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Magnetic x-ray scattering at relativistic energies
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The photon magnetic scattering cross section is examined in the high-energy limit in order to define the
validity of the nonrelativistic approach usually employed to interpret the experimental results. A proper defi-
nition of the magnetic contribution is introduced and a high-energy limit is deduced. It is shown that the elastic
magnetic cross section decreases or stays constant on increasing the photon energy when the momentum
transfer is held constant in agreement with recent experimental rd<063-182608)01433-1

For a long time x-ray scattering has been one of the mostost difficult approach. In Refs. 4 and 5 the opposite proce-
important tools for condensed-matter studies. The advent afure is used, namely, the electron-photon interaction is de-
the very high brilliance synchrotron radiation sources haseloped in power of I and the cross section is derived at
even extended the range of possible applications of the x rafjpe lowest(nonvanishing order in . It is not clear how to
in the analysis of condensed-matter properties. In particulagstablish whether the two procedures are, at least in prin-
it became possible to use the weak photon-electrofiple, equivalent.
magnetic-moment interaction in order to determine the mag- [N the case of the scattering from a single free electron it
netic properties of a many-electron system. This interactiofi@s been known for a long tifi& that the exact scattering
has been demonstrated to be rather useful as a companigf'Plitude developed with respect to the incoming photon

technique to magnetic neutron scattering in the study of th€N€rdy contains a first-ordéin 1/c) magnetic scattering.
magnetic properties of matter This contribution is formally related to the relativistic

. . ’9 . . . .
In order to perform accurate studies employing X_raylnvarlanceff that is, the magnetic photon scattering is a pure

magnetic scattering it is mandatory to have a fully accuraterGIatiViSt.iC eﬁect. N .
Considering the general situation we examined the mag-

fortm Iu |E%;[I(.)I’l' of the;blc?rrzsppndlng crotss sectlgn. L;ntfr?rtu'netic photon scattering looking at the high-energy behavior
n? €ly 1L 1SIMpossibleto derive anef>f<ac expresbsmn do | € of the cross section. One can note that in a full relativistic
photon-scattering cross section off a many-bound-electrog, mjation the magnetic contribution to the cross section

system even at the lowest nonvanishing ofdéWhen the  cannot be defined in a straightforward way because the elec-
magnetic interaction is considered the situation is even morg, magnetic moment is intrinsic to the theory and does not
complex. A standard description is that given by Bldmaed explicitly appear in the photon-electron interaction as has
Blume and Gibbsderived within the standard nonrelativistic been aiready observed in the first stfigf the magnetic
apprpach of the photon-electron interaction. This apprpach i®ompton cross section in a many-body system. In the fol-
considered to be adequate when the photon energy is Smllying, we shall consider as quasielastic a process where the
with respect to the electron rest energg@=511keV). In jncoming and outgoing photon energies are close to each
the case of magnetic Compton scattering a more accuraifher. On increasing the photon energy these processes are
development has been proposed in Ref. 6, in relation t0 agenerally confined in the forward direction so that the sim-
accurate nonrelativistic Hamiltonian of a combined systenb”ﬁed assumptiork,=k is valid.

of many electrons and photons. More recently Arola,” t\ye assume that the exact relativistic many-body states
Strange, and Gyorffypresented a formal extension of the of the system one is examining are known, the quasielastic

standard perturbation relativistic theory to a many-electron,,ss section developed at the lowest nonvanishing order in
system in a form suitable for numerical calculations. In thisy,q coupling constant is given by

paper, we derive a formulation useful for the interpretation of

experimental results. . . do/dQ = pe|Krol?, (1)
One has to remember that in calculating the electron-

photon cross section the main parameter is the fine-structudgherepg is the density of the final states of the whole sys-

constanta=e?= 13- (in the following we shall use natural tem andKg, is the matrix element of the electron-photon

unitsc=1 andh=2). This (smal) constant is the devel- interaction.Kg, can be written as

opment parameter that is used to describe the cross section.

However, if one has to derive a nonrelativistic formulation of CAly CAly.

the electron-photon interaction a ngsmall) parameter has ) <F‘2. ai- AlX) I><I 2 ;- AX) 0>

to be introduced, formally &/ Therefore there are two Kro=¢€ Z E_E )
(small parameters governing the cross section, but it is not o - )

obvious which is the correct procedure for the development

of the exac{unknowr) cross section. In fact, one can use thewhereq; is the vector of the Dirac matrices of thth elec-
exact electron-photon interaction to derive the cross sectiotron, whose position ig;, andA(x;) is the vector potential
at the lowest(nonvanishing order in « in order to develop operator describing the photon fiel@), |1), and|F) are the
the resulting expression in power otlHowever, this is the initial, intermediate, and final states of the whole system
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composed by the photon and the target; &ydandE, are  Eq. (3) and summing the square moduluskyf, on the spin
the total energies of the corresponding states. It is clear thatf u, andu, one gets the usual Klein and Nishina formula.
Egs.(1) and(2) are not explicitly covariant, but we prefer to However, if one considers E@3) as it is, it is easily seen
use a noncovariant form because in a condensed-matter et the first term in the right-hand side of EQ) cannot
periment the laboratory frame is a special reference whergive rise to spin-dependent contributions, while magnetic
one is interested in studying various observables. contributions are given by those terms containing three times
‘As observed in Ref. 10 the electron spin is formally con-ihe pirac matrix. Therefore, one can define as magnetic
tained in the Dirac matrices that are expressed in terms of thg,qse terms that involve three times the Dirac matrix. Having
ga““ matrlﬁes. fHowever,_ t:]"? comgledx fgtr_u_cturef Og B this in mind it is evident that the magnetic contribution to the
ote_s tnot a (I)Wthor a S.tlrak')? tfolzwarl t.ef '?'t'?n 0 It t('e magt- photon scattering is a relativistic effect, as the matrix ele-
netic terms. In the avallaple 1ully retativistic formulations at o of the product of three Dirac matrices is proportional to
the lowest nonvanishing order in the coupling constant .
. " the product oflarge and small components of the Dirac
(Refs. 11 and 1R the magnetic contributions are deduced at_ o ) Lo .
Spinors, which is zero in a nonrelativistic theory. Incidentally

the end of a long calculation as those terms that depen | b that th I t of the Di
explicitly on the electron polarization. This approach is of ON€ can aiso observe that the small component ot the Lirac

little use for condensed-matter applications where one need®nor is proportional to the large one through the spin op-
a well-defined cross section containing teknownobserv- ~ erator.

ables of the target system possibly completely disentangled AS & consequence of this discussion, to arrive at a cross
from the properties of the probe. section useful for our purpose we adapt the approach de-

Therefore all meaningful approaches useful forscribed by Heitlel to derive the Klein and Nishina Comp-
condensed-matter applications must pass through some &j®n cross section. The main difficulty one finds in studying
proximation that should be carefully examined in compari-EQ. (2) is the fact that the energy denominator explicitly
son to the experimental situation. depends on the unknown energies of the intermediate states,

In order to identify the structure of the magnetic terms wewhich in turn depend on the target Hamiltonian that is un-
start examining the usual Compton cross section for the scaknown and can be considered as the subject of the experi-
tering off a single free electron. Instead of the standard formental investigations. In the case of a single free electron
mulation, based on the Feynman approach, we follow thathese energies are known and the momentum conservation
described by Heitlet? who shows that the transition prob- holds at each vertex so that the Feynman formulation can be
ability from the initial electron stat) to the final statéF) applied. When the bound many-particle states have to be
is proportional to the square modulus of the matrix elementconsidered, one has to introduce a proper approximation be-

cause no rules are available at the interaction vertex and the

Kro={u'2(ey-€) + (e a)(ko- @) (& @)/Kg target states have to be considered unknown.
In order to disentangle photon and target in E2). we
(& a)(k-a)(e-a)/k]uo/ (2p), ©  first observe that, as uguall,3 two intermedigte staﬁ are pos-

whereg, ande are the polarization vectors of the incoming sible with no photons or two photons, corresponding to the
and outgoing photonsi, andu are the initial and final elec- usual direct and crossed terms. The matrix element for the
tron spinors, angk is the electron rest energy. Starting from direct term is given by

|><|2_ (@;-ep)ex —iko-X] o>

J

Eo—E ’

<F2 (a;-e)expik -]

Kifg=e’2, ¢)

where one can writeEg=ky+N(u+ey) and E;=N(u  words, one has to reduce the complexknownmany-body
+¢/). In Eq.(3), N is the number of electron in the system, Propagator to that of the single excited electron. It is worth-
assumed to be arbitrarly large, is the ground-state binding While to remember that, in any case, the incoming photon

energy per electron, ang is theunknowrintermediate-state SNErgy cannot be increased without any limit and the simpli-
bindi lect The simplest imate int fied theory one is developing has a validity only below the
Inding energy per electron. 1he SImplest approximate INtery ;. creation threshold so that the radiative corrections can

mediate state we can use when the photon energy is highe safely neglected. Within the present approximation one
enough is that where a single electron is removed from th@as £ =(N—1)(u+eo)+u+e, and Eq—E =(ko+ u

ground state leaving unchanged the state of the dthefl +eg)—(u+e;), whereg, is the binding energy of the ex-
electrons and the excited electron is described using theited electron.
Wentzel-Kramers-Brillouin approximation by a plane wave Therefore the intermediate-state propagator becomes

of wave vector equal to that of the photon involved in the 1

matrix element. In this condition the matrix element of Eq. G'(EO):Z I Eo—E, (n

(4) can be treated in way similar to that appropriate to inde-

pendent free electrons because the momentum conservation ST (Kot uteg)+(ute) |
rule is again obtained at each interaction vertex. In other T4 n (ko+ p+eg)>—(u+ 8|)2< B
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Moreover, assuming that the photon wavelength is venyrix elements of Eq(4) are performed by integration over the
short as compared to the atomic size, that is, the range of thebordinate of the excited electron onlgpart from a trivial
ground-state wave function, one has that the matrix elementpetition because of the antisymmetry of the wave func-
of exd—ikor] in the ground state is vanishingly small. tion). Moreover, in the present approximation, all the pos-
Therefore on taking the various matrix elements of @2  sible intermediate states have the excited electron with the
single electron is peaked up and the COﬂtl’ibUtiOK% will samemomentum and henCQu(-I-s,)z does not depend on
come mainly from those intermediate states with one electhe intermediate state itself. Therefore one has
tron with momentum p=ky. In this condition the
intermediate-state wave function will be an eigenfunction of
the single-particle Dirac equation, which, because of the high Gy(Eq)= ptkoteotakotup S |
momentum can be treated in the WKB approximation =0 '

"~ (kotuteg)i—(ute) 4
[ai-pi+V(r)+uBi]V,=(ute)V,

E[V(ri)+(k(2)+u2)1’2]\lf, , Thanks t_o the form of this approximation, the sum over the
intermediate states can be performed by closure. Inserting
where ther; dependence o¥, is described by a plane wave Eq. (5) into Eq. (4) and taking care of the fact thag=x;
of momentump;=k,. Because of this dependence the ma-=r one gets

(5

Kig=e?2l fdri[*Pl(ai-e)exp[ik-ri][ko+u+<ai-ko>+/wi]<ai.eo)exp[—iko-ri]wo Sk 1=V

1
ri)uteolu])’

where in the numerator the terms of the ordergfand V(r;) have been neglected as comparegtandk,, while in the
denominator théy— o limit has been taken. Further simplification can be obtained by considering dwaticommutes with
a and u (1-8;))¥, is negligible as compared taWV, because it is of the order afyW,. In this way the final desired
relationship is obtained:

VI (a;-e)(a; &)+ (a;-e)(a-Ko)(a;- ) lexd —iQ 11V,
(d)_ FLLT ! ! ' ' :
KFO_Z eZJ dr; 2u[1-=V(r)lp+eqlpu] ’

(6)

)

whereQ=k—k, is the momentum transfer. The contribution per thatj, contains both the orbital and spin current, while
to the matrix element of the crossed term is readily obtained , is proportional to the spin density.
by making the substitutioky«—k and similar substitutions The first important point one can observe in E).is that
for the polarization vectors. the prefactor of the magnetic cross sectigcreasesas a
As one can see there is a one-to-one correspondence bgmction of the incoming photon energy. This result is in
tween Eq.(7) and Eq.(3) that is valid in the case of a single apparent contrast with the common idea that the magnetic
free electron. The most important difference is that there iphoton scattering cross sectiimcreasesas the photon en-
no longer a momentum conservation rule between the initiaérgy is increased. Actually this is also not the case in the
and final states so that the elastic scattering occurs. Usingonrelativistic calculation of Refs. 5 and 6. In fact, as already
Eq. (7) and the corresponding one for the crossed tdéf@,  mentioned, if one calculates the cross section for pure spin
can be derived and hence the cross section of Began be  scattering atonstantmomentum transfer one obtains a non-
obtained. The charge contribution arising from those termsncreasing result. In particular, depending on the photon po-
that are proportional te,- e have been already discussed in |arization, one obtains a result having the same energy de-
Ref. 1. Considering that the magnetic cross section is quitpendence as Eq8) or a constant trend.
small we shall approximate the energy denominator of Eqg. It is also interesting to observe that a magnetic-scattering
(7) by 2u. Then one gets for the magnetic contribution contribution can be thought to be present also in the usual
do 1.2 spin-summed Klein and Nishina Compton cross section,
-9 urio. = . which can be interpreted as maramagnetic scatteringln
dQ — 4k3 HITQ- (&0 & (F[Zl0) +l(&- &)k ko) fact all terms different from the Thomson term can be con-
, ) sidered asnagneticin the sense that they are originated as a
+(ko- )&yt (k- eg)€l(F|jol0)} |7, (8 relativistic effect, like the electron spin, and are the result of
wherer is the classical electron radiug is the Fourier ~the presence of three Dirac matrices in the matrix element.
transform of a modified electron density operator, fnds Therefore theparamagneticterm in the Klein and Nishina
the Fourier transform of the current density operator. Theyormula is
are given by do 15
aQ 4
Q= %EI ajoiexdiQ-x], JQZEi aiexdiQ-xi], (9  we see that Eq.10) has the same trend as E8) when the
momentum transfer is taken as constant and the Compton
where oy is the 4<4 matrix obtained inserting the Pauli formula is employed. This is particularly simple in the low-
matrix on the principal diagonal. It is worthwhile to remem- energy limit k,<u) because one has

(klko+ko/k—2). (10

jui|
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kikg=1—2Ko/u SIN?(0/2)+[2Ko/ u Sirf(6/2)]2, jo=(ihc/2mp) QF(Q)S, , (13
Ko/k=1+2Ko/u Sirf(6/2),
where @ is the scattering angle. Then Ed.0) becomes
do rg Q4
a0~ 16 Kou?

where f(Q) is the atomic form factor an&, is the spin
component perpendicular to the scattering plane. Inserting
Eqg. (13) into Eq. (12) one obtains a relationship identical to
that deduced in Ref. 14 from the nonrelativistic approach of

) o ] ) o Refs. 4 and 5. EquatiofiL3) is valid to the same t/order
This equation is virtually exact in the appropriate limit and ,saq in Refs. 4 and 5: however, in such a case the nonrela-

shows the same trend as H@). As already observed, the yistic approximation is formally used for the intermediate
usual low-energy approximation of Refs. 4 and 5 does n

(11)

. > tates, which are, on the contrary, in the extreme relativistic
provide a result exactly equal to that of EQ1). This is an condition when the photon energy is increased. Moreover,

indication that this approximation is accurate only to the or- R -
. : A the present description is adequate to treat the small binding
der 1k, so that pure magnetic scattering, which is at the . )

5 . . : - . effects that seem in any case quite small and of the same
order 1£4, is not correctly described by this approximation.

This conclusion suggests that a correct low-energy approxf—)rder as the difference between the ordinary and modified

mation can be obtained using a more accurate interactiof?™ factors. Another consequence of E¢B) is the behav-
term along the line of Ref. 6, while the interference term'o" of thg orbital current contribution. The orbital current is
between magnetic and charge scattering is correctly dd@ther high but tends to be parallel @ and hence perpen-
scribed by the T approximation of Refs. 4 and 5. dicular tokg, therefore the corresponding cross section be-
It is useful to observe that in the case of a single boundiaves likeQ*/(kou)?, so that it decreases on increasing the
electron in the nuclear Coulomb field there exists the calcuincoming photon energy, at constant momentum transfer. Fi-
lation performed by Goldberger and Lowwhich results in  nally, one can observe that the present result is not confined
a general formula that is equal to Eg) in the appropriate to relativistic energies, but its validity condition is that the
limit. In Ref. 13 a more accurate approximation for the Cou-photon energy is much larger than the electron binding en-
lomb propagator is given so that the small imaginary part ofergy. The experimental findings of Ref. 14 are in good agree-
the scattering amplitude is also obtained. ment with Eq.(13) up to fully relativistic energies, namely,
The results given in Eq:8) could be treated numerically ko= u.
along the lines of Ref. 7; nonetheless it is interesting to de- As a final remark one can recall that, in the case of an
rive an approximate analytical result from such an equationindependent-electron approximation and for central field, a
First of all, one can readily see that there is only one ternfully numerical approach is possiblé? at least in the case of
that is not decreasing as a function of the photon energy giurely elastic scattering. However, it does not appear obvi-

constant momentum transfer, namely, ous if it is possible to apply the numerical method to the case
do 12 of extended systems and for quasielastic scattering, even in
- = _02 |(eo-€)(k+Kko){Olj ol O}, (120  the case of an independent-electron approximation. To our
dQ  4kj best knowledge there is no attempt to make such a calcula-

where we focused on elastic scattering as such a case appelfg- A direct numerical calculation allows for the determi-
to be accessible to an experimental investigatfo@incejq nation of both real and imaginary parts of the scattering am-
is proportional to thew Dirac matrix, the matrix elements Plitude in a wide energy range but, of course, it does not
correspond to the superposition of the large and small conr!loW for an understanding of the physical mechanism in-
ponents of the Dirac spinor. In an independent-particle ap?©/ved in the process. Another relativistic approach to the
proximation, if y is the large component anglis the small magnetic cross section is th_at of Ref. 16, where all the elec-
one, the following approximation at the orderc1¢an be trons are described by free mdependent-electrqn states, thus
used: employing the older results of Tolhoék.Also this proce-
_ dure results in a similar contribution for the elastic spin-only

¢=(0-p)x/(2u), scattering, but it is intrinsically related to an independent-

x and ¢ being two-row spinors. Using this approximation, particle approximation, while Eq8) contains many-body

after some manipulation one gets guantities.
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