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Magnetic x-ray scattering at relativistic energies
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The photon magnetic scattering cross section is examined in the high-energy limit in order to define the
validity of the nonrelativistic approach usually employed to interpret the experimental results. A proper defi-
nition of the magnetic contribution is introduced and a high-energy limit is deduced. It is shown that the elastic
magnetic cross section decreases or stays constant on increasing the photon energy when the momentum
transfer is held constant in agreement with recent experimental results.@S0163-1829~98!01433-7#
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For a long time x-ray scattering has been one of the m
important tools for condensed-matter studies. The adven
the very high brilliance synchrotron radiation sources h
even extended the range of possible applications of the x
in the analysis of condensed-matter properties. In particu
it became possible to use the weak photon-elect
magnetic-moment interaction in order to determine the m
netic properties of a many-electron system. This interac
has been demonstrated to be rather useful as a compa
technique to magnetic neutron scattering in the study of
magnetic properties of matter.

In order to perform accurate studies employing x-r
magnetic scattering it is mandatory to have a fully accur
formulation of the corresponding cross section. Unfor
nately it is impossibleto derive anexactexpression of the
photon-scattering cross section off a many-bound-elec
system even at the lowest nonvanishing order.1–3 When the
magnetic interaction is considered the situation is even m
complex. A standard description is that given by Blume4 and
Blume and Gibbs5 derived within the standard nonrelativist
approach of the photon-electron interaction. This approac
considered to be adequate when the photon energy is s
with respect to the electron rest energy (mc25511 keV). In
the case of magnetic Compton scattering a more accu
development has been proposed in Ref. 6, in relation to
accurate nonrelativistic Hamiltonian of a combined syst
of many electrons and photons. More recently Aro
Strange, and Gyorffy7 presented a formal extension of th
standard perturbation relativistic theory to a many-elect
system in a form suitable for numerical calculations. In t
paper, we derive a formulation useful for the interpretation
experimental results.

One has to remember that in calculating the electr
photon cross section the main parameter is the fine-struc
constanta5e2> 1

137 ~in the following we shall use natura
units c51 andh52p). This ~small! constant is the devel
opment parameter that is used to describe the cross sec
However, if one has to derive a nonrelativistic formulation
the electron-photon interaction a new~small! parameter has
to be introduced, formally 1/c. Therefore there are two
~small! parameters governing the cross section, but it is
obvious which is the correct procedure for the developm
of the exact~unknown! cross section. In fact, one can use t
exact electron-photon interaction to derive the cross sec
at the lowest~nonvanishing! order in a in order to develop
the resulting expression in power of 1/c. However, this is the
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most difficult approach. In Refs. 4 and 5 the opposite pro
dure is used, namely, the electron-photon interaction is
veloped in power of 1/c and the cross section is derived
the lowest~nonvanishing! order ina. It is not clear how to
establish whether the two procedures are, at least in p
ciple, equivalent.

In the case of the scattering from a single free electro
has been known for a long time8,9 that the exact scattering
amplitude developed with respect to the incoming pho
energy contains a first-order~in 1/c) magnetic scattering
This contribution is formally related to the relativisti
invariance,8,9 that is, the magnetic photon scattering is a pu
relativistic effect.

Considering the general situation we examined the m
netic photon scattering looking at the high-energy behav
of the cross section. One can note that in a full relativis
formulation the magnetic contribution to the cross sect
cannot be defined in a straightforward way because the e
tron magnetic moment is intrinsic to the theory and does
explicitly appear in the photon-electron interaction as h
been already observed in the first study10 of the magnetic
Compton cross section in a many-body system. In the
lowing, we shall consider as quasielastic a process where
incoming and outgoing photon energies are close to e
other. On increasing the photon energy these processe
generally confined in the forward direction so that the si
plified assumptionk0>k is valid.

If we assume that the exact relativistic many-body sta
of the system one is examining are known, the quasiela
cross section developed at the lowest nonvanishing orde
the coupling constanta is given by

ds/dV 5rFuKF0u2, ~1!

whererF is the density of the final states of the whole sy
tem andKF0 is the matrix element of the electron-photo
interaction.KF0 can be written as

KF05e2 (
I

K FU(
i

a i•A~xi !UI L K IU(
j

a j•A~xj !U0L
E02EI

,

~2!

wherea i is the vector of the Dirac matrices of thei th elec-
tron, whose position isxi , andA(xi) is the vector potential
operator describing the photon field;u0&, uI &, anduF& are the
initial, intermediate, and final states of the whole syst
5173 © 1998 The American Physical Society
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5174 PRB 58BRIEF REPORTS
composed by the photon and the target; andE0 and EI are
the total energies of the corresponding states. It is clear
Eqs.~1! and~2! are not explicitly covariant, but we prefer t
use a noncovariant form because in a condensed-matte
periment the laboratory frame is a special reference wh
one is interested in studying various observables.

As observed in Ref. 10 the electron spin is formally co
tained in the Dirac matrices that are expressed in terms o
Pauli matrices. However, the complex structure of Eq.~2!
does not allow for a straightforward definition of the ma
netic terms. In the available fully relativistic formulations
the lowest nonvanishing order in the coupling constana
~Refs. 11 and 12!, the magnetic contributions are deduced
the end of a long calculation as those terms that dep
explicitly on the electron polarization. This approach is
little use for condensed-matter applications where one ne
a well-defined cross section containing theunknownobserv-
ables of the target system possibly completely disentan
from the properties of the probe.

Therefore all meaningful approaches useful
condensed-matter applications must pass through some
proximation that should be carefully examined in compa
son to the experimental situation.

In order to identify the structure of the magnetic terms
start examining the usual Compton cross section for the s
tering off a single free electron. Instead of the standard
mulation, based on the Feynman approach, we follow
described by Heitler,12 who shows that the transition prob
ability from the initial electron stateu0& to the final stateuF&
is proportional to the square modulus of the matrix eleme

KF05$u†@2~e0•e!1~e•a!~k0•a!~e0•a!/k0

1~e0•a!~k•a!~e•a!/k#u0%/~2m!, ~3!

wheree0 ande are the polarization vectors of the incomin
and outgoing photons,u0 andu are the initial and final elec
tron spinors, andm is the electron rest energy. Starting fro
,
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Eq. ~3! and summing the square modulus ofKF0 on the spin
of u0 and u, one gets the usual Klein and Nishina formu
However, if one considers Eq.~3! as it is, it is easily seen
that the first term in the right-hand side of Eq.~3! cannot
give rise to spin-dependent contributions, while magne
contributions are given by those terms containing three tim
the Dirac matrix. Therefore, one can define as magn
those terms that involve three times the Dirac matrix. Hav
this in mind it is evident that the magnetic contribution to t
photon scattering is a relativistic effect, as the matrix e
ment of the product of three Dirac matrices is proportiona
the product of large and small components of the Dirac
spinors, which is zero in a nonrelativistic theory. Incidenta
one can also observe that the small component of the D
spinor is proportional to the large one through the spin
erator.

As a consequence of this discussion, to arrive at a cr
section useful for our purpose we adapt the approach
scribed by Heitler12 to derive the Klein and Nishina Comp
ton cross section. The main difficulty one finds in studyi
Eq. ~2! is the fact that the energy denominator explicit
depends on the unknown energies of the intermediate st
which in turn depend on the target Hamiltonian that is u
known and can be considered as the subject of the exp
mental investigations. In the case of a single free elect
these energies are known and the momentum conserva
holds at each vertex so that the Feynman formulation can
applied. When the bound many-particle states have to
considered, one has to introduce a proper approximation
cause no rules are available at the interaction vertex and
target states have to be considered unknown.

In order to disentangle photon and target in Eq.~2! we
first observe that, as usual, two intermediate states are
sible with no photons or two photons, corresponding to
usual direct and crossed terms. The matrix element for
direct term is given by
KF0
~d!5e2(

I

K FU(
i

~a i•e!exp@ ik•xi #UI L K IU(
j

~a j•e0!exp@2 ik0•xj #U0L
E02EI

, ~4!
th-
ton
pli-
he
can
ne

-

where one can writeE05k01N(m1«0) and EI5N(m
1« I8). In Eq. ~3!, N is the number of electron in the system
assumed to be arbitrarly large,«0 is the ground-state binding
energy per electron, and« I8 is theunknownintermediate-state
binding energy per electron. The simplest approximate in
mediate state we can use when the photon energy is
enough is that where a single electron is removed from
ground state leaving unchanged the state of the otherN21
electrons and the excited electron is described using
Wentzel-Kramers-Brillouin approximation by a plane wa
of wave vector equal to that of the photon involved in t
matrix element. In this condition the matrix element of E
~4! can be treated in way similar to that appropriate to in
pendent free electrons because the momentum conserv
rule is again obtained at each interaction vertex. In ot
r-
gh
e

e

.
-
ion
r

words, one has to reduce the complexunknownmany-body
propagator to that of the single excited electron. It is wor
while to remember that, in any case, the incoming pho
energy cannot be increased without any limit and the sim
fied theory one is developing has a validity only below t
pair-creation threshold so that the radiative corrections
be safely neglected. Within the present approximation o
has EI5(N21)(m1«0)1m1« I and E02EI5(k01m
1«0)2(m1« I), where« I is the binding energy of the ex
cited electron.

Therefore the intermediate-state propagator becomes

GI~E0!5(
I

uI &
1

E02EI
^I u

5(
I

uI &
~k01m1«0!1~m1« I !

~k01m1«0!22~m1« I !
2 ^I u.
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Moreover, assuming that the photon wavelength is v
short as compared to the atomic size, that is, the range o
ground-state wave function, one has that the matrix elem
of exp@2ik0r # in the ground state is vanishingly sma
Therefore on taking the various matrix elements of Eq.~4! a
single electron is peaked up and the contribution toKF0

(d) will
come mainly from those intermediate states with one e
tron with momentum p>k0 . In this condition the
intermediate-state wave function will be an eigenfunction
the single-particle Dirac equation, which, because of the h
momentum can be treated in the WKB approximation

@a i•pi1V~r i !1mb i #C I>~m1« I !C I

>@V~r i !1~k0
21m2!1/2#C I ,

where ther i dependence ofC I is described by a plane wav
of momentumpi>k0 . Because of this dependence the m
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trix elements of Eq.~4! are performed by integration over th
coordinate of the excited electron only~apart from a trivial
repetition because of the antisymmetry of the wave fu
tion!. Moreover, in the present approximation, all the po
sible intermediate states have the excited electron with
samemomentum and hence (m1« I)

2 does not depend on
the intermediate state itself. Therefore one has

GI~E0!5
m1k01«01ak01mb

~k01m1«0!22~m1« I !
2 (

I
uI &^I u. ~5!

Thanks to the form of this approximation, the sum over t
intermediate states can be performed by closure. Inser
Eq. ~5! into Eq. ~4! and taking care of the fact thatxi5xj
5r one gets
KF0
~d!5e2(

i
E dr i H CF

†~a i•e!exp@ ik•r i #@k01m1~a i•k0!1mb i #~a i•e0!exp@2 ik0•r i #C0

1

2mk0@12V~r i !/m1«0 /m#J , ~6!

where in the numerator the terms of the order of«0 andV(r i) have been neglected as compared tom andk0 , while in the
denominator thek0→` limit has been taken. Further simplification can be obtained by considering thatb anticommutes with
a and m (12b i)C0 is negligible as compared tomC0 because it is of the order of«0C0 . In this way the final desired
relationship is obtained:

KF0
~d!5(

i
e2E dr i

CF
†@~a i•e!~a i•e0!1~a i•e!~a i•k0!~a i•e0!#exp@2 iQ•r i #C0

2m@12V~r i !/m1«0 /m#
, ~7!
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whereQ5k2k0 is the momentum transfer. The contributio
to the matrix element of the crossed term is readily obtai
by making the substitutionk0↔k and similar substitutions
for the polarization vectors.

As one can see there is a one-to-one correspondenc
tween Eq.~7! and Eq.~3! that is valid in the case of a singl
free electron. The most important difference is that there
no longer a momentum conservation rule between the in
and final states so that the elastic scattering occurs. U
Eq. ~7! and the corresponding one for the crossed term,KF0
can be derived and hence the cross section of Eq.~1! can be
obtained. The charge contribution arising from those ter
that are proportional toe0•e have been already discussed
Ref. 1. Considering that the magnetic cross section is q
small we shall approximate the energy denominator of
~7! by 2m. Then one gets for the magnetic contribution

ds

dV
>

r 0
2

4k0
2 z$@ iQ•~e03e!#^FuJQu0&1@~e0•e!~k1k0!

1~k0•e!e01~k•e0!e#^Fu jQu0&% z2, ~8!

where r 0 is the classical electron radius,JQ is the Fourier
transform of a modified electron density operator, andjQ is
the Fourier transform of the current density operator. Th
are given by

JQ5 1
3 (

i
a is iexp@ iQ•xi #, jQ5(

i
a iexp@ iQ•xi #, ~9!

where s i is the 434 matrix obtained inserting the Pau
matrix on the principal diagonal. It is worthwhile to remem
d
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ber thatjQ contains both the orbital and spin current, wh
JQ is proportional to the spin density.

The first important point one can observe in Eq.~8! is that
the prefactor of the magnetic cross sectiondecreasesas a
function of the incoming photon energy. This result is
apparent contrast with the common idea that the magn
photon scattering cross sectionincreasesas the photon en-
ergy is increased. Actually this is also not the case in
nonrelativistic calculation of Refs. 5 and 6. In fact, as alrea
mentioned, if one calculates the cross section for pure s
scattering atconstantmomentum transfer one obtains a no
increasing result. In particular, depending on the photon
larization, one obtains a result having the same energy
pendence as Eq.~8! or a constant trend.

It is also interesting to observe that a magnetic-scatte
contribution can be thought to be present also in the us
spin-summed Klein and Nishina Compton cross secti
which can be interpreted as aparamagnetic scattering. In
fact all terms different from the Thomson term can be co
sidered asmagneticin the sense that they are originated as
relativistic effect, like the electron spin, and are the result
the presence of three Dirac matrices in the matrix elem
Therefore theparamagneticterm in the Klein and Nishina
formula is

ds

dV
5

r 0
2

4
~k/k01k0 /k22!. ~10!

We see that Eq.~10! has the same trend as Eq.~8! when the
momentum transfer is taken as constant and the Com
formula is employed. This is particularly simple in the low
energy limit (k0!m) because one has
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k/k0>122k0 /m sin2~u/2!1@2k0 /m sin2~u/2!#2,

k0 /k5112k0 /m sin2~u/2!,

whereu is the scattering angle. Then Eq.~10! becomes

ds

dV
>

r 0
2

16

Q4

k0
2m2 . ~11!

This equation is virtually exact in the appropriate limit a
shows the same trend as Eq.~8!. As already observed, th
usual low-energy approximation of Refs. 4 and 5 does
provide a result exactly equal to that of Eq.~11!. This is an
indication that this approximation is accurate only to the
der 1/c, so that pure magnetic scattering, which is at
order 1/c2, is not correctly described by this approximatio
This conclusion suggests that a correct low-energy appr
mation can be obtained using a more accurate interac
term along the line of Ref. 6, while the interference te
between magnetic and charge scattering is correctly
scribed by the 1/c approximation of Refs. 4 and 5.

It is useful to observe that in the case of a single bou
electron in the nuclear Coulomb field there exists the ca
lation performed by Goldberger and Low,13 which results in
a general formula that is equal to Eq.~7! in the appropriate
limit. In Ref. 13 a more accurate approximation for the Co
lomb propagator is given so that the small imaginary par
the scattering amplitude is also obtained.

The results given in Eq.~8! could be treated numericall
along the lines of Ref. 7; nonetheless it is interesting to
rive an approximate analytical result from such an equat
First of all, one can readily see that there is only one te
that is not decreasing as a function of the photon energ
constant momentum transfer, namely,

ds

dV
5

r 0
2

4k0
2 z~e0•e!~k1k0!^0u jQu 0&% z2, ~12!

where we focused on elastic scattering as such a case ap
to be accessible to an experimental investigation.14 SincejQ
is proportional to thea Dirac matrix, the matrix element
correspond to the superposition of the large and small c
ponents of the Dirac spinor. In an independent-particle
proximation, if x is the large component andw is the small
one, the following approximation at the order 1/c can be
used:

w>~s•p!x/~2m!,

x and w being two-row spinors. Using this approximatio
after some manipulation one gets
t

-
e

i-
n
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-
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jQ> ~ ihc/2pm! Qf ~Q!S' , ~13!

where f (Q) is the atomic form factor andS' is the spin
component perpendicular to the scattering plane. Inser
Eq. ~13! into Eq. ~12! one obtains a relationship identical t
that deduced in Ref. 14 from the nonrelativistic approach
Refs. 4 and 5. Equation~13! is valid to the same 1/c order
used in Refs. 4 and 5; however, in such a case the non
tivistic approximation is formally used for the intermedia
states, which are, on the contrary, in the extreme relativi
condition when the photon energy is increased. Moreov
the present description is adequate to treat the small bin
effects that seem in any case quite small and of the s
order as the difference between the ordinary and modi
form factors.1 Another consequence of Eq.~8! is the behav-
ior of the orbital current contribution. The orbital current
rather high but tends to be parallel toQ and hence perpen
dicular to k0 , therefore the corresponding cross section
haves likeQ4/(k0m)2, so that it decreases on increasing t
incoming photon energy, at constant momentum transfer.
nally, one can observe that the present result is not confi
to relativistic energies, but its validity condition is that th
photon energy is much larger than the electron binding
ergy. The experimental findings of Ref. 14 are in good agr
ment with Eq.~13! up to fully relativistic energies, namely
k0>m.

As a final remark one can recall that, in the case of
independent-electron approximation and for central field
fully numerical approach is possible,7,15at least in the case o
purely elastic scattering. However, it does not appear ob
ous if it is possible to apply the numerical method to the c
of extended systems and for quasielastic scattering, eve
the case of an independent-electron approximation. To
best knowledge there is no attempt to make such a calc
tion. A direct numerical calculation allows for the determ
nation of both real and imaginary parts of the scattering a
plitude in a wide energy range but, of course, it does
allow for an understanding of the physical mechanism
volved in the process. Another relativistic approach to
magnetic cross section is that of Ref. 16, where all the e
trons are described by free independent-electron states,
employing the older results of Tolhoek.17 Also this proce-
dure results in a similar contribution for the elastic spin-on
scattering, but it is intrinsically related to an independe
particle approximation, while Eq.~8! contains many-body
quantities.
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