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Analysis of dichroism in the electromagnetic response of superconductors
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The absorption of polarized light in superconductors is studied within the framework of the Bogolubov—de
Gennes approach to inhomogeneous superconductors in magnetic fields. Several mechanisms which give rise
to a polarization-dependent absorpti@e., dichroism in superconductors are analyzed in detail. The relation
to the absorption of unpolarized light in superconductors and to the absorption of polarized light in hormal
conductors is investigated and several effects, not known from either of these cases, are found. These effects
arise from the interplay of broken chiral symmetry, which produces dichroism, with the superconducting
coherence. One potential source for dichroism, namely spin-orbit coupling, is investigated numerically for a
simple model superconductdS0163-18208)01122-9

[. INTRODUCTION lanthanum Z=57), platinum g=78), etc.
In view of the fact that a qualitative and quantitative un-

In this paper we present a systematic approach to thderstanding of dichroism in normal and magnetically ordered
polarization-dependent absorption of light in superconductmetals necessarily requires a relativistic theory, it is of obvi-
ors. The phenomenon that left-handed circularly polarizeaus relevance for the present investigations to employ a rela-
light and right-handed circularly polarized light are absorbedivistic theory of superconductivity. Such a theory has re-
differently by many substances is commonly known as dicently been constructéd* From this theory the full form of
chroism. Dichroism in the presence of an external magnetithe spin-orbit operator in superconductors is known to con-
field is usually referred to as the Faraday effect or the Kerttain not only gradients of the lattice potentiak is the case
effect, depending on the geometry of the experiment. Difor the conventional spin-orbit operajpbut also gradients
chroism in the absence of external magnetic fields is ofterf the pair potential of the superconductor. The latter type of
referred to as spontaneous dichroism. It is found in magnetispin-orbit coupling is referred to as the anomalous spin-orbit
cally ordered systems, such as iron, but also in systemsoupling(ASOC).
which break inversion symmetry, such as sugar. In the In the present theory of dichroism we take both types of
present paper we use the term dichroism to refer to all situspin-orbit coupling into account. Several other potential
ations in which the absorption of light depends on its polarsources for dichroism in superconductors are also considered
ization. in detail. To this end we use a perturbative approach, based

In normal(i.e., not superconductingnd magnetically or- on the Bogolubov—de Gennes equations in the presence of a
dered metals these effects have been the subject of intensgagnetic field. The various sources for dichroism are in-
study for many yeargSee Refs. 1 and 2 for recent reviews. cluded via first-order stationary perturbation theory for the
It is by now unanimously accepted that dichroism in thesequasiparticle wave function. The resulting perturbed single-
systems arises mainly from the simultaneous presence @farticle states are then, in a second step, used as unperturbed
spin-orbit coupling and the spin magnetization. Modern cal-states between which the transitions caused by the polarized
culations of the optical response to polarized light are therelight take place. The absorption of light is treated by a gen-
fore usually performed in a relativistic framewalrk. eralization of the standard golden rule of first-order time-

However, similar calculations for superconductors do notdependent perturbation theory. First results from this inves-
exist yet. It is the purpose of the present work to provide aigation were already presented in a recent paper.
basis for such calculations and to present some first results. The present paper is organized as follows: Sec. Il A con-

The motivation for this investigation arises partly from tains an outline of the perturbative approach which we em-
the fact that several recent experiments report the observgloy for the calculations. The unperturbed system is de-
tion of dichroic phenomena in superconductordand partly ~ scribed by the spin-Bogolubov—de Gennes equations, which
from the fundamental interest in the role of the spin-orbitare a generalization of the conventional Bogolubov—de
coupling in superconductofst! Spin-orbit coupling, being a Gennes equations, designed to treat spin-dependent phenom-
relativistic effect of second order w/c, becomes more im- ena. Since perturbation theory has up to now been developed
portant in systems with heavy elemeriggomic numberZ only for the conventional Bogolubov—de Gennes equations,
=40) in the lattice"®> Many interesting superconductors, e.g.,we present the corresponding generalizations for the spin-
the heavy-fermion compounds and the high-temperature siBogolubov—de Gennes equations in some detail. The result-
perconductors, do indeed contain very heavy elements, sudhg expressions can be used for any type of perturbative cal-
as mercury Z=280), uranium Z=92), bismuth Z=83), culation for the spin-Bogolubov—de Gennes equations, not
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only for investigations of dichroism. Next, we explicitly starting point for many microscopic investigations of super-

specify the perturbations to be included in our approach t@onductors(Refs. 14—-25 among othersHowever, for the

dichroism. These include the above-mentioned spin-orbipresent purpose their form is too restrictive because we need

terms, the effect of orbital currents and, if necessary, orderto incorporate the spin degrees of freedom of the quasiparti-

parameter inhomogeneities. cles and spin-orbit coupling terms. There exists a generaliza-
In Sec. Il B we employ the perturbative expressions totion of the BAGE in which these can be included properly,

derive a formula for the power absorption in superconductorshe spin-Bogolubov—de Gennes equatid88dGE. They

as a function of the polarization of the light. In Sec. Il C read*16:26:27

several distinct mechanisms for dichroism in superconduct-

ors are identified. A detailed analysis of the physics behind hy 0 0 A Urng(T)
the various mechanisms is performed and the circumstances 0 h, —A 0 umg(r)
under which they can produce dichroism in superconductors . * ine
are discussed. 0 —A* —-hy 0 Ving(F)
Section 1l contains model calculations for one of these A* 0 0 -—h7 U na{T)
mechanisms, namely the conventional spin-orbit coupling.
Using simple approximations for the relevant matrix ele- Utng(T)
ments and the density of states, which are discussed in Secs. _ Upne(r)
Il A and Il C, respectively, we draw further analytical con- Eno Ving(r) |’ ®)

clusions about the physics behind this mechanism in Sec. U na(r)
Il B, and evaluate the formulas numerically in Sec. Il D.

The numerical results are analyzed as functions of temperd‘nere

ture, frequency, and magnetic-field strength. _

We e?npha)s/ize that t%]ese calculationg are not meant as h-=Mo+ 75B. @
quantitative predictions for experiments, but rather as modet=+1 for h; and7=—1 forh . We have already included
calculations illustrating the analytical results of the previousthe Zeeman coupling of the spins to the external magnetic
sections and exhibiting surprisirgualitative features of di- field B (which is assumed to be spatially constant and to
chroism in superconductors. The paper ends with a brief diggoint along thez direction, but not yet the coupling of the
cussion of some recent experiments in light of our theory inorbital degrees of freedom to the vector potential and spin-

Sec. IV and a summary in Sec. V. orbit coupling. The latter two effects are included as pertur-
bations, in Sec. Il A 3.
Il. PERTURBATIVE APPROACH TO DICHROISM We take these equations to describe the unperturbed su-
IN SUPERCONDUCTORS perconductor. They can be obtained from a spin-dependent

Bogolubov-Valatin transformatiolf:'62627 Alternatively,
they are found as the nonrelativistic limit of the relativistic
1. The spin-Bogolubowde Gennes equations Bogolubov—de Gennes equatichs! They relate to the con-

. . _ . ventional BAGE in exactly the same way as the Pauli equa-
The proper microscopic description of inhomogeneous SUsion relates to the Schdinger equation.

perconductors is provided by the Bogolubov—de Gennes \yq now summarize a number of properties of the SBAGE

A. Perturbation theory

equationsBAGE which are essential for the following considerations. To ev-
hg A(r) (un(r))—E (un(r)> " ery eigenvector
ATy =g len(0)] ==l o0 Uinl)
where Ujno(T)
UTr‘IO'(r) (5)
i 0 nolD)

p
ho=—+v(r)— 2
° om o= p @ of the SBAGE with eigenvalu&,,>0 belongs a second

, . . o ) eigenvector
is the normal-state single-particle Hamiltoniak(r) is the

pair potential, and the,(r) andv,(r) are particle and hole Usng(r) Uing(r)\ *
amplitudes. The dependence of the pair potenti®(r) de- U alr) U no(r)
scribes the center-of-mass motion of the Cooper pair. The vim(r) | T U (r) (6)
internal degrees-of-freedom of the pair would be described ino ino
U no(r) Ujno(r)

by the dependence of the pair potential on the relative coor-
dinate of the two electrons. This would require the use of thewith eigenvalueE, ;= — E,,,. The negative energy solutions
nonlocal version of the Bogolubov—de Gennesdescribe bound states of the Bogolubov quasipartitiego-
equations*°In the present paper we limit our attention to lons), or, equivalently, electrons condensed in Cooper pairs.
the local version of the Bogolubov—de Gennes equation, aBelow we consider pair-breaking processes as the dominant
specified above. This means that we can not adequately trespurce for absorption at low temperatures. These processes
the effects of the internal degrees of freedom, such as thean simply be described as transitions from a negative en-
difference betweers-wave andd-wave superconductors. ergy state of the forni6) to a positive energy state of the
The local Bogolubov—de Gennes equations have been tHerm (5).
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In the absence of all spin-dependent interactions the

Ma,no
SBAGE rigorously reduce to the BAGE. The relation between Urno(1)=U% (N + >, 5H—u3ma(r)
the respective eigenfunctions is simply,,(r)=&,,un(r) {ma) Enoc—Ema
andv®, (r)=08,5v,(r), whereo andr are+ 1. The inclu- _
sion of the Zeeman term in E¢3) does not change these sHMnT
relations, as long aB is spatially constant. If the pair field + E. — E_uTa(r) ' (10
is spatially constant as well, the spatial dependence of the o e
eigenfunctions of the SBAGE is governed by the normal- ma.no
state Hamiltoniarhy. The eigenfunctions are thus propor- Um(r(r):ugna(rH > U?ma(r)
tional to normal-state eigenfunctions,, which are defined (ma) | Eng— Ema
throughhy¢,,= €,¢,. The constants of proportionality are A#”‘”
given by the BCS amplitud&su, : = 1/2(1+ €,/E,) and SHMano
vn:=V1/2(1- €,/E,). The full form of the eigenfunctions + E g’ mall) (13)
of the SBAGE under these circumstances thus is no  Tme

with corresponding equations for,, andv ;,,. dH can be
any perturbing 44 matrix and may thus contain perturba-

0 1 €n tions of the lattice potential and of the pair potential. All
Urno(F)=Undorn(r)=\/ 5| 1+ E 8gr¢n(r), (1) Jabels a) refer to positive energy states of the fokB).
" The barred labels, such amé), refer to negative energy

states of the fornt6). For notational simplicity we have sup-
pressed an upper index 0 on the energies, although they are,

0 _ _ _ 1 €nl o of course, unperturbed energies. The change of the energies
Vme(1)=00ndrsdn(r) =0 2( 1 n) Orsbal1), is, to first order, given by the usual resd,,= SH"”"’.

(8) A time-dependent perturbation gives rise to transitions
from one state of the system to another. We take the pertur-
bation to be

and the corresponding eigenvalue is given by
sh(t,r)l 0
oH(LT) 0 —eh(t,n*1)’ 12

Eno=En+ ougB= e + A%+ ougB. (9)
where we condensed ax# matrix in 2x2 form (I is the
2X2 unit matriy and assumed that there is no time-

If the pair potential is not spatially constant, the spatial deyependent perturbing pair potenti@uch a potential would
pendence of the SBAGE eigenfunctions is not determined byppear off the diagonal in E412) and could, if necessary,

the normal-state Hamiltonian anymore. In this case the pale included without difficulties sh(t,r) is of the general
ticle and hole amplitudes are not proportionaldg(r), but  form

have to be determined by solving the full SBAGE. Equations

(3)—(9) define the unperturbed superconductor. In the next Sh(t,r)=sh(r)e''+ sh(r)Te 't (13
step we develop perturbation theory for such superconduct- N - o N
ors. The transition probability per unit time for a transition from

the single-patrticle stateng) to (n'o’) is then

2. Perturbation theory for the spin-Bogolubewde Gennes

equations wE

2m 2mo.n’ o’ |2
n0'~>n’o":7|8H ’ | 5(En’o’_EnU+ﬁw)i
Perturbation theory for the conventional BAGE has been (14
developed by de Gennésand, in a slightly different formu-
lation, by Kimmel and co-worker&-?° While being equiva- R
lent to the former approach on the exact level, the latter W, ./ 28(Epr g —Enpy—h ),
approach has the advantage that in every order of approxi- (15)
mation the formulas are of the same structure as in conven-
tional perturbation theory for the Sclinger equation. In  where the first expression describes emission and the second
the following, we generalize the latter approach to theabsorption. The labelao,n’ o’ refer to arbitrary solutions
SBdGE, where we allow for perturbations of the normal andof the SBAGE. There is one important difference to the con-
of the pair potential and discuss both stationary and timeventional golden rule: the matrix elements in E¢s4) and
dependent perturbations. Since the derivation of the formulagl5) are not simply those of the perturbatigh2) and its
is very similar to that of perturbation theory for the Schro Hermitian conjugate, but those of
dinger equation and to that for the conventional BdGE, we
only present the final results and point out the main differ- ~ [oh(n)l 0
ences to the conventional case. |0 —shinm (16)
The wave functions in the presence of a stationary pertur-
bation 6H are, to first order in5H, given by and

= 2_7T| 5’7:["'“0,[1’0"
h
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sh(r)™ 0 agonal and contains gradients of the pair potential with re-

0 — Sh(n)*1)” (17)  spect to the center-of-mass and relative coordindts
ASOC and R-ASOC In the following calculations only the

which differ in the location of the conjugate operators. TheC-ASOC term is included. This amounts to neglecting the

reason for this is that the coefficient &t which gives rise  internal degrees of freedom of the two electrons in the Coo-

to emission, and that @& '“* which produces absorption, are Per pair and retaining only the spin-orbit coupling due to the

mixed already in Eq(12). center-of mass motion. The perturbation corresponding to
The above formulas can of course be used for any kind ofhe SOC and C-ASOC terms is given by

perturbation of the SBAGE and should therefore be useful

not only for investigations of dichroism, but for a large va- @ f

riety of calculations. 6H :4m2c2

571 =

3. Explicit form of the perturbations

In specifying the SBAGE eigenfunctions according to Egs. (o= Vu(r)xp)l (o-VA(r)xp)(ioy)
(7) and (8), we assumed the pair potential to be spatially [(o-VA(N)Xp)(igy)]T  —(a Vu(r)xp)*1
constant. While this is a good approximation for supercon- (21
ductors with a large coherence length, it is inadequate for . .
those with a short coherence length and for superconductingurther terms could be included #H?), e.g., the conven-
heterostructures. In order to take this into account we writdional and _anomalous Darwin teris] and the

the full pair potential as (g%/2mc?) nA? term which goes along with E420) to sec-
ond order of ¢/c). Both of these are known not to produce
A(r)=A+A(r), (18) dichroism in the normal state and are therefore not included

o here among the relevant perturbations. We return to this
whereA is a suitable average df(r) (e.g., taken over a unit point in the discussion of existence criteria in Sec. Il C 2.
cell) andA(r) is the local deviation from that average. In the  1he full (stationary perturbation to be considered in this

SBAGE framework it is included by replacimy(r) by Ain paper is the sum of all three terms
the unperturbed SBAGE and adding the term

SH=6HO+sHM + 5H?), (22)
SHO— 0 foyA (19 The upper indexk, of each termsH® refers to the order in
(i&y)*Z* 0 1/c of the respective term. The relative magnitude of the

three terms depends on the particular system under study and
To simplify the notation we have employed the Pauli matrixdoes not necessarily correlate with this order.

oy to write the 4<4 equation(19) as a 2<2 equation. For If the pair potential inhomogeneit(r) is small enough,
small A(r), 6H® can be treated as a small perturbation.the ASOC term, which also contai(r), can be dropped.
[The case of larg&(r) is discussed below E§22).] If it is large, A(r) must be included already in the unper-

~ InSec. A1 we also assumed that the magnetic fi2ld turbed Hamiltonian. The latter situation arises, e.g., for su-
is spatially constant and acts only on the electron spins. Wperconducting heterostructures and in the vortex phase of a
do not consider the case of an inhomogeneous external magpe-I1 superconductor. The pair potentis(r) near the vor-
netic field. However, even for constant fields, there is a coutices is strongly inhomogeneous and the deviations from its

pling of the or_bital deg_rees of fre_edom of the electron_s to t_heaverageK are so large thak (r) cannot be considered as a
vector po_tentlal. _To first order in the vector potential this gmq perturbation. With the full pair potential in the unper-
coupling is described by the term turbed Hamiltonian, the spatial dependence of its eigenfunc-
- tions is, of course, not determined by normal-state eigen-
(A-p)1 0 20 functions anymore. As a consequence, the particle and hole
0 —(A-f))*Jl ' (20 amplitudes in Egs(7) and(8) must be found by solving the
SBAGE. The ASOC term then is a first-order perturbation,
where B=(VxA), and p is the momentum operator. We Just as the conventional SOC. Indeed, the vortex lattice is
chooseA in the Coulomb gauge, so th&tA=0. sH®) js  among the situations in which this term is expected to be
considered a small perturbation as well. For realistic vectof0St Important.
potentials this is certainly justified. In the case of the con- [N order to facilitate the treatment of strongly and weakly
ventional BAGE this is the standard way to treat vector poinhomogeneous situations, we will keep batir) and the
tentials, for instance in deriving the Meissner efféct. ASOC term in the expression for the perturbation. Depend-
Finally, we also consider the spin-orbit coupling as aing on the particular system under study, one of the two
small  perturbation. The relativistic  theory  of terms can be dropped in the final result, E84).
superconductivity ! predicts that there are two distinct  The time-dependent perturbation is given by the interac-
types of spin-orbit couplingSOQ in superconductors. One, tion of the polarized light with the quasiparticles. It is of the
the conventional SOC, appears on the diagonal of thsame form as the stationary perturbati®id V), but with a
SBdGE and contains gradients of the lattice potent{@). time-dependent vector potenti&l (t,r). The electromag-
The other, the anomalous SABSOC), appears off the di- netic radiation is specified by its electric-field amplitugg

9
mc

SHW = —
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the frequencyw, the wave vectory, and the polarization 1
vector ¢, leading to the vector potential IM[oyy(w)]= E[P(w,q)— P(w,er)] (26)
0
Eo and
A(t,r)=—= —ee'® It cc. (23
2 w

1
R oy(w)]= ——[P(w,€)+P(w.&)],  (27)
In the Coulomb gaugeV\{(- A, =0), éh(r), as needed in Egs. VE
(13), (16), and(17), is given by whereV is the sample volumeR(w, €) is the power absorp-
tion for polarization e and frequencyw, and E, is the
e Eg . . electric-field strength of the light. In the frequency range
sh(r)=— >mi —e 'Tep, (24)  relevant for pair breaking, the dipole approximation is gen-
@ erally valid and will be used exclusively. For light with left-

handed polarizatiogLHP) we have
where—e is the charge on the electron. We assume perpen-

dicular incidence of the light, so thegtis parallel to the static 1 1
magnetic fieldB and perpendicular to the sample surface, e=—1]1, (28)
while € is a unit vector in the plane of the surface. This V2 0

geometry corresponds to very common experimental setups. = o o
while light with right-handed polarizatiofRHP) has a po-

i ) . larization vector
B. Absorption of polarized light in superconductors

The quantity we use to describe the interaction of light 1 1_
with a superconductor is the power absorptfnlit can be e=— “1]. (29
calculated within the above perturbation theoretical frame- V2 0

work by evaluating Equations(26) and (27) hold regardless of whether the sys-

tem is superconducting, magnetic, or in the normal state,
p— E—E)F(E)[1—f(E) WA ., 25 because the microscopic properties of the system QO not en-
; (B~ E)T(E (B Iwis @9 ter the derivatiori* Similar formulas can also be derived for
noncubic  crystals® or beyond the dipole
. L. . . . H H ,36,37
wherei andf denote the initial and the final single-particle approxmatlorﬁ . _
stands for the Fermi function. The power emission can b&liagonal elements of the conductivity tensor is nonzero only
calculated in a similar way from/E_; . In the following we if light with left- and right-handed polarization is absorbed in
i—f- . . .
will consider only power absorption. The emittéstattere a d'ffere”F way. Thes_e elements thus provide a d|re(_:t mea-
power, being diluted over the entire solid angle, is usuallySure for d'Cth'S”? which can_be used to relate experlmentgl
not measured experimentally. Furthermore, as long as sults to theoretical calculations. For the case of magnetic
consider the ground state or situations in which only a fewpNd n(r)]rmal metaRIsftr12ey %rehroutmelydqsed folr this Su;p(l)sfe.
excited single-particle states are occupied, absorption is by>€€ the review Ret. 2 and the proceedings volume Ret. 1 for
far the dominant process. urther discussion and applicatiops.

At sufficiently low temperatures almost all electrons are DY Substituting Egs(24) and (17) in Eg. (15 and the

condensed in Cooper pairs. The most important mechanisfeSUlt in E4.(25), we arrive at

for absorption under these circumstances is pair breaking. Q2E2
TE Lo

Scattering from unpaired electrofise., from thermally ex- P(e)= f(—ENF(—E x| K

cited quasiparticloscan safely be neglected at low tempera- () 2mlw ,\% (=B f(=En)l(unl € ploy,)
tures. The inclusion of single-particle scattering normally .

produces only some additional absorption below the absorp- +(vn| € plug)[?S(En+En —fiw). (30)

tion edge® Therefore we will limit ourselves to considering , o
Here we employed the particle-hole convention, i.e., all en-

only pair breaking(i.e., bogolon creationas the mechanism : - h imited o
for absorption. It should be stressed that neglecting emissioff 9/€S areé positive, the sums are limited to positive energy

processes and scattering from broken pairs is physicallyjué-'ngle'part'de states and the explicit form of the negative

tified, but in no way necessary for the further development.energy states, as given by H§) was used. In w.riting Eq.
(30) we used a short-hand notation for the matrix elements.

Within the linear-response regime, the absorption of light'~> . : . : .
. . P g . P g Rertten out in complete detail, the first matrix element is
is generally described by the conductivity tensorExpres- egiven by

sions for the conductivity tensor in superconductors ar
known in a number of different approximatiotfs.>3 T4 %
L " 3 uTn(r(r) % UTn’tr’(r)

For any system the elements of the conductivity tensor (uy|€*plvy,)= [ d°r un () 7€ Vo ()
can be related in a simple fashion to the power absorption for lno in'e

. o = ; . (3D
various polarization directior. For systems with cubic
symmetry one finds within the dipole approximatiaps 0, and the second one reads
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. 3 [Vina(N)| 7 Uppror(1) | * sents that of the condensed quasiparticles. The matrix ele-
(vn| €* P|UNr)=f d r(v (r)) i_E*'Vr(u , ,(r)) : ments of the stationary perturbations are contained in the
tno in'e (39  Quantities
If we now substitute the unperturbed solutions to the T =usUphio+ U pdl o+ v Und T = v phi "
SBAGE,u?,, andv?, , as given by Eqs(7) and(8), in Egs. (35
(31 and(32), we can calculate the power absorption in the d
superconductor as a function of polarization. Evaluating the
result once fore given by Eq.(28) and once fore given by
Eq. (29), then leads to a direct measure for dichroism, and,
according to Eq(26), an expression for the off-diagonal el- (36)
ements of the imaginary part of the conductivity tensor. Prowhere
ceeding in this way it is immediately found from EO)
that o oh? iqh
_ _ _ _ hao_4im202<n|[vvxv]z|m>+ mC<n|AV|m>'
AP= 2 [py™ (PR™)* =P (py")*]=0, (33 (37)
nn’
h*nM=—pMm (38

go?

*Nm

- nm_ ni *En * Nl
The=UnUmNge—UnUnd Houmd = +v,ughs =,

i.e., there is no dichroism. Thp!(' in Eg. (33) are normal-
state matrix elements of Cartesian components of the mo-

mentum operator. A barred index stands for the complex nm_ oh? <

conjugate normal-state wave functiog;(r):= ¢,(r)* (m—4im202(nl[VAXV]Zlm)+<n|A|m>, (39)
= ¢,(—r). The latter equality holds if the original normal-

state Hamiltonianhg, does not break time-reversal and in- 2

version symmetry®*9As a consequence all momentum ma- g nm= (n|[VA* X V],Jm)+(n|A*|m). (40)
trix elements are real, even if the individual wave functions 7 4im?c?

are not, andAP vanishes identically. This result, which A is the vector potential of the static magnetic fi@dand

holds independently of the explicit form of the normal—stateshomd not be confused with that of the light wav,

wave functions, was of course to be expected. Indeed, it 'ﬁ\lormally A_(t,1)<A(r).] The matrix elements of the
well known from normal and magnetically ordered metalstime-depe’ndeLnt’perturbat.ion enter through

that to find dichroism one needs to include mechanisms

which break chiral symmetry, so that the system becomes cm :Zi[pﬁn'pmﬁ'_pFn'pmﬁ' (41)
susceptible to the difference between left- and right-handed nn’ y Px x Py L
polarization™?3* which generalizes the term found in E&3). The combina-

In the next step we include all the stationary perturbationsion of momentum matrix elements in E@1) is typical of
which were discussed above in order to find out if, and undedichroism and also appears in many approaches to dichroism
which circumstances, these produce dichroism in superconn the normal state and in magnetically ordered
ductors. To this end we substitute E¢E9), (20), and(21) in  materials?3*43540
Eqg. (22). Equation(22) is then used, together with EqY)
and(8), in Egs.(10) and(11) to determine the form of the pP(N,N")=Uqvn = v,y (42)
perturbed wave functions. These wave functions are, in And
next step, used amperturbedsingle-particle states with re-
spect to the time-dependent perturbation in E88)—(32). (N,n")=UnUy +0 0, (43
Multiplying out all terms to first order irfH we find

are coherence factors, with the BCS amplitudgsndv, as
AP:=P(€.)—P(e€r) defined in Eqs(7) and(8). These are the coherence factors
normally found in treatments of optical absorption in

me’E] , B superconductor®*! The additional factorai,v,, etc., in
Y, E p(n,n") (= Eno) f(—Enry) Egs.(35) and(36) result from the effect of the coherence on
e the stationary perturbations.
X 8(Eny+Ens—fiw) We can rewrite Eq(34) in a more compact form, by
_ noting that, due to the ansaf?), (8), the amplitudesi, and
s p(m,n")C, N [(mn")Cp, v, are solutions of the BdGEnot the SBAGE They have
X R TF + ~ 1, -
< E—E. mo E.1E, mo the property that if
(34 Un(r) _ Unp
o)) o, én(r) (44)

where Re denotes the real part. All sums are restricted to

single-particle states with positive energigsarticle-hole is a solution with eigenvalug,,, then
convention. The first term under the sum an represents

the contribution of the broken paif$or this term the case u;(r)) :( ~Un
E=E, is excluded from the sumwhile the second repre- vn(r) Un

$ol1)* :( _u”) gur) (45
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is a solution with eigenvalue-E,. [This is a well-known energy gap and the coherence factors. We present numerical

property of the BAGE, which is the counterpart to E).for  results for this mechanism in Sec. Il D.

the SBAGE] From the above physical explanation it is seen that the
Hence the second term under the sumnonin Eq. (34) presence of afexternal or internalmagnetic field is a nec-

can be written in the same form as the first term, with everyessary condition for the mechanism to work. This is easily

index m replaced bym. It represents the contribution of the Verified from the equations. In the absence of any type of
negative energy states. We can therefore alljyto range ma_lgnetlc field, th'e energies in E®4) do not depend on the
over all m, not just over those with positive energies andSPin. The only spin dependence then comes from the factor
find, after slight rearrangements, in front of the matrix element&7). The sum over the spins
then reduces to
me’E; ! !
AP= oy 3 p(n,n")p(m,n )Re[Cnmn,Tng]

me nn'e M En_Em o=*1

M

o=0. (49)

XT(—Epe)f(—En) 8(EngtEng—fiw), (46 Hence, to have dichroism from the spin-orbit coupling, the
presence of magnetic fields and thus of broken time-reversal
where the sums on andn’ are still restricted to positive jnvariance is mandatory. This is confirmed by many investi-
energies. In order to obtain this convenient and compact velgations on normal and magnetic materfafs.
sion of Eq(34), the partiCIe-hOIe convention is used Only for Mechanism 2 is the anomalous Spin_orbit Coup"ng

En andE,, but not forE,. (ASOC)produced by gradients of the pair potenfigA(r).

The arguments of thé and Fermi functions, in Eq$34)  The relevant matrix elements for this mechanism are
or (46) imply that two quasiparticles, one with spin up, the

other with spin down, are created by the absorption process. o2
This expresses the fact that absorption of light does not in- ———(n|[[VAXV],|m) (49
duce spin flips, so that the original spin direction of the par- 4im*c

ticles in the Cooper pair is not affected by breaking the pairand the corresponding term containitg appearing in Egs.
(This is in contrast to the paramagnetic pair breaking dis{39) and (40). The ASOC term produces dichroism for the
cussed below. same reason as the SOC term and also requires the presence
of magnetic fields. The temperature behavior of this term is
C. Analytical results very different from that of the SOC term because the pair

- . . potential itself is strongly temperature dependent. Moreover,
Before explicitly evaluating the above formulas numeri the coherence factors for this mechanism, in H88) and

cally for a simple model we first want to demonstrate that a(36) are different from those for the SOC mechanism
number of general conclusions follow already from their Since both the SOC and the ASOC mechanism depend on
structure. : . : :
gradients of the respective potentials, they do not operate in

homogeneous systems. On the other hand, the more inhomo-
geneous the system, the more important they become. The

On the basis of Eq434) or (46) we can identify several ASOC term, for instance, being produced by gradients of the
distinct mechanisms for dichroism in superconductors. pair potential, becomes large in the vortex state of a type-I

Mechanism 1 is the conventional spin-orbit coupling superconductor and for superconductors with a short coher-
(SOC)produced by gradients of the lattice potenfal(r). ence length.

1. Mechanisms for dichroism in superconductors

The relevant matrix element for this mechanism is Mechanism 3 is provided by orbital currentghich flow
in the presence of the magnetic fidd=V X A. The relevant
oh? matrix element is
———(n|[Vu X V],|m), (47)
4im2C2< |[ ]Z| > Iqﬁ

which contributes td)" andh*"™ in Egs.(37) and(38).

This mechanism is easy to interpret physically: the mag-The physical interpretation is that these currents, circulating
netic field breaks time-reversal invariance and leads to a fiin the plane perpendicular to the magnetic field, give the
nite spin magnetization. Since the initial single-particle stategnaterial a definite handedness and hence result in dichroism.
are occupied in pairs with total spin zero, the main contribu-This mechanism is known also from the normal state, where
tion to this magnetization arises from the final states. That is usually much smaller than the SOC mechanism and
spin-orbit coupling converts the broken orientational symmetherefore neglected in most calculations. In superconductors
try in spin space into a broken chiral symmetry in real spacethe screening currents which give rise to the Meissner effect
The polarization of the light is sensitive to the chiral sym-are stronger than typical screening currents in normal metals.
metry of the system, hence dichroism arises. Current-induced dichroism may thus be stronger in super-

This mechanism is known from normal and magneticallyconductors than in normal conductors. Indeed, this type of
ordered metals to give rise to the Faraday and Kerr effectdichroism in superconductors was already observed experi-
and to x-ray magnetic dichroism, respectivef/We thus  mentally. We discuss these experiments in Sec. IV.
find that the same mechanism is operative in superconduct- Since all of the above mechanisms require the presence of
ors as well, strongly modified, though, by the presence of the magnetic field, we conclude that dichroism in the Meissner
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phase is a surface effect because in the bulk the magnetic Dichroism produced by order parameters which break
field does not coexist with superconductivity. The region ininversion- or time-reversal symmetry was discussed previ-
which coexistence is found depends on the penetration deptbusly by several authors. In Ref. 45, a phenomenological
The larger the penetration depth, the larger the region of thanalysis of this mechanism for the high-temperature super-
sample in which dichroism is produced. In the vortex phaseonductors is performed. Our analysis provides possible mi-
the field penetrates into the bulk of the superconductor androscopic mechanisms underlying the phenomenological
coexists with the order parameter near the vortices. Evertreatment of Ref. 45. In Ref. 46, the breaking of these sym-
vortex is thus a source for dichroism due to each of the threenetries is discussed in the context of collective modes of the
above mechanisms. order parametefan effect we do not discuss in the present
Mechanism 4 is caused by inhomogeneities of the supepapej. In Ref. 47, the effect of broken chiral symmetry in
conducting order parameter itselfhe relevant matrix ele- the normal state of superconductors is analyzed. This effect
ments are follows in our framework if for the wave functiong,(r)
_ _ one uses the eigenstates of a normal-state Hamiltonian with
(n|A|m) and (n|A*|m). (51)  broken chiral symmetry. In this case the momentum matrix
elements are complex, and dichroism is found from B68)
) e i Qé]ready in zeroth order, i.e., even in the absence of the above
AP we first look at the quantityC_,, as defined by EQ. four mechanisms.
(41). As mentioned above, if the original normal-state  Mechanism 5 is therefore provided by a normal state
Hamiltonian does not break time-reversal and inversion symwhich already displays dichroismn the present paper we
metry all momentum matrix elements are real. Under thesgocus on the superconducting state and do not discuss further
circumstance£nmn, is purely imaginary. Since in Eq34)  this type of normal-state-induced dichroism.
the real part of the expression under the sunmors taken, In conclusion, we have identified five distinct mechanisms
Cp . must be multiplied by a quantity with a finite imaginary for dichroism in the superconducting phase. Two of these
part in order to lead to a finita P. Since the matrix elements Mechanismsi1) and(3), are already known from the normal
for the SOC, ASOC, and orbital mechanisms explicitly con-State, strongly modified, though, by the presence of the su-
tain a factori, this condition is normally satisfied in these Perconducting order parameter. Mechanis@s (4a), and
cases. The matrix elements of the pair potential are easil{#?) On the other hand, exist only in superconductors. One

seen to be purely reghnd thus not to produce dichroiif mechanism of each type, namély and(2), is of relativistic
origin, arising from the interplay between relativistic sym-

A* (1) =A(-r). (52) metry breaking and superconducting coherence. Mechanism
(5) operates only in superconductors in which the normal
The condition(52) is violated if A(r) is real and breaks State already breaks time-reversal or inversion symmetry.

inversion symmetrymechanism 4aor if A(r) is symmetric
under inversion, but complex, in which case it breaks time-
reversal symmetrymechanism 4pb We can extract fror_n the gengral formula a number of

Order parameters which break inversion symmetry, while ‘€Xistence criteria” Wh|ch_ dete_rmlne under which circum-
the underlying normal-state Hamiltonian does not, are exStances one can expect dichroism at all. From the above dis-
amples of “unconventional order parameters” in the sense&ussion of the mechanisms we already have _
that the superconducting phase has different spatial symme- EXistence criterium 1There is no dichroism due to spin-
tries from the normal phagdé The fact that broken inversion ©rbit coupling in the absence of magnetic fields.
symmetry can give rise to dichroism is well known, e.g., in  EXistence criterium 2'_rhere is no dichroism due to BCS-
chemistry, where molecules without a center of inversion ardyP€ order parameters, i.e., order parameters which are real
called “optically active” since their optical properties de- @nd spatially constant. . .
pend on the polarization of the light. In principle, inversion  EXistence criterium 3Any perturbation whose contribu-
symmetry is also broken at every surface. However, as Ion(g?n to Egs.(37)—(40) is purely real does not give rise to
as the light penetrates sufficiently deeply into the material tglichroism.. o _
sample the bulk properties, this contribution is expected to The third criterium applies in particular to the normal and
be very small. This expectation is corroborated by detailednomalous Darwin terms, containiWgfv (r) andV?A(r). If
investigations of dichroism in the normal state, where thisthe potentials)(r) andA(r) are real and inversion symmet-
type of surface-induced dichroism was not found to play adiC, these terms lead only to real contributions under
appreciable role in explaining experimental observations. R€i ...] in Eq. (34) and therefore do not produce dichro-

A complex order parameter is found in the presence ofsm. If v(r) andA(r) break inversion symmetry or are com-
external magnetic fields, where the gradient of its phase coilex, dichroism already arises from the zero-order wave
responds to supercurrerifsThis aspect of mechanism 4b is functions[in the case ob(r)] or from the matrix elements
thus closely related to mechanism 3. Complex order paramsf A in Egs. (37)—(40). In this case, the Darwin terms are
eters are also possible in the absence of magnetic fields, éimall additional corrections which do not break any further
the superconducting phase itself breaks time-reversal synsymmetries. Hence, the Darwin terms themselves are not a
metry. This is the case, for example, for thé+is” type of  source of dichroism. A similar argument applies to th&?
order parameter discussed in connection with the heavy feicoupling of the external vector potential to the density. These
mions, the high-temperature superconductors, and anioniconclusions had been anticipated, in discussing the relevant
superconductivity? =44 perturbations below Eq21).

2. Existence criteria
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A number of further criteria can be found from the vari- of A are zero, whileC™, is unaffected. The transition we
ous ingredients of Eq34). Since the minimum value the consider is from an oggupied staté (which in the normal
unperturbed energies can takelisit follows from the argu-  state lies below the Fermi surfac® an unoccupied state
ments of thes function that there is an absorption edge at(lying above the Fermi surface in the normal state the
fiw=2A. This edge is a consequence of the fact that weparticle-hole convention the energies of states below the
limited ourselves to the consideration of pair-breaking pro-Fermi surface are interpreted as hole energies and taken to be
cesses. For sufficiently low temperatures, where pair breaksositive. It is only the quantum number which distin-

ing is the only absorption process, we thus have guishes between occupied and unoccupied states.
Existence criterium 4At low temperatures there is no  Using this convention, tha —0 limit of the coherence
dichroism for frequencies below the absorption edge. factors can be evaluated straightforwardly. Explicitly we

The SOC and ASOC mechanisms require the presence bfave
gradients of the lattice- and pair potentials. However, not ,
every gradient produces dichroism. In both cases we have a p(N,N")=Unvn —vnUp:

term of the form
Jl € Jl €nr
= —| 1+ — —| 1+ —
of(r) a9 of(r) o 2 E, 2 En

[(VE(r)xV],= T T e (53

1 € 1 €
wheref(r) isv(r) or A(r), respectively. Obviously, the gra- - \/E( 1- —n) \/E< 1- —n)
E, E,

dients in thez direction, i.e., the direction of the magnetic

field and the incident light, do not enter. This leads to 1 (54)
Existence criterium 5In the polar geometryg|q) di- :

chroism arises entirely from the latef@-plane inhomoge-  Similarly we find

neity, not from the perpendicular inhomogeneity.

This observation is particularly relevant for surface geom- [ 1if [m) is aboveer
etries. As long as light incidence and magnetic field are per- p(m.n’)— 0if |m) is below &g’ (59
pendicular to the surface, the surface gradients themselves do
not produce dichroism due to mechanisms 1 ¢6@C and 0 if [m) is aboveer
ASOC), only the much smaller lateral gradients do. Mecha- I(m,n’)—>( 1if |m) is below (56)
nism 4b(broken inversion symmetyyon the other hand, is €F
operative at surfaces, as inversion symmetry is necessarilks A—0, Eq. (34) therefore becomes
broken. However, as mentioned above, this mechanism is
expected to yield only a very small contribution, as long as WGZE%
inversion symmetry is not broken in the bulk of the material AP™'=— > (= €ne) (— €ng) S €ng+ €nrg—fiw)
as well. M@ nn'o

Finally, we note that all the energies in E&4) are un- nm _ hnE
perturbed energies. The stationary perturbations enter only x> Re{ Cnmn’ 79 +Cnmn’ 99 1. (57)
through their effect on the wave functions, as determined by m €n— €m €nt €

o e o e SIAr 1 1 superconducing cas, the cond tem i e
taining the enerav shift is. of ’course the difference of thet™ ©nm represents the contribution of the single-particle
con am(|jng i Igy i T’h. diff ' ifiod in E States below the Fermi surface, while the first term represents
fgsr))c? —%r Z(errga;ﬁ(uz (tarTe ig Sc.ontrli?:)utlio?]rser\]/;?\'isshp(iadctleﬁicgl]ly. ?r']that of states above it. This formula Qespribeg dichroism due
d order in the stationary perturbations the energy shi to the creation of pgrtlcle-hole excitations in the n_orma_ll
f:gggear This gives us fE‘Snetal. It is readily verlfl_ed that the same result is ot_)taln_ed in
Existeﬁce criterium B6For sufficiently small perturbations a normal-state calculqtlon: i .the unperturbed Ha_lmlltonlan 'S
) ’ L ) taken to be Eq(4), simple first-order perturbation theory
(such that a first-order treatment is justifigoerturbations leads to Eq(57). The A—0 limit of our formula thus cor-

leaving the zero-order wave functions unchanged do not glV‘?‘:’ectly reproduces the corresponding normal-state result. Re-

”Sﬁ_rt]?sde'i?srgzg criterium also provides a different point Ofsults for nonsuperconducting materials, which are of the type
P P of Eq. (57), were derived previously by several

view of the above discussed fact that the ZeemanB) authors340:48:49
32:2“23,{ Ofr: dﬁggsé?ggr;]:r%nﬁﬁgﬁlihf stir:r?uﬁ[:r?é?Sssprlgi Many of the above-mentioned conclusions about mecha-
P Pr€SSisms and existence criteria are valid also in the normal state

ence of SOC, while thg¢-A coupling does: Namely, unlike . ; :
the coupling to the orbital currents, the Zeeman term alonc%\'\/here they are mostly well knownWe just mention a few:

does not chanae the form of the wave functions i) There is no effect to zero order in the stationary pertur-
9 : bations, even in the presence of polarized light and Zeeman

splitting. (ii) The constraints on the geometry of the experi-

ment are the saméiii) SOC alone, without Zeeman splitting
In the normal state, the pair potenti®(r) vanishes iden- of the energies, does not lead to dichroigim) The argu-

tically. Therefore the matrix elements of the ASOC term andment that the Darwin term and th& term do not, on their

3. The normal-state limit
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own, produce dichroism, remains validv) The above- F(E,E' H):=f(—E)f(—E|)—f(—E)f(—E).
mentioned result that the effect arises to first order only from (62

the change of the wave functions due to the perturbation and

not from the change in the energies still holds higher- ) ) ) .

order perturbation theory, of course, the energy shifts reapBY introducing the density of stateli(E), in the supercon-
pear) Conclusions(i)—(iv) are well known in the theory of ~ducting statéSDOS, we can convert the sums in E@6) in
dichroism in normal and magnetically ordered metals, buintegrals. One of the integrals can immediately be performed
dominance of the change of the wave function over that ofd- (46) is written as

the energiegconclusion(v)] was noted by several authors,

who arrived at this or very similar conclusions in a variety of
40,48,50-52 Te2E2

ays: E

way AP=0(0—24)(CM)p—s—
m“w
11l. MODEL CALCULATIONS
A. A model for the SOC mechanism % J""_AdEl J_AdE2+ fochz F(E;,0—E1,H)

After discussing general consequences of the results we - A Ei—Ep
now turn to their approximate numerical evaluation. A full Xp(E;,w—E)p(Ey,Ex)p(Es,0—E;)
evaluation of Eq.(34) requires self-consistent solutions of
the SBAGE in the presence of magnetic fields and remains a XN(E{)N(E>)N(w—Ey), (63

project for the future. Here we only look for a simple model

which illustrates the main physical aspects of the theory. To . : .
this end we specialize to mechanism 1. where theE; integration arises from the sum arend thek,

By imposing a number of physical conditions on the Su_integration from the sum om. The signature of supercon-

perconductor under study we can make sure that the contrfluctivity in this equation is the appearance of the coherence
butions of the remaining mechanisms are small. Mechanismfé‘g]lCtIOhS and the SDOS. The matrix elements,, and
(2) and (4) do not contribute if the pair potential is real and Cny » ON the other hand, aneormal-statematrix elements.
spatially constant, i.e., for order parameters of the type conWe have approximated these by their averé@é)r over
sidered in the original BCS model. Moreover, in materialsthe Fermi surface. Since superconductivity happens essen-
with heavy elementghigh atomic numbeg) in the lattice, tially within a few meV around the Fermi surface, this is a
the SOC(which increases roughly a&*) is strongly en- Very reasonable approximation. The above procedure has the
hanced, as compared to |avmaterials. advantage that the remaining two integrals can be evaluated
For superconductors with constant pair potential andwumerically, once a model for the SDOS is chosen. By form-
heavy elements in the lattice, in sufficiently weak externaling the ratio of the superconducting result to its normal-state
fields, we can therefore limit ourselves, for the purpose of dimit,
model calculation, to the SOC mechani¢i). We thus ne-

glect the matrix elements for the other mechanisms and keep
only APS AP

APY ' limy AP’ (9
A= oM v ] (58) Ma~o

with the average matrix elements cancel and we obtain a direct
1 measure for the interplay between the superconducting co-
Muonlv]i= ,—22<n|[Vv><V]z|m) (59 herence and spin-orbit coupling. The same strategy is also
4im“c applied in a large number of similar model calculations for
in the equations(In this section we sek=1.) The various Other properties of superconductors, e.g., for the absorption
coherence factors can all be expressed in terms of the fun@f sound?®** the nuclear-spin relaxation ratéthe thermal
tion conductivity>* the spin susceptibility® the absorption of un-
polarized light! etc.

1 € 1 €'
P(E,E"):=\/Z| 1+— - 1+ —
2 E 2 E’ B. Qualitative analysis of the SOC mechanism

. The simple form of Eq.(63) allows us to draw some
1 € 1 1 € 60 further conclusions about the nature of SOC-induced dichro-
B E . (60 ism in superconductors, before proceeding to its humerical
evaluation. Close td=0 we can replace the pair potential
which in the respective energy intervals reduces to the apA(T) by its zero-temperature valu&(0), and theFermi

2

E

2

propriate coherence factors.is defined through functions inF(E,,o— E;,H) by step functions, according to
f(—En,)=f(—E,—ougH)—0O(E,+ougH). These step
. 2 2 no n n
e:=VET-A% (62) functions impose restrictions on the integration limits of the

Finally, we define E, integral, which can symbolically be written as
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w=—A APxH[f'(—E)f(E—w)—f (E— w)f(—E)]+O(H?),
JA dE,F(E;,0—Eq,H) - (66)
Min{ o— A, 0 pgH] e A wheref’(E) stands for the derivative of the Fermi function.
_>J e dEl"'_f dE;--. Hence, for small fieldsAP, and the imaginary part of the
A Max[A, ugH] off-diagonal elements of the conductivity tensor for super-

(65) conductors, are linear functions &f. The absence of the
zero-order term means that the SOC mechanism alone will
not give rise to dichroism without magnetic fields. This is the

In the (usua) case thajgH <A we immediately see that the same conclusion we already arrived at in Sec. Il C 1 by fol-
two integrals on the right-hand side of E§5) cancel each lowing a somewnhat different line of reasoning.

other exactly. IfugH exceedsA there is no such cancella-

tion. There is thus no SOC-induced dichroism in supercon- C. A BCS superconductor in the Meissner phase

ductors afT=0, unless the magnetic field is of the order of Now we turn to the numerical evaluation of E&3). For
magnitude of the energy gap. Physically, this can be undeknis purpose we have to assume a particular form for the
stood as follows: al =0 all electrons are condensed in pairs SDOS. The simplest choice, the BCS form

with net spin zero. The system is thus not spin polarized,

even for finite magnetic fields. In this case the symmetry in

spin space is not broken and hence SOC cannot induce bro- Npcs(E)=Ny—=—5. (67

ken chiral symmetry. Hence, no dichroism results. A more VET—A

general viewpoint is that time-reversal invariance must b?NhereN is the DOS of the normal metal. leads to unphvsi-
broken to have dichroism from the SOC mechanism. Since N ' by

b . h q ¢ q cal singularities aE=A. In every real superconductor these
y construction, the ground state of a supercon uctor at singularities are smoothed by a large number of processes,
=0 consists of pairs of mutually time-conjugate states, it i

Ssuch as gap anisotropy, residual interactions with phonons,

invariant under time reversal, even in the presence of f'n't%trong-coupling effects, inelastic scattering from impurities,

fields, so that no dichroism can arise. If, on the other handetc_so,ss,se,57Many parametrizations of the SDOS which take

the magnetic field is strong enough to break Cooper pairgyege effects into account have been suggested in the
paramagnetically, there exist unpaired electrons evefi at |iioratyre?l:53.56-58

=0. In this case one finds a finite spin polarizatige., a
ground-state breaking time reversat T=0 and dichroism 4 of Hebel and Slichter in their seminal work on NMR in

results. Thus, folf=0 andugH <A there is no dichroism, superconductor&57%8 The SDOS s written as a weighted
while for T=0 and ugH=A there is a finite amount of average over the BCS-DOS,

dichroism, in accordance with the above analytical findings.

This is a direct manifestation of paramagnetic pair breaking, +o

a phenomenon which is hard to observe experimentally by N(E):=Re| dE'NgcoE")W(E,E"). (68)
other means. Of course, the details of the phase transition o

induced by paramagnetic pair breaking cannot be describeghe weighting functiow(E,E’) can take a variety of forms,

with our simple model for the unperturbed superconductopyt in the case of NMR experiments on BCS superconduct-
and our approximate treatment of the matrix elements. Irprs the simple square form

particular, real superconductors display paramagnetic limit-

ing already atl =A//2 and not aH = A .*° The factor of\/2 1

follows from a comparison of total ground-state energies and ~ W(E,E") =<0 (E'—(E=6))O((E+)—E'), (69

is not contained in our single-particle model. The mere fact,

however, that there is no spin-orbit-induced dichroisnTat which makesw constant forE’ betweenE— § and E+ 6,

=0 until the field is of the order of magnitude of the gap, isand zero everywhere else, already leads to quantitative

a very definite consequence of our results. agreement with experiment$>®=>8 The broadenings is
Interestingly, if we perform the corresponding analysis fortypically chosen to b&f~0.1A(T). Equationg68) and (69)

the orbital current mechanis8), we find that the two inte- convert the singularity into a peak. In the case of NMR this

grals in Eq.(65) are not subtracted, but added, hence leadingeak, in conjunction with the coherence factors, gives rise to

to a finite result even fof =0 andugH<A. Physically, this  the well-known Hebel-Slichter peak in the nuclear-spin re-

can be interpreted by noting that even the smallest magnetiaxation rate?®>*°"%8The form, Eqs.(68) and (69), of the

field gives rise to orbital currents in the superconductor, reSDOS can be physically justified in terms of the anisotropy

gardless of temperatur@he difference between the orbital of the gap>°*~>8but for the present purpose it can also be

and the spin response of a superconductor thus has a deciegarded as just a simple phenomenological model. Apart

sive influence on the low-temperature behavior of dichroisnfrom this simple form we also considered several more so-

in superconductors phisticated expressions for the SDOS, but it turned out that
We now return to the case of finite temperature and inits detailed form does not qualitativeliand quantitatively

vestigate the behavior &P as a function of théexternal or  only up to within 5—-109% affect our results, as long as the

interna) magnetic field. The field enters only through singularity is smoothed out in whatever fashion. We have

F(E,E’,H), which can be expanded, for sufficiently small therefore chosen to work with Eq&8) and(69) for numeri-

H, aboutH=0. One finds cal simplicity.

In the following, we model the SDOS in a way similar to
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In order to investigate dichroism as a function of tempera- 20
ture, we also need to specify the temperature dependence of
the pair potential. For BCS superconductors this is found by

interpolating between two analytically known limiting cases. '8

Close toT=0 we use the formula derived in Ref. 59 in terms ~

of Bessel functions, while close =T, we employ the £ 16
parametrization of Ref. 56 which very close T=T, re- e
duces to the standard BCS square root foflore details 8 il
can be found in these referenges. e -

In the actual calculation we need to assign physically rea-

sonable values to the parameters entering (E§).. For the 1.2
zero-temperature pair potential we choose a value\ OF
=0)=1 meV. Assuming a BCS-type relation between the
pair potential aff=0 and the critical temperature this leads 00 2.0 4.0 6.0 8.0
to T.=6.6 K, which is close to that of Pb. The normal-state T (Kelvin)
203 6V and z6ro everywhere eloe. This corresponds to g FIG- L Diehroism in the nomal siate vs temperatieThs
square-shaped NDOS centered around the Fermi energy. T gd al! other figures display oply the contribution of SOC-induced

bsolut | f the NDOS d tenter b it alchrmsm._ The othgr mechan_lsms are excluded_from the calcula-
absolute value ot the 1 0€s not enter because It cance tcin, as discussed in the main text. The numerical values of the
when form'ng the rqﬂo(64). Of coursg, all these numbers parameters specifying the system are given in the main text.
can be modified easily, without changing any of our conclu-

sions in an essential way. ) any case, it constitutes a convenient normalization. We dis-
The assumptions made and the numerical values chosepiay the result in arbitrary units, because the prefactors are

specify the superconductor under consideration to be a BCStetermined by the absolute values of the matrix elements

type s-wave superconductor in the Meissner phase. Thus thfg/Inm andC™, and the NDOS at the Fermi surface, none of

d!chr0|sm we discuss n the following is induced in the_ '€ \which can be calculated within the simple model of the
gion where the magnetic field penetrates. The more this su-

) - . . resent section.
erconductor is type l(i.e., the larger the ratio of penetration P . .
gepth to coherezge Idengththe Iagrger is the regF:on of the We also show the ratio of the superconducting results to

sample where the magnetic field and the order parametetpose for the normal conductor. Here the matrix elements

coexist and dichroism results. We therefore assume thcancel and no ambiguity is left. We then have a direct illus-
model superconductor to be a étron tvoe-1l superconducto fation of the change in the response of the metal to polarized

perce . 9byp P [i'ght due to the presence of the superconducting coherence.
[Note that this assumption doawt underly the general

theory leading to Eq(34)]. Since under these circumstancesThIS strategy, c.)f course, 1 s_tandard, and was used success-
. v fully in many similar calculationgcf. the references below

the penetration depth is much larger than both the coheren q. (64)]

length and the lattice constant, the light probes the bulk of™™ '

the superconductor. At this point we therefore neglect any

surface-specific sources for dichroism and use typical bulk

values for the energy gap, the SDOS, etc. Figure 1 shows that dichroism in the normal conductor
In concluding this section we stress that our calculationdncreases with decreasing temperature. Figure 2 shows the

are meant only to illustrate the physics of the SOC mechaCorresponding calculation for the superconductor, divided by

nism and not to provide quantitative predictions for real suthe values for the normal conductor. The calculations were

perconductors. For the latter purpose, a self-consistent solu-

1. Dependence on temperature

tion of the SBAGE is required. 400
o
D. Numerical results 300 | .." *
The integrations in Eq63) are performed numerically. In ..‘.
the following subsections we display the results of these cal- =, N
culations as a function of temperature, magnetic field, and < 2097 s
frequency. 5
For each of these we first present the result for a normal
conductor. Although the corresponding calculations can be 10.0 f
done for a normal conductor in a self-consistent and fully
relativistic mannef;? we perform them using the same ap- o
proximations as discussed above for the superconductor, in 0.0 ‘-2'!;"’ = =5 0

order to facilitate the comparison with the results for the
superconductor. Strictly speaking, the calculation for a nor-
mal conductor loses its meaning beldly. However, as FIG. 2. Dichroism ratio v§ at small magnetic fields. A strong
compared to the superconductor, the response of the normedherence peak is seen closeTp, while nearT=0 the curve

conductor does not vary significantly with temperature. Inapproaches 0.

T(Kelvin)
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FIG. 3. Dichroism ratio vd at large magnetic fields. Paramag-

FIG. 4. Dichroism in the normal state vs magnetic fieldat
netic pair breaking leads to a finite valueTat 0.

finite temperatureAP rises almost exactly linearly withHl.

done for a frequency of 4.5 meV and a magnetic field of 0.05 . ) . ) )
T. Figure 3 repeats Fig. 2, but for a magnetic field close tdor magnetically ordered materials show that dichroism is

the paramagnetic limit of superconductiviThis plot cor-  @lways greatly enhanced near absorption edgde above
responds to a superconductor in which the critical field fornumerical experiment and the additional enhancement of di-
orbital pair breakingH., is high enough that the paramag- chroism in superconductors, seen in Fig. 2, indicate that this
netic limit is actually reacheyl. is the case for superconductors as well.

SinceT,=6.6 K, the data points between 6.6da8 K are We can thus identifgywo independent ways in which di-
the same in Figs. 1 and 2. The above statement that thehroism in superconductors is enhanced as compared to the
response of the normal conductor does not change venyormal conductor: The pileup in the density of states, giving
much, if compared with the superconducting response, is imrise to the Hebel-Slichter-type enhancement and the gap it-
mediately verified. self, producing an absorption edge. Both the original Hebel-

Clearly, the dominating feature of Fig. 2 is the huge peakSlichter mechanism and the additional “gap-enhancement”
just belowT. Similar peaks in other observables arise fromcrucially depend on the existence of an energy gap. For su-
the peak in the SDOS in conjunction with the coherenceperconductors in which the energy gap is zero on some parts
factors. These peaks are known as Hebel-Slichter or coheof the Fermi surface, such as dvwave superconductors,
ence peaki>*! However, the conventional Hebel-Slichter they will be strongly reduced or even not present afall.
peak, as seen, e.g., in NMR experimetit3] >3 Ctypically The physics at low temperatures is very different from
reaches values in the rangk-5), while the peak in Fig. 2 that at higher temperatures. By comparing the low-
goes up to almost 33. temperature behavior of Figs. 1, 2, and 3 we can verify the

Some part of this additional enhancement may be due tanalytical results obtained in Sec. Il B. In the normal con-
the oversimplified approximations for the matrix elements,ductor and the superconductor in the realm of paramagnetic
the NDOS and the SDOS. On the other hand, the approxipair breaking there is a finite amount of SOC-induced di-
mations for the matrix elements are the same in the supechroism atT= 0, while in the superconductor at lower fields
conductor and in the normal conductor and do not lead talichroism is quenched at=0.
peaks in the latter case. Furthermore, different models for the
SDOS lead to enhancements of the same order of magnitude.

This suggests that there is a second mechanism at work
which is responsible for the additional enhancement of the Figure 4 displays the behavior of dichroism in the normal
peak. Numerically, this effect arises from the regions of in-conductor as a function of the magnetic field. In accordance
tegration in Eq.(63) which are excluded due to the energy With the discussion in Sec. Ill B it starts from zerotat=0
gap in the superconductor, but contribute to the integrals foand rises almost linearlyFor fields about 10 times as large
the normal conductor. Performing a numerical experiment@s in the figure a slight deviation from linearity is found.
we can integrate the normal conductor with the integratiorfFigure 5 illustrates that, although both the normal and the
limits of the superconductor. It turns out that it is mainly the superconductor are approximately proportionalHo their
limits of the inner integratior(over E,) which in this case ratio is not constant. This is due to the higher-order terms in
lead to a strong enhancement of the normal-conducting réd. Both figures are for a temperature of 2.5 K and a fre-
sults as well. quency of 4 meV.

This effect is independent of the form of the DOS and Figure 6 displays the ratio for the case of zero temperature
thus not the same as the conventional Hebel-Slichter mechand very large magnetic fields. All data points17.5 T
nism. It can be interpreted by noting that, apart from producare zero, while above 17.5 T suddenly finite values show up.
ing the peak in the SDOS, the gap also acts as an absorptidiis reflects the paramagnetic limit, as discussed above. In-
edge which is present in the superconductor but not in theleed, H=17.5 T corresponds to an energy of 1 meV, which
normal conductor. Experiments and theoretical calculationss just the value chosen for the pair potentialat 0. Super-

2. Dependence on the magnetic field
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FIG. 5. Dichroism ratio v&H at finite temperature. The super-
conductor displays a stronger variation with the magnetic field as
compared to the normal conductor. scattering from excitation§.e., broken pairsis known from

investigations of the absorption of unpolarized lighto
conductors where the upper critical field is thought to bedive rise to some additional absorption below the edge,
influenced by paramagnetic limiting are, €gthe heavy- Which does not significantly affect the part of the curve due
fermion compounds UBg and CeCSi,, the Chevrel phase 0 pair breaking.

FIG. 7. Dichroism in the normal state vs frequency

material

Gd PbMasSs,

the A-15

superconductor
Nb; Al 74Gey 5 and thin films of, e.g., Al or SA>%* While

The shape of the peak directly above the edge reflects the
behavior of the perturbation, acting on the system, under

plausibie, this is not supported by direct experimental evifime reversalcf. the discussion in Ref. 30, in particular Fig.
dence. Clearly, under such circumstances, the observation §9- The curve in Fig. 8 is of a mixed type, which reflects

dichroism atH~H_,, as in Fig. 6, could be decisive.

3. Dependence on frequency

The corresponding plot for the ratio, Fig. 8, displays an
absorption edge ab=2A. This edge is due to our limitation

that we have two perturbations acting on the system: the

spin-orbit coupling, which is even under time reversal, and
the magnetic field, which is odd.
Both plots were done for a temperature of 3(\ell be-
Figure 7 showsAP in a normal conductor versus fre- |ow the strong peak seen in Fig) and a(relatively strong
quency. Atw=0 there is, of course, no dichroism becausemagnetic field of 0.1 T.
no transitions can take place. At higher frequendiés ap-
proaches an almost constant value. This reflects the feature-
less NDOS which was used in the calculatignamely its
average value at the Fermi surface

IV. EXPERIMENTAL ASPECTS

A number of experimental results on dichroism in the
vortex state of high-temperature superconductors are
available®# Below we offer some speculative remarks on the

to pair-breaking processes. At low temperatures Vvery féWniarretation of these experiments on the basis of the present

excited quasiparticles are present and pair breaking is thg
only available mechanism for absorption. The inclusion of

eory

t, we note that the difference LHP-RHP, which can be
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FIG. 6. Dichroism ratio vdH at zero temperature. A finite-spin

FIG. 8. Dichroism ratio vaw. The absorption edge ai=2A

polarization is not produced until the magnetic field is comparablenas a mixed type I-1l character, reflecting the behavior of the per-
to the energy gap. turbations under time reversal.
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read off from Fig. 3 of Ref. 4, displays a strong enhancemenand the magnetic field are present simultaneguély) weak
betweenT~T, and T~T./2, which is consistent with our shielding currentgto minimize the influence of the orbital
general prediction of enhanced dichroism belbw mechanism These conditions are approximately satisfied,
This difference was theoretically analyzed on the basis o€.g., by lead.
the cyclotron motion of the orbital currents circulating For the ASOC mechanism to be observed we suggest:
around the vortex coré:® In our framework this corre- light atoms in the latticéto minimize the effect of the SOC
sponds to mechanisf8). The orbital mechanism can be dis- term), (ii) large gradient of the pair potentiéle., large en-
tinguished experimentally from the SOC mechanism be'ergy gap and short coherence |er)g'(h|) a |arge penetration
cause, as explained in Sec. lll B, it leads to a finite value fordepth,(iv) weak shielding currents, as for the SOC mecha-
AP and Infoy,| at T=0. By contrast, the SOC-induced nism. It should be stressed that the observation of the ASOC
dichroism vanishes af=0, as demonstrated analytically in mechanism would be of general significance because it could
Sec. lll B and numerically in Sec. Il D 1. The data of Ref. 4 confirm or reject the form of the relativistic BCS Hamil-
do indeed extrapolate to a finite valueTat 0. The present tonjan which has been proposed only recehtfiyand is not
analysis thus supports the assumptions made, as to thgt experimentally verified.
mechanism responsible for the dichroism, in evaluating the The pair potential mechanistd) is unique in that it does

above-mentioned experiments. _ _not depend on the existence of @xternal or internalmag-
There are at least two features of these experiments whichatic field. The observation of dichroism belofy, in the
suggest that the spin-orbit mechanisms are present as we bsence of such fields would be a strong hint at mechanism
First, the observed difference LHP-RHP displays changes 04)
sigre® betweenT=T, and T=0. Such a behavior finds a "~
natural explanation in the presence of two distinct mecha-
nisms for dichroism which have a different temperature be-
havior, but are operative for roughly the same values of tem-
perature, magnetic field, and frequer_my. This interpretation is \y/e have presented a perturbative approach to the absorp-
further supported by the fact that, in order to phenomenosion of polarized light in superconductors. Several distinct
logically fit their measured data, the authors of Refs. 3 and 4o -hanisms for dichroism in superconductors were identi-

had to assuméwo independent Lorentzian oscillators. Evi- .. : : ; :
. , fied and interpreted. These ddg the conventional spin-orbit
dently, coexistence of the SOC or the ASOC mechariim coupling, (2) the anomalous spin-orbit coupling) orbital

and(2), with the orbital mechanisr(B), provides a possible currents, (43 complex order parametersab) inversion

explanation for these observations. .
Second, as stated in Ref. 3, the orbital mechanism alon@ymmetry—breakmg order parameters, d8Ha normal state

does not fully explain the observations because there are irfhich already displays dichroism. ,
dications for “other(electronliké chiral resonances in addi- _ USing perturbation theory for the spin-Bogolubov—de
tion to the simple cyclotron resonancd.Clearly, the spin- G€nnes equations, we derived a general formula which con-
orbit mechanisms SOC and ASOC can play the role of thestins the contributions of all these mechanisms. On the basis
electronlike chiral resonances. of this result several analytical conclusions concerning these
In a different set of experiments spontaneous dichroism mechanisms were drawn. These include an investigation of
in high-temperature superconductors, both above and beloifie circumstances under which the various mechanisms can
T., was observed to exist at frequencies much higher thahe operative and an analysis of their behavior as a function
those considered in the present paper. In view of this differof temperature and magnetic field.
ence in frequency it is unlikely that these effects are pro- The important role played by time-reversal symmetry is
duced by the pair-breaking contribution to the SOC, ASOC pointed out. While a Cooper pair consists of two mutually
or orbital mechanisms discussed above. The fact that dichraime conjugate single-particle states and the ground state of a
ism is observed also abov&. points to mechanism 5 superconductor is thus invariant under time reversal, several
(normal-state dichroism which continues to be present belownechanisms for dichroism require the breaking of this sym-
T.), in which case the energy scale is not set by the energgnetry.
gap, but by normal-state parameters. More recent For more detailed illustrations we have chosen the mecha-
experimentindeed suggest that this is the correct explananism based on the conventional spin-orbit coupling because
tion. it is known to be the dominant mechanism in the normal
Although the results obtained in this paper are thus constate. Numerical calculations for a simple model supercon-
sistent with all available experiments, more detailed experiductor confirm the analytical results and provide first hints at
mental and theoretical investigations are called for, in ordeexperimental signatures of SOC-induced dichroism in super-
to identify the various mechanisms analyzed in this paper irtonductors.
an unequivocal way. The influence of paramagnetic limiting on dichroism at
The SOC mechanism may be easiest to identify in supetow temperatures and high fields, unconventional order pa-
conductors which satisfy as many of the following criteria asrameters as a source for dichroism, the quenching of spin-
possible:(i) heavy atoms in the lattic&his favors the con- orbit-induced dichroism af =0, and an additional enhance-
ventional SOC, which rises approximately Z8), (i) no  ment of the coherence peaks are definite predictions of our
zeros of the energy gasuch zeros can eliminate the coher- theory which can be verified experimentally. None of these
ence peak (iii ) short coherence length and large penetratiorphenomena show up in the absorption of unpolarized light in
depth(to maximize the region in which the order parametersuperconductors or in dichroism in the normal state.

V. CONCLUSION AND OUTLOOK
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