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Analysis of dichroism in the electromagnetic response of superconductors
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The absorption of polarized light in superconductors is studied within the framework of the Bogolubov–de
Gennes approach to inhomogeneous superconductors in magnetic fields. Several mechanisms which give rise
to a polarization-dependent absorption~i.e., dichroism! in superconductors are analyzed in detail. The relation
to the absorption of unpolarized light in superconductors and to the absorption of polarized light in normal
conductors is investigated and several effects, not known from either of these cases, are found. These effects
arise from the interplay of broken chiral symmetry, which produces dichroism, with the superconducting
coherence. One potential source for dichroism, namely spin-orbit coupling, is investigated numerically for a
simple model superconductor.@S0163-1829~98!01122-9#
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I. INTRODUCTION

In this paper we present a systematic approach to
polarization-dependent absorption of light in supercondu
ors. The phenomenon that left-handed circularly polariz
light and right-handed circularly polarized light are absorb
differently by many substances is commonly known as
chroism. Dichroism in the presence of an external magn
field is usually referred to as the Faraday effect or the K
effect, depending on the geometry of the experiment.
chroism in the absence of external magnetic fields is o
referred to as spontaneous dichroism. It is found in magn
cally ordered systems, such as iron, but also in syst
which break inversion symmetry, such as sugar. In
present paper we use the term dichroism to refer to all s
ations in which the absorption of light depends on its pol
ization.

In normal~i.e., not superconducting! and magnetically or-
dered metals these effects have been the subject of int
study for many years.~See Refs. 1 and 2 for recent reviews!
It is by now unanimously accepted that dichroism in the
systems arises mainly from the simultaneous presenc
spin-orbit coupling and the spin magnetization. Modern c
culations of the optical response to polarized light are the
fore usually performed in a relativistic framework.1,2

However, similar calculations for superconductors do
exist yet. It is the purpose of the present work to provid
basis for such calculations and to present some first res

The motivation for this investigation arises partly fro
the fact that several recent experiments report the obse
tion of dichroic phenomena in superconductors,3–8 and partly
from the fundamental interest in the role of the spin-or
coupling in superconductors.9–11Spin-orbit coupling, being a
relativistic effect of second order inv/c, becomes more im-
portant in systems with heavy elements~atomic numberZ
*40) in the lattice.12 Many interesting superconductors, e.
the heavy-fermion compounds and the high-temperature
perconductors, do indeed contain very heavy elements,
as mercury (Z580), uranium (Z592), bismuth (Z583),
PRB 580163-1829/98/58~1!/473~17!/$15.00
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lanthanum (Z557), platinum (Z578), etc.
In view of the fact that a qualitative and quantitative u

derstanding of dichroism in normal and magnetically orde
metals necessarily requires a relativistic theory, it is of ob
ous relevance for the present investigations to employ a r
tivistic theory of superconductivity. Such a theory has
cently been constructed.9–11From this theory the full form of
the spin-orbit operator in superconductors is known to c
tain not only gradients of the lattice potential~as is the case
for the conventional spin-orbit operator!, but also gradients
of the pair potential of the superconductor. The latter type
spin-orbit coupling is referred to as the anomalous spin-o
coupling ~ASOC!.

In the present theory of dichroism we take both types
spin-orbit coupling into account. Several other potent
sources for dichroism in superconductors are also consid
in detail. To this end we use a perturbative approach, ba
on the Bogolubov–de Gennes equations in the presence
magnetic field. The various sources for dichroism are
cluded via first-order stationary perturbation theory for t
quasiparticle wave function. The resulting perturbed sing
particle states are then, in a second step, used as unpert
states between which the transitions caused by the polar
light take place. The absorption of light is treated by a ge
eralization of the standard golden rule of first-order tim
dependent perturbation theory. First results from this inv
tigation were already presented in a recent paper.13

The present paper is organized as follows: Sec. II A c
tains an outline of the perturbative approach which we e
ploy for the calculations. The unperturbed system is
scribed by the spin-Bogolubov–de Gennes equations, wh
are a generalization of the conventional Bogolubov–
Gennes equations, designed to treat spin-dependent phe
ena. Since perturbation theory has up to now been develo
only for the conventional Bogolubov–de Gennes equatio
we present the corresponding generalizations for the s
Bogolubov–de Gennes equations in some detail. The res
ing expressions can be used for any type of perturbative
culation for the spin-Bogolubov–de Gennes equations,
473 © 1998 The American Physical Society
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only for investigations of dichroism. Next, we explicitl
specify the perturbations to be included in our approach
dichroism. These include the above-mentioned spin-o
terms, the effect of orbital currents and, if necessary, ord
parameter inhomogeneities.

In Sec. II B we employ the perturbative expressions
derive a formula for the power absorption in superconduc
as a function of the polarization of the light. In Sec. II
several distinct mechanisms for dichroism in supercond
ors are identified. A detailed analysis of the physics beh
the various mechanisms is performed and the circumsta
under which they can produce dichroism in superconduc
are discussed.

Section III contains model calculations for one of the
mechanisms, namely the conventional spin-orbit coupli
Using simple approximations for the relevant matrix e
ments and the density of states, which are discussed in S
III A and III C, respectively, we draw further analytical con
clusions about the physics behind this mechanism in S
III B, and evaluate the formulas numerically in Sec. III D
The numerical results are analyzed as functions of temp
ture, frequency, and magnetic-field strength.

We emphasize that these calculations are not mean
quantitative predictions for experiments, but rather as mo
calculations illustrating the analytical results of the previo
sections and exhibiting surprisingqualitative features of di-
chroism in superconductors. The paper ends with a brief
cussion of some recent experiments in light of our theory
Sec. IV and a summary in Sec. V.

II. PERTURBATIVE APPROACH TO DICHROISM
IN SUPERCONDUCTORS

A. Perturbation theory

1. The spin-Bogolubov–de Gennes equations

The proper microscopic description of inhomogeneous
perconductors is provided by the Bogolubov–de Gen
equations~BdGE!

S h0 D~r !

D†~r ! 2h0*
D S un~r !

vn~r ! D5EnS un~r !

vn~r ! D , ~1!

where

h05
p2

2m
1v~r !2m ~2!

is the normal-state single-particle Hamiltonian,D(r ) is the
pair potential, and theun(r ) andvn(r ) are particle and hole
amplitudes. Ther dependence of the pair potentialD(r ) de-
scribes the center-of-mass motion of the Cooper pair.
internal degrees-of-freedom of the pair would be descri
by the dependence of the pair potential on the relative co
dinate of the two electrons. This would require the use of
nonlocal version of the Bogolubov–de Genn
equations.14,15 In the present paper we limit our attention
the local version of the Bogolubov–de Gennes equation
specified above. This means that we can not adequately
the effects of the internal degrees of freedom, such as
difference betweens-wave and d-wave superconductors
The local Bogolubov–de Gennes equations have been
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starting point for many microscopic investigations of sup
conductors~Refs. 14–25 among others!. However, for the
present purpose their form is too restrictive because we n
to incorporate the spin degrees of freedom of the quasip
cles and spin-orbit coupling terms. There exists a general
tion of the BdGE in which these can be included proper
the spin-Bogolubov–de Gennes equations~SBdGE!. They
read14,16,26,27

S h↑ 0 0 D

0 h↓ 2D 0

0 2D* 2h↑* 0

D* 0 0 2h↓*
D S u↑ns~r !

u↓ns~r !

v↑ns~r !

v↓ns~r !

D
5EnsS u↑ns~r !

u↓ns~r !

v↑ns~r !

v↓ns~r !

D , ~3!

where

ht5h01tmBB. ~4!

t511 for h↑ andt521 for h↓ . We have already included
the Zeeman coupling of the spins to the external magn
field B ~which is assumed to be spatially constant and
point along thez direction!, but not yet the coupling of the
orbital degrees of freedom to the vector potential and sp
orbit coupling. The latter two effects are included as pert
bations, in Sec. II A 3.

We take these equations to describe the unperturbed
perconductor. They can be obtained from a spin-depend
Bogolubov-Valatin transformation.14,16,26,27 Alternatively,
they are found as the nonrelativistic limit of the relativist
Bogolubov–de Gennes equations.9–11 They relate to the con-
ventional BdGE in exactly the same way as the Pauli eq
tion relates to the Schro¨dinger equation.

We now summarize a number of properties of the SBd
which are essential for the following considerations. To e
ery eigenvector

S u↑ns~r !

u↓ns~r !

v↑ns~r !

v↓ns~r !

D ~5!

of the SBdGE with eigenvalueEns.0 belongs a second
eigenvector

S u↑n̄s̄~r !

u↓n̄s̄~r !

v↑n̄s̄~r !

v↓n̄s̄~r !

D 5S v↑ns~r !

v↓ns~r !

u↑ns~r !

u↓ns~r !

D *

~6!

with eigenvalueEn̄s̄52Ens . The negative energy solution
describe bound states of the Bogolubov quasiparticles~bogo-
lons!, or, equivalently, electrons condensed in Cooper pa
Below we consider pair-breaking processes as the domi
source for absorption at low temperatures. These proce
can simply be described as transitions from a negative
ergy state of the form~6! to a positive energy state of th
form ~5!.
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In the absence of all spin-dependent interactions
SBdGE rigorously reduce to the BdGE. The relation betwe
the respective eigenfunctions is simplyutns

0 (r )5dstun(r )
andvtns

0 (r )5sdts̄ vn(r ), wheres andt are61. The inclu-
sion of the Zeeman term in Eq.~3! does not change thes
relations, as long asB is spatially constant. If the pair fieldD
is spatially constant as well, the spatial dependence of
eigenfunctions of the SBdGE is governed by the norm
state Hamiltonianh0. The eigenfunctions are thus propo
tional to normal-state eigenfunctionsfn , which are defined
through h0fn5enfn . The constants of proportionality ar
given by the BCS amplitudes14 un :5A1/2(11 en /En) and
vn :5A1/2(12 en /En). The full form of the eigenfunctions
of the SBdGE under these circumstances thus is

utns
0 ~r !5undstfn~r !5A1

2S 11
en

En
D dstfn~r !, ~7!

vtns
0 ~r !5svndts̄fn~r !5sA1

2S 12
en

En
D dts̄fn~r !,

~8!

and the corresponding eigenvalue is given by

Ens5En1smBB5Aen
21D21smBB. ~9!

If the pair potential is not spatially constant, the spatial d
pendence of the SBdGE eigenfunctions is not determined
the normal-state Hamiltonian anymore. In this case the p
ticle and hole amplitudes are not proportional tofn(r ), but
have to be determined by solving the full SBdGE. Equatio
~3!–~9! define the unperturbed superconductor. In the n
step we develop perturbation theory for such supercond
ors.

2. Perturbation theory for the spin-Bogolubov–de Gennes
equations

Perturbation theory for the conventional BdGE has be
developed by de Gennes14 and, in a slightly different formu-
lation, by Kümmel and co-workers.28,29 While being equiva-
lent to the former approach on the exact level, the la
approach has the advantage that in every order of appr
mation the formulas are of the same structure as in conv
tional perturbation theory for the Schro¨dinger equation. In
the following, we generalize the latter approach to t
SBdGE, where we allow for perturbations of the normal a
of the pair potential and discuss both stationary and tim
dependent perturbations. Since the derivation of the form
is very similar to that of perturbation theory for the Schr¨-
dinger equation and to that for the conventional BdGE,
only present the final results and point out the main diff
ences to the conventional case.

The wave functions in the presence of a stationary per
bationdH are, to first order indH, given by
e
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utns~r !5utns
0 ~r !1 (

~ma!
Þ~ns!

F dHma,ns

Ens2Ema

utma
0 ~r !

1
dHm̄ā,ns

Ens2Em̄ā

utm̄ā
0

~r !G , ~10!

vtns~r !5utns
0 ~r !1 (

~ma!
Þ~ns!

F dHma,ns

Ens2Ema

vtma
0 ~r !

1
dHm̄ā,ns

Ens2Em̄ā

vtm̄ā
0

~r !G ~11!

with corresponding equations forutn̄s̄ andvtn̄s̄ . dH can be
any perturbing 434 matrix and may thus contain perturb
tions of the lattice potential and of the pair potential. A
labels (ma) refer to positive energy states of the form~5!.
The barred labels, such as (m̄ā), refer to negative energy
states of the form~6!. For notational simplicity we have sup
pressed an upper index 0 on the energies, although they
of course, unperturbed energies. The change of the ene
is, to first order, given by the usual resultdEns5dHns,ns.

A time-dependent perturbation gives rise to transitio
from one state of the system to another. We take the per
bation to be

dH~ t,r !5S dh~ t,r !1 0

0 2dh~ t,r !* 1D , ~12!

where we condensed a 434 matrix in 232 form (1 is the
232 unit matrix! and assumed that there is no tim
dependent perturbing pair potential~such a potential would
appear off the diagonal in Eq.~12! and could, if necessary
be included without difficulties!. dh(t,r ) is of the general
form

dh~ t,r !5dh~r !eivt1dh~r !†e2 ivt. ~13!

The transition probability per unit time for a transition fro
the single-particle state (ns) to (n8s8) is then

wns→n8s8
E

5
2p

\
udH̃ns,n8s8u2d~En8s82Ens1\v!,

~14!

wns→n8s8
A

5
2p

\
udH̃†ns,n8s8u2d~En8s82Ens2\v!,

~15!

where the first expression describes emission and the se
absorption. The labelsns,n8s8 refer to arbitrary solutions
of the SBdGE. There is one important difference to the c
ventional golden rule: the matrix elements in Eqs.~14! and
~15! are not simply those of the perturbation~12! and its
Hermitian conjugate, but those of

dH̃5S dh~r !1 0

0 2dh~r !T1D ~16!

and
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dH̃†5S dh~r !†1 0

0 2dh~r !* 1D , ~17!

which differ in the location of the conjugate operators. T
reason for this is that the coefficient ofeivt which gives rise
to emission, and that ofe2 ivt which produces absorption, ar
mixed already in Eq.~12!.

The above formulas can of course be used for any kind
perturbation of the SBdGE and should therefore be us
not only for investigations of dichroism, but for a large v
riety of calculations.

3. Explicit form of the perturbations

In specifying the SBdGE eigenfunctions according to E
~7! and ~8!, we assumed the pair potential to be spatia
constant. While this is a good approximation for superc
ductors with a large coherence length, it is inadequate
those with a short coherence length and for superconduc
heterostructures. In order to take this into account we w
the full pair potential as

D~r !5D̄1D̃~r !, ~18!

whereD̄ is a suitable average ofD(r ) ~e.g., taken over a uni
cell! andD̃(r ) is the local deviation from that average. In th
SBdGE framework it is included by replacingD(r ) by D̄ in
the unperturbed SBdGE and adding the term

dH ~0!5S 0 i ŝyD̃

~ i ŝy!†D̃* 0
D . ~19!

To simplify the notation we have employed the Pauli mat
ŝy to write the 434 equation~19! as a 232 equation. For
small D̃(r ), dH (0) can be treated as a small perturbatio
@The case of largeD̃(r ) is discussed below Eq.~22!.#

In Sec. II A 1 we also assumed that the magnetic fieldB
is spatially constant and acts only on the electron spins.
do not consider the case of an inhomogeneous external m
netic field. However, even for constant fields, there is a c
pling of the orbital degrees of freedom of the electrons to
vector potential. To first order in the vector potential th
coupling is described by the term

dH ~1!52
q

mcS ~A•p̂!1 0

0 2~A•p̂!* 1
D , ~20!

where B5(¹3A)z and p̂ is the momentum operator. W
chooseA in the Coulomb gauge, so that¹•A50. dH (1) is
considered a small perturbation as well. For realistic vec
potentials this is certainly justified. In the case of the co
ventional BdGE this is the standard way to treat vector
tentials, for instance in deriving the Meissner effect.14

Finally, we also consider the spin-orbit coupling as
small perturbation. The relativistic theory o
superconductivity9–11 predicts that there are two distinc
types of spin-orbit coupling~SOC! in superconductors. One
the conventional SOC, appears on the diagonal of
SBdGE and contains gradients of the lattice potentialv(r ).
The other, the anomalous SOC~ASOC!, appears off the di-
f
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agonal and contains gradients of the pair potential with
spect to the center-of-mass and relative coordinates~C-
ASOC and R-ASOC!. In the following calculations only the
C-ASOC term is included. This amounts to neglecting t
internal degrees of freedom of the two electrons in the C
per pair and retaining only the spin-orbit coupling due to t
center-of mass motion. The perturbation corresponding
the SOC and C-ASOC terms is given by

dH ~2!5
\

4m2c2

3S ~s•¹v~r !3p̂!1 ~s•¹D~r !3p̂!~ i ŝy!

@~s•¹D~r !3p̂!~ i ŝy!#† 2~s•¹v~r !3p̂!* 1
D .

~21!

Further terms could be included indH (2), e.g., the conven-
tional and anomalous Darwin terms,9,11 and the
(q2/2mc2) nA2 term which goes along with Eq.~20! to sec-
ond order of (v/c). Both of these are known not to produc
dichroism in the normal state and are therefore not inclu
here among the relevant perturbations. We return to
point in the discussion of existence criteria in Sec. II C 2

The full ~stationary! perturbation to be considered in th
paper is the sum of all three terms

dH5dH ~0!1dH ~1!1dH ~2!. ~22!

The upper index,k, of each termdH (k) refers to the order in
1/c of the respective term. The relative magnitude of t
three terms depends on the particular system under study
does not necessarily correlate with this order.

If the pair potential inhomogeneityD̃(r ) is small enough,
the ASOC term, which also containsD̃(r ), can be dropped
If it is large, D̃(r ) must be included already in the unpe
turbed Hamiltonian. The latter situation arises, e.g., for
perconducting heterostructures and in the vortex phase
type-II superconductor. The pair potentialD(r ) near the vor-
tices is strongly inhomogeneous and the deviations from
averageD̄ are so large thatD̃(r ) cannot be considered as
small perturbation. With the full pair potential in the unpe
turbed Hamiltonian, the spatial dependence of its eigenfu
tions is, of course, not determined by normal-state eig
functions anymore. As a consequence, the particle and
amplitudes in Eqs.~7! and~8! must be found by solving the
SBdGE. The ASOC term then is a first-order perturbati
just as the conventional SOC. Indeed, the vortex lattice
among the situations in which this term is expected to
most important.

In order to facilitate the treatment of strongly and weak
inhomogeneous situations, we will keep bothD̃(r ) and the
ASOC term in the expression for the perturbation. Depe
ing on the particular system under study, one of the t
terms can be dropped in the final result, Eq.~34!.

The time-dependent perturbation is given by the inter
tion of the polarized light with the quasiparticles. It is of th
same form as the stationary perturbationdH (1), but with a
time-dependent vector potentialAL(t,r ). The electromag-
netic radiation is specified by its electric-field amplitudeE0,
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the frequencyv, the wave vectorq, and the polarization
vectore, leading to the vector potential

AL~ t,r !5
ic

2

E0

v
eei ~vt2qr !1c.c. ~23!

In the Coulomb gauge (¹•AL50), dh(r ), as needed in Eqs
~13!, ~16!, and~17!, is given by

dh~r !52
e

2mi

E0

v
e2 iqrep̂, ~24!

where2e is the charge on the electron. We assume perp
dicular incidence of the light, so thatq is parallel to the static
magnetic fieldB and perpendicular to the sample surfac
while e is a unit vector in the plane of the surface. Th
geometry corresponds to very common experimental set

B. Absorption of polarized light in superconductors

The quantity we use to describe the interaction of lig
with a superconductor is the power absorptionP. It can be
calculated within the above perturbation theoretical fram
work by evaluating

P5(
f i

~Ef2Ei ! f ~Ei !@12 f ~Ef !#wi→ f
A , ~25!

where i and f denote the initial and the final single-partic
states, respectively,wi→ f

A is given by Eq.~15! and f (E)
stands for the Fermi function. The power emission can
calculated in a similar way fromwi→ f

E . In the following we
will consider only power absorption. The emitted~scattered!
power, being diluted over the entire solid angle, is usua
not measured experimentally. Furthermore, as long as
consider the ground state or situations in which only a f
excited single-particle states are occupied, absorption is
far the dominant process.

At sufficiently low temperatures almost all electrons a
condensed in Cooper pairs. The most important mechan
for absorption under these circumstances is pair break
Scattering from unpaired electrons~i.e., from thermally ex-
cited quasiparticles! can safely be neglected at low temper
tures. The inclusion of single-particle scattering norma
produces only some additional absorption below the abs
tion edge.30 Therefore we will limit ourselves to considerin
only pair breaking~i.e., bogolon creation! as the mechanism
for absorption. It should be stressed that neglecting emis
processes and scattering from broken pairs is physically
tified, but in no way necessary for the further developme

Within the linear-response regime, the absorption of lig
is generally described by the conductivity tensorŝ. Expres-
sions for the conductivity tensor in superconductors
known in a number of different approximations.30–33

For any system the elements of the conductivity ten
can be related in a simple fashion to the power absorption
various polarization directions.34 For systems with cubic
symmetry one finds within the dipole approximation,q50,
n-

,
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r
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Im@sxy~v!#5
1

VE0
2 @P~v,eL!2P~v,eR!# ~26!

and

Re@sxx~v!#5
1

VE0
2 @P~v,eL!1P~v,eR!#, ~27!

whereV is the sample volume,P(v,e) is the power absorp-
tion for polarization e and frequencyv, and E0 is the
electric-field strength of the light. In the frequency ran
relevant for pair breaking, the dipole approximation is ge
erally valid and will be used exclusively. For light with left
handed polarization~LHP! we have

eL5
1

A2S 1
i
0
D , ~28!

while light with right-handed polarization~RHP! has a po-
larization vector

eR5
1

A2S 1
2 i
0
D . ~29!

Equations~26! and ~27! hold regardless of whether the sy
tem is superconducting, magnetic, or in the normal sta
because the microscopic properties of the system do not
ter the derivation.34 Similar formulas can also be derived fo
noncubic crystals2,35 or beyond the dipole
approximation.2,36,37

Equation~26! shows that the imaginary part of the of
diagonal elements of the conductivity tensor is nonzero o
if light with left- and right-handed polarization is absorbed
a different way. These elements thus provide a direct m
sure for dichroism which can be used to relate experime
results to theoretical calculations. For the case of magn
and normal metals they are routinely used for this purpo
~See the review Ref. 2 and the proceedings volume Ref. 1
further discussion and applications.!

By substituting Eqs.~24! and ~17! in Eq. ~15! and the
result in Eq.~25!, we arrive at

P~e!5
pe2E0

2

2m2v
(
NN8

f ~2EN! f ~2EN8!u~uNue* puvN8
* !

1~vNue* puuN8
* !u2d~EN1EN82\v!. ~30!

Here we employed the particle-hole convention, i.e., all
ergies are positive, the sums are limited to positive ene
single-particle states and the explicit form of the negat
energy states, as given by Eq.~6! was used. In writing Eq.
~30! we used a short-hand notation for the matrix elemen
Written out in complete detail, the first matrix element
given by

~uNue* puvN8
* !5E d3r S u↑ns~r !

u↓ns~r ! D T \

i
e* •¹rS v↑n8s8~r !

v↓n8s8~r ! D *

~31!

and the second one reads
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~vNue* puuN8
* !5E d3r S v↑ns~r !

v↓ns~r ! D T \

i
e* •¹rS u↑n8s8~r !

u↓n8s8~r ! D *
.

~32!

If we now substitute the unperturbed solutions to t
SBdGE,utns

0 andvtns
0 , as given by Eqs.~7! and~8!, in Eqs.

~31! and ~32!, we can calculate the power absorption in t
superconductor as a function of polarization. Evaluating
result once fore given by Eq.~28! and once fore given by
Eq. ~29!, then leads to a direct measure for dichroism, a
according to Eq.~26!, an expression for the off-diagonal e
ements of the imaginary part of the conductivity tensor. P
ceeding in this way it is immediately found from Eq.~30!
that

DP}(
nn8

@py
nn̄8~px

nn̄8!* 2px
nn̄8~py

nn̄8!* #[0, ~33!

i.e., there is no dichroism. Thepi
kl in Eq. ~33! are normal-

state matrix elements of Cartesian components of the
mentum operator. A barred index stands for the comp
conjugate normal-state wave functionf n̄(r ):5fn(r )*
5fn(2r ). The latter equality holds if the original norma
state Hamiltonian,h0, does not break time-reversal and i
version symmetry.38,39As a consequence all momentum m
trix elements are real, even if the individual wave functio
are not, andDP vanishes identically. This result, whic
holds independently of the explicit form of the normal-sta
wave functions, was of course to be expected. Indeed,
well known from normal and magnetically ordered met
that to find dichroism one needs to include mechanis
which break chiral symmetry, so that the system becom
susceptible to the difference between left- and right-han
polarization.1,2,34

In the next step we include all the stationary perturbatio
which were discussed above in order to find out if, and un
which circumstances, these produce dichroism in superc
ductors. To this end we substitute Eqs.~19!, ~20!, and~21! in
Eq. ~22!. Equation~22! is then used, together with Eqs.~7!
and ~8!, in Eqs.~10! and ~11! to determine the form of the
perturbed wave functions. These wave functions are, i
next step, used asunperturbedsingle-particle states with re
spect to the time-dependent perturbation in Eqs.~30!–~32!.
Multiplying out all terms to first order indH we find

DP:5P~eL!2P~eR!

5
pe2E0

2

m2v
(

nn8s

p~n,n8! f ~2Ens! f ~2En8s̄!

3d~Ens1En8s̄2\v!

3(
m

ReF p~m,n8!Cnn8
m

En2Em

Tms
1 1

l ~m,n8!Cnn8
m̄

En1Em

Tms
2 G ,

~34!

where Re denotes the real part. All sums are restricted
single-particle states with positive energies~particle-hole
convention!. The first term under the sum onm represents
the contribution of the broken pairs~for this term the case
Em5En is excluded from the sum!, while the second repre
e

,

-

o-
x

s
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s
s
d

s
r

n-

a

to

sents that of the condensed quasiparticles. The matrix
ments of the stationary perturbations are contained in
quantities

Tms
1 5unumhss

nm1unvmdss̄
nm

1vnumdss̄
* mn

2vnvmhs̄s̄
* nm

~35!

and

Tms
2 5unvmhss

nm̄2unumdss̄
nm̄

1vnvmdss̄
* m̄n

1vnumhs̄s̄
* nm̄ ,

~36!

where

hss
nm5

s\2

4im2c2
^nu@¹v3¹#zum&1

iq\

mc
^nuA•¹um&,

~37!

hss* nm52hss
nm , ~38!

dss̄
nm

5
s\2

4im2c2
^nu@¹D3¹#zum&1^nuD̃um&, ~39!

dss̄
* nm

52
s\2

4im2c2
^nu@¹D* 3¹#zum&1^nuD̃* um&. ~40!

A is the vector potential of the static magnetic fieldB, and
should not be confused with that of the light wave,AL .
@Normally, AL(t,r )!A(r ).# The matrix elements of the
time-dependent perturbation enter through

Cnn8
m

52i @py
n̄n8px

mn̄82px
n̄n8py

mn̄8#, ~41!

which generalizes the term found in Eq.~33!. The combina-
tion of momentum matrix elements in Eq.~41! is typical of
dichroism and also appears in many approaches to dichro
in the normal state and in magnetically order
materials.2,34,35,40

p~n,n8!5unvn82vnun8 ~42!

and

l ~n,n8!5unun81vnvn8 ~43!

are coherence factors, with the BCS amplitudesun andvn as
defined in Eqs.~7! and ~8!. These are the coherence facto
normally found in treatments of optical absorption
superconductors.30,41 The additional factorsunvn , etc., in
Eqs.~35! and~36! result from the effect of the coherence o
the stationary perturbations.

We can rewrite Eq.~34! in a more compact form, by
noting that, due to the ansatz~7!, ~8!, the amplitudesun and
vn are solutions of the BdGE~not the SBdGE!. They have
the property that if

S un~r !

vn~r ! D5S un

vn
Dfn~r ! ~44!

is a solution with eigenvalueEn , then

S un̄~r !

v n̄~r ! D5S 2vn

un
Dfn~r !* 5S 2vn

un
Df n̄~r ! ~45!
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is a solution with eigenvalue2En . @This is a well-known
property of the BdGE, which is the counterpart to Eq.~6! for
the SBdGE.#

Hence the second term under the sum onm in Eq. ~34!
can be written in the same form as the first term, with ev
index m replaced bym̄. It represents the contribution of th
negative energy states. We can therefore allow(m to range
over all m, not just over those with positive energies a
find, after slight rearrangements,

DP5
pe2E0

2

m2v
(

nn8s
(
m

p~n,n8!p~m,n8!

En2Em

Re@Cnn8
m Tms

1 #

3 f ~2Ens! f ~2En8s̄!d~Ens1En8s̄2\v!, ~46!

where the sums onn and n8 are still restricted to positive
energies. In order to obtain this convenient and compact
sion of Eq.~34!, the particle-hole convention is used only f
En andEn8, but not forEm .

The arguments of thed and Fermi functions, in Eqs.~34!
or ~46! imply that two quasiparticles, one with spin up, th
other with spin down, are created by the absorption proc
This expresses the fact that absorption of light does not
duce spin flips, so that the original spin direction of the p
ticles in the Cooper pair is not affected by breaking the p
~This is in contrast to the paramagnetic pair breaking d
cussed below.!

C. Analytical results

Before explicitly evaluating the above formulas nume
cally for a simple model we first want to demonstrate tha
number of general conclusions follow already from th
structure.

1. Mechanisms for dichroism in superconductors

On the basis of Eqs.~34! or ~46! we can identify severa
distinct mechanisms for dichroism in superconductors.

Mechanism 1 is the conventional spin-orbit coupli
(SOC)produced by gradients of the lattice potential¹v(r ).
The relevant matrix element for this mechanism is

s\2

4im2c2
^nu@¹v3¹#zum&, ~47!

which contributes tohss
nm andhss* nm in Eqs.~37! and ~38!.

This mechanism is easy to interpret physically: the m
netic field breaks time-reversal invariance and leads to a
nite spin magnetization. Since the initial single-particle sta
are occupied in pairs with total spin zero, the main contrib
tion to this magnetization arises from the final states. T
spin-orbit coupling converts the broken orientational symm
try in spin space into a broken chiral symmetry in real spa
The polarization of the light is sensitive to the chiral sym
metry of the system, hence dichroism arises.

This mechanism is known from normal and magnetica
ordered metals to give rise to the Faraday and Kerr effe
and to x-ray magnetic dichroism, respectively.1,2 We thus
find that the same mechanism is operative in supercond
ors as well, strongly modified, though, by the presence of
y

r-
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energy gap and the coherence factors. We present nume
results for this mechanism in Sec. III D.

From the above physical explanation it is seen that
presence of an~external or internal! magnetic field is a nec-
essary condition for the mechanism to work. This is eas
verified from the equations. In the absence of any type
magnetic field, the energies in Eq.~34! do not depend on the
spin. The only spin dependence then comes from the factos
in front of the matrix elements~47!. The sum over the spins
then reduces to

(
s561

s[0. ~48!

Hence, to have dichroism from the spin-orbit coupling, t
presence of magnetic fields and thus of broken time-reve
invariance is mandatory. This is confirmed by many inves
gations on normal and magnetic materials.1,2

Mechanism 2 is the anomalous spin-orbit coupli
(ASOC)produced by gradients of the pair potential¹D(r ).
The relevant matrix elements for this mechanism are

s\2

4im2c2
^nu@¹D3¹#zum& ~49!

and the corresponding term containingD* appearing in Eqs.
~39! and ~40!. The ASOC term produces dichroism for th
same reason as the SOC term and also requires the pre
of magnetic fields. The temperature behavior of this term
very different from that of the SOC term because the p
potential itself is strongly temperature dependent. Moreov
the coherence factors for this mechanism, in Eqs.~35! and
~36!, are different from those for the SOC mechanism.

Since both the SOC and the ASOC mechanism depen
gradients of the respective potentials, they do not operat
homogeneous systems. On the other hand, the more inho
geneous the system, the more important they become.
ASOC term, for instance, being produced by gradients of
pair potential, becomes large in the vortex state of a typ
superconductor and for superconductors with a short co
ence length.

Mechanism 3 is provided by orbital currents, which flow
in the presence of the magnetic fieldB5¹3A. The relevant
matrix element is

iq\

mc
^nuA•¹um&. ~50!

The physical interpretation is that these currents, circulat
in the plane perpendicular to the magnetic field, give
material a definite handedness and hence result in dichro
This mechanism is known also from the normal state, wh
it is usually much smaller than the SOC mechanism a
therefore neglected in most calculations. In superconduc
the screening currents which give rise to the Meissner ef
are stronger than typical screening currents in normal me
Current-induced dichroism may thus be stronger in sup
conductors than in normal conductors. Indeed, this type
dichroism in superconductors was already observed exp
mentally. We discuss these experiments in Sec. IV.

Since all of the above mechanisms require the presenc
a magnetic field, we conclude that dichroism in the Meiss
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phase is a surface effect because in the bulk the magn
field does not coexist with superconductivity. The region
which coexistence is found depends on the penetration de
The larger the penetration depth, the larger the region of
sample in which dichroism is produced. In the vortex pha
the field penetrates into the bulk of the superconductor
coexists with the order parameter near the vortices. Ev
vortex is thus a source for dichroism due to each of the th
above mechanisms.

Mechanism 4 is caused by inhomogeneities of the su
conducting order parameter itself. The relevant matrix ele-
ments are

^nuD̃um& and ^nuD̃* um&. ~51!

To see how the order parameter can lead to a finite resul
DP we first look at the quantityCnn8

m , as defined by Eq
~41!. As mentioned above, if the original normal-sta
Hamiltonian does not break time-reversal and inversion s
metry all momentum matrix elements are real. Under th
circumstancesCnn8

m is purely imaginary. Since in Eq.~34!
the real part of the expression under the sum onm is taken,
Cnn8

m must be multiplied by a quantity with a finite imagina
part in order to lead to a finiteDP. Since the matrix element
for the SOC, ASOC, and orbital mechanisms explicitly co
tain a factori , this condition is normally satisfied in thes
cases. The matrix elements of the pair potential are ea
seen to be purely real~and thus not to produce dichroism! if

D̃* ~r !5D̃~2r !. ~52!

The condition~52! is violated if D̃(r ) is real and breaks
inversion symmetry~mechanism 4a!, or if D̃(r ) is symmetric
under inversion, but complex, in which case it breaks tim
reversal symmetry~mechanism 4b!.

Order parameters which break inversion symmetry, wh
the underlying normal-state Hamiltonian does not, are
amples of ‘‘unconventional order parameters’’ in the sen
that the superconducting phase has different spatial sym
tries from the normal phase.42 The fact that broken inversion
symmetry can give rise to dichroism is well known, e.g.,
chemistry, where molecules without a center of inversion
called ‘‘optically active’’ since their optical properties de
pend on the polarization of the light. In principle, inversio
symmetry is also broken at every surface. However, as l
as the light penetrates sufficiently deeply into the materia
sample the bulk properties, this contribution is expected
be very small. This expectation is corroborated by deta
investigations of dichroism in the normal state, where t
type of surface-induced dichroism was not found to play
appreciable role in explaining experimental observations

A complex order parameter is found in the presence
external magnetic fields, where the gradient of its phase
responds to supercurrents.14 This aspect of mechanism 4b
thus closely related to mechanism 3. Complex order par
eters are also possible in the absence of magnetic field
the superconducting phase itself breaks time-reversal s
metry. This is the case, for example, for the ‘‘d1 is’’ type of
order parameter discussed in connection with the heavy
mions, the high-temperature superconductors, and ani
superconductivity.42–44
tic
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Dichroism produced by order parameters which bre
inversion- or time-reversal symmetry was discussed pre
ously by several authors. In Ref. 45, a phenomenolog
analysis of this mechanism for the high-temperature sup
conductors is performed. Our analysis provides possible
croscopic mechanisms underlying the phenomenolog
treatment of Ref. 45. In Ref. 46, the breaking of these sy
metries is discussed in the context of collective modes of
order parameter~an effect we do not discuss in the prese
paper!. In Ref. 47, the effect of broken chiral symmetry
the normal state of superconductors is analyzed. This ef
follows in our framework if for the wave functionsfn(r )
one uses the eigenstates of a normal-state Hamiltonian
broken chiral symmetry. In this case the momentum ma
elements are complex, and dichroism is found from Eq.~33!
already in zeroth order, i.e., even in the absence of the ab
four mechanisms.

Mechanism 5 is therefore provided by a normal sta
which already displays dichroism.In the present paper we
focus on the superconducting state and do not discuss fu
this type of normal-state-induced dichroism.

In conclusion, we have identified five distinct mechanis
for dichroism in the superconducting phase. Two of the
mechanisms,~1! and~3!, are already known from the norma
state, strongly modified, though, by the presence of the
perconducting order parameter. Mechanisms~2!, ~4a!, and
~4b! on the other hand, exist only in superconductors. O
mechanism of each type, namely~1! and~2!, is of relativistic
origin, arising from the interplay between relativistic sym
metry breaking and superconducting coherence. Mechan
~5! operates only in superconductors in which the norm
state already breaks time-reversal or inversion symmetry

2. Existence criteria

We can extract from the general formula a number
‘‘existence criteria’’ which determine under which circum
stances one can expect dichroism at all. From the above
cussion of the mechanisms we already have

Existence criterium 1: There is no dichroism due to spin
orbit coupling in the absence of magnetic fields.

Existence criterium 2: There is no dichroism due to BCS
type order parameters, i.e., order parameters which are
and spatially constant.

Existence criterium 3: Any perturbation whose contribu
tion to Eqs.~37!–~40! is purely real does not give rise t
dichroism.

The third criterium applies in particular to the normal a
anomalous Darwin terms, containing¹2v(r ) and¹2D(r ). If
the potentialsv(r ) andD(r ) are real and inversion symme
ric, these terms lead only to real contributions und
Re@ i . . . # in Eq. ~34! and therefore do not produce dichro
ism. If v(r ) andD(r ) break inversion symmetry or are com
plex, dichroism already arises from the zero-order wa
functions@in the case ofv(r )] or from the matrix elements
of D̃ in Eqs. ~37!–~40!. In this case, the Darwin terms ar
small additional corrections which do not break any furth
symmetries. Hence, the Darwin terms themselves are n
source of dichroism. A similar argument applies to thenA2

coupling of the external vector potential to the density. The
conclusions had been anticipated, in discussing the rele
perturbations below Eq.~21!.
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A number of further criteria can be found from the va
ous ingredients of Eq.~34!. Since the minimum value the
unperturbed energies can take isD̄, it follows from the argu-
ments of thed function that there is an absorption edge
\v52D̄. This edge is a consequence of the fact that
limited ourselves to the consideration of pair-breaking p
cesses. For sufficiently low temperatures, where pair bre
ing is the only absorption process, we thus have

Existence criterium 4: At low temperatures there is n
dichroism for frequencies below the absorption edge.

The SOC and ASOC mechanisms require the presenc
gradients of the lattice- and pair potentials. However,
every gradient produces dichroism. In both cases we ha
term of the form

@„¹ f ~r !…3¹#z5
] f ~r !

]x

]

]y
2

] f ~r !

]y

]

]x
, ~53!

wheref (r ) is v(r ) or D(r ), respectively. Obviously, the gra
dients in thez direction, i.e., the direction of the magnet
field and the incident light, do not enter. This leads to

Existence criterium 5: In the polar geometry (Biq) di-
chroism arises entirely from the lateral~in-plane! inhomoge-
neity, not from the perpendicular inhomogeneity.

This observation is particularly relevant for surface geo
etries. As long as light incidence and magnetic field are p
pendicular to the surface, the surface gradients themselve
not produce dichroism due to mechanisms 1 or 2~SOC and
ASOC!, only the much smaller lateral gradients do. Mech
nism 4b~broken inversion symmetry!, on the other hand, is
operative at surfaces, as inversion symmetry is necess
broken. However, as mentioned above, this mechanism
expected to yield only a very small contribution, as long
inversion symmetry is not broken in the bulk of the mater
as well.

Finally, we note that all the energies in Eq.~34! are un-
perturbed energies. The stationary perturbations enter
through their effect on the wave functions, as determined
Eqs.~7! and~8!. The reason for this is that in calculatingDP
to first order in the perturbations, the coefficient of the ter
containing the energy shift is, of course, the difference of
zero-ordermatrix elements. This difference, specified in E
~33!, is zero. Thus these contributions vanish identically.
second order in the stationary perturbations the energy s
reappear. This gives us

Existence criterium 6: For sufficiently small perturbation
~such that a first-order treatment is justified! perturbations
leaving the zero-order wave functions unchanged do not g
rise to dichroism.

This existence criterium also provides a different point
view of the above discussed fact that the Zeeman (m–B)
coupling of a constant magnetic field to the electron sp
does not produce dichroism without the simultaneous p
ence of SOC, while thej–A coupling does: Namely, unlike
the coupling to the orbital currents, the Zeeman term al
does not change the form of the wave functions.

3. The normal-state limit

In the normal state, the pair potentialD(r ) vanishes iden-
tically. Therefore the matrix elements of the ASOC term a
t
e
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of D̃ are zero, whileCnn8
m is unaffected. The transition we

consider is from an occupied staten8 ~which in the normal
state lies below the Fermi surface! to an unoccupied staten
~lying above the Fermi surface in the normal state!. In the
particle-hole convention the energies of states below
Fermi surface are interpreted as hole energies and taken
positive. It is only the quantum numbern which distin-
guishes between occupied and unoccupied states.

Using this convention, theD→0 limit of the coherence
factors can be evaluated straightforwardly. Explicitly w
have

p~n,n8!5unvn82vnun8

5A1

2S 11
en

En
DA1

2S 11
en8

En8
D

2A1

2S 12
en

En
DA1

2S 12
en8

En8
D

→1. ~54!

Similarly we find

p(m,n8)→H 1 if um& is aboveeF

0 if um& is beloweF
, ~55!

l ~m,n8!→H 0 if um& is aboveeF

1 if um& is beloweF .
~56!

As D→0, Eq. ~34! therefore becomes

DP~N!5
pe2E0

2

m2v
(

nn8s

f ~2ens! f ~2en8s̄!d~ens1en8s̄2\v!

3(
m

ReFCnn8
m hss

nm

en2em

1Cnn8
m̄ hss

nm̄

en1em
G . ~57!

Similar to the superconducting case, the second term in
sum onm represents the contribution of the single-partic
states below the Fermi surface, while the first term repres
that of states above it. This formula describes dichroism
to the creation of particle-hole excitations in the norm
metal. It is readily verified that the same result is obtained
a normal-state calculation: if the unperturbed Hamiltonian
taken to be Eq.~4!, simple first-order perturbation theor
leads to Eq.~57!. The D→0 limit of our formula thus cor-
rectly reproduces the corresponding normal-state result.
sults for nonsuperconducting materials, which are of the t
of Eq. ~57!, were derived previously by severa
authors.34,40,48,49

Many of the above-mentioned conclusions about mec
nisms and existence criteria are valid also in the normal s
~where they are mostly well known!. We just mention a few:
~i! There is no effect to zero order in the stationary pert
bations, even in the presence of polarized light and Zeem
splitting. ~ii ! The constraints on the geometry of the expe
ment are the same.~iii ! SOC alone, without Zeeman splittin
of the energies, does not lead to dichroism.~iv! The argu-
ment that the Darwin term and theA2 term do not, on their
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own, produce dichroism, remains valid.~v! The above-
mentioned result that the effect arises to first order only fr
the change of the wave functions due to the perturbation
not from the change in the energies still holds.~In higher-
order perturbation theory, of course, the energy shifts re
pear.! Conclusions~i!–~iv! are well known in the theory o
dichroism in normal and magnetically ordered metals,
are usually arrived at using more complicated methods.
dominance of the change of the wave function over tha
the energies@conclusion~v!# was noted by several author
who arrived at this or very similar conclusions in a variety
ways.40,48,50–52

III. MODEL CALCULATIONS

A. A model for the SOC mechanism

After discussing general consequences of the results
now turn to their approximate numerical evaluation. A fu
evaluation of Eq.~34! requires self-consistent solutions
the SBdGE in the presence of magnetic fields and remai
project for the future. Here we only look for a simple mod
which illustrates the main physical aspects of the theory.
this end we specialize to mechanism 1.

By imposing a number of physical conditions on the s
perconductor under study we can make sure that the co
butions of the remaining mechanisms are small. Mechani
~2! and ~4! do not contribute if the pair potential is real an
spatially constant, i.e., for order parameters of the type c
sidered in the original BCS model. Moreover, in materi
with heavy elements~high atomic numberZ) in the lattice,
the SOC~which increases roughly asZ4) is strongly en-
hanced, as compared to lowZ materials.

For superconductors with constant pair potential a
heavy elements in the lattice, in sufficiently weak exter
fields, we can therefore limit ourselves, for the purpose o
model calculation, to the SOC mechanism~1!. We thus ne-
glect the matrix elements for the other mechanisms and k
only

hss
nm5sMnm@v# ~58!

with

Mnm@v#:5
1

4im2c2
^nu@¹v3¹#zum& ~59!

in the equations.~In this section we set\[1.! The various
coherence factors can all be expressed in terms of the f
tion

p~E,E8!:5A1

2S 11
e

E
DA1

2S 11
e8

E8
D

2A1

2
S 12

e

E
DA1

2S 12
e8

E8
D , ~60!

which in the respective energy intervals reduces to the
propriate coherence factors.e is defined through

e:5AE22D2. ~61!

Finally, we define
d

p-

t
e
f

f

e

a
l
o

-
ri-
s

n-

d
l
a

ep

c-

p-

F~E,E8,H !:5 f ~2E↑! f ~2E↓8!2 f ~2E↓! f ~2E↑8!.
~62!

By introducing the density of states,N(E), in the supercon-
ducting state~SDOS!, we can convert the sums in Eq.~46! in
integrals. One of the integrals can immediately be perform
due to thed function. Utilizing the above defined quantitie
Eq. ~46! is written as

DP5Q~v22D!^CM&F

pe2E0
2

m2v

3E
D

v2D

dE1F E
2`

2D

dE21E
D

`

dE2GF~E1 ,v2E1 ,H !

E12E2

3p~E1 ,v2E1!p~E1 ,E2!p~E2 ,v2E1!

3N~E1!N~E2!N~v2E1!, ~63!

where theE1 integration arises from the sum onn and theE2
integration from the sum onm. The signature of supercon
ductivity in this equation is the appearance of the cohere
functions and the SDOS. The matrix elementsMnm and
Cnn8

m , on the other hand, arenormal-statematrix elements.
We have approximated these by their average^CM&F over
the Fermi surface. Since superconductivity happens es
tially within a few meV around the Fermi surface, this is
very reasonable approximation. The above procedure has
advantage that the remaining two integrals can be evalu
numerically, once a model for the SDOS is chosen. By for
ing the ratio of the superconducting result to its normal-st
limit,

DPS

DPN
:5

DP

limD→0DP
, ~64!

the average matrix elements cancel and we obtain a d
measure for the interplay between the superconducting
herence and spin-orbit coupling. The same strategy is
applied in a large number of similar model calculations
other properties of superconductors, e.g., for the absorp
of sound,30,41 the nuclear-spin relaxation rate,53 the thermal
conductivity,54 the spin susceptibility,55 the absorption of un-
polarized light,31 etc.

B. Qualitative analysis of the SOC mechanism

The simple form of Eq.~63! allows us to draw some
further conclusions about the nature of SOC-induced dich
ism in superconductors, before proceeding to its numer
evaluation. Close toT50 we can replace the pair potenti
D(T) by its zero-temperature valueD(0), and theFermi
functions inF(E1 ,v2E1 ,H) by step functions, according to
f (2Ens)5 f (2En2smBH)→Q(En1smBH). These step
functions impose restrictions on the integration limits of t
E1 integral, which can symbolically be written as
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E
D

v2D

dE1F~E1 ,v2E1 ,H !¯

→E
D

Min[ v2D,v2mBH]

dE1¯2E
Max[D,mBH]

v2D

dE1¯.

~65!

In the~usual! case thatmBH,D we immediately see that th
two integrals on the right-hand side of Eq.~65! cancel each
other exactly. IfmBH exceedsD there is no such cancella
tion. There is thus no SOC-induced dichroism in superc
ductors atT50, unless the magnetic field is of the order
magnitude of the energy gap. Physically, this can be un
stood as follows: atT50 all electrons are condensed in pa
with net spin zero. The system is thus not spin polariz
even for finite magnetic fields. In this case the symmetry
spin space is not broken and hence SOC cannot induce
ken chiral symmetry. Hence, no dichroism results. A mo
general viewpoint is that time-reversal invariance must
broken to have dichroism from the SOC mechanism. Sin
by construction, the ground state of a superconductor aT
50 consists of pairs of mutually time-conjugate states, i
invariant under time reversal, even in the presence of fi
fields, so that no dichroism can arise. If, on the other ha
the magnetic field is strong enough to break Cooper p
paramagnetically, there exist unpaired electrons even aT
50. In this case one finds a finite spin polarization~i.e., a
ground-state breaking time reversal! at T50 and dichroism
results. Thus, forT50 andmBH,D there is no dichroism,
while for T50 and mBH*D there is a finite amount o
dichroism, in accordance with the above analytical findin
This is a direct manifestation of paramagnetic pair breaki
a phenomenon which is hard to observe experimentally
other means. Of course, the details of the phase trans
induced by paramagnetic pair breaking cannot be descr
with our simple model for the unperturbed superconduc
and our approximate treatment of the matrix elements
particular, real superconductors display paramagnetic lim
ing already atH5D/A2 and not atH5D.30 The factor ofA2
follows from a comparison of total ground-state energies
is not contained in our single-particle model. The mere fa
however, that there is no spin-orbit-induced dichroism aT
50 until the field is of the order of magnitude of the gap,
a very definite consequence of our results.

Interestingly, if we perform the corresponding analysis
the orbital current mechanism~3!, we find that the two inte-
grals in Eq.~65! are not subtracted, but added, hence lead
to a finite result even forT50 andmBH!D. Physically, this
can be interpreted by noting that even the smallest magn
field gives rise to orbital currents in the superconductor,
gardless of temperature.The difference between the orbit
and the spin response of a superconductor thus has a d
sive influence on the low-temperature behavior of dichro
in superconductors.

We now return to the case of finite temperature and
vestigate the behavior ofDP as a function of the~external or
internal! magnetic field. The field enters only throug
F(E,E8,H), which can be expanded, for sufficiently sma
H, aboutH50. One finds
-
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DP}H@ f 8~2E! f ~E2v!2 f 8~E2v! f ~2E!#1O~H2!,
~66!

where f 8(E) stands for the derivative of the Fermi functio
Hence, for small fields,DP, and the imaginary part of the
off-diagonal elements of the conductivity tensor for sup
conductors, are linear functions ofH. The absence of the
zero-order term means that the SOC mechanism alone
not give rise to dichroism without magnetic fields. This is t
same conclusion we already arrived at in Sec. II C 1 by f
lowing a somewhat different line of reasoning.

C. A BCS superconductor in the Meissner phase

Now we turn to the numerical evaluation of Eq.~63!. For
this purpose we have to assume a particular form for
SDOS. The simplest choice, the BCS form

NBCS~E!5NN

E

AE22D2
, ~67!

whereNN is the DOS of the normal metal, leads to unphy
cal singularities atE5D. In every real superconductor thes
singularities are smoothed by a large number of proces
such as gap anisotropy, residual interactions with phono
strong-coupling effects, inelastic scattering from impuritie
etc.30,53,56,57Many parametrizations of the SDOS which ta
these effects into account have been suggested in
literature.41,53,56–58

In the following, we model the SDOS in a way similar t
that of Hebel and Slichter in their seminal work on NMR
superconductors.53,57,58 The SDOS is written as a weighte
average over the BCS-DOS,

N~E!:5ReE
2`

1`

dE8NBCS~E8!w~E,E8!. ~68!

The weighting functionw(E,E8) can take a variety of forms
but in the case of NMR experiments on BCS supercondu
ors the simple square form

w~E,E8!5
1

2d
Q„E82~E2d!…Q„~E1d!2E8…, ~69!

which makesw constant forE8 betweenE2d and E1d,
and zero everywhere else, already leads to quantita
agreement with experiments.53,56–58 The broadeningd is
typically chosen to bed'0.1D(T). Equations~68! and ~69!
convert the singularity into a peak. In the case of NMR th
peak, in conjunction with the coherence factors, gives rise
the well-known Hebel-Slichter peak in the nuclear-spin
laxation rate.30,53,57,58The form, Eqs.~68! and ~69!, of the
SDOS can be physically justified in terms of the anisotro
of the gap,53,56–58but for the present purpose it can also
regarded as just a simple phenomenological model. Ap
from this simple form we also considered several more
phisticated expressions for the SDOS, but it turned out t
its detailed form does not qualitatively~and quantitatively
only up to within 5–10 %! affect our results, as long as th
singularity is smoothed out in whatever fashion. We ha
therefore chosen to work with Eqs.~68! and~69! for numeri-
cal simplicity.
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In order to investigate dichroism as a function of tempe
ture, we also need to specify the temperature dependen
the pair potential. For BCS superconductors this is found
interpolating between two analytically known limiting case
Close toT50 we use the formula derived in Ref. 59 in term
of Bessel functions, while close toT5Tc we employ the
parametrization of Ref. 56 which very close toT5Tc re-
duces to the standard BCS square root form.~More details
can be found in these references.!

In the actual calculation we need to assign physically r
sonable values to the parameters entering Eq.~63!. For the
zero-temperature pair potential we choose a value ofD(T
50)51 meV. Assuming a BCS-type relation between t
pair potential atT50 and the critical temperature this lea
to Tc56.6 K, which is close to that of Pb. The normal-sta
DOS ~NDOS! is assumed to be constant between20.3 and
10.3 eV and zero everywhere else. This corresponds
square-shaped NDOS centered around the Fermi energy
absolute value of the NDOS does not enter because it can
when forming the ratio~64!. Of course, all these number
can be modified easily, without changing any of our conc
sions in an essential way.

The assumptions made and the numerical values cho
specify the superconductor under consideration to be a B
types-wave superconductor in the Meissner phase. Thus
dichroism we discuss in the following is induced in the r
gion where the magnetic field penetrates. The more this
perconductor is type II~i.e., the larger the ratio of penetratio
depth to coherence length!, the larger is the region of the
sample where the magnetic field and the order param
coexist and dichroism results. We therefore assume
model superconductor to be a strong type-II superconduc
@Note that this assumption doesnot underly the genera
theory leading to Eq.~34!#. Since under these circumstanc
the penetration depth is much larger than both the cohere
length and the lattice constant, the light probes the bulk
the superconductor. At this point we therefore neglect a
surface-specific sources for dichroism and use typical b
values for the energy gap, the SDOS, etc.

In concluding this section we stress that our calculatio
are meant only to illustrate the physics of the SOC mec
nism and not to provide quantitative predictions for real
perconductors. For the latter purpose, a self-consistent s
tion of the SBdGE is required.

D. Numerical results

The integrations in Eq.~63! are performed numerically. In
the following subsections we display the results of these
culations as a function of temperature, magnetic field,
frequency.

For each of these we first present the result for a nor
conductor. Although the corresponding calculations can
done for a normal conductor in a self-consistent and fu
relativistic manner,1,2 we perform them using the same a
proximations as discussed above for the superconducto
order to facilitate the comparison with the results for t
superconductor. Strictly speaking, the calculation for a n
mal conductor loses its meaning belowTc . However, as
compared to the superconductor, the response of the no
conductor does not vary significantly with temperature.
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any case, it constitutes a convenient normalization. We
play the result in arbitrary units, because the prefactors
determined by the absolute values of the matrix eleme
Mnm andCnn8

m and the NDOS at the Fermi surface, none
which can be calculated within the simple model of t
present section.

We also show the ratio of the superconducting results
those for the normal conductor. Here the matrix eleme
cancel and no ambiguity is left. We then have a direct illu
tration of the change in the response of the metal to polari
light due to the presence of the superconducting cohere
This strategy, of course, is standard, and was used succ
fully in many similar calculations@cf. the references below
Eq. ~64!#.

1. Dependence on temperature

Figure 1 shows that dichroism in the normal conduc
increases with decreasing temperature. Figure 2 shows
corresponding calculation for the superconductor, divided
the values for the normal conductor. The calculations w

FIG. 1. Dichroism in the normal state vs temperatureT. This
and all other figures display only the contribution of SOC-induc
dichroism. The other mechanisms are excluded from the calc
tion, as discussed in the main text. The numerical values of
parameters specifying the system are given in the main text.

FIG. 2. Dichroism ratio vsT at small magnetic fields. A strong
coherence peak is seen close toTc , while nearT50 the curve
approaches 0.
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done for a frequency of 4.5 meV and a magnetic field of 0
T. Figure 3 repeats Fig. 2, but for a magnetic field close
the paramagnetic limit of superconductivity.~This plot cor-
responds to a superconductor in which the critical field
orbital pair breakingHc2 is high enough that the parama
netic limit is actually reached.!

SinceTc56.6 K, the data points between 6.6 and 8 K are
the same in Figs. 1 and 2. The above statement that
response of the normal conductor does not change
much, if compared with the superconducting response, is
mediately verified.

Clearly, the dominating feature of Fig. 2 is the huge pe
just belowTc . Similar peaks in other observables arise fro
the peak in the SDOS in conjunction with the coheren
factors. These peaks are known as Hebel-Slichter or co
ence peaks.30,41 However, the conventional Hebel-Slichte
peak, as seen, e.g., in NMR experiments,53,57,58,60typically
reaches values in the range~1–5!, while the peak in Fig. 2
goes up to almost 33.

Some part of this additional enhancement may be du
the oversimplified approximations for the matrix elemen
the NDOS and the SDOS. On the other hand, the appr
mations for the matrix elements are the same in the su
conductor and in the normal conductor and do not lead
peaks in the latter case. Furthermore, different models for
SDOS lead to enhancements of the same order of magnit

This suggests that there is a second mechanism at w
which is responsible for the additional enhancement of
peak. Numerically, this effect arises from the regions of
tegration in Eq.~63! which are excluded due to the energ
gap in the superconductor, but contribute to the integrals
the normal conductor. Performing a numerical experime
we can integrate the normal conductor with the integrat
limits of the superconductor. It turns out that it is mainly t
limits of the inner integration~over E2) which in this case
lead to a strong enhancement of the normal-conducting
sults as well.

This effect is independent of the form of the DOS a
thus not the same as the conventional Hebel-Slichter me
nism. It can be interpreted by noting that, apart from prod
ing the peak in the SDOS, the gap also acts as an absor
edge which is present in the superconductor but not in
normal conductor. Experiments and theoretical calculati

FIG. 3. Dichroism ratio vsT at large magnetic fields. Parama
netic pair breaking leads to a finite value atT50.
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for magnetically ordered materials show that dichroism
always greatly enhanced near absorption edges.1,2 The above
numerical experiment and the additional enhancement of
chroism in superconductors, seen in Fig. 2, indicate that
is the case for superconductors as well.

We can thus identifytwo independent ways in which di
chroism in superconductors is enhanced as compared to
normal conductor: The pileup in the density of states, giv
rise to the Hebel-Slichter-type enhancement and the ga
self, producing an absorption edge. Both the original Heb
Slichter mechanism and the additional ‘‘gap-enhanceme
crucially depend on the existence of an energy gap. For
perconductors in which the energy gap is zero on some p
of the Fermi surface, such as ind-wave superconductors
they will be strongly reduced or even not present at all.61

The physics at low temperatures is very different fro
that at higher temperatures. By comparing the lo
temperature behavior of Figs. 1, 2, and 3 we can verify
analytical results obtained in Sec. III B. In the normal co
ductor and the superconductor in the realm of paramagn
pair breaking there is a finite amount of SOC-induced
chroism atT50, while in the superconductor at lower field
dichroism is quenched atT50.

2. Dependence on the magnetic field

Figure 4 displays the behavior of dichroism in the norm
conductor as a function of the magnetic field. In accorda
with the discussion in Sec. III B it starts from zero atH50
and rises almost linearly.~For fields about 10 times as larg
as in the figure a slight deviation from linearity is found!
Figure 5 illustrates that, although both the normal and
superconductor are approximately proportional toH, their
ratio is not constant. This is due to the higher-order terms
H. Both figures are for a temperature of 2.5 K and a f
quency of 4 meV.

Figure 6 displays the ratio for the case of zero tempera
and very large magnetic fields. All data points atH,17.5 T
are zero, while above 17.5 T suddenly finite values show
This reflects the paramagnetic limit, as discussed above
deed,H517.5 T corresponds to an energy of 1 meV, whi
is just the value chosen for the pair potential atT50. Super-

FIG. 4. Dichroism in the normal state vs magnetic fieldH at
finite temperature.DP rises almost exactly linearly withH.
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conductors where the upper critical field is thought to
influenced by paramagnetic limiting are, e.g.,62 the heavy-
fermion compounds UBe13 and CeCu2Si2, the Chevrel phase
material Gd0.2PbMo6S8, the A-15 superconducto
Nb3 Al0.75Ge0.25 and thin films of, e.g., Al or Sn.63,64 While
plausible, this is not supported by direct experimental e
dence. Clearly, under such circumstances, the observatio
dichroism atH;Hc2, as in Fig. 6, could be decisive.

3. Dependence on frequency

Figure 7 showsDP in a normal conductor versus fre
quency. Atv50 there is, of course, no dichroism becau
no transitions can take place. At higher frequenciesDP ap-
proaches an almost constant value. This reflects the fea
less NDOS which was used in the calculations~namely its
average value at the Fermi surface!.

The corresponding plot for the ratio, Fig. 8, displays
absorption edge atv52D. This edge is due to our limitation
to pair-breaking processes. At low temperatures very
excited quasiparticles are present and pair breaking is
only available mechanism for absorption. The inclusion

FIG. 5. Dichroism ratio vsH at finite temperature. The supe
conductor displays a stronger variation with the magnetic field
compared to the normal conductor.

FIG. 6. Dichroism ratio vsH at zero temperature. A finite-spi
polarization is not produced until the magnetic field is compara
to the energy gap.
e
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scattering from excitations~i.e., broken pairs! is known from
investigations of the absorption of unpolarized light,30 to
give rise to some additional absorption below the ed
which does not significantly affect the part of the curve d
to pair breaking.

The shape of the peak directly above the edge reflects
behavior of the perturbation, acting on the system, un
time reversal~cf. the discussion in Ref. 30, in particular Fig
2-9!. The curve in Fig. 8 is of a mixed type, which reflec
that we have two perturbations acting on the system:
spin-orbit coupling, which is even under time reversal, a
the magnetic field, which is odd.

Both plots were done for a temperature of 3 K~well be-
low the strong peak seen in Fig. 1! and a~relatively strong!
magnetic field of 0.1 T.

IV. EXPERIMENTAL ASPECTS

A number of experimental results on dichroism in t
vortex state of high-temperature superconductors
available.3,4 Below we offer some speculative remarks on t
interpretation of these experiments on the basis of the pre
theory.

First, we note that the difference LHP-RHP, which can

s

e

FIG. 7. Dichroism in the normal state vs frequencyv.

FIG. 8. Dichroism ratio vsv. The absorption edge atv52D
has a mixed type I-II character, reflecting the behavior of the p
turbations under time reversal.
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read off from Fig. 3 of Ref. 4, displays a strong enhancem
betweenT;Tc and T;Tc/2, which is consistent with ou
general prediction of enhanced dichroism belowTc .

This difference was theoretically analyzed on the basis
the cyclotron motion of the orbital currents circulatin
around the vortex core.25,65 In our framework this corre-
sponds to mechanism~3!. The orbital mechanism can be di
tinguished experimentally from the SOC mechanism
cause, as explained in Sec. III B, it leads to a finite value
DP and Im@ŝxy# at T50. By contrast, the SOC-induce
dichroism vanishes atT50, as demonstrated analytically i
Sec. III B and numerically in Sec. III D 1. The data of Ref.
do indeed extrapolate to a finite value atT50. The present
analysis thus supports the assumptions made, as to
mechanism responsible for the dichroism, in evaluating
above-mentioned experiments.

There are at least two features of these experiments w
suggest that the spin-orbit mechanisms are present as
First, the observed difference LHP-RHP displays change
sign3,4 betweenT5Tc and T50. Such a behavior finds
natural explanation in the presence of two distinct mec
nisms for dichroism which have a different temperature
havior, but are operative for roughly the same values of te
perature, magnetic field, and frequency. This interpretatio
further supported by the fact that, in order to phenome
logically fit their measured data, the authors of Refs. 3 an
had to assumetwo independent Lorentzian oscillators. Ev
dently, coexistence of the SOC or the ASOC mechanism~1!
and ~2!, with the orbital mechanism~3!, provides a possible
explanation for these observations.

Second, as stated in Ref. 3, the orbital mechanism a
does not fully explain the observations because there are
dications for ‘‘other~electronlike! chiral resonances in add
tion to the simple cyclotron resonance.’’3 Clearly, the spin-
orbit mechanisms SOC and ASOC can play the role of th
electronlike chiral resonances.

In a different set of experiments5–7 spontaneous dichroism
in high-temperature superconductors, both above and be
Tc , was observed to exist at frequencies much higher t
those considered in the present paper. In view of this dif
ence in frequency it is unlikely that these effects are p
duced by the pair-breaking contribution to the SOC, ASO
or orbital mechanisms discussed above. The fact that dic
ism is observed also aboveTc points to mechanism 5
~normal-state dichroism which continues to be present be
Tc), in which case the energy scale is not set by the ene
gap, but by normal-state parameters. More rec
experiments8 indeed suggest that this is the correct expla
tion.

Although the results obtained in this paper are thus c
sistent with all available experiments, more detailed exp
mental and theoretical investigations are called for, in or
to identify the various mechanisms analyzed in this pape
an unequivocal way.

The SOC mechanism may be easiest to identify in sup
conductors which satisfy as many of the following criteria
possible:~i! heavy atoms in the lattice~this favors the con-
ventional SOC, which rises approximately asZ4), ~ii ! no
zeros of the energy gap~such zeros can eliminate the cohe
ence peak!, ~iii ! short coherence length and large penetrat
depth~to maximize the region in which the order parame
nt
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and the magnetic field are present simultaneously!, ~iv! weak
shielding currents~to minimize the influence of the orbita
mechanism!. These conditions are approximately satisfie
e.g., by lead.

For the ASOC mechanism to be observed we suggest~i!
light atoms in the lattice~to minimize the effect of the SOC
term!, ~ii ! large gradient of the pair potential~i.e., large en-
ergy gap and short coherence length!, ~iii ! a large penetration
depth,~iv! weak shielding currents, as for the SOC mech
nism. It should be stressed that the observation of the AS
mechanism would be of general significance because it co
confirm or reject the form of the relativistic BCS Hami
tonian which has been proposed only recently9–11 and is not
yet experimentally verified.

The pair potential mechanism~4! is unique in that it does
not depend on the existence of an~external or internal! mag-
netic field. The observation of dichroism belowTc in the
absence of such fields would be a strong hint at mechan
~4!.

V. CONCLUSION AND OUTLOOK

We have presented a perturbative approach to the abs
tion of polarized light in superconductors. Several distin
mechanisms for dichroism in superconductors were ide
fied and interpreted. These are~1! the conventional spin-orbi
coupling, ~2! the anomalous spin-orbit coupling,~3! orbital
currents, ~4a! complex order parameters,~4b! inversion
symmetry-breaking order parameters, and~5! a normal state
which already displays dichroism.

Using perturbation theory for the spin-Bogolubov–
Gennes equations, we derived a general formula which c
tains the contributions of all these mechanisms. On the b
of this result several analytical conclusions concerning th
mechanisms were drawn. These include an investigation
the circumstances under which the various mechanisms
be operative and an analysis of their behavior as a func
of temperature and magnetic field.

The important role played by time-reversal symmetry
pointed out. While a Cooper pair consists of two mutua
time conjugate single-particle states and the ground state
superconductor is thus invariant under time reversal, sev
mechanisms for dichroism require the breaking of this sy
metry.

For more detailed illustrations we have chosen the mec
nism based on the conventional spin-orbit coupling beca
it is known to be the dominant mechanism in the norm
state. Numerical calculations for a simple model superc
ductor confirm the analytical results and provide first hints
experimental signatures of SOC-induced dichroism in sup
conductors.

The influence of paramagnetic limiting on dichroism
low temperatures and high fields, unconventional order
rameters as a source for dichroism, the quenching of s
orbit-induced dichroism atT50, and an additional enhance
ment of the coherence peaks are definite predictions of
theory which can be verified experimentally. None of the
phenomena show up in the absorption of unpolarized ligh
superconductors or in dichroism in the normal state.
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