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Critical behavior of the two-dimensional fully frustrated XY model
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We study the critical behavior of the fully frustratédy model on a square lattice by means of extensive
histogram Monte Carlo simulations. We find a single transition in contrast to the scenario of two distinct
transitions. From a finite-size scaling we determine the critical exponents associated with the Ising-like order
parameter and find () =0.45522), v=0.8542), andy=1.5313). These exponents, different from the
pure two-dimensional Ising critical exponents, are in agreement with the ones obtained for aXiixsidg
system[S0163-182@8)00834-0

[. INTRODUCTION in the case of frustrated Heisenberg XiI¥ spins on the
stacked triangular antiferromagriét.
The critical behavior of two-dimension&D) fully frus- On the other hand, other authors suggested two distinct

trated(FF) XY model~2has been the subject of many recentphase transitions. Lee and °deave investigated the FEY
studies and controversiést® The reason for this increasing model on the square lattice using a microcanonical MC tech-
interest is that, despite of more than ten years of almostique; they found two separate transitions, the KT transition
continuous investigations, the nature of the phase transitioat Tx+=0.44 and the Ising transition 8= 0.454. Also, in
of this model is still not yet understood. Apart from a fun- the same model, by using the position-space renormalization
damental interest in the theory of phase transition in statistigroup approach Jeoet al> have showed that the KT-type
cal mechanics where different approaches have been test&dnsition and the Ising-like one occur at different tempera-
with this simple model, there is also an experimental interestures. Olssohhas also found in the same model two distinct
since this system corresponds to a planar array of Josephstmnansitions. He calculated the chiral correlation function and
junctions in an external transverse magnetic field with thehen its coherence length from which he obtainedl as in
magnetic flux per plaquette given by half a flux quantuim.  the standard two-dimension&@D) Ising model, in contradic-
this model there exits a discrel®s symmetry of the Ising tion with results from previous papers cited above.
model in addition to the continuous(l) symmetry associ- Given the contradiction between different approaches and
ated to the global rotation ofY spins. The breaking of the MC results, we feel that it would be necessary to use a high-
former gives rise to an Ising-like transition while that of the precision MC technique to study again this problem and to
latter to the Kosterlitz-Thoules&T) one. There are several give definite answers to at least a few questions. The purpose
contradictory suggestions for these transitions: some authorf this paper is thus to use the so-called MC histogram
say that the Ising and KT transitions occur at different tem-techniqué® to study the phase transition of the KF model
peratures, while others conclude that they take place at theith zigzag couplings introduced by Benakli and Granato.
same temperature. The results shown below bring two definite conclusios:

On the one hand, in a generalized uniformly frustratél  they indicate a single transition ar(d) the values of the
model where the frustration is varied by changing the negaeritical exponents are=0.852(2) andy=1.5313), better
tive bond strength® it has been concluded that the two tran- than most earlier MC results, in agreement with the sugges-
sitions merge into a single transition in the fully frustratedtion of a “XY Ising universality class” by Leet al1%8?°
case. This scenario of a single transition has been supported In Sec. Il we show the model and our results. Concluding
by a number of studies that give the following values for theremarks are given in Sec. Ill.
critical exponentv: v=0.889, (Ref. 7) and 0.813(Ref. 6.
These values are close to that obtained for the single transi-
tion in a mixedXY Ising model that is 0.8%%8 This suggests
a new universality calleXY Ising class for the transition
occurring in this model. Very recently, Benakli and
Granatd! have introduced a generalized version of the
square-lattice frustratedY model where unequal ferromag-
netic (F) and antiferrmagnetiAF) couplings are arranged in
zigzag patternsee Fig. 1L They used a Ginzburg-Landau
mean-field approximation and a finite-size scaling of stan-
dard Monte CarlogMC) simulation to study the phase dia-
gram and the critical behavior and showed that the transition
is of the universality class of th€Y Ising model. We note in FIG. 1. Frustrated model with zigzag pattern of ferromagnetic
passing that the question of new universality class arises alg¢hin) and antiferromagnetitthick) bonds.
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0.66641 . ) histogram technique. Frof(E) at To(L), we calculate the
’ . ] following quantities at a temperatuiieclose toTy(L):
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FIG. 2. (a) The chiral susceptibility [see Eq(3)] as a function (K"E)
of T for different linear lattice size &f (»)=0.45542). (b) The ((InK")'")=—=—(E), 4
fourth-order energy cumularftsee Eq.(5)] vs L calculated at (K"
T.(0)=0.4552. See text for comments.
. (EY
Il. MONTE CARLO HISTOGRAM SIMULATIONS ET 3<E2>2’ ®
We consider theXY model on the square lattice whefe 4
and AF couplings are arranged in a zigzag pattér@ur Uo=1— (K% (6)
Hamiltonian is given by K 3(K2)2’
whereK is the chiral order parameter defined by
H==2 5SS, @)
(pa) 1
— m
where S;, is an XY spin of unit length occupying theth K= KoN % (1) %‘5 (S/\Sg)m: @

lattice site and the sum runs over nearest-neigliorpairs
with exchange interactiod,,=J>0 for F bonds or—J for

AF bonds. The classical ground st&&S) can be determined

by the standard method, i.e., by minimizing
Hamiltonian? The angle between two neighboring spims
andq is = m/4 for theF bonds and+3x/4 for AF bonds.

of spins.J will be taken as a unit of energy hereafter.

been developed by Ferrenberg and Swend3aie have
used the system dfi=L? spins wherelL. =44 to 140 with

whereK, being the value oK atT=0 is equal to+ J2/2,m
is the ordering number of plaguett€, the specific heat per

the site, y the chiral susceptibility per sitd), the fourth-order

cumulant, Ug the fourth-order energy cumulaht,(---)
means the thermal average, and the prime denotes the deriva-
The GS energy i&§,=—NJ\/2, whereN is the total number tive with respect tg8=1/(kgT).
In all quantities, no evidence of two distinct phase transi-
We use in this work the histogram MC technique that hadions is found. Only one maximum is observed for each
guantity. We show an example in Fig@ where the chiral
susceptibilityy given by Eq.(3) is plotted as a function of

periodic boundary conditions. We first estimate by standardor L=44, 52, 68, 84, 100, and 140. Using the finite-size
MC simulation the transition temperatufg(L) as precise as scaling for the maxima ofC), (x), ((In K)"), etc. we ob-
possible for each lattice size and then calculate the energy tain the critical temperature for the infinite system which is
histogramP(E) (E is the system energat that temperature. T.(%)=0.45542). Note that the maximum ofy for the
For the histogram calculation, we discarded (1x24y° MC largest lattice sizdFig. 2(@)] is very close to the critical
steps per spin for equilibrating the system and calculated theemperaturd .(«) given above. The fourth-order energy cu-
energy histogram as well as other physical quantities ovemulantU¢ [see. Eq.(5)] has a minimum as a function of
the next 3x 1¢° millions MC steps. Such long runs are nec- lattice sizeL atT(«); in the thermodynamic limit the value
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FIG. 4. Maximum of susceptibilityy as a function ofL in a
In-In scale. The slope yields/v=1.801 15 with fitting error less
than 0.1%.

of this minimum tends to 2/3 for the continuous transition;
this is presented in Fig.(B). The exponent can be obtained
from the inverse of the slope of(In K)')nax and
{(In K)?)"Ymax Versus InL. Our method for estimating the
error is the following(i) For each lattice size L, we estimate
the transition temperaturg,(L) as precisely as possible by
standard Monte Carlo simulation. The errorff(L) is = A.
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from v=0.813 of Ref. 6 and from=0.889 of Ref. 7. The
difference between our value aof and these two values
comes certainly from our very precise histogram technique.
The critical exponenty is obtained by plotting K} max
versus InL. We find y=1.531(3) (see Fig. 4 where the
error was estimated from the error efand the fitting pro-
cedure. This value ofy is also different from vy
=1.448(24) given by Lee and Lee. The hyperscaling rela-
tions dv=y+28 and a=2—dv give the 28/»=0.2 and
alv=0.35, respectively. From these, one obtais
=0.08(2) andx=0.3((1). Note, however, that these values
are not obtained by direct calculations as foand y. Their
validity depends on that of the hyperscaling relations used.
The obtained value of @/ v is consistent with the previous
result§”’ but differs from the value B/v=0.31(3) obtained
by Lee and co-worker¥

Ill. CONCLUDING REMARKS

In summary, we have studied the phase transition of the
fully frustrated XY model with zigzag couplings by exten-
sive MC histogram technique. We find no evidence of two
distinct phase transitions claimed by some autfdrsOn
the contrary, all calculated quantities show clearly a single
transition. We obtain in this work very precise values for the

Then we make histogram measurements at that temperatugir,| critical exponents. These values are in agreement with

and calculate various physical quantities using Egs-(6).

but better than those of other recent MC simulations. They

(if) Next, we make other histogram measurements at severglgter clearly from the pure Ising valug&€D). Our result for

temperaturegfour to siX in the temperature region within
the error of Ty(L), i.e., fromTo(L)—A to To(L)+A. For

v is consistent with that found for the coupledly Ising
model° though the values of other exponents are slightly

each histogram obtained, we calculate again various physicglttarent from those obtained by Lee and co-workirin
guantities(iii) We average the calculated physical quantitiesspite of this difference that may be due to their MC proce-

and the resulting data point for sizeis plotted in Fig. 3.

dure, we believe that the model studied here belongs to this

Note that the error from this averaging is smaller than th%oupledXY Ising model.

size of the data point shown in these figur@g) We repeat
steps(i) to (iii) for other lattice sizes.

The above method is known as multihistogram Monte

Carlo technique. The results are shown in Fig. 3 where on

observes an excellent straight line from which one obtains

v=0.8542). Thefitting error is less than 0.1%.

This value is close to the one obtained by Lee and

co-workers® using the coupleXY Ising model, but differs

We think that this work brings two definite answers to the
problem: the existence of a single transition and the precise
galues of the critical exponentisand .
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