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Critical behavior of the two-dimensional fully frustrated XY model
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We study the critical behavior of the fully frustratedXY model on a square lattice by means of extensive
histogram Monte Carlo simulations. We find a single transition in contrast to the scenario of two distinct
transitions. From a finite-size scaling we determine the critical exponents associated with the Ising-like order
parameter and findTc(`)50.4552(2), n50.852(2), andg51.531(3). These exponents, different from the
pure two-dimensional Ising critical exponents, are in agreement with the ones obtained for a mixedXY Ising
system.@S0163-1829~98!00834-0#
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I. INTRODUCTION

The critical behavior of two-dimensional~2D! fully frus-
trated~FF! XY model1–3 has been the subject of many rece
studies and controversies.4–10 The reason for this increasin
interest is that, despite of more than ten years of alm
continuous investigations, the nature of the phase trans
of this model is still not yet understood. Apart from a fu
damental interest in the theory of phase transition in stat
cal mechanics where different approaches have been te
with this simple model, there is also an experimental inter
since this system corresponds to a planar array of Josep
junctions in an external transverse magnetic field with
magnetic flux per plaquette given by half a flux quantum.1 In
this model there exits a discreteZ2 symmetry of the Ising
model in addition to the continuous U~1! symmetry associ-
ated to the global rotation ofXY spins. The breaking of the
former gives rise to an Ising-like transition while that of th
latter to the Kosterlitz-Thouless~KT! one. There are severa
contradictory suggestions for these transitions: some aut
say that the Ising and KT transitions occur at different te
peratures, while others conclude that they take place at
same temperature.

On the one hand, in a generalized uniformly frustratedXY
model where the frustration is varied by changing the ne
tive bond strength2,3 it has been concluded that the two tra
sitions merge into a single transition in the fully frustrat
case. This scenario of a single transition has been suppo
by a number of studies that give the following values for t
critical exponentn: n50.889, ~Ref. 7! and 0.813~Ref. 6!.
These values are close to that obtained for the single tra
tion in a mixedXY Ising model that is 0.85.10,8 This suggests
a new universality calledXY Ising class for the transition
occurring in this model. Very recently, Benakli an
Granato11 have introduced a generalized version of t
square-lattice frustratedXY model where unequal ferromag
netic~F! and antiferrmagnetic~AF! couplings are arranged i
zigzag pattern~see Fig. 1!. They used a Ginzburg-Landa
mean-field approximation and a finite-size scaling of st
dard Monte Carlo~MC! simulation to study the phase dia
gram and the critical behavior and showed that the transi
is of the universality class of theXY Ising model. We note in
passing that the question of new universality class arises
PRB 580163-1829/98/58~9!/5163~3!/$15.00
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in the case of frustrated Heisenberg orXY spins on the
stacked triangular antiferromagnet.12

On the other hand, other authors suggested two dist
phase transitions. Lee and Lee6 have investigated the FFXY
model on the square lattice using a microcanonical MC te
nique; they found two separate transitions, the KT transit
at TKT50.44 and the Ising transition atTI50.454. Also, in
the same model, by using the position-space renormaliza
group approach Jeonet al.5 have showed that the KT-typ
transition and the Ising-like one occur at different tempe
tures. Olsson4 has also found in the same model two distin
transitions. He calculated the chiral correlation function a
then its coherence length from which he obtainedn51 as in
the standard two-dimensional~2D! Ising model, in contradic-
tion with results from previous papers cited above.

Given the contradiction between different approaches
MC results, we feel that it would be necessary to use a hi
precision MC technique to study again this problem and
give definite answers to at least a few questions. The purp
of this paper is thus to use the so-called MC histogr
technique13 to study the phase transition of the FFXY model
with zigzag couplings introduced by Benakli and Grana
The results shown below bring two definite conclusions:~i!
they indicate a single transition and~ii ! the values of the
critical exponents aren50.852(2) andg51.531(3), better
than most earlier MC results, in agreement with the sugg
tion of a ‘‘XY Ising universality class’’ by Leeet al.10,8,9

In Sec. II we show the model and our results. Conclud
remarks are given in Sec. III.

FIG. 1. Frustrated model with zigzag pattern of ferromagne
~thin! and antiferromagnetic~thick! bonds.
5163 © 1998 The American Physical Society
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II. MONTE CARLO HISTOGRAM SIMULATIONS

We consider theXY model on the square lattice whereF
and AF couplings are arranged in a zigzag pattern.11 Our
Hamiltonian is given by

H52 (
~pq!

JpqSp •Sq , ~1!

where Sp is an XY spin of unit length occupying thepth
lattice site and the sum runs over nearest-neighbor~nn! pairs
with exchange interactionJpq5J.0 for F bonds or2J for
AF bonds. The classical ground state~GS! can be determined
by the standard method, i.e., by minimizing th
Hamiltonian.2 The angle between two neighboring spinsp
and q is 6p/4 for the F bonds and63p/4 for AF bonds.
The GS energy isE052NJA2, whereN is the total number
of spins.J will be taken as a unit of energy hereafter.

We use in this work the histogram MC technique that h
been developed by Ferrenberg and Swendsen.13 We have
used the system ofN5L2 spins whereL544 to 140 with
periodic boundary conditions. We first estimate by stand
MC simulation the transition temperatureT0(L) as precise as
possible for each lattice sizeL and then calculate the energ
histogramP(E) (E is the system energy! at that temperature
For the histogram calculation, we discarded (1 – 2)3106 MC
steps per spin for equilibrating the system and calculated
energy histogram as well as other physical quantities o
the next 33106 millions MC steps. Such long runs are ne

FIG. 2. ~a! The chiral susceptibilityx @see Eq.~3!# as a function
of T for different linear lattice size atTc(`)50.4552(2). ~b! The
fourth-order energy cumulant@see Eq. ~5!# vs L calculated at
Tc(`)50.4552. See text for comments.
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essary to get results of highest quality, as it is known
histogram technique. FromP(E) at T0(L), we calculate the
following quantities at a temperatureT close toT0(L):

^C&5
~^E2&2^E&2!

NkBT2
, ~2!

^x&5
N~^K2&2^K&2!

kBT
, ~3!

^~ ln Kn!8&5
^KnE&

^Kn&
2^E&, ~4!

UE512
^E4&

3^E2&2
, ~5!

UK512
^K4&

3^K2&2
, ~6!

whereK is the chiral order parameter defined by

K5
1

K0N (
m

~21!m (
^pq&

~Sp`Sq!m , ~7!

whereK0 being the value ofK at T50 is equal to6A2/2,m
is the ordering number of plaquette,C the specific heat pe
site, x the chiral susceptibility per site,UK the fourth-order
cumulant, UE the fourth-order energy cumulant,14 ^•••&
means the thermal average, and the prime denotes the de
tive with respect tob51/(kBT).

In all quantities, no evidence of two distinct phase tran
tions is found. Only one maximum is observed for ea
quantity. We show an example in Fig. 2~a! where the chiral
susceptibilityx given by Eq.~3! is plotted as a function ofT
for L544, 52, 68, 84, 100, and 140. Using the finite-si
scaling for the maxima of̂C&, ^x&, ^(ln K)8&, etc. we ob-
tain the critical temperature for the infinite system which
Tc(`)50.4552(2). Note that the maximum ofx for the
largest lattice size@Fig. 2~a!# is very close to the critical
temperatureTc(`) given above. The fourth-order energy c
mulant UE @see. Eq.~5!# has a minimum as a function o
lattice sizeL at Tc(`); in the thermodynamic limit the value

FIG. 3. ^(ln K)8& vs ln L. The slope of the curve is equal t
1/n51.173 16. ^(ln K2)8& vs ln L ~upper line! gives the same
slope. The fitting error is less than 0.1%.
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of this minimum tends to 2/3 for the continuous transitio
this is presented in Fig. 2~b!. The exponentn can be obtained
from the inverse of the slope of̂ (ln K)8&max and
^(ln K)2)8&max versus lnL. Our method for estimating the
error is the following.~i! For each lattice size L, we estima
the transition temperatureT0(L) as precisely as possible b
standard Monte Carlo simulation. The error ofT0(L) is 6D.
Then we make histogram measurements at that temper
and calculate various physical quantities using Eqs.~2!–~6!.
~ii ! Next, we make other histogram measurements at sev
temperatures~four to six! in the temperature region within
the error ofT0(L), i.e., from T0(L)2D to T0(L)1D. For
each histogram obtained, we calculate again various phys
quantities.~iii ! We average the calculated physical quantit
and the resulting data point for sizeL is plotted in Fig. 3.
Note that the error from this averaging is smaller than
size of the data point shown in these figures.~iv! We repeat
steps~i! to ~iii ! for other lattice sizes.

The above method is known as multihistogram Mon
Carlo technique. The results are shown in Fig. 3 where
observes an excellent straight line from which one obta
n50.852(2). Thefitting error is less than 0.1%.

This value is close to the one obtained by Lee a
co-workers10 using the coupledXY Ising model, but differs

FIG. 4. Maximum of susceptibilityx as a function ofL in a
ln-ln scale. The slope yieldsg/n51.801 15 with fitting error less
than 0.1%.
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from n50.813 of Ref. 6 and fromn50.889 of Ref. 7. The
difference between our value ofn and these two values
comes certainly from our very precise histogram techniq

The critical exponentg is obtained by plotting ln̂x&max
versus lnL. We find g51.531(3) ~see Fig. 4! where the
error was estimated from the error ofn and the fitting pro-
cedure. This value ofg is also different from g
51.448(24) given by Lee and Lee. The hyperscaling re
tions dn5g12b and a522dn give the 2b/n50.2 and
a/n50.35, respectively. From these, one obtainsb
50.08(2) anda50.30(1). Note, however, that these value
are not obtained by direct calculations as forn andg. Their
validity depends on that of the hyperscaling relations us
The obtained value of 2b/n is consistent with the previou
results6,7 but differs from the value 2b/n50.31(3) obtained
by Lee and co-workers.10

III. CONCLUDING REMARKS

In summary, we have studied the phase transition of
fully frustratedXY model with zigzag couplings by exten
sive MC histogram technique. We find no evidence of tw
distinct phase transitions claimed by some authors.6,5,4 On
the contrary, all calculated quantities show clearly a sin
transition. We obtain in this work very precise values for t
chiral critical exponents. These values are in agreement w
but better than those of other recent MC simulations. Th
differ clearly from the pure Ising values~2D!. Our result for
n is consistent with that found for the coupledXY Ising
model,10 though the values of other exponents are sligh
different from those obtained by Lee and co-workers.10 In
spite of this difference that may be due to their MC proc
dure, we believe that the model studied here belongs to
coupledXY Ising model.

We think that this work brings two definite answers to t
problem: the existence of a single transition and the pre
values of the critical exponentsn andg.
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