is posi-
quence is that pinned states can never undergo Hopf bifufive definite; thereforek is also positive definité! On the
cations; depinning can occur only through zero-eigenvalu@ther hand, sincé can be positive definite even@ is not,
bifurcationd® such as saddle-node, transcritical, and pitch-Ed- (17) is only asufficient(but not necessayycondition for
fork bifurcations. the stability of a pinned state.

We now prove the main result: a pinned state is linearly 1he constraint(17) has a clear physical meaning for a
stable if and only i is positive definite. To prove the “if* ~ Single, isolated Josephson junction. Recall that as the bias
direction, suppose that is positive definite. Theik>0 for ~ Current is increased from zero, a single junction remains

all eigenvectors.. From Eq.(14) above, Rex)<O0 for all A pinned until = 7/2, at which point it depins to a running
and, hence, the pinned state is linearly stable. mode?! Extrapolating naively from a single junction to an

To prove the “only if” direction, it is equivalent to prove &1ay; it is tempting to conjecture that an array should depin

its contrapositive, i.e., we assume tiats not positive defi- When its “most unstable” junction first reaches=m/2.
nite and show that the pinned state is not linearly stableNOte, however, that this heuristic depinning criterion is
There are two cases. If détf=0, then\ =0 is a solution of equivalent to defC*) =_O,_rather than the rigorous condition
Eq. (12), by inspection. But.=0 corresponds to a neutral det(K_)_=0; therefore, it is not exa_ct. Nevertheless, for the
mode, not a decaying mode as required for linear stabilitySPECIfic case of a ladder array with square plaquettes and
Next suppose dei() # 0. We outline a homotopy argument perpgndmular current injection, we haye shown elsevx}ﬁer.e
which proves that Eq12) has a rooh > 0. The strategy is to that it can provide a good approximation to the true depin-

start with the undamped problem, where it is easy to shoWing threshold. L
that there is an unstable modeKfis not positive definite. The algebraic conditioii16) can be used to ease the nu-

Then we continuously deform the undamped problem intgnerical determination of the depinning threshold for 2D ar-
Eq. (12), and show that the unstable eigenvalamainsun- &S For instance, the depinning current is usually obtdined

stable throughout the deformation. More precisely, considefough dynamical simulations that resemble the actual ex-
the one-parameter family of equations periment: the current is ramped up adiabatically and the cir-

cuit differential equations are numerically integrated until a
de(\2M +prAG+K)=0, (15)  funning solution appears. In contrast, we solve Egsand

(16) simultaneously to determine the critical current and the
where O<p=<1 is a homotopy parameter. At=0, Eq.(15) bifurcating phase configuration as functions of all the other
corresponds to an undamped system, and normal modes cparameters. This purely algebraic calculation can be done by
be used to show explicitly that E415) has an eigenvalue Newton's method or some other rootfinding scheme. The
A(0)>0. As p varies continuously from 0 to 1, this eigen- results coincide with those found dynamicalfy.
value traces out a continuous curk€p) in the complex Another theoretical approach to depinning uses thermody-
plane. The curve starts on the positive real axis si(&) namic and quasistatic calculations of pinned stafe¥.0One
>0, and it must stay there for gil because any eigenvalue can show that the conditiaii6) is strictly equivalent to find-
in the right half plane must be pure real, as shown by Eqing the point at which a given static configuration ceases to
(14). Moreover, the curve cannot cross through the originbe a minimum of the potential energy
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V=— 0T Tr(5C). (18 analytical results for square and triangular arrays of identical
junctions, perhaps along the lines of recent work on ladder
arrays‘? Second, one should also try to take self-fields into
account. Preliminary results suggest that the formulation
‘given here can be generalized to include inductance eftécts.
Finally, it is important to study more quantitatively how dis-
order affects the stability of pinned states, both as the inevi-
table result of fabrication irregularities and as a design tool
to manipulate the response of the network in a controlled
'fashion.

Thus a soft-mode conditidhrigorously predicts depinning,
while the criterion based on maximizing the quasistatic cur
rent induced by twisted boundary conditidfisis only
approximaté. Note also that, although stable static configu-
rations correspond to local minima ®f we do not attempt
here to obtain thabsoluteminimum of the potential energy.
This problem would require global optimization methods
such as simulated annealing.

Our results open several promising lines of research. First, We thank Mac Beasley, Terry Orlando, Enrique ag
our analytical framework facilitates exploration of the effectsand Shinya Watanabe for helpful comments. M.B. is grateful
of network connectivity on the depinning of Josephson arfor Mac Beasley’s hospitality at Stanford. Research was sup-
rays. The implicit conditio(16) can be turned into explicit, ported through the National Science Foundation Grant No.
testable predictions of the applied current and frustration abMS-9500948(S.H.S), and through a postdoctoral grant of
which depinning should occur. It may be possible to obtairthe Ministerio de Educacioy Cultura of SpainM.B.).
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