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Pinned states in Josephson arrays: A general stability theorem
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Using the lumped circuit equations, we derive a stability criterion for superconducting pinned states in
two-dimensional arrays of Josephson junctions. The analysis neglects quantum, thermal, and inductive effects,
but allows disordered junctions, arbitrary network connectivity, and arbitrary spatial patterns of applied mag-
netic flux and dc current injection. We prove that a pinned state is linearly stable if and only if its correspond-
ing stiffness matrix is positive definite. This algebraic condition can be used to predict the critical current and
frustration at which depinning occurs.@S0163-1829~98!04133-2#
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Collective pinning occurs in a wide variety of couple
physical systems. Examples include vortices in type-II sup
conductors, cracks and dislocations in solids, and cha
density waves in quasi-one-dimensional metals.1 In each
case, when the system is subjected to an external con
drive, it remains motionless until the drive exceeds a criti
value ~the depinning threshold! after which the system be
gins to move. The pinning is collective in the sense tha
involves interactions among many coupled subsystems, t
cally in the presence of disorder. Hence, it is often difficult
predict the depinning threshold theoretically.

Here we study collective pinning for a relatively tractab
class of model systems: two-dimensional~2D! arrays of Jo-
sephson junctions. Besides their technological applicatio2

Josephson arrays can be used to explore fundamental q
tions in statistical mechanics~such as phase transitions!, and
in nonlinear dynamics~such as synchronization and sp
tiotemporal pattern formation!.3 In addition, they have been
proposed as clean models for layered and granular highTc

superconductors.4,5 As such, their depinning could be re
evant to the understanding of the onset of resistance in
current-voltage characteristics of high-Tc samples.6

Several advances have occurred recently in
numerical5,7–9 and analytical10–12 investigation of 2D Jo-
sephson arrays, thanks in part to an influx of ideas fr
nonlinear dynamics. In this paper, we analyze depinning
2D arrays from this perspective. Using a compact ma
notation, we show that the linear stability problem for pinn
states can be mapped onto the classical mechanical pro
of small oscillations in a network of coupled, damped line
oscillators. The results apply to 2D arrays of any given
pology. There are also no restrictions on the capacitan
resistances, or critical currents of the junctions, nor on
spatial patterns of dc current injection and applied magn
flux. Our main result is that a pinned state is stable if a
only if its corresponding stiffness matrixK is positive defi-
nite. This matrixK changes with the pinned configuratio
and depends on the connectivity and disorder of the arra
corollary is that any pinned state with all phasesuf i u,p/2 is
PRB 580163-1829/98/58~9!/5215~4!/$15.00
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guaranteed to be stable. We also prove that depinning
never occur via a Hopf bifurcation; only zero-eigenvalue
furcations are possible.

Our analysis is based on several simplifying assumptio
First, we neglect thermal fluctuations; that is, we assu
zero temperature. Second, we assume that the supercon
ing islands in the array are large enough that quant
~charging! effects are negligible. Thus, the phaseu i of the
complex macroscopic wave function at each island is a w
defined classical variable. Third, we assume that the ju
tions between islands are small enough that they can be
proximated as lumped elements. Therefore, the junc
between two islandsl and m can be described by a poin
gauge-invariant phase difference

f i5u l2um2
2p

F0
E

l

m

A•dl, ~1!

where A is the total magnetic vector potential andF0
5h/(2e) is the quantum of magnetic flux. Fourth, we mod
each junction by the standard RCSJ equivalent circuit2,13

with superconducting, resistive, and capacitive channels
parallel. Then the junction dynamics obeys a damped dri
pendulum equation

m if̈ i1g iḟ i1h i sinf i5 i i
b , ~2!

with effective mass m i5F0Ci /(2pI c0), damping g i
5F0 /(2pRiI c0), and restoring strengthh i5I ci /I c0. The ca-
pacitanceCi , resistanceRi , and critical currentI ci are
fabrication- and material-dependent parameters that cha
terize junctioni . The drive is given by the normalized cu
rent i i

b , measured in units ofI c05^I ci&, the average critical
current of the junctions in the array.

In dealing with arrays, it is useful to introduce a vecto
matrix notation,8,9,11,14where the variables are now vecto
of three types: node vectors of dimensionn ~e.g.,u); edge
vectors of dimensione ~e.g.,f and i b); and cell vectors of
dimensionc defined at each plaquette.~More precisely,n is
the number of independent nodes, after one node is groun
5215 © 1998 The American Physical Society
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and taken as a reference.14! The edge and node variables a
related through ane3n edge-node connectivity matrixA
that encodes the topology of the array, including its bou
ary conditions such as the presence~or absence! of edges.
Similarly, an e3c edge-cell matrixB transforms between
edge and cell variables, in what amounts to taking a disc
curl.

Within this framework, the nonlinear constitutive law~2!
can be compactly written as

mf̈1gḟ1h sinf5 i b, ~3!

wherem5diag(m i), andg andh are similarly defined diag-
onal matrices. Each junction is allowed to have a differ
capacitance, resistance, and critical current, as recorde
the matricesm, g, andh.

When junctions are interconnected to form a netwo
there exist topological constraints that can be expresse
terms of the connectivity matricesA and B. First, the cur-
rents must satisfy Kirchhoff’s current law14

ATi b5 i ext, ~4!

where the vectori ext gives the balance of normalized curre
at each node, and reflects the particular scheme of cur
injection and extraction for each experimental device. F
instance, in the usual experimental setup, where a uniform
currentI dc is injected~extracted! at the bottom~top! nodes,
all the components ofi ext will be zero except those at th
bottom ~top! boundary, which will be equal toI dc (2I dc).
Our analysis, however, is valid for an arbitrary injectio
scheme, as long as the bias currents are time-independe

The second topological constraint is the flux quantizat
in each cell of the array. We assume the simplest case w
all self-fields due to inductance effects are neglected. T
the flux quantization is given by

BTf12pF52pz[0, ~5!

wherez is a cell vector of integers~topological vorticities!
that have no dynamical relevance, and can be redefine
zero with no loss of generality.11 The cell vectorF records
the external flux through each plaquette, measured in uni
the flux quantum. In experiments, the external magnetic fi
is often spatially uniform across the array. ThenF is a con-
stant vector with valuef 5Fext/F0. Our analysis holds more
generally for any time-independent spatial pattern of app
flux.

For the no-inductance case assumed here, the transfo
tion ~1! between junction and island phases is given in vec
form by

f5Au2w, ~6!

wherew is a time-independent edge flux vector, fixed by o
choice of gauge but subject toBTw52pF, which follows
directly from Eq.~5! noting thatBTA[0, from the definition
of the topological matrices.14 From Eqs.~3!, ~4!, and~6!, we
obtain the governing vector equation of the system:

ATmAü1ATgAu̇1ATh sin~Au2w!5 i ext. ~7!
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From now on, we focus on the pinned states of the arr
These correspond to static configurationsu* of Eq. ~7!,
given implicitly by

ATh sin~Au* 2w!5 i ext. ~8!

Typically this nonlinear algebraic system~8! has multiple
solutions. Each solution depends parametrically on the ex
nal current vectori ext and the applied flux vectorF. ~In the
usual experimental setup, these are determined by the sc
I dc and f , respectively.! As i ext or F are varied, the linear
stability of a given static configurationu* can change. This
signals the transition to another state of the system. If
new state is still pinned, the transition corresponds to a st
rearrangement of phases and currents; on the other han
the new state is time-dependent, it corresponds to depin
and the onset of resistance.~Because our analysis is local,
cannot distinguish between these two types of transitions!

To study the stability of the pinned states, letu5u* 1a
wherea is a small perturbation. Linearizing Eq.~7! aboutu*
yields

M ä1Gȧ1Ka50, ~9!

where

M5ATmA, G5ATgA, K5AThC* A ~10!

are the mass, damping, and stiffness matrices, respecti
and

C* 5diag~cosf i* ! ~11!

is a diagonal matrix of the cosines of the phases of the gi
static configuration. BothM andG are symmetric, positive
definite matrices, sinceA is a topology matrix andm andg
are diagonal matrices with positive masses and damping
efficients on the diagonal.14 However,K is not necessarily
positive definite since the cosines on the diagonal ofC* are
not necessarily positive. We stress that the stiffness matriK
is different for each pinned state, and it also changes p
metrically with the externally tunable parameters.

Equation ~9! is familiar from the classical mechanica
problem of small oscillations in a network of couple
damped harmonic oscillators.15 But the present stability
problem is not as trivial as it might seem. Ordinarily on
assumes thatK is positive definite, but that need not be tru
here. Also, recall that when damping is present, norm
modes cannot be used to decouple the system; in mathem
cal terms, one cannot simultaneously diagonalize the th
symmetric matricesM , G, andK. Therefore we analyze Eq
~9! from first principles.

A given pinned state is linearly stable if and only if th
perturbationa(t) decays to zero for all initial conditions
Equivalently, all the eigenvalues of Eq.~9! must have strictly
negative real parts. The characteristic equation

det~l2M1lG1K !50 ~12!

cannot be solved explicitly, but one can still extract use
information about the eigenvalues, as follows. Suppose
Eq. ~12! holds for somel. Then there exists a~possibly
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complex! eigenvectorxÞ0 such thatl2Mx1lGx1Kx50.
Multiplying on the left by the complex conjugate transpo
x† yields

l2m1lg1k50, ~13!

where m5x†Mx, g5x†Gx, and k5x†Kx are scalars tha
depend onx. Thus,

l5
2g6Ag224km

2m
. ~14!

The key point is thatm.0 andg.0 for all x, sinceM and
G are real and symmetric~hence Hermitian! positive definite
matrices. On the other hand,K is not necessarily positive
definite, sok can have either sign. Ifk.0, there are two
subcases: ifg224km,0, the eigenvalues are complex co
jugates with Re(l)52g/(2m),0; otherwise the eigenval
ues are both real and negative. In either case, the eigenv
for k.0 lie in the left half plane and therefore correspond
stable modes. On the other hand, ifk,0, thenl2,0, l1

.0 so thel1 mode is unstable. Finally, ifk50, thenl2

,0, l150, and thel1 mode is neutral.
An important qualitative conclusion from these formul

is that any eigenvalue of Eq.~12! must be either pure real, o
complex with strictly negative real part. In particular, pu
imaginary eigenvalues are forbidden. An immediate con
quence is that pinned states can never undergo Hopf b
cations; depinning can occur only through zero-eigenva
bifurcations13 such as saddle-node, transcritical, and pit
fork bifurcations.

We now prove the main result: a pinned state is linea
stable if and only ifK is positive definite. To prove the ‘‘if’’
direction, suppose thatK is positive definite. Thenk.0 for
all eigenvectorsx. From Eq.~14! above, Re(l),0 for all l
and, hence, the pinned state is linearly stable.

To prove the ‘‘only if’’ direction, it is equivalent to prove
its contrapositive, i.e., we assume thatK is not positive defi-
nite and show that the pinned state is not linearly sta
There are two cases. If det(K)50, thenl50 is a solution of
Eq. ~12!, by inspection. Butl50 corresponds to a neutra
mode, not a decaying mode as required for linear stabi
Next suppose det(K)Þ0. We outline a homotopy argumen
which proves that Eq.~12! has a rootl.0. The strategy is to
start with the undamped problem, where it is easy to sh
that there is an unstable mode ifK is not positive definite.
Then we continuously deform the undamped problem i
Eq. ~12!, and show that the unstable eigenvalueremainsun-
stable throughout the deformation. More precisely, cons
the one-parameter family of equations

det~l2M1plG1K !50, ~15!

where 0<p<1 is a homotopy parameter. Atp50, Eq.~15!
corresponds to an undamped system, and normal mode
be used to show explicitly that Eq.~15! has an eigenvalue
l(0).0. As p varies continuously from 0 to 1, this eigen
value traces out a continuous curvel(p) in the complex
plane. The curve starts on the positive real axis sincel(0)
.0, and it must stay there for allp because any eigenvalu
in the right half plane must be pure real, as shown by
~14!. Moreover, the curve cannot cross through the orig
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from Eq. ~15!, l(p)50 for somep would imply det(K)
50, contrary to assumption. Thusl(p).0 for all p. Setting
p51 yields the desired result that Eq.~12! has a rootl.0.

One consequence of this theorem is an implicit form
for the stability threshold of a pinned stateu* . As we vary
the applied current or magnetic field,u* and its associated
matrix K will change. The theorem implies thatu* loses
stability precisely whenK5AThC* A ceases to be positive
definite. This threshold is reached when the following alg
braic condition is first satisfied:

det~K ![det~AThC* A!50. ~16!

Hence, the stability threshold foru* is determinedexclu-
sively by the array topology, by the injection scheme a
bias current~through i ext), by the applied magnetic fieldF,
and by the disorder in the junctions’ critical currents~via the
matrix h). On the other hand, it does not depend on the m
~capacitance! and damping matricesM and G. This means
that overdamped and underdamped systems have iden
depinning thresholds.

Another corollary is that if

cosf i* .0, ; i , ~17!

then that configuration is stable. This follows from the fa
that the diagonal matrixhC* of such a configuration is posi
tive definite; thereforeK is also positive definite.14 On the
other hand, sinceK can be positive definite even ifC* is not,
Eq. ~17! is only asufficient~but not necessary! condition for
the stability of a pinned state.

The constraint~17! has a clear physical meaning for
single, isolated Josephson junction. Recall that as the
current is increased from zero, a single junction rema
pinned untilf5p/2, at which point it depins to a running
mode.2,13 Extrapolating naively from a single junction to a
array, it is tempting to conjecture that an array should de
when its ‘‘most unstable’’ junction first reachesf5p/2.
Note, however, that this heuristic depinning criterion
equivalent to det(C* )50, rather than the rigorous conditio
det(K)50; therefore, it is not exact. Nevertheless, for t
specific case of a ladder array with square plaquettes
perpendicular current injection, we have shown elsewhe12

that it can provide a good approximation to the true dep
ning threshold.

The algebraic condition~16! can be used to ease the n
merical determination of the depinning threshold for 2D
rays. For instance, the depinning current is usually obtain7

through dynamical simulations that resemble the actual
periment: the current is ramped up adiabatically and the
cuit differential equations are numerically integrated unti
running solution appears. In contrast, we solve Eqs.~8! and
~16! simultaneously to determine the critical current and
bifurcating phase configuration as functions of all the oth
parameters. This purely algebraic calculation can be done
Newton’s method or some other rootfinding scheme. T
results coincide with those found dynamically.16

Another theoretical approach to depinning uses thermo
namic and quasistatic calculations of pinned states.17–19One
can show that the condition~16! is strictly equivalent to find-
ing the point at which a given static configuration ceases
be a minimum of the potential energy5
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V52u†i ext2Tr~hC!. ~18!

Thus a soft-mode condition19 rigorously predicts depinning
while the criterion based on maximizing the quasistatic c
rent induced by twisted boundary conditions18 is only
approximate.7 Note also that, although stable static config
rations correspond to local minima ofV, we do not attempt
here to obtain theabsoluteminimum of the potential energy
This problem would require global optimization method
such as simulated annealing.

Our results open several promising lines of research. F
our analytical framework facilitates exploration of the effec
of network connectivity on the depinning of Josephson
rays. The implicit condition~16! can be turned into explicit
testable predictions of the applied current and frustration
which depinning should occur. It may be possible to obt
y-
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analytical results for square and triangular arrays of ident
junctions, perhaps along the lines of recent work on lad
arrays.12 Second, one should also try to take self-fields in
account. Preliminary results suggest that the formulat
given here can be generalized to include inductance effec16

Finally, it is important to study more quantitatively how di
order affects the stability of pinned states, both as the ine
table result of fabrication irregularities and as a design t
to manipulate the response of the network in a control
fashion.
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