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Optical-phonon confinement and scattering in wurtzite heterostructures
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We investigate Fro¨hlich-like electron–optical-phonon interactions in wurtzite structures with single and
double heterointerfaces based on the macroscopic dielectric continuum model and the uniaxial model. In
addition to confined~for the case of double interfaces!, interface, and half-space optical phonon modes as
expected from the analogy with zinc-blende structures, propagating modes may exist in wurtzite heterosystems
due to anisotropic phonon dispersion. This is especially the case when the dielectric properties of the adjacent
heterostructure materials do not differ substantially. The dispersion relations and the interaction Hamiltonians
for each of these modes are derived.@S0163-1829~98!09131-0#
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I. INTRODUCTION

The optical phonons in wurtzite-based semiconduc
structures have begun to receive an increased level of a
tion due to the progress in applications1 based on wide-band
gap nitride semiconductors. Since the wurtzite crystals h
a different unit-cell structure~i.e., four atoms per unit cell! as
well as lower symmetry compared to zinc-blende coun
parts, carrier-phonon interactions in this material system
fer from those with cubic symmetry. Clearly, there are ma
more distinct phonon branches~nine optical and three acous
tic modes! in wurtzite materials. At the same time, the ph
non modes may not be purely longitudinal nor transve
except for the@0001# direction. The understanding of phono
dynamics and their interaction with carriers in wurtzite sem
conductors have been primitive.

Very recently, we reported a derivation of the Fro¨hlich
Hamiltonian forbulk wurtzite materials2 based on the mac
roscopic dielectric continuum model and the uniaxial mo
of Loudon.3 The present paper extends this earlier work
study the effects of phonon confinement on electron–opti
phonon interaction Hamiltonians in wurtziteheterostruc-
tures. The theory of optical-phonon confinement has be
treated in detail for zinc-blende structures;4 however, there
do not appear to have been attempts to formulate suc
theory for wurtzite structures. The rest of this paper is or
nized as follows. In Sec. II, basic equations and the der
tion of the Fröhlich Hamiltonian for bulk wurtzite materials
are summarized for self-sufficiency. In Secs. III and IV, t
interaction Hamiltonian is generalized to take into acco
the role of optical-phonon confinement for wurtzite stru
tures with single and double heterointerfaces, respectiv
Concluding remarks follow in Sec. V.

II. FRÖ HLICH INTERACTION HAMILTONIAN
IN BULK WURTZITE STRUCTURES

Following Loudon,3 we consider a uniaxial crystal in
which only one group of three optical-phonon branches
infrared active; the wurtzite structure is a case in point si
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at the G point, only the A1(Z) and E1(X,Y) modes are
infrared-active among the nine optical-phonon modes.
discussed in Ref. 3, such a model may be extended to o
uniaxial crystals that have larger numbers of polar mo
since the method is the same. Within the macroscopic die
tric continuum approach, the field associated with the opt
phonon modes in the no-retardation limit satisfies the cla
cal electrostatic equations, i.e.,

E~r !52“F~r !, ~1!

D~r !5E~r !14pP~r !5e'~v!E'~r !r̂1ez~v!Ez~r !ẑ,
~2!

“•D~r !50, ~3!

whereF~r ! is the electrostatic potential due to the optica
phonon mode,E is the electric field,D is the displacement,P
is the polarization field, andẑ and r̂ denote the unit vector
parallel and perpendicular to thez axis, respectively. When
modeling optical phonons for Fro¨hlich interaction, it is suf-
ficient to consider only the electrostatic bounda
conditions;4 accordingly, in this work we do not take int
account the elastic continuum boundary conditions requ
to model acoustic phonons. In addition, we assume that th
is no charge transfer between ions. The expressions and
sumptions given above are supported by many studies on
macroscopic dielectric continuum model as surveyed ex
sively in Ref. 4. Throughout this paper, thez axis is taken
along thec direction and the perpendicular direction is d
noted as'. The direction-dependent dielectric function
e'(v) andez(v), are given by

e'~v!5e'
`

v22v'L
2

v22v'
2 , ~4!

ez~v!5ez
`

v22vzL
2

v22vz
2 , ~5!

wherev' andvz are the lattice dispersion frequencies,v'L
and vzL are the longitudinal-optical~LO! phonon frequen-
4860 © 1998 The American Physical Society
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cies, ande'
` and ez

` are the high-frequency dielectric con
stants. Accordingly, the static dielectric constants aree'

0

5e'
`v'L

2 /v'
2 andez

05ez
`vzL

2 /vz
2.

The macroscopic equations of motion for uniaxial ma
rials give relations betweenE~r !, P~r !, and the relative dis-
placement of an ion pairu~r !,3,5,6

d2u'~r !

dt2
52v'

2 u'~r !1
1

A4pmn
Ae'

0 2e'
`v'E'~r !,

~6!

d2uz~r !

dt2
52vz

2uz~r !1
1

A4pmn
Aez

02ez
`vzEz~r !, ~7!

P'~r !5Amn

4p
Ae'

0 2e'
`v'u'~r !1

e'
`21

4p
E'~r !, ~8!

Pz~r !5Amn

4p
Aez

02ez
`vzuz~r !1

ez
`21

4p
Ez~r !, ~9!

wherem is the reduced mass andn is the number of unit cells
per unit volume. Assuming a harmonic dependence in sp
and time, we can obtainF(r ), E~r !, andP~r ! upon solving
Eqs. ~1!–~9!. Herein, we denote the phonon wave vector
k5(q,kz) and defineu as the angle betweenk and thez axis.
One frequency has a trivial solution:v5v' and E(r )50;
this is the case for the so-called ordinary phonon. The p
non frequencies for extraordinary phonons are obtai
from3

e'~v!sin2u1ez~v!cos2u50. ~10!

We assumeez
`5e'

` ; this is a good assumption sincee` is
due to electrons. Then,

v22v'L
2

v22v'
2 sin2u1

v22vzL
2

v22vz
2 cos2u50. ~11!

When we have uv'L2vzLu,uv'2vzu!uv'L2v'u,uvzL
2vzu, which is the case for the wurtzite-based III–V n
trides, the solutions are

v25vzL
2 cos2u1v'L

2 sin2u,

v25vz
2sin2u1v'

2 cos2u. ~12!

These are predominantly longitudinal and transverse mo
respectively. Finally, the electron–optical-phonon Ham
tonian for the bulk uniaxial material is given as2

H5(
q

F 4pe2\V21

~]/]v!„e'~v!sin2u1ez~v!cos2u…G
1/2

3
1

k
eik•r~ak1a2k

† !, ~13!

whereV is the crystal volume anda2k
† and ak are the cre-

ation and annihilation operators, respectively.
-

ce

s

o-
d

s,
-

III. FRÖ HLICH INTERACTION HAMILTONIANS
IN WURTZITE STRUCTURES WITH

A SINGLE HETEROINTERFACE

Our analysis of optical-phonon confinement effects
wurtzite-based heterostructures begins with the case of s
tures with a single heterointerface separating two differ
semi-infinite wurtzite-based semiconductors as shown in F
1~a!. One material region, designated by ‘‘1,’’ occupiesz
.0 and the other, designated by ‘‘2,’’ occupies the regi
z,0. Since there is a translational symmetry perpendicu
to thez axis, we have

F~r !5(
q

F~q,z!eiq•r, ~14!

whereq5(kx ,ky) andr5(x,y). The boundary conditions a
the interface require thatE' andDz be continuous. The nor
malization condition is given as

FIG. 2. Frequency dependences of the dielectric constants
materials 1~GaN! and 2~AlN !. The crystals are of wurtzite sym
metry and' (z) denotes the direction perpendicular~parallel! to the
c axis.

FIG. 1. Schematic drawing of~a! single- and ~b! double-
heterointerface systems composed of two different wurtzite ma
als.



ob

tio
d
c
rf

io

n
ip

t of
an-

fre-
2

het-

pa-

-

la-
es

ys

a-
me

the
ally
lish
. As
non
we

ua-
en

in

4862 PRB 58B. C. LEE, K. W. KIM, M. A. STROSCIO, AND M. DUTTA
E Amnu* ~q,z!•Amnu~q,z!dz5
\

2vL2 ~15!

and the electron–optical-phonon Hamiltonian can be
tained as

H5(
q

2eF~q,z!eiq•r~aq1a2q
† !. ~16!

HereL2 is the cross-sectional area of the sample.
For the single-heterointerface system under considera

there may be three distinct classes of optical-phonon mo
depending on the ordering of various phonon energy spe
in materials 1 and 2. These modes are designated as inte
~IF!, half-space~HS!, and propagating~PR! modes. The IF
modes can exist if solutions can be found for the dispers
relation Ae1'e1z2Ae2'e2z50 with e1'e1z.0, e2'e2z.0,
and e1ze2z,0. The corresponding interaction Hamiltonia
can be obtained straightforwardly by following the prescr
tion discussed above and is given as

HIF5(
q

F 4pe2\L22

u~]/]v!~Ae1'e1z2Ae2'e2z!u
G 1/2

3
1

Aq
eiq•r~aq1a2q

† !H e2Ae1' /e1zqz, z.0

eAe2' /e2zqz, z,0.
~17!

FIG. 3. Dispersion relations for the optical phonon IF modes
an AlN/GaN/AlN double-heterointerface structure.
-
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This dispersion relation for IF modes is analogous to tha
a zinc-blende structure except that, in zinc blendes, the qu
tities inside the square root are always positive and the
quency range fore1e2,0 exists unless materials 1 and
have identical phonon spectra.

The HS mode satisfies the boundary conditions at the
erointerface and behaves as the nominal bulk mode asz→
6`. Consider the case in which the optical phonon pro
gates into layer 2 (z,0) from layer 1 (z.0). The wave
vector in layer 1 is denoted by (q,k1z), and the angle be-
tween (q,k1z) andz axis isu1 . Then, the characteristic pho
non frequencies in layer 1 are obtained from Eq.~10! as in
bulk material 1. When the solutions of this dispersion re
tion do not overlap with the optical phonon frequency rang
of material 2~i.e., betweenv2'L andv2zL or v2' andv2z),
we havee2'e2z.0 for these modes and the phonon deca
exponentially into layer 2. Definingk2 as k25Ae2' /e2zq,
the electron–optical-phonon interaction Hamiltonian is

HHS5(
q

(
k1z.0

F 4pe2\L23

~]/]v!~e1'sin2u11e1zcos2u1!
G1/2

3
1

Aq21k1z
2

2

Ae1z
2 k1z

2 1e2z
2 k2

2
eiq•r~aq1a2q

† !

3H e1zk1zcos~k1zz!1e2zk2sin~k1zz!, z.0
e1zk1ze

k2z, z,0. ~18!

The sum should be done only over thosek1z that are consis-
tent with e2ze2'.0. The remaining set of HS modes prop
gating from layer 2 to layer 1 can be considered in the sa
way.

For special cases where the dielectric properties of
adjacent heterostructure materials do not differ substanti
and their dispersion curves overlap, it is possible to estab
modes that propagate between adjacent material regions
an example, we consider the case where the optical pho
in layer 1 propagates also in layer 2. This happens when
havee2ze2',0 for phonon frequencyv of material 1. Then,
the phonon wave vector in layer 2 is (q,k2z) with k2z

5A2e2' /e2zq5Ae1ze2' /e1'e2zk1z . There are two pos-
sible solutions for these PR modes, quasisymmetric and q
siantisymmetric, whose interaction Hamiltonians are giv
as
t

HPR
S 5(

q
(

k1z.0
F 4pe2\L23

~]/]v!~e1'q21e1zk1z
2 !1~]/]v!~e2'q21e2zk2z

2 !G
1/2

eiq•r~aq1a2q
† !H2 cos~k1zz!, z.0

2 cos~k2zz!, z,0 ~19!

and

HPR
A 5(

q
(

k1z.0
F 4pe2\L23

~]/]v!~e1'q21e1zk1z
2 !e2z

2 k2z
2 1~]/]v!~e2'q21e2zk2z

2 !e1z
2 k1z

2 G1/2

eiq•r~aq1a2q
† !H e2zk2zsin~k1zz!,

e1zk1zsin~k2zz!,
z.0
z,0,

~20!

respectively. Again, the sum is performed only over thosek1z that are consistent withe2ze2',0. For the isotropic case with
ez5e' ~for example, the macroscopic dielectric continuum treatment of zinc-blende structures!, the PR mode does not exis
sinceeze'>0. However, even in zinc-blende structures, such propagating modes were observed experimentally7 when adja-
cent regions have small differences in dielectric properties.
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Herein, we take GaN for material 1 and AlN for material 2. Material parameters are taken to bee`55.29, v'L
5743 cm21, vzL5735 cm21, v'5561 cm21, vz5533 cm21 for GaN.8 For AlN, we takee`54.68, v'L5916 cm21, vzL
5893 cm21, v'5673 cm21, vz5660 cm21.9 In Fig. 2, the frequency dependences ofe1 ~GaN! ande2 ~AlN ! are depicted
along with the longitudinal and transverse frequencies of interest. As can be seen from this figure, there is no frequen
that satisfiese1'e1z,0 ande2'e2z,0 simultaneously~i.e., no overlap in characteristic frequencies!. Hence only IF and HS
modes exist in GaN/AlN heterostructures with a single interface.

IV. FRÖHLICH INTERACTION HAMILTONIANS IN WURTZITE STRUCTURES WITH TWO HETEROINTERFACES

In this section, the optical phonon modes and the Fro¨hlich interaction Hamiltonians are derived for wurtzite structu
having two heterointerfaces. Figure 1~b! depicts the structure considered in this section. For such double-heterointe
systems, there may be four distinct classes of optical-phonon modes. Similar to Sec. III, these modes are designa
confined, HS, and PR optical modes. As for the zinc-blende case, there are two types~symmetric and antisymmetric! of IF
phonons. For the symmetric mode, the interaction Hamiltonian is given as

HIF
S 5(

q
F 4pe2\L22

u~]/]v!~Ae1'e1ztanh~Ae1' /e1zqd/2!2Ae2'e2z!u
G 1/2

1

A2q
eiq•r~aq1a2q

† !

3H cosh~Ae1' /e1zqz!/cosh~Ae1' /e1zqd/2!, uzu,d/2

e2Ae2' /e2zq~ uzu2d/2!, uzu.d/2.
~21!

The frequencyv is determined fromAe1'e1z tanh(Ae1' /e1zqd/2)2Ae2'e2z50 with e1ze2z,0 (e1'e1z.0 and e2'e2z
.0). For the antisymmetric mode, it is

HIF
A 5(

q
F 4pe2\L22

u~]/]v!~Ae1'e1zcoth~Ae1' /e1zqd/2!2Ae2'e2z!u
G 1/2

1

A2q
eiq•r~aq1a2q

† !

3H sinh~Ae1' /e1zqz!/sinh~Ae1' /e1zqd/2!, uzu,d/2

sgn~z!e2Ae2' /e2zq~ uzu2d/2!, uzu.d/2,
~22!

and the associated dispersion relationship isAe1'e1zcoth(Ae1' /e1zqd/2)2Ae2'e2z50 with e1ze2z,0. The dispersion rela-
tions for the IF modes of a wurtzite AlN/GaN/AlN quantum well with thicknessd are depicted in Fig. 3.

The confined modes in double-heterointerface structures may be classified into two groups: one for symmetric
modes and one for antisymmetric confined modes. For the symmetric modes, the carrier–optical-phonon interactio
tonian is given by

HC
S5(

q
(
m

F 4pe2\L22

~]/]v!~e1'q21e1zk1m
2 !d/222q~]/]v! f s~v!cos~k1md/2!

G 1/2

eiq•r~aq1a2q
† !

3H cos~k1mz!, uzu,d/2
cos~k1md/2!e2k2~ uzu2d/2!, uzu.d/2, ~23!

where f s(v)5sgn(e1z)A2e1'(v)e1z(v)sin(k1md/2)2sgn(e2z)Ae2'(v)e2z(v)cos(k1md/2). k1m is determined from
e1zk1msin(k1md/2)2e2zk2cos(k1md/2)50 with 2mp/d,k1m,2(m11)p/d and k2 is given byk25Ae2' /e2zq. As for the
case of zinc-blende confined phonons, the index,m in Eq. ~23! runs over the series of confined modes. For the antisymme
mode,

HC
A5(

q
(
m

F 4pe2\L22

~]/]v!~e1'q21e1zk1m
2 !d/222q~]/]v! f a~v!sin~k1md/2!G

1/2

eiq•r~aq1a2q
† !

3H sin~k1mz!, uzu,d/2
sgn~z!sin~k1md/2!e2k2~ uzu2d/2!, uzu.d/2, ~24!

where f a(v)5sgn(e1z)A2e1'(v)e1z(v)cos(k1md/2)1sgn(e2z)Ae2'(v)e2z(v)sin(k1md/2). k1m is determined from
e1zk1mcos(k1md/2)1e2zk2sin(k1md/2)50 with (2m21)p/d,k1m,(2m11)p/d (m51,2,3,. . . ) and k2 is k2

5Ae2' /e2zq.
For the case of HS modes, the application of the boundary condition of continuousE' andDz at each interface, as well a

the condition that the modes behave as bulk modes asz→6`, lead to an HS-mode interaction Hamiltonian similar to tho
in zinc-blende structures. We denote the angle between (q,k2z) and thez axis asu2 . Then, as in Sec. III, the phono
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frequencies for two outside layers are obtained from Eq.~10! with a proper application of parameters for material 2. Tak
e1'e1z.0 ~otherwise, the mode belongs to the PR phonons!, we definek1 ask15Ae1' /e1zq and the electron–optical-phono
interaction Hamiltonian for the symmetric case is

HHS
S 5(

q
(
k2z

F 4pe2\L23

~]/]v!~e2'sin2u21e2zcos2u2!G
1/2 eiq•r~aq1a2q

† !

Aq21k2z
2

&/@e1z
2 k1

2sinh2~k1d/2!1e2z
2 k2z

2 cosh2~k1d/2!#1/2

3H e1zk1sinhS k1

d

2D sinFk2zS uzu2
d

2D G1e2zk2zcoshS k1

d

2D cosFk2zS uzu2
d

2D G , uzu.d/2

e2zk2zcosh~k1z!, uzu,d/2.
~25!

The sum is overk2z ~not overk1z) and should be done only for thosek2z which satisfye1'e1z.0. For the antisymmetric case

HHS
A 5(

q
(
k2z

F 4pe2\L23

~]/]v!~e2'sin2u21e2zcos2u2!G
1/2 eiq•r~aq1a2q

† !

Aq21k2z
2

&/@e1z
2 k1

2cosh2~k1d/2!1e2z
2 k2z

2 sinh2~k1d/2!#1/2

3H sgn~z!H e1zk1coshS k1

d

2D sinFk2zS uzu2
d

2D G1e2zk2zsinhS k1

d

2D cosFk2zS uzu2
d

2D G J , uzu.d/2

e2zk2zsinh~k1z!, uzu,d/2.
~26!

Finally, based on the procedures of Sec. III, we find that the PR modes have the following interaction Hamiltoni
symmetric and antisymmetric cases, respectively:

HPR
S 5(

q
(
k2z

F 4pe2\L23

~]/]v!~e2'q21e2zk2z
2 !G

1/2

eiq•r~aq1a2q
† !&/@e1z

2 k1z
2 sin2~k1zd/2!1e2z

2 k2z
2 cos2~k1zd/2!#1/2

3H e2zk2zcosS k1z

d

2D cosFk2zS uzu2
d

2D G2e1zk1zsinS k1z

d

2D sinFk2zS uzu2
d

2D G , uzu.d/2

e2zk2zcos~k1zz!, uzu,d/2,
~27!

HPR
A 5(

q
(
k2z

F 4pe2\L23

~]/]v!~e2'q21e2zk2z
2 !G

1/2

eiq•r~aq1a2q
† !&/@e1z

2 k1z
2 cos2~k1zd/2!1e2z

2 k2z
2 sin2~k1zd/2!#1/2

3H sgn~z!H e2zk2zsinS k1z

d

2D cosFk2zS uzu2
d

2D G1e1zk1zcosS k1z

d

2D sinFk2zS uzu2
d

2D G J , uzu.d/2

e2zk2zsin~k1zz!, uzu,d/2.
~28!
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Onceq and k2z are given,v is determined. Here,(k2z
de-

notes a sum over thosek2z that satisfye1'e1z,0. As dis-
cussed in Sec. III, the PR modes do not exist in the AlN/G
system.

V. CONCLUSION

The Hamiltonians for the Fro¨hlich interactions presente
in this paper are essential for describing a broad class
carrier–optical-phonon interactions in single- and doub
heterointerface wurtzite-based structures when it is neces
to model such interactions in the vicinity of heterostructu
interfaces. More specifically, for wurtzite structures w
relatively little anisotropy between the parallel and perp
dicular dielectric properties~with respect to thec axis!, it is
clear that phonon confinement effects are important for
of
-
ry

-

-

tances within about 10 nm of a heterostructure interface.4 For
the case of anisotropic dielectric properties, it is expec
that confinement effects will occur on roughly the same
mensional scale but it is crucial that the exact theory dev
oped in the present paper be taken into account including
possibility of PR modes. Thus, our results will be valuab
for understanding the electronic and optical properties
wurtzite-based heterostructures that advanced gro
technologies8,10,11are currently making available for both ba
sic and applied studies.
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