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Thermodynamic properties of the quantum antiferromagnet on the triangular lattice
in a magnetic field
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We study the thermodynamic properties of e 3 quantum antiferromagnetic Heisenberg model on finite
triangular lattices witiN (=<27) spins in a magnetic field using a quantum transfer Monte Carlo method. The
size dependence of the order parameter suggests that a threbhel®.81) exists, below which the long-
range order is broken by the quantum fluctuation. HorH4, only the longitudinal component of the order
parameter has a finite nonzero value at low temperatures. The transition temperature is estimated at different
magnetic fields and the phase diagram is predidi®6163-18208)06334-4

Recently, the spin ordering of the low-dimensional frus-netic field increases, it changes successively into a ferrimag-
trated spin system has attracted much interest. The antiferroetic phase wit |0 andf - =0 and a spin flop phase with
magnet on the triangular lattice is a typical frustrated spinf 0 and f+#0. We ask the following questions in the
system. In the classical case, the ground state has a 126= 1/2 Heisenberg mode{1) Do bothf andf* have non-
structure and is discretely degenerated with chirality. Thevanishing values in the magnetic fiel@ If they do, is it
120° structure disappears at finite temperatures, but if aHue even in an infinitesimal magnetic field3) Does any
easy plane anisotropy exists, i.8,/J,,<1, the ground state phase transition occur as the magnetic f|e_ld increases? We
degeneracy of chirality causes a phase transhiém.the calculate the :.sp'ecmc heat, the magnetization, and th'e order
quantum case, it is known that th model, i.e.,J,=0, has parameter at finite temperatures for lattices Wit 27 spins
the long-ranged chiral order phase at finite temperafites. PY using the QTMC method. The results suggest the follow-
On the other hand, in the Heisenberg model, it is still coni"9- (1) The magnetization curve has a 1/3 platedd for
troversial whether or not the classical 120° ground state i§'1<H<Hz, which indicates the occurrence of a ferrimag-
stable against the quantum fluctuatfoi.Recently, the au- Netic phase(2) For H<H,, the long-range order ;IS broken
thors studied an anisotropic Heisenberg model at finit®?Y the quantum fluctuation3) For H>H,, only f! has a
temperaturegsby a quantum transfer Monte Carl@TMC) nonzero value at Iovy te_mperatures. We not_e 1ﬂ+c1td_|sap—
method® They found a threshold 08,/3,,~0.4 below pears at any magnetic f|elq, bgcau_se the spin rotatlonal_ sym-
which the chiral phase transition occurs at a finite temperaMelry around the magnetic field is not broken. That is, a
ture. The disappearance of long-range order for@A J,, pollmgar phase occurs fcbf>H1. The transition temperature
<1 has been attributed to the quantum fluctuation ofzhe IS estimated from_ the size depe_ndence of the order parameter
component of the spirfsThat is, in contrast with the classi- @nd the phase diagram is predicted.
cal case the spin structure may not depend only on the sym- We start with the Hamiltonian
metry of the model but also on the nature of the quantum
fluctuation. H=212, S-§-HX &, @)

In this paper, we consider the effect of a magnetic field i :
which breaks the spin-reversal symmetry. In the classicalvhered (>0) is the exchange integrat| is an external mag-
Heisenberg antiferromagnet on a triangular lattice, the 120petic field along the direction, and(i,j) runs all the nearest
structure withf |0 andf'#0 appears in an infinitesimal neighbor pairs. We consider properties of the maddinite
magnetic field, wheref | and f+ are the longitudinal and temperaturesusing the QTMC method.In the QTMC
transverse components of the order param@t8s the mag- method, we calculate the following quantity:

M M
(A=2 (wdA eXp(—BH)Idfk>/ > (dexo(— BH)| i), @

whereA is some physical operator and the sum runs der thermal average calculated by using all telg€ing states. In
states, each of which is given Hys)=6/MZ;2 C\li); this calculation, the lattice size is limited by the memory size
hereCjy is a uniform random number of 1<Cy<1. We  of the computer. Here, we divide the lattice into two parts, so

can easily show(A)=(A)+0O(1/\JM), where (A) is the that we can treat the model on the lattise<27% We can
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get results atarbitrary field from those of H=0. For ex-
ample, the specific heat &=h is calculated as follows.
First, we calculate

zm=§ (W™ expl — BHo) | p™),

Em:Ek (P Hoexp — BHo) | ™), 3

cm=§ (P H 3exp(— BHo) | p™).

Here|z,//(km)) is a similar state composed of Ising states with
the total spinm, andH, is the Hamiltonian(1) with H=0.
Then, we obtain

C=[Cn/Zy—(En1Z,)?)IT?, (4)
where
Z,= >, exp(fmh)Z,,,
Eh=§ exg Bmh)[Ep,—mhZ,], (5

Cp=2. exp Smh)[C,,— 2mhE,+m2H2Z,.].

The numbers of the statéd are as follows:M =50 for N
<21, M=10 for N=24, andM =2 for N=27. For every
size of the lattice except faN=27, the set ofM states is
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divided into five subsets and quantities of interest are calcu- FIG. 1. The magnetization curves &) T=0.20] and (b)
lated in every subset. Error bars presented in the figures=0.33). The dashed line ifg) is the result in the ground state for

given below mean deviations of the values obtained for dif-N=27.
ferent subsets. Since the results depend markedly on whether

N is even or odd? we use the data only for odd to con-
sider the size dependence.

First we consider the magnetizatidn® and the specific
heatC given by

|\/|Z=(1/N)<Ei 3Z>, (6)
C=(1INT?)((H?) —(H)?). (7

In Figs. Xa and Xb), we show the magnetizations at
T=0.20] and 0.33 together with that in the ground state for
N=27. The data for different sizN lie almost on the same

fl=fz

fL=(P+ )12,

Now we consider temperature dependences of the longi-
tudinal and transverse componerﬁﬂband fL of the order
parameter:

8
€)

f“:l Ma_MaZ Ma_Ma2 Ma_Mllz
2(( A—Mg)°+(Mg o)+ (Mc—MR)9),

(10

line. The 1/3 plateau appears and the positions of the edga¥here My [=X;_,S"/(N/3)] means thea component of
depend little on the temperature. Therefore we believe thahe magnetization of thé sublattice. Here we divide the
the 1/3 plateau occurs in the thermodynamic limit and itsattice into three sublattices, B, andC, because the classical
range in the magnetic field is almost independent of the temmodel has the 120° structure &t=0. If the classical 120°
perature. Hereafter, we denote the edges of the plateau pbase or the spin flop phase occurs, bbthand f - have

H.(~2.8J) andH,(~4.2]). In Figs. Za)—2(d), we present

some nonzero value. In the ferrimagnet phase, diﬁlynas

results of the specific heat. In the plateau range, the peasome nonzero value. In Figs(a3—-3(d), we plot fl as a
height becomes higher with increasiNg suggesting the oc- function of T. For all H, fl increases with decreasinp
currence of a phase transition. This is not unexpected, be¥henH=<H, the size dependence is large even at low tem-
cause in the Ising model the ferrimagnetic phase withperatures. On the other hand, whdeeH,, the size depen-

M,=1/3 occurs at finite temperatures.

dence is small at low temperatures, suggesting fhate-
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FIG. 3. The order parametéf at different magnetic fields. The

FIG. 2. The specific heat at different magnetic fields. 5 )
symbol X denotes an extrapolated value described in the text.

mains nonzero abl—«~. We fit the data on a conventional

1/JN function and estimate values fdi— o 5 which is
shown in Fig. 4. The temperature dependence of the extrapo-

lated values is also plotted in Figs(a and 3b). WhenH 0.7
=H,, fI has a nonzero value at low temperatures, and be- Tt
comes smaller and vanishes as the temperature increases. In 0.6F
Figs. 5a)-5(c), we plotf* as a function ofl. Althoughf+ = g
increases with lowering the temperature exceptHer4.0J, = 0.5¢
its size dependence is not changed considerably at all tem- 04f
peratures, suggesting the disappearance of ifNfere. In .
fact, we get a small negative value bf by the same ex- 0.3F
trapolation. E
From the results mentioned above, we predict the phase 0-2;
diagram which is shown in Fig. 6. We plot the critical o1k
magnetic field ofH,. Only whenH=H, does the long- .
range order appear which is characterized ftﬂyﬁo and 0.0C
fL=0. We estimate the transition temperature fram 0.0 0.1 0.2 0.3

=(T,+T,)/2, whereT, is the temperature at which the ex-
trapolated value of | becomes the half maximum of it at  FIG. 4. An extrapolation of the order parametdrat different
T=0 andT, is the temperature at which the extrapolatedmagnetic fields.
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T/J necessary to see whethds is a phase boundary or nearly a

crossover line. We note that the occurrence of the collinear
phase was speculated in an Ising-like modédlhe important
point predicted in this study is that the same is true in the
value vanishes. The value @ estimated in this way is not jsotropic model and the other long-range order phase occurs
incompatible with the peak temperature of the specific heatat higher fields. Finally, it should be mentioned that the
Especially forH;<H=H,, the extrapolation of the peak breaking of spin symmetry is the necessary condition to the
temperature by the W functiorf gives a very close value. occurrence of a long-range order, but there is a finite, non-
We also plot the other edge of the platedly, Of course, the  zero threshold below which the long range-order is broken
phase forH,<H=H, is related to the ferrimagnetic phase by quantum fluctuation.

in the classical case. The phase FeH, will correspond We would like to thank Dr. T. Nakamura for valuable
to the spin flop phase in the classical case, but the transversiéscussions. The diagonalization programs are based on the
component - is absent® Both phases above and belé#y ~ subroutine packag&oBePACK/S Ver. 1.1 by Professor T.
are the collinear phases, but some differences in the mag-onegawa, Professor M. Kaburagi, and Dr. T. Nishino. The
netizatic property appear between two phasésthe size  computation in this work has partially been done using the
dependence of the specific heat a(®@ the temperature facilities of the Supercomputer Center, Institute for Solid
dependence of the order parameter. Further studies are State Physics, University of Tokyo.

FIG. 5. The order parametér- at different magnetic fields.
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