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Structure and contact angle of liquid 4He droplets on a Cs surface

Francesco Ancilotto, Anna Maria Sartori, and Flavio Toigo
INFM-Dipartimento di Fisica ‘‘G. Galilei’’- Universita’ di Padova, via Marzolo 8, I-35131 Padova, Italy

~Received 8 April 1998!

By using a density-functional approach, we have studied theT50 nonwetting behavior of liquid4He
nanodroplets on a Cs surface. The minimum energy structure of the droplets is determined and its dependence
upon size is investigated. The comparison with a simple model of droplet adsorption suggests a way to
extrapolate our result to the experimentally accessible case of macroscopic droplets. In particular, a value for
the contact angle of macroscopically thick droplets, which is an important parameter in wetting phenomena, is
predicted. Our calculated value for the contact angle is in semiquantitative agreement with recent experimental
observations.@S0163-1829~98!02732-5#
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I. INTRODUCTION

Superfluid 4He is an almost universal wetting agent:
liquid in contact with most surfaces spreads to form a c
tinuous film over the surface so that vapor and substrate
never in contact. Alkali metal surfaces represent a strik
exception to this general behavior:1 theoretical calculations2,3

predicted and subsequent experiments4–6 confirmed that4He
does not wet the surface of Cs. This is a remarkable co
quence of the fact that the4He-Cs interaction is much
weaker than that between two4He atoms: the hard-core re
pulsion arising from the very diffuse electron charge s
rounding the alkali atom core keeps the4He atom relatively
far from it, in a region where the rapidly decaying van d
Waals attractive interaction is very small.

The nonwetting behavior of4He on Cs implies that the
adsorbed film is always atomically thin at low temperatu
and it only becomes macroscopically thick whenT.TW ,
TW;2 K being the wetting temperature for the4He-Cs
system.5 This behavior characterizes the so-called par
wetting of the solid. The low-temperature thin film disa
pears asT→0 ~‘‘dry’’ nonwetting behavior! as reported in
Refs. 7 and 8. As a consequence, at very low temperatu
finite amounts of liquid4He on a Cs substrate coalesce
form macroscopic droplets.9 A three-phase contact line thu
exists, where substrate, liquid, and vapor meet. The inter
tion of a macroscopic droplet profile with the substrate
characterized by the contact angleu, which depends on tem
perature: it goes to zero asT approachesTW and remains
zero at all higher temperatures, where the liquid wets
substrate. The contact angleu is determined by balancing th
forces acting along the contact line and is found to depend
the interfacial tensionss i j between each pair of coexistin
phases through the Young-Dupre equation:

cosu5
ssv2ssl

s lv
. ~1!

The subscriptsl , v, ands identify the liquid, vapor, and
solid, respectively. As the interfacial tensions vary w
temperature,10 a phase transition3 from the partial to the com-
plete wetting regime can be induced by raising the temp
ture over the wetting temperatureTW . The observed discon
tinuity in d cos(u)/dT at T5TW signals that the wetting
transition is first order.5,11
PRB 580163-1829/98/58~8!/5085~8!/$15.00
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Theoretical estimates for theT50 contact angle range
from an early valueu595° ~Ref. 2! to the more recentu
530°.12 These estimates are based on the assumption
Ds[ssv2ssl is temperature independent, so thatu(T50)
is given by cosu(0)5Ds/slv(0) with Ds5s lv(TW). How-
ever, there is clear experimental evidence thatssl is a strong
function of temperature.8,13 This may raise some question
about the accuracy of the estimates ofu that are based on
this assumption.

On the experimental side, measurements of the con
angle performed up to now have provided controversial
sults. The first experimental determination of the cont
angle of 4He on Cs system, and its temperature depende
has been deduced from the force exerted on two para
plates forming a capillary. Klier, Stefanyi, and Wyatt6 mea-
sured the reduction in pressuredP due to the immersion of
an array of equally spaced parallel tungsten plates co
with Cesium into liquid 4He. Using Young’s equation this
pressure reduction can be written in terms of the con
angle asdP}2s lvcos(u)/d, whered is the distance betwee
the plates. This relation allows for a determination ofu. The
extrapolation toT50 of the contact angle measured in th
way givesu548°.6 This value has been confirmed recen
by a new experiment by the same group.13

A smaller value ofu525° has later been obtained b
means of direct optical measurement using interferome
techniques.14

Recently macroscopic droplets of superfluid4He on a Cs
surface have been observed,9 and the contact angle directl
deduced from visual inspection and estimated to beu;32°,
independently on the droplet size. However, an extrem
hysteretic behavior of the contact angle has been found,
different values ofu are observed, depending on whether t
contact line is advancing or receding. Although a comm
explanation of contact-angle hysteresis attributes it to het
geneities of the substrate, which acts as pinning centers
the fluid-vapor interfaces, the experimental evidence
ported in Ref. 9 seems to exclude this effect, leaving
strong hysteretic behavior unexplained.

We report here theoretical calculations of theT50 struc-
ture of liquid 4He droplets of different sizes on an ideal, fl
surface the binding potential of which is chosen to repres
the adsorption properties of a Cs substrate, where ‘‘dr
non-wetting behavior of4He at low temperature is expecte
5085 © 1998 The American Physical Society
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5086 PRB 58ANCILOTTO, SARTORI, AND TOIGO
They are performed within a density functional~DF! ap-
proach which has been proposed a few years ago to des
the structural and dynamical properties of liquid4He at T
50. Due to the computational cost our calculations are l
ited to rather small sizes, i.e., we consider microscopic dr
lets containing up toN52500 4He atoms. We supplemen
our computations with analytical calculations, based on
simple ansatz for the shape of the adsorbed droplets, w
helps to relate our results for microscopic droplets to
experimental measurements of the contact angle of ma
scopically thick films/droplets. A comparison with these e
perimental results is also presented, giving a semiquan
tive agreement with measured contact angles.

II. COMPUTATIONAL METHOD

We describe the properties of superfluid4He at T50 in
terms of the total-energy functional proposed in Ref. 15. T
functional is an extension of a previous phenomenolog
one,16 which has been extensively used to study static
dynamical properties of inhomogeneous phases of liq
4He ~surfaces, droplets, films, etc.!. The functional of Ref.
16 is known to give a good description of theT50 equation
of state, of the static density-density response function of
bulk liquid and of the properties of the free surface of liqu
4He. It has been used in a variety of calculations, rang
from the study of impurities17 and electrons18 in bulk 4He, to
alkali atom adsorption on the surface of liquid4He ~Ref. 19!
and wetting phenomena on alkali-covered substrates.21 In
Ref. 15 this functional has been supplemented by an e
term depending on the gradient of the liquid density and
now correctly reproduces the static structure factor and
bulk dispersion relations of sound excitations in liquid4He.
This extended functional has been applied to the study
density oscillations in4He clusters,22 of surface excitations
in 4He films15,23 and of other related dynamica
phenomena.20

The static properties of unsupported, spherical4He clus-
ters have also been studied,20 with results in extremely good
agreement with state-of-the-art quantum Monte Carlo ca
lations. In view of this agreement, we believe that t
density-functional description should be accurate enoug
allow for quantitative predictions in the case under stu
here.

According to Ref. 15 the static properties of liquid4He at
T50 are described by the energy density functional:24

EHe@r~r !#5
\2

2ME dr @¹r1/2~r !#21
1

2E drE dr 8r~r !

3r~r 8!Vl ~ ur2r 8u!1
c2

2 E drr~r !~ r̄ r !
2

1
c3

3 E drr~r !~ r̄ r !
31

\2

4M
asE dr

3E dr 8F~r2r 8!S 12
r~r !

r0s
D¹r~r !

3¹r~r 8!S 12
r~r 8!

r0s
D . ~2!
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Here r(r ) is the density of liquid4He andM is its atomic
mass. The first term is the quantum kinetic energy, the s
ond contains a two-body4He-4He pair potentialVl (r )
screened at distances shorter than a characteristic lengthhl ,
while the third and the fourth terms~correlation terms! which
containr̄ r , i.e., the average of the density over a sphere
radiushl , account for the internal kinetic energy and for th
increasing contribution of the hard-core He-He repuls
when the density is increased. The last term contains
gradient of the density at different points and correspond
a nonlocal correction to the kinetic energy. The free para
etershl ,c2 ,c3, are adjusted in order to reproduce the expe
mental values of the density, of the energy per atom, and
the compressibility for bulk liquid4He at zero pressure
while the widthl of the gaussian functionF and the param-
etersas are fixed to reproduce the peak of the static respo
function in bulk liquid. The parameterr0s is finally fixed to
ensure an accurate pressure dependence of the response
tion. For a detailed description of the various terms and th
numerical values as well, we refer the reader to Ref. 15.

To include the interaction with the substrate, we use
binding potentialVs(z) which accounts phenomenological
for the interaction between Cs, occupying the half spacz
<0, and one4He atom located at a distancez above the
surface, which is taken to be ideally flat. We do not inclu
any corrugation of the surface on the atomic scale to mim
its actual electronic distribution. This is a very good appro
mation for the case of4He adsorption on a Cs surface, whe
the experiments25 indeed indicate that a surprisingly smoo
surface is seen by the4He atoms.

The physisorption potentialVs(z) is taken in the form
originally proposed in Ref. 26, as a sum of a Hartree-Fo
repulsion term and a van der Waals attraction:

Vs~z!5V0~11az!e2az2 f 2„b~z!~z2zvdw!…
C3

~z2zvdw!3
.

~3!

Here zvdw is the position of the image plane while the H
maker’s constantC3 determines the strength of the van d
Waals long-range attractive part. The damping function
given by f 2(x)512e2x(11x1x2/2), and the damping pa
rameter isb(z)5a2z/(11az). Very reliable values for the
parameters entering Eq.~3! and describing the interaction o
4He with alkali substrates have been calculated from fi
principles.27 We quote here the values appropriate to a
substrate, used in our calculations:V050.1405 eV, a
50.9370a0

21, C350.5793 eVa0
3, zvdw50.3623a0. The re-

sulting potentialVs has a minimum ofD50.601 meV atz0
58.61a0.

The total energy functional of liquid4He interacting with
a Cs surface is thus:

E@r~r !#5EHe@r~r !#1E drr~r !Vs~r !. ~4!

We determine the optimal, minimum-energy shape o
4He droplet adsorbed on the surface by a direct minimizat
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PRB 58 5087STRUCTURE AND CONTACT ANGLE OF LIQUID4He . . .
of the above functional with respect to density variatio
Given the very small dimensions of our droplets, gravi
tional effects are neglected in our study. No geometrica
symmetry constraints are imposed during the minimizat
and the droplet is allowed to find its lowest-energy struct
by full relaxation. The minimum-energy principle, subject
the constraint of a constant number of4He atoms:

E drr~r !5N, ~5!

leads to the Euler-Lagrangian equation:

S 2
\2

2M
¹21U@r~r !# DAr~r !5mAr~r !, ~6!

where the effective potentialU is defined asU@r(r )#
[dE@r(r )#/dAr andm is a Lagrange multiplier the value o
which is fixed by the normalization condition Eq.~5!.

In our calculations we used a supercell geometry, w
periodic boundary conditions imposed on the4He wave
function C(r )[Ar(r ) and on the4He densityr(r ) itself.
Both C and r are expanded in plane waves, the maximu
number of which is chosen such as to give converged va
for the total energy of the system and for the structural
rameters of the droplets. The self-consistent iterative solu
of the Euler-Lagrange equation@Eq. ~6!# provides the ex-
tremal density profiler(r ) of the droplet. The computationa
method used for the functional minimization of the tota
energy equation~4! is described in Ref. 18, to which th
reader is referred for further details.

We treated droplets containing different numbers of
oms N: 100, 300, 600, 1000, 1500, and 2500. In each c
the supercell size was chosen large enough to decouple
droplet from its repeated images. As a starting configura
we usually assumed a spherical cluster placed close to
surface plane, which was then allowed to freely relax
wards its minimum-energy configuration.

III. NUMERICAL RESULTS

A typical density profile obtained from the minimizatio
of the density functional equation~4! is shown in Fig. 1,
where the minimum-energy4He density distribution for a
droplet composed ofN51500 atoms is shown with a contou
plot. The origin of the verticalz axis is chosen at the positio
of the image planezvdw @see Eq.~3!#, which in the following

FIG. 1. Contour plot showing the droplet density for the ca
N51500.
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will be referred to as the Cs surface plane position.
The density profiles for the various droplets with differe

N are shown in Fig. 2, where the4He density along the line
passing through their center is plotted as a function of
distancez from the surface plane. Note the marked oscil
tions of the density around its bulk valuer0 ~shown with a
dashed line! close to the Cs surface, which show a tenden
of the liquid to develop ‘‘layers.’’ The droplet densityr
decreases rapidly to zero on the solid surface side due to
presence of the steep repulsive part of the He-surface po
tial @Eq. ~3!#, whereas the liquid surface is more diffuse t
wards the liquid-vacuum side.

Figure 3 shows, with solid and dotted lines, respective
the contour plots of the cross sections of various droplet
two different values of the density,r5r0/2 andr5r0/10,
respectively.

A clear feature that emerges from these profiles is that
local structure close to the surface, where the ‘‘layere

e

FIG. 2. 4He density profiles along a line passing through the
of the droplet and perpendicular to the surface plane, for differ
sizes of the droplets:N5100 ~dots!, N5300 ~squares!, N5600
~triangles!, N51000 ~crosses!, N51500 ~open diamonds!, and N
52500 ~filled diamonds!. The pointz50 is the position of the Cs
surface plane.

FIG. 3. Droplet cross sections atr5r0/10 ~solid lines! and r
5r0/2 ~dotted lines!, from N5100 ~innermost sections! to N
52500 ~outermost sections!.
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5088 PRB 58ANCILOTTO, SARTORI, AND TOIGO
structure develops, is independent on the droplet size.
region can be identified with the ‘‘core’’ of the conta
line,28 where the deviations from the average density of
adsorbed film/droplet are usually confined.

We note in passing that the linear dimension of the c
region in Fig. 3 is of the same order of magnitude of the c
thicknesszc as defined in Ref. 28,zc;ac /u, where ac
;(C3r/s)1/2 and u is the contact angle. For the4He-Cs
system ac;15a0. By taking u;30240°, one findszc
;30a0

In order to define unambiguously the contact an
formed by the droplet with the Cs substrate, one must fi
define the surface of the droplet. For all droplets we tak
circular ‘‘base,’’ of radiusRmax(N), located a distancez0
above the solid as the surface on the solid side. On the v
side, we use the Gibbs surface, i.e., the surface that enc
the correct number of atoms if the density is uniform and
value equal to the bulk liquid density.

Mathematically the Gibbs surface is defined by

z~R!5
1

r0
E

0

`

dzr~R,z!1z0 . ~7!

Here R is the two-dimensional vector along the surfa
plane andz0 corresponds to the position where the substr
potentialVs(z) attains its minimum, i.e., is the position o
the first ‘‘layer’’ of He atoms in the droplet. The close
surface enclosing the droplet is obtained by intersec
z(R) with the ‘‘base’’ of the droplet.

Even in the presence of quite large deviations from
bulk density that occur close to the substrate plane~see Fig.
2!, this definition of the droplet surface is meaningful a
accurate. This can be checked by defining a ‘‘surface’’
ergy contributionEs , which can be extracted from the re
sults of our calculations according to the definition

Es5E~N!2m0N2E drr~r !Vs~r !. ~8!

HereE(N) is the total-energy functional@Eq. ~4!# calcu-
lated in correspondence of the extremal densityr(r ) for a
givenN, while m0527.16 K is the energy per4He atom in
the bulk liquid, calculated with the same supercell and
ergy cutoff used for the droplet calculations.

By assumingEs5sA, wheres is the liquid-vapor surface
tension andA is the total area of the Gibbs surface as defin
above, we find values ofs ranging from 0.26 Å K to 0.27
Å K, depending on the size of the droplet. Within the acc
racy of our calculations, these values agree with the exp
mental values50.274 Å K. Although small variations ofs
are expected for differently curved surfaces~i.e., for droplets
with different sizes!, we do not anticipate any quantitativ
conclusion about this effect, given the finite accuracy of o
calculations.

IV. CLASSICAL MODEL

Starting from a simplified model of droplet adsorption
an ideal flat surface, in this section we derive some res
that will be helpful in the following to define a contact ang
for our calculated droplet profiles.
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Specifically, we assume that the liquid-vapor interface
abrupt, i.e., the density of the droplet is taken to be equa
the bulk density of the liquidr0, whereasr50 identifies the
vapor side. We consider a droplet of a purely classical flu
with surface tension and bulk density values appropriate
4He (s50.274 K Å22 andr050.0218 Å23).

If the droplet is enclosed by a circular ‘‘base’’ of radiu
Rmax at z0 on the solid side, and by the surfacej(R) on the
vapor side, then its energy may be written as

Ed5sS E dRA11~¹j~R!!21pRmax
2 D

1r0E dRE
z0

j~R!

dzVs~z!. ~9!

The actual shapej(R) will be such as to satisfy the norma
ization condition:

r0E dRE
z0

j~R!

dz5N, ~10!

minimizing, at the same time, the droplet energyEd .

A. The ellipsoidal cap model

Before trying to solve the Euler-Lagrange equation o
tained by a direct minimization of Eq.~9!, we start with an
educated guess for the analytic form of the equilibrium sh
of the droplet, depending on some adjustable parameters
determine these parameters by the variational principledEd
50. Despite the restriction imposed by the choice of t
analytic form of the droplet profile, this approach has t
advantage that the relevant structural properties of the d
let can be analytically determined for anyN.

As the simplestansatz, we assume that an adsorbed dro
let exhibits cylindrical symmetry around thez axis, and that
its shape is that of an ellipsoid of semiaxisb alongz andb/e
parallel to the surface, centered at the position@0,0,2(h
2b)# and cut by a plane located a distancez0 above the
substrate.

We determine variationally the parametersb, h, and the
eccentricitye by minimizing the total energy of such a drop
let in the presence of the substrate potentialVs(z). Despite
its simplicity, this ellipsoidal cap model~ECP! shares a num-
ber of features with the more realistic results obtained fr
our density-functional calculations, and as shown in the f
lowing, it proves to be helpful in clarifying those results.

To simplify this model still further, the substrate potenti
is taken to be21

Vs
LJ~z!5

4C3
3

27D2z9 2
C3

z3 ~11!

where, as usual,C3 is the Hamaker’s constant andD gives
the well depth.

While keeping the essential physical features of the
tential ~3! actually used in our DF calculations, i.e., the sam
long-range tail, well depth, and minimum position, this p
tential has a simpler analytical form and thus it is more m
ageable when included in model calculations. For exam
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PRB 58 5089STRUCTURE AND CONTACT ANGLE OF LIQUID4He . . .
the positionz0 of the base of the ellipsoidal cap, taken as t
position of the minimum ofVs

LJ(z), can be written explicitly
asz05(2C3/3D)1/3;8.61a0.

From Eq.~9! one sees that the total energy of this cap
the sum of the energysA(b,h,e) required to form the tota
surface A(b,h,e) of the cap, and of a volume term
r0*dV(b,h,e)Vs

LJ(z), which takes into account the intera
tion with the Cs surface. By imposing the requirement o
fixed number of particlesN5r0*dV(b,h,e), the total en-
ergy ~9! becomes a function of only two parameters, whi
we chose to beh and e. We then perform analytically the
minimization of the total energy with respect to these t
parameters and find the equilibrium profile for a givenN.

We postpone the discussion of the ECM results to
following section, where they will be compared with those
DF calculations.

At this point we only remark that the eccentricitye for the
minimum-energy ellipsoidal cap is found to reach a ma
mum value of about 2 whenN;105 atoms, and then it de
creases monotonically toe51 asN→`, i.e., a spherical cap
is recovered as the limiting shape of an adsorbedmacro-
scopicdroplet in our model. It is thus interesting to discuss
some length theN→` limit of the ECM, that is, the case o
a spherical cap.

Since e51 in this case, only one parameter~which we
choose to beh/z0) must be variationally determined, th
other being fixed by the normalization condition~10!.

Minimization of the total energy with respect to th
variational parameter leads to the following equation fot
[h/z0:

S 11

12
24CD t82

83

42
t71

43

42
t61

1

42
~ t51t41t31t21t !

2
1

12
50 ~12!

where the adimensional parameter

C[
s

r S 12

27C3D2D 1/3

~13!

characterizes the adsorption properties of the spherical
onto the surface. As long asC remains smaller than
C0511/48, then the height of the dropleth satisfying Eq.
~12! remains finite~i.e., sinceN→`, the droplet covers the
whole surface with a microscopically thin film separating t
substrate from the vacuum!, whereas asC→C0 the film
thickness diverges. We interpret this as the onset of
nonwetting-to-wetting regime for our simple model. We no
that the conditionC>C0 for the nonwetting-to-wetting tran
sition is the same as that obtained in Ref. 29 by compa
the gain in potential energy on producing a thick film delim
ited by two planar, infinitely extended surfaces with the c
in energy~per unit area! due to the surface tension:

2s lv>2r0E
z0

`

dzVs~z!. ~14!

This approximate criterion has been found to be consis
with T50 density-functional calculations for a planar, in
nitely extended film on a surface.3 By inserting the form Eq.
e

s

a

e
f

-

t

ap

e

g

t

nt

~11! for Vs into Eq. ~14! and integrating, one immediatel
finds the conditionC>11/48 obtained for the case of
spherical cap.

Thus even in the presence of the constraint of fixed g
metrical shape a unique, although approximate, criterion
nonwetting can be obtained both for macroscopic drops
planar films, i.e., the geometrical constraints that we imp
in our ellipsoidal cap model are not so stringent.

WhenC>C0 we can define a geometric contact angleQ
of the macroscopic spherical droplet as the angle between
tangent to the drop profile and the substrate at the poin
contact. The contact angle can be easily found from the e
librium value ofh, and it turns out to be

cosQ5
11224C

24C
. ~15!

The contact angleQ is shown in Fig. 4 as a function of th
coupling constantC. If we insert the values appropriate fo
the 4He-Cs system27 into Eq. ~13!, we find C50.2627,
which determines a contact angleQ542° for a macroscopi-
cally thick droplet, as shown in Fig. 4.

At this point we note from Fig. 4 that the value ofC
appropriate to the4He-Cs system lies in a region wher
small changes in the value ofC result in substantial varia
tions of Q. One must thus be aware that even a small in
curacy in the determination of the potential parametersC3
andD will affect the value ofC and thus produce significan
changes in the limiting value for the contact angle of t
spherical cap model.

B. Exact minimization

We now go back to Eq.~9! and derive some genera
exact results for the shapej(R) of the adsorbed droplet.

It is immediately apparent that mimization ofEd with
respect toj leads to a Euler-Lagrange equation that may
written as

rVs„j~R!…2sH„j~R!…5const, ~16!

FIG. 4. Contact angleQ of a spherical cap shown as a functio
of the coupling constantC ~defined in the text!. The cross identify
the contact angle forC5CHe-Cs.
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whereH(R)[¹W •¹W j(R)/A11@¹j(R)2# is the mean curva-
ture ofj at R. The constant, which we will write as2lr in
the following, is determined by the condition that the numb
of atoms in the droplet, i.e., its volume, is fixed.

This remarkable relation for the shape of simple flu
near rigid solids was first derived by Berry30 from a statisti-
cal mechanics analysis using a simple approximation for
pair-correlation function of the liquid and thus its validi
goes beyond that of Eq.~9!. Its limits may be found in Ber-
ry’s discussion.

For simplicity, let us consider the one-dimensional ana
of Eq. ~16! so that nowj(x) indicates the height of the
droplet profile measured from the position of the flat surfa
plane withx a Cartesian coordinate along that plane, wh
we assume translational symmetry along they direction. The
curvature can thus be written asH(x)52j9/(11j82)3/2,
and Eq.~16! becomes

sj9

~11j82!3/2
2rVs~j!1lr50, ~17!

which admits a first integral in the form

s

~11j82!1/2
2lrj1rP~j!5K, ~18!

whereK is a constant andP(j)[2*j
`dz8Vs(z8).

By considering the balance of the horizontal forces act
on a portion of the fluid near the contact line, it can
shown28 that K5s2S, where S5sso2ssl2s is the so-
called spreading coefficient. At this point the contact an
ue can be introduced through Young’s equation2K
5s cosue and Eq.~18! becomes

cosue5cosu„j~x!…1rP„j~x!…/s2lrj~x!/s, ~19!

whereu„j(x)… is the angle formed by the tangent toj, at the
positionx, with the x axis. If we measureh, the maximum
height of the droplet above the surface plane, at the posi
where j850, and the corresponding radius of curvature
the apex of the droplet,Rc5uj9u21, then we can use Eq.~17!
to evaluatel and substitute its value into Eq.~19! to get

cosue511rP~h!/s2rVs~h!h/s2h/Rc . ~20!

This relation gives the contact angleue in terms of the
substrate potential and of the two structural parameters o
dropleth andRc . For macroscopicdropletsh→` and both
P(h) andVs(h) are negligibly small. In this limit one has

h5Rc~12cosue!. ~21!

In the case of macroscopic dropletsue may be identified
with the geometrical contact angle at the three-phase con
line: the above equation may be read as simply relating
radiusRc and the heighth of a sphericalcap on the surface
Once again we recover the result that, as long as grav
tional effects may be neglected, the limiting shape of a m
roscopic droplet resting on an attractive substrate is sphe
in shape.
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V. DISCUSSION

We compare in this section our density-functional resu
described in Sec. III with the predictions of the classic
model described in the previous section.

As a starting point we checked whether the actual pro
z(R) of the droplets obtained through Eq.~7! from our DF
calculations, could indeed be approximated by an ellipso
profile.

We thus fitted our calculated Gibbs surfaces with an
lipsoidal cap, determining for each droplet three paramet
the heighth, the semiaxisb, and the eccentricity paramete
e, which give the best fit to our calculated surfaces. W
verified that the root mean deviation of the calculated s
faces from the fit is always smaller than 0.1%, at least in
region not too close to the Cs surface. Deviations from
analytical fit actually occur at distances from the surfa
comparable with the core linear dimensionac defined in Sec.
III.

The calculated values of the eccentricitye resulting from
our fitting procedure are shown in Fig. 5 with squares, wh
in Fig. 6 we report the maximum heighth of our DF drop-
lets. In both figures the solid lines show the correspond
ECM predictions. We notice that, although both figures
dicate that DF droplets are more elongated than predicte
the ECM model, the values of the aspect ratio~which is
defined as the ratioh/2Rmax) are very similar in the two
calculations, as shown in Fig. 7, especially for the largerN
we calculated.

This may suggest to extrapolate our DF results to largeN,
where the aspect ratio of the ECM model for macrosco
spherical droplets takes the value 0.19~shown by the dashed
line in Fig. 7!.

We may check on the validity of the classical model d
scribed in Sec. IV by inserting the Gibbs profilez(R) ob-
tained from our DF calculation through Eq.~7! into the right-
hand side of Eq.~19!. As shown in Fig. 8, where the right
hand side, call itF(z), is plotted as a function ofz for
variousN, one sees that indeed, asz increases,F becomes a
constant, as required by Eq.~19! for the profiles minimizing
the droplet energyEd .

FIG. 5. Eccentricity of the ellipsoidal cap as a function of t
number of atoms in the droplet. The filled squares show the res
of our DF calculations, the solid line shows the ECM results.
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We interpret this finding as a check on the adequacy
the classical model to describe the results of the DF calc
tion, and at the same time as the definition of the ‘‘cor
region as the region whereF is rapidly increasing. Physically
it corresponds to the portion of the droplet close to the s
face, where its density exhibits the layered structure~see Fig.
2! and therefore is far from being uniform. As the mat
ematical definition of this region, we will call ‘‘core’’ the
portion of the droplet withz0<z<z0, with z0 defined by the
condition udF(z)/dzuz0

51.
At this point we can finally define the contact angle as

geometrical contact angle measured in the region just out
the core region, i.e., forz>z0. The calculated contact angl
at z0 are shown in Fig. 9~with squares! as a function ofN.
The ECM results are also reported for comparison. It appe
that the contact angle defined in this way is almost indep
dent on the droplet size. Actually this is apparently true o
in the narrow region ofN values shown in the figure, whic
encompasses our calculated droplet sizes. In the limiN

FIG. 6. Droplet height as a function of size: filled squares
the results of density-functional calculations, the solid line sho
the ECM results.

FIG. 7. Aspect ratio as a function of size: filled squares are
results of density-functional calculations, the solid line shows
ECM results. The dash-dot line shows theN→` limit, where the
shape of a spherical cap is recovered.
f
a-
’

r-

e
de

rs
n-
y

→` of macroscopically thick droplets the contact angle p
dicted by the ECM tends toward the valueQ542 ° for a
spherical cap, as discussed in Sec. V. This limiting value
shown in Fig. 9 with a dashed line.

The behavior of the results shown in Fig. 9 for the valu
u(N) obtained from DF calculations and from the EC
model, i.e., an almost constant difference between the tw
N increases, suggests an extrapolation for the macrosc
contact angle, even if we cannot predict the DF value ou
for very large droplets.

Under the reasonable assumption that the same con
difference as in Fig. 9 would be obtained for larger values
N, we would predict in this way a value ofu`;36 °, which
is in reasonable agreement with the value measured in
9, and in between the two values measured in Refs. 14 an

Instead of defining the contact angle as done above,
as the geometrical contact angle atz0, we could choose the
alternative approximation of inserting our DF profilesz(R)
in place ofj(x) into Eq. ~19! and take as the contact ang

e
s

e
e

FIG. 8. Right-hand side of Eq.~19! as a function of the vertica
position along the droplet DF profile, for the different values ofN
from N5100 ~uppermost curve! to N52500 ~lowest curve!.

FIG. 9. Contact angle from DF calculations~filled squares! and
ECM ~open squares!. The DF results are obtained as explained
the text. The crosses show the values ofue as obtained from Eq.
~19! in the region whereue is constant. The dash-dot line shows th
N→` limit, where a spherical cap is the preferred shape.
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the value ofue in the outer region, where it becomes co
stant. The results obtained in this way, which are shown w
crosses in Fig. 9, do not differ very much from the geome
cal contact angles atz0 ~filled squares in Fig. 9!, so that by
means of the same extrapolation procedure, we would c
to almost the same value for the macroscopic contact an
Of course, by using Eq.~19!, we are assuming that the fa
that the contact line is not straight, i.e., that the droplet is
one dimensional, is not important. Corrections due to cur
ture of the contact line and to the curvature dependenc
the surface tension would correspond to additional term
Eq. ~9! and become negligible asN increases. We checke
that their effect on the contact angle is negligible as soon
N>1500 by making a complete DF calculation for a panca
geometry28 of the adsorbed liquid, i.e., by assuming trans
tional symmetry along they axis.

VI. SUMMARY

In summary, by using a density-functional approach,
have calculated theT50 structure of liquid4He droplets on
a Cs surface, where ‘‘dry’’ nonwetting behavior of4He is
expected. We described the microscopic structure of the
uid droplets in the vicinity of the core of the contact lin
With the help of a classical model we have defined a ‘‘co
region’’ and a contact angle for microscopic droplets. W
have also discussed a minimum-energy configuration
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droplets having the shape of an ellipsoidal cap. This ‘‘ell
soidal cap model,’’ which may be extended to drops of a
size, allows us to extrapolate the contact angle from our
croscopic DF calculation to the value appropriate to mac
scopic drops,u`536°. This value is close to the experime
tal determinationu;32° of Ref. 9, and larger~smaller! by
;10° than the experimental values of Ref. 14~Ref. 6!.

We conclude by underlining two possible sources of
accuracy in our results. The first is that, as explained in S
IV, the value for the contact angle of the spherical ca
which we use to extrapolate our DF results to the limit
macroscopic droplets, is rather sensitive to any inaccurac
the determination of the adimensional parameterC[(s/
r)(12/27C3D2)1/3, i.e., in the determination of the
4He-substrate potential parameters. Moreover, our calc
tions are appropriate to zero temperature, while experime
are of course done at finite, albeit small,T. A reduction of
the contact angle with temperature, with respect to itsT50
value, should thus be taken into account. Further work is
progress aimed at understanding the nature of surface e
tations at the solid-liquid interface and their role in the te
perature dependence of the solid-liquid surface tension.
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