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Structure and contact angle of liquid “He droplets on a Cs surface
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By using a density-functional approach, we have studiedTthked nonwetting behavior of liquid*He
nanodroplets on a Cs surface. The minimum energy structure of the droplets is determined and its dependence
upon size is investigated. The comparison with a simple model of droplet adsorption suggests a way to
extrapolate our result to the experimentally accessible case of macroscopic droplets. In particular, a value for
the contact angle of macroscopically thick droplets, which is an important parameter in wetting phenomena, is
predicted. Our calculated value for the contact angle is in semiquantitative agreement with recent experimental
observations[S0163-18208)02732-3

I. INTRODUCTION Theoretical estimates for th€=0 contact angle range
Ay . . ... from an early valued=95° (Ref. 2 to the more recent
Superfluid “He is an almost universal wetting agent: its ~ _ . 1> . .

oo . =30°. These estimates are based on the assumption that
liquid in contact with most surfaces spreads to form a con-

tinuous film over the surface so that vapor and substrate ar%UE 05, 0 IS temperature independent, so titgT = 0)

never in contact. Alkali metal surfaces represent a strikind:Vg:Vfr:] rbyi Cof(g):falgr'ﬁ(ogtv}"tziﬁanz G'”(EW)' F::)Vﬁ
exception to this general behavibtheoretical calculatiorfs er, there is clear experimental evidence thats a strong

. 13 . . .
oredicted and subsequent experiméritsonfirmed that*He function of temperatur®!® This may raise some questions

does not wet the surface of Cs. This is a remarkable cons@20Ut the accuracy of the estimates¢bthat are based on

quence of the fact that théHe-Cs interaction is much hlsC)isf#ernggOg}imental side, measurements of the contact
weaker than that between tuftrle atoms: the hard-core re- angle erforn?ed up to now ﬁave rovided controversial re-
pulsion arising from the very diffuse electron charge sur- gep P P

. . ; sults. The first experimental determination of the contact
rounding the alkali atom core keeps tRde atom relatively anale of*He on Cs svstem. and its temperature dependence
far from it, in a region where the rapidly decaying van der 9 y f b P '

Waals attractive interaction is very small. has been deduced from the force exerted on two parallel

The nonwetting behavior ofHe on Cs implies that the plates forming a capillary. Klier, Stefanyi, and Watea-

adsorbed film is always atomically thin at low temperaturess'urecj the reduction in pressub® due to the immersion of
and it only becomes macroscopically thick whm Ty, an array of equally spaced parallel tungsten plates coated

. . - - . 4 . y . .
Tw~2 K being the wetting temperature for thiHe-Cs with Cesium into liquid“He. Using Young's equation this

. . ) ._pressure reduction can be written in terms of the contact
systent This behavior characterizes the so-called par'ualan le asdPo 20, cos(@)/d, whered is the distance between
wetting of the solid. The low-temperature thin film disap- 9 Tiv '

pears asT—0 (“dry” nonwetting behavio as reported in the plates. This relation allows for a determinationfofThe

Refs. 7 and 8. As a consequence, at very low temperature%)grapi?/f;'gﬂ Z%-Ei (%hci); t\t]aeluCeOEfsCtbigglecoﬂﬁsnswlé:je?e?em:s
finite amounts of liquid*He on a Cs substrate coalesce to y 9 - ' y

form macroscopic droplefSA three-phase contact line thus by a new experiment by_theosame grdp. .

exists, where substrate, liquid, and vapor meet. The intersec- A Smi"if value Qfal_ 25° has later bee” _obtafmed by_
tion of a macroscopic droplet profile with the substrate istrggﬁrr:is J)e§4II'ECt optical measurement using interferometric
characterized by the contact anglewhich depends on tem- R q tl. ic droolets of fidie c
perature: it goes to zero aks approachedy, and remains ecently macroscopic V%op €ls ot super eonats
zero at all higher temperatures, where the liquid wets théurface have been observednd the contact angle directly

substrate. The contact anglés determined by balancing the Qeddeu%end dgr?trln \giu?r:énZEfﬁi?nsiigd a&;t\l/\l;gf\:l/frd ;cﬁbSere,mel
forces acting along the contact line and is found to depend o P y P X ' y

the interfacial tensiong;; between each pair of coexisting d%?:éﬁ?%;ﬁgzvé%r;rztgiscgcza;t(?:géi;is gﬁevchfgtl;]r;?'tkg"
phases through the Young-Dupre equation: - dep Y

contact line is advancing or receding. Although a common
Ogy— O explanation of contact-angle hysteresis attributes it to hetero-
cosf=——— (1) geneities of the substrate, which acts as pinning centers for
o the fluid-vapor interfaces, the experimental evidence re-
The subscriptd, v, ands identify the liquid, vapor, and ported in Ref. 9 seems to exclude this effect, leaving the
solid, respectively. As the interfacial tensions vary withstrong hysteretic behavior unexplained.
temperaturé® a phase transitiotfrom the partial to the com- We report here theoretical calculations of the 0 struc-
plete wetting regime can be induced by raising the temperaure of liquid *He droplets of different sizes on an ideal, flat
ture over the wetting temperatufg,. The observed discon- surface the binding potential of which is chosen to represent
tinuity in d cos@)/dT at T=T,, signals that the wetting the adsorption properties of a Cs substrate, where “dry”
transition is first order:*! non-wetting behavior ofHe at low temperature is expected.
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They are performed within a density functiondF) ap-  Herep(r) is the density of liquid*He andM is its atomic
proach which has been proposed a few years ago to descrilbeass. The first term is the quantum kinetic energy, the sec-
the structural and dynamical properties of liquitle atT ~ ond contains a two-body*He-*He pair potentialV (r)

=0. Due to the computational cost our calculations are lim-screened at distances shorter than a characteristic lapgth
ited to rather small sizes, i.e., we consider microscopic dropwhile the third and the fourth tern{sorrelation termgswhich

lets containing up tdN=2500 *He atoms. We supplement containp, , i.e., the average of the density over a sphere of
our computations with analytical calculations, based on gadiush,, account for the internal kinetic energy and for the
simple ansatz for the shape of the adsorbed droplets, whighcreasing contribution of the hard-core He-He repulsion
helps to relate our results for microscopic droplets to theyhen the density is increased. The last term contains the
experimental measurements of the contact angle of macrpadient of the density at different points and corresponds to
scopically thick films/droplets. A comparison with these eX-3 nonlocal correction to the kinetic energy. The free param-
perimental results is also presented, giving a semiquantitastersh, ,c,,c,, are adjusted in order to reproduce the experi-

tive agreement with measured contact angles. mental values of the density, of the energy per atom, and of
the compressibility for bulk liquid*He at zero pressure,
Il. COMPUTATIONAL METHOD while the widthl of the gaussian functioR and the param-

, . ) etersa, are fixed to reproduce the peak of the static response
We describe the properties of superfldile atT=0in_ fynction in bulk liquid. The parametery is finally fixed to
terms of the total-energy functional proposed in Ref. 15. Thissngyre an accurate pressure dependence of the response func-

functional is an extension of a previous phenomenologicalion For a detailed description of the various terms and their
one;” which has been extensively used to study static angh,merical values as well, we refer the reader to Ref. 15.
dynamical properties of inhomogeneous phases of liquid ¢ include the interaction with the substrate, we use a

“He (surfaces, droplets, films, etcThe functional of Ref. binding potentiaN(z) which accounts phenomenologically

16 is known to give a good description of tie-0 equation  for the interaction between Cs, occupying the half space
of state, of the static density-density response function of the-y  5nd one4He atom located at a distan@eabove the

bulk liquid and of the properties of the free surface of liquidg, face, which is taken to be ideally flat. We do not include
He. It has been used in a variety of CaI,CUIat'OQS' rangingny corrugation of the surface on the atomic scale to mimic

from the study of impuritie§ and electron'in bulk *He, 0 s actual electronic distribution. This is a very good approxi-

alkali atom adsorption on the surface of liquite (Ref. 19 ation for the case ofHe adsorption on a Cs surface, where

and wetting phenomena on alkali-covered substfdtds. e experimentS indeed indicate that a surprisingly smooth
Ref. 15 this functional has been supplemented by an extrg face is seen by théHe atoms.

term depending on the gradient of the liquid density and it e physisorption potentiaV(z) is taken in the form
now correctly reproduces the static structure factor and th%riginally proposed in Ref. 26, as a sum of a Hartree-Fock
bulk dispersion relations of sound excitations in liqdide. repulsion term and a van der Waals attraction:

This extended functional has been applied to the study of
density oscillations in*He cluster$? of surface excitations

in “He fims®™?® and of other related dynamical ~ Cs
phenomend’ Vs(2)=Vo(1+az)e” “*—1(B(2)(2= Z,aw))—— 3"
The static properties of unsupported, spheritidé clus- (2=2Z,qw)

ters have also been studi#tyith results in extremely good 3)

agreement with state-of-the-art quantum Monte Carlo calcu- ] N ] ]

lations. In view of this agreement, we believe that theH€reZ,qw is the position of the image plane while the Ha-

density-functional description should be accurate enough tg'@ker's constan€; determines the strength of the van der

allow for quantitative predictions in the case under studyWaals long-range attractive part. The damping function is

here. given by f,(x)=1—e X(1+x+x?/2), and the damping pa-
According to Ref. 15 the static properties of liquitle at ~ rameter isf(z) = a”z/(1+ az). Very reliable values for the
T=0 are described by the energy density functicial: parameters entering E(B) and describing the interaction of

“He with alkali substrates have been calculated from first

X 1 principles?’ We quote here the values appropriate to a Cs
EHe[p(r)]sz dr[Vp¥qr)]2+ Ef drj dr’p(r) substrate, used in our calculation¥,=0.1405 eV, a
=0.937(&, ', C;=0.5793 eVa3, 7,4,=0.362%,. The re-

Cy — sulting potentialV¢ has a minimum oD =0.601 meV atz,
Xp(r')V/(|r_r'|)+§J drp()(p,) =8.61a.
The total energy functional of liquidHe interacting with
Cs — 5, R d a Cs surface is thus:
+§J drp(r)(pr) +masJ r
der,F(r_r,)(l_ P”))Vp(r) E[p<r>]=EHe[p<r>]+Jdrp(r)vs<r>. @
Pos
pr(r’)(l— P(r'))' 2) We determine the optimal, minimum-energy shape of a
0s “He droplet adsorbed on the surface by a direct minimization
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FIG. 1. Contour plot showing the droplet density for the case
N=1500.

z (a,)

of the above functional with respect to density variations.

Given the very small dimensions of our droplets, gravita- FIG. 2. “He density profiles along a line passing through the top
tional effects are neglected in our study. No geometrical opf the droplet and perpendicular to the surface plane, for different
symmetry constraints are imposed during the minimizatiorsizes of the dropletsN=100 (doty, N=300 (squares N=600
and the droplet is allowed to find its lowest-energy structuretriangles, N=1000 (crosses N=1500 (open diamonds and N

by full relaxation. The minimum-energy principle, subject to = 2500 (filled diamonds$. The pointz=0 is the position of the Cs
the constraint of a constant number te atoms: surface plane.

will be referred to as the Cs surface plane position.
f drp(r)=N, (S) The density profiles for the various droplets with different
] ) N are shown in Fig. 2, where thtHe density along the line
leads to the Euler-Lagrangian equation: passing through their center is plotted as a function of the
52 distancez from the surface plane. Note the marked oscilla-
_ " w2 N — tions of the density around its bulk valyg (shown with a
2M VI UL NP () =pp 1), © dashed lingclose to the Cs surface, which show a tendency

of the liquid to develop “layers.” The droplet density

vzvr;elzzre the/ﬁe:‘/fgctlvde POteEt'aU o deﬂlrtl'e?. ath[p(Ir)] f decreases rapidly to zero on the solid surface side due to the
= 9E[p(r)]/6Vp andu is a Lagrange multiplier the value o presence of the steep repulsive part of the He-surface poten-

which is fixed by the normalization condition E(). tial [Eq. (3)], whereas the liquid surface is more diffuse to-

In our calculations we used a supercell geometry, Witk\/vards the liquid-vacuum side

periodic bourEjary conditions imfosed on tHiele wave Figure 3 shows, with solid and dotted lines, respectively,
function W(r)=p(r) and on the"He densityp(r) itself.  hq contour plots of the cross sections of various droplets at

Both ¥ andp_are_ expanded in plane waves, the maximumy,,4 gifferent values of the density= po/2 and p=p,/10,
number of which is chosen such as to give converged Val“er%spectively.

for the total energy of the system and for the structural pa- A cjear feature that emerges from these profiles is that the
rameters of the droplets. The self-consistent iterative solutiofy.4| structure close to the surface, where the “layered”
of the Euler-Lagrange equatidiEq. (6)] provides the ex-
tremal density profilep(r) of the droplet. The computational 60
method used for the functional minimization of the total- L
energy equatior(4) is described in Ref. 18, to which the 3
reader is referred for further details. -
We treated droplets containing different numbers of at- 40
omsN: 100, 300, 600, 1000, 1500, and 2500. In each case I
the supercell size was chosen large enough to decouple the
droplet from its repeated images. As a starting configuration 20 -
we usually assumed a spherical cluster placed close to the -
surface plane, which was then allowed to freely relax to- -
wards its minimum-energy configuration. ol v

z (a,)

IIl. NUMERICAL RESULTS x (a,)

A typical density profile obtained from the minimization
of the density functional equatiot¥) is shown in Fig. 1,
where the minimum-energyHe density distribution for a FIG. 3. Droplet cross sections at=p/10 (solid lineg and p
droplet composed dfl= 1500 atoms is shown with a contour =, /2 (dotted lines, from N=100 (innermost sectionsto N
plot. The origin of the verticat axis is chosen at the position =2500(outermost sections
of the image plane,q,, [see Eq(3)], which in the following
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structure develops, is independent on the droplet size. This Specifically, we assume that the liquid-vapor interface is
region can be identified with the “core” of the contact abrupt, i.e., the density of the droplet is taken to be equal to
line, 22 where the deviations from the average density of arthe bulk density of the liquighy, whereag =0 identifies the
adsorbed film/droplet are usually confined. vapor side. We consider a droplet of a purely classical fluid,
We note in passing that the linear dimension of the corewith surface tension and bulk density values appropriate to
region in Fig. 3 is of the same order of magnitude of the core*He (0=0.274 K A"? andp,=0.0218 A3).
thickness ¢, as defined in Ref. 28{.~a./6, where a, If the droplet is enclosed by a circular “base” of radius
~(Cgplo)*? and ¢ is the contact angle. For théHe-Cs Ry, atzo on the solid side, and by the surfagéR) on the
system a.~15a,. By taking #~30—40°, one finds{. vapor side, then its energy may be written as

"‘30&0
In order to define unambiguously the contact angle 5 2
formed by the droplet with the Cs substrate, one must first Eq=o| | dRV1+(VE(R) ™+ 7RGax
define the surface of the droplet. For all droplets we take a ®
circular “base,” of radiusR,(N), located a distance, f fg R
above the solid as the surface on the solid side. On the vapor Tpo | dR 2 dzVy(2). ©)

side, we use the Gibbs surface, i.e., the surface that encloses
the correct number of atoms if the density is uniform and itsThe actual shapé&(R) will be such as to satisfy the normal-
value equal to the bulk liquid density. ization condition:

Mathematically the Gibbs surface is defined by

&(R)
pof de dz=N, (10)
2

R—ij'wdz R,2)+z (7)
1 )—p00 p(R,2)+ 2.

minimizing, at the same time, the droplet enekgy.
Here R is the two-dimensional vector along the surface
plane gndzo corresponds to _the posit.ion vyhere the §gbstrate A. The ellipsoidal cap model
potential V4(z) attains its minimum, i.e., is the position of . .
the first “layer” of He atoms in the droplet. The closed Before trying to solve the Euler-Lagrange equation ob-

surface enclosing the droplet is obtained by intersectin ained by a direct minimizatio_n of Eq9), we start With an
Z(R) with the “base” of the droplet. ducated guess for the analytic form of the equilibrium shape

Even in the presence of quite large deviations from theOf the droplet, depending on some adjustable parameters, and

bulk density that occur close to the substrate pléee Fig. determine these parameters by the variational princifig

2), this definition of the droplet surface is meaningful and = 0: Despite the restriction imposed by the choice of the

accurate. This can be checked by defining a “surface” enanalytic form of the droplet profile, this approach has the

ergy contributionE, which can be extracted from the re- advantage that the relevant structural properties of the drop-

sults of our calculations according to the definition let can be gnalytically determined for ahy
As the simplesansatz we assume that an adsorbed drop-

let exhibits cylindrical symmetry around tlzeaxis, and that
Es=E(N)— uoN— f drp(r)Vg(r). (8) its shape is that of an ellipsoid of semiakislongz andb/e
parallel to the surface, centered at the positj@0,—(h
Here E(N) is the total-energy functiondEq. (4)] calcu- —P)] and cut by a plane located a distargabove the

lated in correspondence of the extremal dengity) for a  substrate. L
givenN, while o= —7.16 K is the energy pefHe atom in We determine variationally the parametdéxsh, and the

the bulk liquid, calculated with the same supercell and en€Ccentricitye by minimizing the total energy of such a drop-
ergy cutoff used for the droplet calculations. !et in th(—; presence _of the substrate poteriiglz). Despite
By assumingE<= oA, wherea is the liquid-vapor surface S simplicity, this ellipsoidal cap mod¢ECP shares a num-

tension and is the total area of the Gibbs surface as defineober of features with the more realistic results obtained from
above, we find values of ranging from 0.26 A K to 0.27 our density-functional calculations, and as shown in the fol-

A K, depending on the size of the droplet. Within the accu-/0Wing. it proves to be helpful in clarifying those results.
racy of our calculations, these values agree with the experi- To simplify this model still further, the substrate potential

mental valuer=0.274 A K. Although small variations af is taken to bé"
are expected for differently curved surfages., for droplets

3
with different sizey we do not anticipate any quantitative VE(2) = 4C3 B (o 11
conclusion about this effect, given the finite accuracy of our s 2m%° #

calculations.
where, as usualC; is the Hamaker’s constant amdl gives
the well depth.
While keeping the essential physical features of the po-
Starting from a simplified model of droplet adsorption on tential (3) actually used in our DF calculations, i.e., the same
an ideal flat surface, in this section we derive some resultiong-range tail, well depth, and minimum position, this po-
that will be helpful in the following to define a contact angle tential has a simpler analytical form and thus it is more man-
for our calculated droplet profiles. ageable when included in model calculations. For example,

IV. CLASSICAL MODEL
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the positionz, of the base of the ellipsoidal cap, taken as the 100
position of the minimum oT\/'S'J(z), can be written explicitly -
aszy,=(2C5/3D)¥°~8.61a,. 80 |-

/
From Eq.(9) one sees that the total energy of this cap is r /
the sum of the energyA(b,h,e) required to form the total ool %9 ;
surface A(b,h,e) of the cap, and of a volume term 7
pofdV(b,h,e)VL’(z), which takes into account the interac- @ | ///%
tion with the Cs surface. By imposing the requirement of a 40 -
fixed number of particleiN=pyfdV(b,h,e), the total en- i
ergy (9) becomes a function of only two parameters, which
we chose to bér and e. We then perform analytically the
minimization of the total energy with respect to these two i
parameters and find the equilibrium profile for a giveén 0~ '0'1' — '0'2' — '0'3' — '0'4' s
We postpone the discussion of the ECM results to the ’ ’ c ’ ' ’
following section, where they will be compared with those of
DF calculations.
At this point we only remark that the eccentricéyfor the
minimum-energy ellipsoidal cap is found to reach a maxi- FIG. 4. Contact angl® of a spherical cap shown as a function
mum value of about 2 wheN~10° atoms, and then it de- of the coupling constar€ (defined in the test The cross identify
creases monotonically =1 asN—x, i.e., a spherical cap the contact angle fo€E=Cye_cs.
is recovered as the limiting shape of an adsorbsatro-
scopicdroplet in our model. It is thus interesting to discuss at
some length thé— o limit of the ECM, that is, the case of (11) for Vg into Eq. (14) and integrating, one immediately
a spherical cap. finds the conditionC=11/48 obtained for the case of a
Sincee=1 in this case, only one paramet@vhich we  spherical cap.
choose to beh/zy) must be variationally determined, the  Thus even in the presence of the constraint of fixed geo-
other being fixed by the normalization conditi¢h0). metrical shape a unique, although approximate, criterion for
Minimization of the total energy with respect to this honwetting can be obtained both for macroscopic drops and
variational parameter leads to the following equation tfor planar films, i.e., the geometrical constraints that we impose
=h/z,: in our ellipsoidal cap model are not so stringent.
WhenC=C, we can define a geometric contact an@le
8 83 ; 43 6 1 54432 of the macroscopic spherical droplet as the angle between the
4CJt°— 4_2t + 4_2t + 4_2(t HOH D) tangent to the drop profile and the substrate at the point of
contact. The contact angle can be easily found from the equi-

1 S .
B 1_2:0 (12) librium value ofh, and it turns out to be

20 -

11
P

11-24C
where the adimensional parameter cosO=—7~. (15

o 12 1/3
= ;( 27C3D2) coupling constanC. If we insert the values appropriate for
_ , _ _ the “He-Cs syster{ into Eq. (13), we find C=0.2627,
characterizes the adsorption properties of the spherical cgpnich determines a contact angdle=42° for a macroscopi-
onto the surface. As long a€ remains smaller than cally thick droplet, as shown in Fig. 4.

Co=11/48, then the height of the droplbtsatisfying Eq. At this point we note from Fig. 4 that the value 6f
(12) remains f|n|_te(|.e., _smceN—_m, the_dr(_)plet covers the appropriate to the’He-Cs system lies in a region where
whole surface with a microscopically thin film separating theg,4| changes in the value & result in substantial varia-

substrate from the vacuymwhereas axC—C, the film  4i5nq of@. One must thus be aware that even a small inac-
thickness diverges. We interpret this as the onset of th%uracy in the determination of the potential paramet@ss

nonwetting-to-wetting regime for our simple model. We note 4y’ il affect the value ofC and thus produce significant
that the conditiorC=C, for the nonwetting-to-wetting tran-  changes in the limiting value for the contact angle of the
sition is the same as that obtained in Ref. 29 by comparingsherical cap model.

the gain in potential energy on producing a thick film delim-
ited by two planar, infinitely extended surfaces with the cost
in energy(per unit areadue to the surface tension:

(13 The contact angl® is shown in Fig. 4 as a function of the

B. Exact minimization

We now go back to Eq(9) and derive some general,
* exact results for the shagg€R) of the adsorbed droplet.
Zg'vz_pOLOdZVS(Z)' (14 It is immediately apparent that mimization &, with
respect tof leads to a Euler-Lagrange equation that may be
This approximate criterion has been found to be consistenjritten as
with T=0 density-functional calculations for a planar, infi-
nitely extended film on a surfadeBy inserting the form Eq. pV(&(R))— oH(&(R))=const, (16
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whereH(R)=V-V£(R)/V1+[VE(R)?] is the mean curva- 25
ture of ¢ at R. The constant, which we will write as\p in

the following, is determined by the condition that the number

of atoms in the droplet, i.e., its volume, is fixed.

This remarkable relation for the shape of simple fluids 2
near rigid solids was first derived by Betfyfrom a statisti-
cal mechanics analysis using a simple approximation for the
pair-correlation function of the liquid and thus its validity
goes beyond that of E@9). Its limits may be found in Ber-
ry’s discussion.

For simplicity, let us consider the one-dimensional analog
of Eqg. (16) so that nowé(x) indicates the height of the
droplet profile measured from the position of the flat surface
plane withx a Cartesian coordinate along that plane, while 110 100 1000 10¢ 105 10® 107 108 10° 101 101 1012
we assume translational symmetry alongyhdirection. The N
curvature can thus be written a$(x)=—&"/(1+¢'%)%2
and Eq.(16) becomes FIG. 5. Eccentricity of the ellipsoidal cap as a function of the

number of atoms in the droplet. The filled squares show the results
ot of our DF calculations, the solid line shows the ECM results.

—pVs(§) +Ap=0, 7

1.5

(1+ 572)3/2
V. DISCUSSION

which admits a first integral in the form We compare in this section our density-functional results

described in Sec. Il with the predictions of the classical
model described in the previous section.

As a starting point we checked whether the actual profile
{(R) of the droplets obtained through Eg) from our DF
whereK is a constant an@(£)=—[;dz'V(z'). calculations, could indeed be approximated by an ellipsoidal

By considering the balance of the horizontal forces actingorofile.
on a portion of the fluid near the contact line, it can be We thus fitted our calculated Gibbs surfaces with an el-
showrf® that K=o—S, where S=o0,,— 05— o is the so- lipsoidal cap, determining for each droplet three parameters,
called spreading coefficient. At this point the contact anglehe heighth, the semiaxid, and the eccentricity parameter
0. can be introduced through Young's equationK e, which give the best fit to our calculated surfaces. We
=0 c0s6, and Eq.(18) becomes verified that the root mean deviation of the calculated sur-

faces from the fit is always smaller than 0.1%, at least in the
€0S 0,=c0S (£(X))+ pP(EX) o—Npé(X) o, (19 region not too close to the Cs surface. Deviations from the
analytical fit actually occur at distances from the surface
where8(£(x)) is the angle formed by the tangentgpat the  comparable with the core linear dimensimndefined in Sec.
positionx, with the x axis. If we measurd, the maximum .
height of the droplet above the surface plane, at the position The calculated values of the eccentricityesulting from
where §'=0, and the corresponding radius of curvature atour fitting procedure are shown in Fig. 5 with squares, while
the apex of the dropleR.=|&"| %, then we can use E417)  in Fig. 6 we report the maximum heightof our DF drop-
to evaluatex and substitute its value into E¢L9) to get lets. In both figures the solid lines show the corresponding
ECM predictions. We notice that, although both figures in-
cos =1+ pP(h)/o—pVs(h)h/o—h/R.. (200  dicate that DF droplets are more elongated than predicted by
the ECM model, the values of the aspect rafwhich is

This relation gives the contact anglg in terms of the defined as the ratit/2R,,,,) are very similar in the two
substrate potential and of the two structural parameters of thealculations, as shown in Fig. 7, especially for the lanyer
dropleth andR;. For macroscopiaropletsh— and both  we calculated.

ﬁ,z)m—xp&pp@% (18

P(h) andV4(h) are negligibly small. In this limit one has This may suggest to extrapolate our DF results to I&tge
where the aspect ratio of the ECM model for macroscopic
h=R.(1—co0s6,). (21) spherical droplets takes the value 0($8iown by the dashed
line in Fig. 7).
In the case of macroscopic droplels may be identified We may check on the validity of the classical model de-

with the geometrical contact angle at the three-phase contastribed in Sec. IV by inserting the Gibbs profif¢R) ob-
line: the above equation may be read as simply relating théained from our DF calculation through E@) into the right-
radiusR. and the heighh of a sphericalcap on the surface. hand side of Eq(19). As shown in Fig. 8, where the right-
Once again we recover the result that, as long as gravitdhand side, call itF(¢), is plotted as a function of for
tional effects may be neglected, the limiting shape of a macvariousN, one sees that indeed, &sncreasesk becomes a
roscopic droplet resting on an attractive substrate is sphericabnstant, as required by E(.9) for the profiles minimizing
in shape. the droplet energ¥, .
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FIG. 6. Droplet height as a function of size: filled squares are ) ) ) .
the results of density-functional calculations, the solid line shows FIG. 8. Right-hand side of Eq19) as a function of the vertical
the ECM results. position along the droplet DF profile, for the different values\of

from N= 100 (uppermost curveto N= 2500 (lowest curve.

We interpret this finding as a check on the adequacy of .., ot macroscopically thick droplets the contact angle pre-
the classical model to describe the results of the DF calculagjcteq by the ECM tends toward the val@=42 ° for a

tion, and at the same time as the definition of the “core” ghparicq cap, as discussed in Sec. V. This limiting value is
region as the region whefeis rapidly increasing. Physically  ¢hown in Fig. 9 with a dashed line.

it corresponds to the portion of the droplet close to the sur-  1thea pehavior of the results shown in Fig. 9 for the values
face, where its density exhibits the Iaye.red structaee Fig. 0(N) obtained from DF calculations and from the ECM
2) and therefore is far from being uniform. As the math- o6 je. an almost constant difference between the two as
emat'cal definition of th's region, we will caII- core” the N increases, suggests an extrapolation for the macroscopic
portion of the droplet witlzo<z=< (o, with ¢, defined by the  ,tact angle, even if we cannot predict the DF valued of
condition|dF(£)/d¢],,=1. for very large droplets.

At this point we can finally define the contact angle as the  Under the reasonable assumption that the same constant
geometrical contact angle measured in the region just outsidgifference as in Fig. 9 would be obtained for larger values of
the core region, i.e., fof={,. The calculated contact angle N, we would predict in this way a value .~ 36 °, which
at {, are shown in Fig. Qwith squarepas a function oN. s in reasonable agreement with the value measured in Ref.
The ECM results are also reported for comparison. It appears, and in between the two values measured in Refs. 14 and 6.
that the contact angle defined in this way is almost indepen- Instead of defining the contact angle as done above, i.e.,
dent on the droplet size. Actually this is apparently true onlyas the geometrical contact angleZat we could choose the
in the narrow region oN values shown in the figure, which alternative approximation of inserting our DF profil&R)
encompasses our calculated droplet sizes. In the IMnit in place of&(x) into Eq.(19) and take as the contact angle
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FIG. 7. Aspect ratio as a function of size: filled squares are the FIG. 9. Contact angle from DF calculatioffiled squaresand
results of density-functional calculations, the solid line shows theECM (open squargs The DF results are obtained as explained in
ECM results. The dash-dot line shows tRe-« limit, where the  the text. The crosses show the valuesfgfas obtained from Eq.
shape of a spherical cap is recovered. (19 in the region wherd,, is constant. The dash-dot line shows the

N—oo limit, where a spherical cap is the preferred shape.
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the value ofé, in the outer region, where it becomes con- droplets having the shape of an ellipsoidal cap. This “ellip-
stant. The results obtained in this way, which are shown wittsoidal cap model,” which may be extended to drops of any
crosses in Fig. 9, do not differ very much from the geometri-size, allows us to extrapolate the contact angle from our mi-
cal contact angles af, (filled squares in Fig. 9 so that by  croscopic DF calculation to the value appropriate to macro-
means of the same extrapolation procedure, we would comg&copic dropsf.,=36°. This value is close to the experimen-
to almost the same value for the macroscopic contact angléal determinationd~32° of Ref. 9, and large(smalle) by

Of course, by using Eq19), we are assuming that the fact ~10° than the experimental values of Ref. (Ref. 6.

that the contact line is not straight, i.e., that the droplet is not We conclude by underlining two possible sources of in-
one dimensional, is not important. Corrections due to curvaaccuracy in our results. The first is that, as explained in Sec.
ture of the contact line and to the curvature dependence d¥, the value for the contact angle of the spherical cap,
the surface tension would correspond to additional terms invhich we use to extrapolate our DF results to the limit of
Eqg. (9) and become negligible d¥ increases. We checked macroscopic droplets, is rather sensitive to any inaccuracy in
that their effect on the contact angle is negligible as soon athe determination of the adimensional paramefes(o/

N= 1500 by making a complete DF calculation for a pancakep)(12/27C;D?)® ie., in the determination of the
geometry® of the adsorbed liquid, i.e., by assuming transla-*He-substrate potential parameters. Moreover, our calcula-

tional symmetry along thg axis. tions are appropriate to zero temperature, while experiments
are of course done at finite, albeit smdil, A reduction of
VI. SUMMARY the contact angle with temperature, with respect talits0

) ) ) value, should thus be taken into account. Further work is in
In summary, by using a den&ty—fgnqtl?nal approach, Wesrogress aimed at understanding the nature of surface exci-
have calculated th&=0 structure of liquid*He droplets on  tations at the solid-liquid interface and their role in the tem-

a Cs surface, where “dry” nonwetting behavior 6He is _ perature dependence of the solid-liquid surface tension.
expected. We described the microscopic structure of the lig-

uid droplets in the vicinity of the core of the contact line.
With the help of a classical model we have defined a “core
region” and a contact angle for microscopic droplets. We We acknowledge useful discussions with G. P. Mistura
have also discussed a minimum-energy configuration foand E. Rolley.
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