PHYSICAL REVIEW B VOLUME 58, NUMBER 8 15 AUGUST 1998-II

Optical-phonon confinement and scattering in wurtzite heterostructures
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We investigate Fiiolich-like electron—optical-phonon interactions in wurtzite structures with single and
double heterointerfaces based on the macroscopic dielectric continuum model and the uniaxial model. In
addition to confinedfor the case of double interfagesnterface, and half-space optical phonon modes as
expected from the analogy with zinc-blende structures, propagating modes may exist in wurtzite heterosystems
due to anisotropic phonon dispersion. This is especially the case when the dielectric properties of the adjacent
heterostructure materials do not differ substantially. The dispersion relations and the interaction Hamiltonians
for each of these modes are derivE80163-182@08)09131-0

[. INTRODUCTION at theI" point, only the A;(Z) and E{(X,Y) modes are
infrared-active among the nine optical-phonon modes. As

The optical phonons in wurtzite-based semiconductodiscussed in Ref. 3, such a model may be extended to other
structures have begun to receive an increased level of attepniaxial crystals that have larger numbers of polar modes
tion due to the progress in applicatidrimsed on wide-band- since the method is the same. Within the macroscopic dielec-
gap nitride semiconductors. Since the wurtzite crystals havéic continuum approach, the field associated with the optical
a different unit-cell structuré.e., four atoms per unit cglas  phonon modes in the no-retardation limit satisfies the classi-
well as lower symmetry compared to zinc-blende counter<al electrostatic equations, i.e.,
parts, carrier-phonon interactions in this material system dif-
fer from those with cubic symmetry. Clearly, there are many E(r)=-V&(r), @
more distinct phonon branchésine optical and three acous-

tic modes in wurtzite materials. At the same time, the pho-  D(") =E(r)+47P(r)= €L (@)EL(Np+elw)Ey(r)Z,

non modes may not be purely longitudinal nor transverse 2)
except for thd 0007] direction. The understanding of phonon _

. = . ; O ! , V-D(r)=0, 3)
dynamics and their interaction with carriers in wurtzite semi-
conductors have been primitive. where ®(r) is the electrostatic potential due to the optical-

Very recently, we reported a derivation of the Rlioh ~ phonon modekE is the electric fieldD is the displacemenk
Hamiltonian forbulk wurtzite materialé based on the mac- is the polarization field, and and p denote the unit vector
roscopic dielectric continuum model and the uniaxial modelparallel and perpendicular to ttzaxis, respectively. When
of Loudon?® The present paper extends this earlier work tomodeling optical phonons for Fntich interaction, it is suf-
study the effects of phonon confinement on electron—opticalficient to consider only the electrostatic boundary
phonon interaction Hamiltonians in wurtziteeterostruc-  conditions? accordingly, in this work we do not take into
tures The theory of optical-phonon confinement has beeraccount the elastic continuum boundary conditions required
treated in detail for zinc-blende structufebpwever, there to model acoustic phonons. In addition, we assume that there
do not appear to have been attempts to formulate such ia no charge transfer between ions. The expressions and as-
theory for wurtzite structures. The rest of this paper is orgasumptions given above are supported by many studies on the
nized as follows. In Sec. IlI, basic equations and the derivamacroscopic dielectric continuum model as surveyed exten-
tion of the Frdnlich Hamiltonian for bulk wurtzite materials sively in Ref. 4. Throughout this paper, tkeaxis is taken
are summarized for self-sufficiency. In Secs. lll and IV, thealong thec direction and the perpendicular direction is de-
interaction Hamiltonian is generalized to take into accounnoted asL. The direction-dependent dielectric functions,
the role of optical-phonon confinement for wurtzite struc-¢, (w) ande,(w), are given by

tures with single and double heterointerfaces, respectively. . 2

Concluding remarks follow in Sec. V. w @ T W
€ (w)=€ —5—, 4
w a)J_
Il. FRO HLICH INTERACTION HAMILTONIAN 5 2
IN BULK WURTZITE STRUCTURES o @ T Wz
(w)=¢, P )

Following Loudon® we consider a uniaxial crystal in z

which only one group of three optical-phonon branches isvherew, andw, are the lattice dispersion frequencies,,
infrared active; the wurtzite structure is a case in point sinceéind w,, are the longitudinal-opticalLO) phonon frequen-
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cies, ande] and €, are the high-frequency dielectric con-
stants. Accordingly, the static dielectric constants ajfe
=" w? /w? ande2= € wi /w3
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4861

Material 2
&2 (@)

Material 1
g (w)

The macroscopic equations of motion for uniaxial mate-

rials give relations betweeh(r), P(r), and the relative dis-
placement of an ion paiu(r),>>®

dzuL(r)_ ) 1 \/ﬁ
T__wLui(r)+m GL_ELwLEL(r)a
©
d?u(r) 1 _
W—=—w§uz(r)+\/W\/eg—szszz(r), (7)
n -1
PN =\ Vo u (0 S EL(D, @®
=1
PN =\ N o)+ L= Er), O

wherep is the reduced mass ands the number of unit cells

per unit volume. Assuming a harmonic dependence in space

and time, we can obtaif®(r), E(r), andP(r) upon solving

(a)

Material 2 | Material 1| Material 2
2 (®) ()] & (0)
a2 0 dR 25

FIG. 1. Schematic drawing ofa) single- and(b) double-
heterointerface systems composed of two different wurtzite materi-
als.

Ill. FRO HLICH INTERACTION HAMILTONIANS
IN WURTZITE STRUCTURES WITH
A SINGLE HETEROINTERFACE

Egs.(1)—(9). Herein, we denote the phonon wave vector as  Qur analysis of optical-phonon confinement effects in

k=(q,k,) and defined as the angle betwednand thez axis.
One frequency has a trivial solutioni=w, andE(r)=0;

wurtzite-based heterostructures begins with the case of struc-
tures with a single heterointerface separating two different

this is the case for the so-called ordinary phonon. The phosemi-infinite wurtzite-based semiconductors as shown in Fig.
non frequencies for extraordinary phonons are obtained(a). One material region, designated by “1,” occupies

from®
€, (w)si 0+ e,(w)co$6=0. (10)

We assumes, = €| ; this is a good assumption sine#& is
due to electrons. Then,

2 2 2 2
w —w w —w

o SO+ —— co£6=0. (12)
0= 0] ®°— o

When we have |wlL—sz|,|wl—wZ|<|wiL—wi|,|wzl_
—w,|, which is the case for the wurtzite-based IlI-V ni-
trides, the solutions are

w?= ngC0§9+ wi,_sinzﬁ,

w?= w?sirt 0+ w’cod 6. (12

These are predominantly longitudinal and transverse modes,

respectively. Finally, the electron—optical-phonon Hamil-
tonian for the bulk uniaxial material is givenZas

4me?hV 1 v

(0l dw) (€, (w)SiNF 6+ €,( w)coS 6)

H=2

q

1 ik-r T
er (axtaly), (13

whereV is the crystal volume and’, anda, are the cre-
ation and annihilation operators, respectively.

>0 and the other, designated by “2,” occupies the region
z<0. Since there is a translational symmetry perpendicular
to the z axis, we have

d(r)=2, d(q,2)e'”, (14)
q

whereq=(ky,ky) andp=(x,y). The boundary conditions at
the interface require th&, andD, be continuous. The nor-
malization condition is given as

20

€1 (GaN)
e1z (GaN)
—=gp, (AIN)
——== g7 (AIN)

20
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FIG. 2. Frequency dependences of the dielectric constants for
materials 1(GaN) and 2(AIN). The crystals are of wurtzite sym-
metry andL (z) denotes the direction perpendiculparalle) to the
C axis.
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1000 T T T T T This dispersion relation for IF modes is analogous to that of
a zinc-blende structure except that, in zinc blendes, the quan-
900 - tities inside the square root are always positive and the fre-
\ quency range fole;e,<<0 exists unless materials 1 and 2

have identical phonon spectra.

The HS mode satisfies the boundary conditions at the het-
erointerface and behaves as the nominal bulk mode-as
+ o, Consider the case in which the optical phonon propa-

\\ gates into layer 24<0) from layer 1 ¢>0). The wave

800
700

600

Phonon Frequency (cm'1)

= vector in layer 1 is denoted byg(k,,), and the angle be-
tween @,k,,) andz axis is6;. Then, the characteristic pho-
L ‘ : L non frequencies in layer 1 are obtained from ELp) as in
0 1 2 3 4 5 6 bulk material 1. When the solutions of this dispersion rela-
tion do not overlap with the optical phonon frequency ranges
of material 2(i.e., betweenw,, | andw,, Or w,, andws,,),

FIG. 3. Dispersion relations for the optical phonon IF modes inWe havee,, €,,>0 for these modes and the phonon decays
an AIN/GaN/AIN double-heterointerface structure. exponentially into layer 2. Defining, as k,= e, /€5,0,
the electron—optical-phonon interaction Hamiltonian is

500

Wave Vector (qd)

4me’hl 3 v

h
| e @ dpnuazde= 5 as Hus=>

k20 | (3l dw)( €y, SIP 1+ €,,0S 0
and the electron—optical-phonon Hamiltonian can be ob- @ ko L( Mew e V
tained as 1 2
X evP(ag+a’ )
H=>, —e(I)(q,z)eiq"’(aq+atq)- (16) \/q2+k§z \/Eizkiz"‘ €525
q

{elzklzcos(klzz)Jrezzxzsin(klzz), z>0 19

HereL? is the cross-sectional area of the sample. Kk, g<2? <0
. . . . €1,K1,€7°2%,  Z .
For the single-heterointerface system under consideration )
there may be three distinct classes of optical-phonon modekhe sum should be done only over thdsg that are consis-
depending on the ordering of various phonon energy specti@nt With €;,€;, >0. The remaining set of HS modes propa-
in materials 1 and 2. These modes are designated as interfa@@ting from layer 2 to layer 1 can be considered in the same
(IF), half-space(HS), and propagatingPR) modes. The IF  Way. ) ) ) )
modes can exist if solutions can be found for the dispersion FOr special cases where the dielectric properties of the
relation e, €1,— Veq, €2,=0 With €1, €1,>0, €5, €5,>0 adjacent heterostructure materials do not differ substantially
zZ zZ Z ) zZ L] . . . o . . .
and e,,e,,<0. The corresponding interaction Hamiltonian and their dispersion curves overlap, it is possible to establish

can be obtained straightforwardly by following the prescrip-M°des that propagate between adjacent material regions. As
tion discussed above and is given as an example, we consider the case where the optical phonon

in layer 1 propagates also in layer 2. This happens when we
{ AL 2 11/2 havee,,e;, <0 for phonon frequency of material 1. Then,
the phonon wave vector in layer 2 ig,ky,) with Ky,
(9l dw)(Ver, €1,~ Ver, €2,)] =\—€,, l€:,0=\€1,65, €1, €,,)K1,. There are two pos-
sible solutions for these PR modes, quasisymmetric and qua-

0 (17)  Siantisymmetric, whose interaction Hamiltonians are given
Z< . as

HIFZZ

q

1 . t e VELL Te1,az 7z>0
—_elap !
X \/a e (aq+a_q) evea EZZqZ,

1/2

Ame*hl 3 n ;
e'¥P(ag+ay)

(0l dw) (€1, Q2+ €1,K2,) + (9l dw) (€2, G2+ €5,K5,)

2 cogk,,z), z>0
2 cogk,,2), z<O0

HERZE 2

q ky1,>0

(19

and

1/2

Amehl 3 - :
e'dPlagtaly)

(‘9/‘9w)(611_q2+ élzkiz) E%zk§z+ (9ldw)( €y, q2+ 622k§z) 6izk%z

62ZkZZSin( klZZ)1 z>0
Elzklzsin( kZZZ)! Z<0,
(20)

HéR:E E

q kqi,>0

respectively. Again, the sum is performed only over thibgethat are consistent with,,e,, <0. For the isotropic case with
e,= ¢, (for example, the macroscopic dielectric continuum treatment of zinc-blende structtle®R mode does not exist
sincee,e, =0. However, even in zinc-blende structures, such propagating modes were observed experimerealligdija-
cent regions have small differences in dielectric properties.
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Herein, we take GaN for material 1 and AIN for material 2. Material parameters are taken & =b8.29, v, |
=743cm?, w, =735cm?, w, =561 cm?, w,=533cm* for GaN® For AIN, we takee”=4.68, w, =916 cm%, w,
=893 cm?, w, =673 cm?, w,=660 cnm % In Fig. 2, the frequency dependencesegf(GaN) and e, (AIN) are depicted
along with the longitudinal and transverse frequencies of interest. As can be seen from this figure, there is no frequency range
that satisfies;, €1,<<0 ande,, €,,<0 simultaneouslyi.e., no overlap in characteristic frequengiddence only IF and HS
modes exist in GaN/AIN heterostructures with a single interface.

IV. FROHLICH INTERACTION HAMILTONIANS IN WURTZITE STRUCTURES WITH TWO HETEROINTERFACES

In this section, the optical phonon modes and théhkeh interaction Hamiltonians are derived for wurtzite structures
having two heterointerfaces. Figurébl depicts the structure considered in this section. For such double-heterointerface
systems, there may be four distinct classes of optical-phonon modes. Similar to Sec. lll, these modes are designated as IF,
confined, HS, and PR optical modes. As for the zinc-blende case, there are twddymesetric and antisymmetjiof IF
phonons. For the symmetric mode, the interaction Hamiltonian is given as

Ame?hl 2

HS:E[
Sl (9] dw)(Ver, e tant(Vey, /€1,00d/2) = ey, €2,)]
[ cosh ey, le1,02)/cosie;, 1€,,0d/2), |z]<d/2

e ve Equ(‘Zlfd/Z), |Z|>d/2

1/2

evP(ag+a’ )

1
V2q

(21)

The frequencyw is determined fromyey, e;, tanh(ey, /€,,d/2)— Ve, €5,=0 With €;,€,,<0 (€1, €1,>0 and e, €5,
>0). For the antisymmetric mode, it is

. { 4me’hl 2
IF—

@ [|(a190)(Vey, er,cothiey, Ie1,qd2) = Vey, €5,)]
| sinh(Vey, /e,92)/sinN(Vey, /e,qdi2), |z]<d/2

sgnz)e” €2, le2,0(2| - d/2) |Z|>d/2

1/2 1
evP(ag+a’ )
24

(22

and the associated dispersion relationshig'és, €;,coth(Ve;, /€,,00/2)— Ve, €,,=0 with €,,€,,<0. The dispersion rela-
tions for the IF modes of a wurtzite AIN/GaN/AIN quantum well with thicknesare depicted in Fig. 3.

The confined modes in double-heterointerface structures may be classified into two groups: one for symmetric confined
modes and one for antisymmetric confined modes. For the symmetric modes, the carrier—optical-phonon interaction Hamil-
tonian is given by

4me’hl 2 vz
HZ => > 5 > e'q'P(aq+aJr_q)
q m |(ddw)(€er, q°+ €1,K],)d/12—2q(d/ dw) T (w)cog Kk nmd/2)

cogkimz), |z|<d/2
cogkymd/2)e*214-92) |z|>d/2,

X (23

where fy(w)=sgn()V— €1, () €1,(w)sink;d/2) — sgn(e) Ver, () €x,(w)cosk d2). ki Iis determined from
€1,K1mSiNKy d/2) — €5,6,C08(Kd/2) =0 with 2m#/d<k;,<2(m+1)7x/d and k, is given by k,=+/e,, /€,,0. As for the
case of zinc-blende confined phonons, the inadei) Eq. (23) runs over the series of confined modes. For the antisymmetric
mode,

Ame?h 2 12
iq-p + T
(9190) (€1, Pt ey d2—2q(dl50) [ @)sinkendl2)| ©  (Bat@%d)

-3 3|

sin(kim2), |z]<d/2

X\ sgrz)sin(kypd/2)e <202 -92 |7 >d/2,

(29)

where f,(w)=sgnl)V— €1, (w)€1,(w)Ccosky d2) +sgnle) Ves, (o) ex(w)sinkd/2). ki, Iis determined from
€1,K1mCOSK d/2) + €5,k55INK  d/2)=0  with (2m—1)w/d<k;,<(2m+1)w/d (m=1,23,...) and «, IS «y

€2, /€2,0.

For the case of HS modes, the application of the boundary condition of contijoasdD, at each interface, as well as
the condition that the modes behave as bulk modes-as o, lead to an HS-mode interaction Hamiltonian similar to those
in zinc-blende structures. We denote the angle betwegk,f) and thez axis as#,. Then, as in Sec. lll, the phonon
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frequencies for two outside layers are obtained from ([B6) with a proper application of parameters for material 2. Taking
€1, €1,>>0 (otherwise, the mode belongs to the PR phonone definex; asx;= €1, / €1, and the electron—optical-phonon
interaction Hamiltonian for the symmetric case is

4me?pl 3
(élaw)(GZLSinzaz‘f' EZZCO§02)

V2 gld-p(g,+ aT_q)
2 2
\/q +k21

d d
+ ezzkzzcosl‘( K1 5) cos{ kzz( |z| - E) } |z|>d/2 (25

Hﬁs=2 E

a kp,

V2I[ €3, k2sinkP( k1d/2) + €3,k3,c0sH( k1d/2)]Y?

k22

d
|Z|—§

. d|
612K13|nr< Kq E) Sin
€,,Ko,c08H k12), |z|<d/2.

The sum is ovek,, (not overk,,) and should be done only for thokg, which satisfye;, €;,>0. For the antisymmetric case,

V2gldp(g +al )

Vq2+ k22
. d d
+ 62Zk223|n K1 E co kZZ |Z| - E

Finally, based on the procedures of Sec. Ill, we find that the PR modes have the following interaction Hamiltonians for
symmetric and antisymmetric cases, respectively:

HER:% E

kZZ

d d
« €2,K5,C0 kle cos ky, |Z|_§

GZZKZZCOQ klZZ)v |Z|<d/2,

4me’nl 3
{ V2I[ €2,k2cost(k,d/2) + e3,k3,sintP( k,d/2) 42
kZZ

A _
HHS_E 2 ((9/(7&))(€2J_S|n292+ EZZCO§02)

q
d\ . K d
SI 2z |Z|_ E

sgr(z)[ ellecosr{ K15

€:,Ko,SiNN k12),  |z]<d/2.

. |z|>d/2

X (26)

1/2
' P(agtal 2/ €K sir(Ky,d12) + €5,k3,c08(ky,d/2) 2

[ 4re?hl "3
(91dw) (€2, 02+ €35K5,)

d d
- elzklzsin< K1, 5) sin kzz( |z| — 5 } |z|>d/2

(27)

1/2

Ame*hl* iq-p t 2.2 212 12
6P (ag+al VI €2,K2,c08(Ky,dI2) + 2,2,siP(ky,d/2)]

(9l dw) (€2, Q%+ €,K3,)

HéR:E E

a ky

. d d d . d
sgr(z)[ ezzkzzsm( K1, E) CO{ kzz( |z| - 3T elzklzco% K1, 5) sw{ kzz( |z| - E) } ] . |z|>d/2 28)

GZZKZZSir(k]_ZZ), |Z|<d/2

Onceq andky, are given,» is determined. HereX, de-  tances within about 10 nm of a heterostructure interfdeer
notes a sum over thode, that satisfye;, €;,<0. As dis- the case of anisotropic dielectric properties, it is expected

cussed in Sec. IlI, the PR modes do not exist in the AIN/GaNhat confinement effects will occur on roughly the same di-
system. mensional scale but it is crucial that the exact theory devel-

oped in the present paper be taken into account including the

possibility of PR modes. Thus, our results will be valuable
V. CONCLUSION for understanding the electronic and optical properties of

The Hamiltonians for the Etdich interactions presented Wurizite-based heterostructures that advanced growth

in this paper are essential for describing a broad class dechnologie$™®**are currently making available for both ba-

carrier—optical-phonon interactions in single- and doubleSIC @nd applied studies.

heterointerface wurtzite-based structures when it is necessary
to model such interactions in the vicinity of heterostructure
interfaces. More specifically, for wurtzite structures with  The authors are grateful for many helpful discussions with
relatively little anisotropy between the parallel and perpenS. M. Komirenko, S. Yu, Y. M. Sirenko, M. A. Littlejohn,
dicular dielectric propertieéwith respect to the axis), itis  and J. M. Zavada. This work was supported by the U.S.
clear that phonon confinement effects are important for disArmy Research Office and the Office of Naval Research.
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