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Canted antiferromagnetic and spin-singlet quantum Hall states in double-layer systems
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We present details of earlier studies@Zhenget al., Phys. Rev. Lett.78, 310~1997! and Das Sarmaet al., 79,
917 ~1997!# and additional results on double-layer quantum Hall systems at a total fillingn52n1, where a
single layer at fillingn1 forms a ferromagnetic, fully spin-polarized, gapped incompressible quantum Hall
state. For the casen151, a detailed Hartree-Fock analysis is carried out on a realistic, microscopic Hamil-
tonian. Apart from the state continuously connected to the ground state of two well-separated layers, we find
two double-layer quantum Hall phases: one with a finite interlayer antiferromagnetic spin ordering in the plane
orthogonal to the applied field~the ‘‘canted’’ state!, and the other a spin singlet. The quantum transitions
between the various quantum Hall states are continuous, and are signaled by the softening of collective
intersubband spin-density excitations. For the case of generaln1, closely related results are obtained by a
semi-phenomenological continuum quantum field theory description of the low-lying spin excitations using a
nonlinears model. Because of its broken symmetry, the canted phase supports a linearly dispersing Goldstone
mode and has a finite-temperature Kosterlitz-Thouless transition. We present results on the form of the phase
diagram, the magnitude of the canted order parameter, the collective excitation dispersions, the specific heat,
the form of the dynamic light-scattering spectrum at finite temperature, and the Kosterlitz-Thouless critical
temperature. Our findings are consistent with recent experimental results.@S0163-1829~98!10331-4#
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I. INTRODUCTION

Interaction in a low-dimensional system does not mer
result in strong renormalization of physical quantities, b
can in many cases drive the system into completely n
phases with peculiar properties. For a two-dimensional~2D!
electron gas in a perpendicular magnetic field, the interac
effects are especially important because of Landau-le
quantization. When electrons are entirely restricted to
lowest Landau level by a large magnetic field, electro
electron interaction completely dominates the properties
the system as the electron kinetic energy is quenched t
unimportant constant. One of the most interesting phen
ena in this strongly correlated system is the quantum H
~QH! effect, which has attracted a great deal of experime
and theoretical interest during the past fifteen years.1 Recent
advances in materials growth techniques have made it
sible to fabricate high-quality double-layer two-dimension
electron systems with the electrons confined to two para
planes separated by a distance comparable to that bet
electrons within a plane. With the introduction of this lay
degree of freedom, many qualitatively new effects due
tirely to interlayer correlations appear.2–9 Many new QH
phases in double-layer systems become real possibilities
cause of the increased degree of freedom and the com
cated interplay among interlayer tunneling energy, Zeem
energy, and electron-electron Coulomb interaction energ

In this paper, we present the details of our earlier theo
ical investigations7,9 of the possible QH phases in a doubl
PRB 580163-1829/98/58~8!/4672~22!/$15.00
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layer system at atotal Landau-level filling factorn52n1,
wheren1 is a filling factor at which an isolated single laye
system forms a fully spin-polarized incompressible QH st
~e.g.,n151,1/3, etc.! We will discuss three distinct groun
states, and the nature of the zero or finite-tempera
transitions/crossovers between them.

~i! A fully polarized ferromagnetic~FPF! QH state in
which the spins in each layer are aligned parallel to the m
netic field. This state is adiabatically connected to the grou
state of well-separated layers, each forming a polarized
state at filling fractionn1. We will denote this FPF state als
as the FM~for ‘‘ferromagnetic’’! state.

~ii ! A spin-singlet ~SS! state, which can be visualize
crudely as consisting of singlet pairs of electrons in oppo
layers. Alternatively, atn151, we will discuss the Hartree
Fock picture of spin-up and spin-down electrons fully occ
pying single-particle states that are symmetric in the la
‘‘pseudospin’’ index; hence the singlet state will also be
ferred to as SYM. In the limit of a vanishing tunneling m
trix element between the layers, this state is simply the ps
dospin polarized state of Refs. 3 and 4 for both spin-up a
spin-down electrons separately. Throughout, we will co
sider the case of a nonvanishing tunneling matrix elemen
this case the pseudospin polarization is chosen by the p
of the tunneling amplitude, and not spontaneously. None
the phase transitions we consider here require a vanis
tunneling matrix element; on the contrary, changes in
value of the tunneling matrix element can drive the quant
transitions.
4672 © 1998 The American Physical Society
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~iii ! A canted~C! state in which the average spin momen
in the layers have an antiferromagnetic correlation in
plane perpendicular to the magnetic field, and a ferrom
netic correlation parallel to the magnetic field. Both ferr
magnetic and antiferromagnetic moments can vary cont
ously at zero temperature as parameters are varied.
planar antiferromagnetic ordering breaks spin rotation sy
metry about the magnetic-field axis: as a consequence t
is a gapless, linearly dispersing, Goldstone collective m
in its excitation spectrum and a Kosterlitz-Thouless tran
tion at a finite temperature. The C phase is the canted a
ferromagnetic phase~CAF! discussed in our earlier sho
publications.7,9

We will use two distinct and complementary approach
to understand these phases. The first is a mean-field Har
Fock calculation: this applies only for integer values ofn1,
but has the advantage of working with a precise microsco
Hamiltonian involving only parameters which are direc
known experimentally. The second is a phenomenologi
quantum field-theoretic formulation that applies for gene
n1, and allows us to more precisely understand the con
quences of thermal and quantum fluctuations. We will n
discuss some of the results of these two approaches in

In the Hartree-Fock approximation,10 we are able to show
that the canted antiferromagnetic~C! phase is the energet
cally favored ground state forn52 at intermediate laye
separations for systems with small Zeeman energy, and
the phase transitions from the C to the FM or SYM pha
are continuous. We evaluate atn52 the intersubband spin
density wave~SDW! dispersions of all phases in the tim
dependent Hartree-Fock approximation11 and show that, as
the precursor of the phase transitions, the collective inters
band SDW mode softens at the phase boundaries of the
and SYM phases to the C phase. The SDW becomes
linearly dispersing Goldstone mode in the C phase, and
temperature of the Kosterlitz-Thouless transition is obtain
by evaluating its effective spin stiffness in the Hartree-Fo
approximation. In addition, we present results on the stab
energetics of the various phases, the antiferromagnetic o
parameter, the phase diagram, the collective intersubb
SDW excitation dispersions, and the specific heat.

The n52 Hartree-Fock results may also be qualitative
applicable to the case ofn56 if the Landau-level mixing is
ignored ~the Landau-level mixing may not be negligible
n56, though.! On the other hand, the situation atn54 is
very different from the situation atn52, since the inter-
Landau-level excitation energies are comparable to the
clotron energy; our results do not apply atn54.

The microscopic Hartree-Fock analysis obviously do
not apply to a situation where the average filling factorn1 in
each layer is fractional~e.g., n151/3) with each isolated
layer supporting a spin-polarized Laughlin fractional QH
state; such a many-body state will not appear in any me
field decoupling of the Hamiltonian. However, an essen
property of the phases we are discussing is that they all h
a gap towards charged excitations, and the transitions
tween them are driven by changes in the nature of the m
spin polarizations, and of the spin excitations. This sugg
that it may be possible to develop a more general effec
theory that focuses on the spin excitations alone. We
present such a theory in Sec. III: it turns out to be the O~3!
e
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quantum nonlinears model in the presence of a magnet
field. For the casen52, we are able to use our earlie
Hartree-Fock computations to precisely obtain all the ren
malized parameters that universally determine the lo
temperature properties of the nonlinears model; for other
values ofn1, including the fractional cases, these paramet
remain as phenomenological inputs. We will present
phase diagram of the sigma model, and describe the natu
the finite-temperature crossovers above the various phas
some detail. In particular, we will obtain explicit prediction
for the temperature dependence of the line shape of the
elastic light-scattering spectrum.

We note that our findings from the two approaches
consistent with recent inelastic light-scatterin
measurement,8 where a remarkable~and temperature-
dependent! softening of the long-wavelength intersubba
SDW mode in an52 double-layer system is observed. W
hope that our other explicit theoretical results may be tes
in future experiments. The experimental situation will be d
cussed in Sec. IV.

This paper is organized as follows. The results of t
Hartree-Fock theory are presented in Sec. II. In Sec. II A,
study the ground-state properties of then52 double-layer
system in a self-consistent mean-field approximation. T
intersubband SDW excitations in the time-depend
Hartree-Fock approximation and associated mode softe
are studied in Sec. II B. The thermodynamic properties
discussed in Sec. II C, and some further discussion, al
with an assessment of the validity of the calculation, appe
in Secs. II D and II E. In a long and self-contained Sec.
we give our nonlinears model effective field-theoretic de
scription for a genericn52n1 situation. Comparison of ou
theory with recent light-scattering experiments is discus
in Sec. IV. A short summary in Sec. V concludes this pap
We note that the readers who are interested only in mic
scopic Hartree-Fock theory could skip Sec. III, and the re
ers who are interested only in our long-wavelength effect
field theory could skip Sec. II. We have taken care in writi
the two parts of our work, namely, the microscopic Hartre
Fock calculation forn52 ~Sec. II! and the nonlinears
model description forn52n1 ~Sec. III! as two separate self
contained pieces that can be read reasonably independe
each other if so desired.

II. HARTREE-FOCK THEORY

We begin by writing down the explicit microscopi
Hamiltonian of a double-layer quantum Hall system.

Within the lowest Landau level, the single-particle eige
states may be denoted byuams&, where a is the intra-
Landau-level index in the lowest Landau level,m50,1 is the
pseudospin index that labels the symmetric and antisymm
ric subbands, and the spin indexs561 labels ↑ and ↓
spins.12 The Hamiltonian of the double-layer system is

H5H01H I , ~2.1!

where the noninteracting Hamiltonian is

H052Dsas(
ams

~1/22m!Cams
† Cams2Dz(

ams

s

2
Cams

† Cams ,

~2.2!
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4674 PRB 58S. DAS SARMA, SUBIR SACHDEV, AND LIAN ZHENG
where the pseudospin splittingDsas is the tunneling-induced
symmetric-antisymmetric energy separation, the spin sp
ting Dz is the Zeeman energy, andC†(C) is electron creation
~annihilation! operator. The Coulomb interaction Hami
tonianH I is

H I5
1

2 (
s1s2

(
m1m2m3m4

(
a1a2

1

V

3(
q

Vm1m2m3m4
~q!e2q2l o

2/2eiqx~a12a2!l o
2

3Ca11qym1s1

† Ca2m2s2

† Ca21qym3s2
Ca1m4s1

, ~2.3!

whereV is the area of the system, andl o5(\c/eB)1/2 is the
magnetic length. The nonzero Coulomb potential matrix
ements are V00005V01105V10015V11115V1 and V1010
5V01015V11005V00115V2 , with V6(q)5 1

2 @va(q)
6vb(q)#, where va(q)52pe2/eq and vb(q)5va(q)e2qd

are the intralayer and interlayer Coulomb interaction pot
tials, respectively.~The finite well-thickness corrections ca
be taken into consideration by including appropriate fo
factors.10!

The following subsections will examine various prope
ties of H at n52 by mean-field and RPA-like treatments
the interactions inH I .

A. Ground states

In this subsection, we investigate the ground state pro
ties of H, and obtain the three phases discussed in the In
duction. Performing Hartree-Fock pairing of Eq.~2.3!, one
obtains the mean-field interaction Hamiltonian as
t-

l-

-

r-
o-

H I
HF52 (

s1s2
(

m1m2

Xm1m2s1s2
Cm1s1

† Cm2s2
, ~2.4!

where

Xm1m2s1s2
5

1

2p l o
2 (

m3m4

3(
q

Vm3m1m4m2
~q!e2q2l o

2/2^Cm3s2

† Cm4s1
&,

which depends on the electronic state being sought thro
the expectation valuêCm3s2

† Cm4s1
&. We self-consistently

search for the symmetry broken states where, in addition
^Cms

† Cms&Þ0, the possibility that̂ Cm↑
† C12m↓&Þ0 is also

allowed. Because of the complete Landau-level degener
the Hartree-Fock HamiltonianHHF5H01H I

HF in a uniform
state is a 434 matrix, representing the dimension of th
subspace associated with the spin and layer degrees of
dom. It thus has four eigenenergies« i 6 and four eigenstates
f i 6( i 51,2), which are obtained as shown below. In t
noninteracting base (u0↑&,u1↓&,u0↓&,u1↑&), HHF becomes

HHF5S E1 D1 0 0

D1 E2 0 0

0 0 E3 D2

0 0 D2 E4

D , ~2.5!

where
E152
Dsas1Dz

2
2U1S n11sin2

u1

2
1n12cos2

u1

2 D2U2S n21cos2
u2

2
1n22sin2

u2

2 D ,

E25
Dsas1Dz

2
2U1S n11cos2

u1

2
1n12sin2

u1

2 D2U2S n21sin2
u2

2
1n22cos2

u2

2 D ,

E35
Dz2Dsas

2
2U1S n21sin2

u2

2
1n22cos2

u2

2 D2U2S n11cos2
u1

2
1n12sin2

u1

2 D ,

E45
Dsas2Dz

2
2U1S n21cos2

u2

2
1n22sin2

u2

2 D2U2S n11sin2
u1

2
1n12cos2

u1

2 D ,

D15U1

n122n11

2
sin u11U2

n222n21

2
sin u2 ,

D25U1

n222n21

2
sin u21U2

n122n11

2
sin u1 , ~2.6!

whereu1 and u2 are associated with the Hartree-Fock eigenstatesf i 6 that need to be obtained self-consistently,ni 6 are

electron occupation numbers^f i 6
† f i 6&, andU65(1/V)(pe

2p2l o
2/2V6(p). The off-diagonal matrix elementsD i represent the

possibility of the broken symmetry (^Cm↑
† C12m↓&Þ0) mentioned above. By diagonalizing the Hartree-Fock HamiltonianHHF

of Eq. ~2.5!, one obtains the eigenstates



PRB 58 4675CANTED ANTIFERROMAGNETIC AND SPIN-SINGLET . . .
~f11 ,f12 ,f21 ,f22!5S sin~u1/2! cos~u1/2! 0 0

cos~u1/2! 2sin~u1/2! 0 0

0 0 sin~u2/2! cos~u2/2!

0 0 cos~u2/2! 2sin~u2/2!

D , ~2.7!
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«165
E11E2

2
6A~E12E2!2

4
1D1

2,

«265
E31E4

2
6A~E32E4!2

4
1D2

2. ~2.8!

Equations~2.5! to ~2.8! form the complete self-consisten
Hartree-Fock equations that need to be solved numeric
In fact, the only quantities to be determined in this se
consistent manner are the two parametersu1 andu2, which,
in turn, uniquely define the eigenstates through Eq.~2.7!.
The eigenenergies always satisfy« i 2,« j 1 ( i , j 51,2), so
the ground state atn52 is given byu &5P if i 2

† uv&, where
uv& is the vacuum state. The ground state energy is given
E5^H01 1

2 H I
HF&.

There are several sets ofu1 andu2 which make Eq.~2.7!
the self-consistent solutions to the mean-field Hartree-F
equations. One isu150 andu250, which corresponds to th
SYM state. Another isu150 andu25p, which corresponds
to the spin-polarized ferromagnetic~FM! state. These two
are the spin ferromagnets~FM’s! or layer pseudospin
‘‘ferromagnets,’’3,4 ~SYM’s! whose existence is naturally ex
pected in the presence of finite Zeeman and tunneling e
gies. More interesting is that, forDsas.Dz , there exists a
solution at intermediate interlayer separations with 0,u i
,p. As we shall see shortly, this new state possesse
canted antiferromagnetic ordering~the C phase!, i.e., an in-
terlayer inplane antiferromagnetic spin ordering with the
plane spin magnetic moment in each layer being equa
magnitude and the opposite of each other. The energie
these different states are shown in Fig. 1. It is clear from
figure that the energetically favored ground state is the S

FIG. 1. The energy per magnetic flux in the SYM state, t
spin-polarized FM state, and the C state for an52 double-layer
system withDsas50.07e2/e l o , Dz50.01e2/e l o , and well thickness
dw50.8l o .
ly.
-

y

k

r-

a

-
in
of

is

state at small interlayer separations, the C state at interm
ate separations, and the FM state at large interlayer sep
tions. Then52 double-layer QH system thus undergoes t
quantum phase transitions as the layer separation is incre
from d50 to d→` at a fixed magnetic field.

To show the antiferromagnetic spin correlations, we re
range the eigenstates as

f i 65~1/A2!~ uL&Si 6
L 1uR&Si 6

R ), ~2.9!

whereSi 6
L(R) , electron spin configurations in the left~right!

layer in the eigenstatef i 6 , are Si 2
L 5cos(ui/2)u↑&

2sin(ui/2)u↓&, Si 2
R 5cos(ui/2)u↑&1sin(ui/2)u↓&, and satisfy

(Si 1
L )†Si 2

L 5(Si 1
R )†Si 2

R 50. We immediately obtain the
canted antiferromagnetic spin order as

^S x
R&52^S x

L&5 1
4 ~sin u11sin u2!, ~2.10!

whereS L(R) is the electron spin operator in the left~right!
layer, andx denotes the spin alignment direction within th
two-dimensional plane. This canted interlayer antiferrom
netic spin ordering is shown schematically in Fig. 2. No
that the total spin magnetic moment still points in the dire
tion of the magnetic field as required by symmetry. It
obvious that this antiferromagnetic order breaks the U~1!
symmetry associated with the spin-rotational invariance
the system. Its consequences on the low-temperature the
dynamic properties will be discussed later. The numeri
result of this order parameteru^S x

L&2^S x
R&u is shown in Fig.

3. One can see that when Zeeman energyDz is increased, the
range of the layer separations where the canted antiferrom
netic state exists shrinks in favor of the ferromagnetic sta
as the Zeeman energy obviously favors the spin-polari
state. It is clear that the phase transition is continuous.

The phase diagram, shown in Fig. 4, can be construc
from this mean-field approximation. The statesu0↑& and
u1↑& are occupied in the FM phase,u0↑& andu0↓& are occu-
pied in the SYM phase, and the C phase interpolates betw
them. The SYM phase exists forDsas.Dz andd,dc1, the C

FIG. 2. Schematic display of electron spin orientations in
canted antiferromagnetic quantum Hall phase.
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phase exists forDsas.Dz and dc1,d,dc2, and the FM
phase exists for eitherDz.Dsasor d.dc2. The FM phase is
favored whenDz is increased, while the SYM phase is f
vored whenDsas is increased. In the next subsection, t
same phase diagram will be obtained by studying the sof
ing of the intersubband SDW excitations in the tim
dependent Hartree-Fock approximation.

FIG. 3. The canted antiferromagnetic order parameter vs la
separation for the indicated tunneling and Zeeman energ
well thicknessd50.8l o .

FIG. 4. The zero-temperature phase diagrams atn52 within the
Hartree-Fock approximation at two different values of the Zeem
energy:~a! Dz50.01e2/e l o and ~b! Dz50.01e2/e l o . The quantum
well thickness isdw50.8l o for both of the figures. Three phases a
present: the SYM phase, the spin-polarized FM phase, and th
phase. The1 in ~a! denotes the experimental sample parameter
Ref. 8. The vertical dotted line in each figure indicated theDz

5Dsas condition, which is the naive phase boundary between
FM (Dz.Dsas) and the SYM (Dz,Dsas) phases with an expecte
level crossing atDz5Dsas.
n-

In this subsection we have studied the ground-state p
erties of n52 double-layer QH systems in a mean-fie
Hartree-Fock approximation and showed the existence
three stable QH phases. The most interesting observatio
the existence of a canted antiferromagnetic phase, wit
broken spin rotation symmetry, in between the symme
and the ferromagnetic phases.

B. Intersubband SDW excitations and mode softening

In this section, we study collective intersubband SD
spectra of n52 double-layer QH systems in the time
dependent Hartree-Fock approximation.11 These excitations
involve flipping both the spin and pseudospin of the elect
and are the lowest-energy excitations atn52. The phase
instability is studied by investigating the softening of th
collective intersubband SDW excitations. The results o
tained in this section are in complete quantitative agreem
with the results obtained from the ground-state studies in
previous section, as, of course, they should be if the ca
lations are done correctly.

In the absence of interaction, the two branches of
intersubband SDW excitations which correspond to tran
tions u0↑&↔u1↓& and u0↓&↔u1↑&, have excitation energie
uDsas6Dzu, whereDsas and Dz are interlayer tunneling and
Zeeman energies, respectively. Interaction renormalizes
excitation energies in two ways. One is a self-energy corr
tion to the polarizability due to the loss of exchange ene
when an electron is excited to a higher but empty lev
which raises the excitation energies. The other is the ve
correction to the polarizability due to an excitonic attracti
between the electron excited to the higher level and the h
it leaves behind, which lowers the excitation energies.
diagrammatic perturbation theories, the effect of the
change energy on the excitation energies is accounted fo
including the corresponding self-energy in electron Gree
functions, and the effect of the excitonic attraction is rep
sented by vertex corrections. The self-energy and the ve
correction must be consistent with each other in obeying
Ward identity. The direct Hartree term does not influence
SDW excitations because Coulomb interaction is sp
rotationally invariant. Since the Coulomb interaction pote
tials are subband-index dependent, they may introduce m
coupling between the two branches of the intersubband S
excitations. This mode-coupling pushes down the freque
of the low-lying excitation and hence helps mode softeni

The intersubband SDW excitation spectra are obtained
the poles of the retarded intersubband spin-density resp
function,

x ret~q,v!52 i E
0

`

eivt^@rSD~q,t !,rSD
† ~2q,0!#&,

~2.11!

where the intersubband SDW operator is defined as

rSD~r !5(
i 51

2

f i 2
† ~r !f i 1~r !. ~2.12!

er
s;

n

C
f

e
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rSD(r ) recovers to familiar forms rSD(r )
5(mCm↑

† (r )C12m↓(r ) in the spin-polarized state (u150 and
u25p), and rSD(r )5(sC0s

† (r )C12s(r ) in the symmetric
state (u15u250).

x ret(q,v) is evaluated in the time-dependent Hartre
Fock approximation,11 which we adapt to double-layer sys
tems and, for simplicity, we ignore all of the higher Land
levels. As argued earlier, this should be a good approxi
tion for our problem. In this approximation, one includes t
single-loop self-energy and the ladder vertex diagrams in
theory, which satisfies the Ward identities. This tim
dependent Hartree-Fock approximation, therefore, co
sponds to solving the vertex equation shown in Fig. 5, wh
the electron propagators are the self-consistent Hartree-F
Green’s functions obtained from the mean-field approxim
tion discussed in the previous section. Due to the fact that
Coulomb interaction is frequency independent and that
Landau levels are completely degenerate, the integral ve
equation can be transformed into an algebraic ma
equation.11 The matrices can be further block diagonaliz
into 434 matrices, from which the poles of the spin-dens
response function can be~almost! analytically calculated.

Combining Eqs.~2.11! and ~2.12!, one obtains the spin
density response function in the Matsubara frequencies13

x~q,iv!5e2q2l o
2/2(

ia
e2 iqxa l o

2
Di 1~ iv!G i 1~q,iv,a!,

~2.13!

where

Dil5
1

b(
n
Gil~ ipn1 iv!Gi 2l~ ipn!5

ni 2l2nil

iv1« i 2l2« il

5
1

l iv1« i 22« i 1
for T50, ~2.14!

whereb51/kBT, Gil is the Green’s function correspondin
to the self-consistent Hartree-Fock eigenstatef il and
eigenenergy« il given in Eqs.~2.7! and ~2.8!, respectively.
The ladder diagram vertex function is

FIG. 5. Feynman diagram for the intersubband spin-density
sponse function in the time-dependent Hartree-Fock approxima
where solid lines are the self-consistent Hartree-Fock elec
Green’s functions and zigzig lines are Coulomb interaction pot
tials.
-

a-

e
-
e-
e
ck
-
e
e
ex
x

G il~q,iv,a!5eiqxa l o
2
2

1

V (
pxi 8a8l8

exp2@px
21~a2a8!2# l o

2/2

3expipxqyl o
2Di 8l8G i 8l8~q,iv,a8!

3^ il; i 82l8uV~px ,a2a8!u i 2l; i 8l8&,

~2.15!

where the interaction matrix element is

^ i 1l1 ; i 2l2uV~q!u i 3l3 ; i 4l4&

5 1
2 @11~21! i 11 i 21 i 31 i 4#@~Si 1l1

L !†Si 4l4

L #@~Si 2l2

L !†Si 3l3

L #

3@V1~q!d i 2i 3
1V2~q!~12d i 2i 3

!#, ~2.16!

whereSil
L is the electron spin states given in Eq.~2.9!.

To solve the vertex equation, we perform the followin
Fourier transformations:11

Ḡ il~k!5(
a

G il~a!e2 ika l o
2

~2.17!

and

Ṽil; i 8l8~q!5
1

V(
p

e2p2l o
2/2eip`ql o

2
Vil; i 8l8~p!, ~2.18!

where p`q5pxqy2pyqx and Vil; i 8l85^ il; i 82l8uV(q)u i
2l; i 8l8&, as given by Eq.~2.16!. After an analytical con-
tinuation, one obtains

x ret~q,v!5e2q2l o
2/2 (

i 51,2
Y i 1~q,v!, ~2.19!

where

Y5~D211Ṽ!21N, ~2.20!

N andY are 431 matrices, withNil5V/2p l o
2 , the number

of magnetic flux passing through the system, andY il

5Dil(v)Ḡ il(q,v). D and Ṽ are 434 matrices, with
Dil; i 8l85d i i 8dll8Dil(v), andṼil; i 8l8 defined in Eq.~2.18!.

The intersubband SDW dispersionv(q), which occurs as
the pole of the retarded spin-density response functionx ret, is
the solution to detuD21(v)1Ṽ(q,v)u50. After a lengthy
but straightforward algebraic manipulation, the two intersu
band SDW dispersionsv6(q) are obtained as

-
n,
n
-

v6
2 5A21B22Ṽ2

2 cos~u11u2!6A$Ṽ2@12cos~u11u2!#A%214B2~A1C!~A2C!, ~2.21!

whereA5 1
2 (a1b), B5 1

2 (a2b), andC5 1
2 Ṽ2„11cos(u11u2)…, with

a5A~Dsas1Dz1U1cosu12U2cosu2!21~U1sin u11U2sin u2!22Ṽ1 ,

b5A~Dsas2Dz1U1cosu22U2cosu1!21~U1sin u21U2sin u1!22Ṽ1 . ~2.22!
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The intersubband SDW dispersions in both the canted
tiferromagnetic QH phase~C! and the normal QH phase
~FM or SYM! can be obtained from the above expression
incorporating appropriate values ofu1 andu2. In the follow-
ing, we showv6(q) only at zero temperature for the sake
simplicity, although the formalism applies equally at fini
temperatures.

In Fig. 6, we show the dispersion of the intersubba
SDW above the FM ground state. As mentioned earl
these two intersubband SDW modesv6(q) correspond, re-
spectively, to transitionsu0↑&→u1↓& and u1↑&→u0↓&. The
frequenciesv6 increase as functions ofq, approaching
asymptotic valuesv6(q→`)5v6

0 1uvxu, wherev6
0 are the

noninteracting excitation energies andvx is the exchange
energy of the electron in the ground state. Mode coupli
which pushes downv2(q) and hence helps mode softenin
is most visible atq→0. At zero layer separation, mode co
pling disappears, and we recover previously kno
results.11,14–16 In Fig. 7, we show the intersubband SDW
dispersion above the SYM state. The results are qualitativ
similar to those in Fig. 6, except that there is no mode c
pling in the symmetric state because Coulomb interactio
spin independent. The important thing to be noticed is t
the long-wavelength collective excitations are gapped in b

FIG. 6. The intersubband SDW dispersionv6(q) in the spin-
polarized FM phase atn52 with tunneling energy Dsas

50.02e2/e l o , Zeeman energyDz50.01e2/e l o , layer separationd
51.15l o , and well thicknessdw50.8l o .

FIG. 7. The intersubband SDW dispersionv6(q) in the SYM
phase atn52 with layer separationd50.85l o , Zeeman energy
Dz50.08e2/e l o , tunneling energyDsas50.35e2/e l o , and well
thicknessdw50.8l o .
n-

y

d
r,

,

n

ly
-
is
t

th

the symmetric phase and the spin-polarized phase. Howe
the mode softening does occur at the phase boundaries, a
show below.

To illustrate the phase instability, we show, in Fig. 8, t
lower-energy branch of the intersubband SDW’s atq50 as a
function of interlayer tunneling. We see thatv2(q50) in-
deed softens when approaching the phase boundaries
both the symmetric phase and the spin-polarized phase,
remains zero inside the canted antiferromagnetic phase.
canted antiferromagnetic order parameter, calculated in
previous section, is also shown in Fig. 8 for comparison. W
notice that the phase boundaries determined from these
independent approaches agree completely, as shown in
figure. The softening of the collective mode and the appe
ance of the antiferromagnetic order parameter implies
we have discovered a quantum phase transition in dou
layer QH systems.

In Fig. 9, the collective intersubband SDW dispersions
the canted antiferromagnetic QH state are shown. The
thing to be noticed is that the lower-energy branchv2(q) is
a gapless mode. The existence of such a gapless Golds
mode is due directly to the canted antiferromagnetic s
ordering that spontaneously breaks the spin-rotational s
metry of the Hamiltonian. This Goldstone mode is found
be linear in the long-wavelength limit, consistent with th

FIG. 8. The low-energy intersubband SDW modev2(q50)
and the canted antiferromagnetic order parameter~COP! versus tun-
neling energy with layer separationd51.0l o , Zeeman energyDz

50.08e2/e l o , and well thicknessdw50.8l o .

FIG. 9. The intersubband SDW dispersionv6(q) in the C phase
at n52 with layer separationd51.15l o , tunneling energyDsas

50.14e2/e l o , Zeeman energyDz50.01e2/e l o , and well thickness
dw50.8l o .
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fact that it describes antiferromagnetic fluctuations. The
istence of the gapless excitation in the canted antiferrom
netic phase implies that some thermodynamic quantit
such as specific heat, have power-law temperature de
dence in the canted antiferromagnetic phase in contras
their exponential temperature dependence in the nor
~symmetric or ferromagnetic! phases.

Simple expressions governing the phase boundaries
be derived from the mode softening. The boundary betw
the SYM phase and the C phase is found to satisfy the
lowing equation

~Dsas2U2!25U2
2 1Dz

2 , ~2.23!

where U25Ṽ2(q50)5(1/V)(pe
2p2l o

2/2V2(p). It should
be noted that, for any givenDsas, the critical layer separation
at this boundary is considerably smaller than the criti
layer separation where the charge-density excitation in
n51 state becomes soft.14 The reason for this is the absen
of Hartree contribution to the SDW excitations. The boun
ary between the spin-polarized~FM! phase and the cante
antiferromagnetic~C! phase is found to satisfy

~Dz1U2!25U2
2 1Dsas

2 . ~2.24!

The simplicity of Eqs.~2.23! and ~2.24! makes the phase
diagram easy to construct. It is worthwhile to note th
the phase boundaries are determined by only three en
scalesDz , Dsas, andU2 in spite of the fact that the Hamil
tonian is determined by four independent energy sca
Dz , Dsas, andV6(q), of which the interlayer and intralaye
interactionsV6(q) are in fact continuous functions of wave
lengthq. This unexpected dependence of the phase diag
~Fig. 10! on just three energy scales that are entirely de
mined by the magnetic field, the sample parameters~i.e.,
interlayer separation, well width, etc.!, and the tunneling
strength, is a specific result of the Hartree-Fock approxim
tion. The zero-temperature phase diagram can thus be
pressed as a function of two independent dimensionless
ablesDz /DsasandU2 /Dsas, as shown in Fig. 10. This phas
diagram applies to all double-layer quantum Hall system

FIG. 10. Zero-temperature phase diagram of an52 double-
layer quantum Hall system within the Hartree-Fock approximati
The phase diagram is expressed in terms of scaled dimensio
variables. The1 mark represents the experimental sample of R
8. The N phase atDz50 andDsas,2U2 is represented by the thic
line. The M point represents the quantum critical point atDz50.
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n52 that may have any values of Zeeman energy, tunne
energy, layer separation, layer thickness, etc. We belie
however, that this remarkable scaling in the phase diag
~which enables us to reduce an infinite number ofDsas ver-
susd diagrams for various values ofDz , of which examples
are shown in Fig. 4, to just one phase diagram shown in F
10! remains approximately valid, although the relative s
of various phases in the universal phase diagram of Fig
may very well be quantitatively not particularly accurate. W
also mention here that this phase diagram is topologic
identical to that of a (211)-dimensional quantum O~3! non-
linear s model in a magnetic field,9 as discussed in Sec. II
of this paper.

In this subsection, we have studied the collective inters
band SDW excitations forn52 double-layer QH systems in
the time-dependent Hartree-Fock approximation. We h
presented the dispersions of the collective SDW excitati
in both the normal QH phases~FM and SYM! and in the
canted antiferromagnetic QH phase, and investigated
mode softening that signals the phase instabilities. We h
rederived the same phase diagram as that obtained in
previous section, and obtained analytic equations for the
phase boundaries separating the new canted antiferrom
netic phase from the normal FM and SYM phases.

C. Kosterlitz-Thouless transition

In this subsection, we discuss some thermodynamic pr
erties ofn52 double-layer systems that arise from the spo
taneous symmetry-breaking associated with the breakin
U~1! planar spin rotational symmetry in the canted antifer
magnetic quantum Hall phase. There should be a fin
temperature Kosterlitz-Thouless transition in the canted
tiferromagnetic phase, since the spin-rotational U~1!
symmetry is broken. Below the critical temperature, the s
tem supports a linear Goldstone mode, which gives rise
power-law temperature dependence for the specific h
Above the critical temperature the U~1! symmetry is restored
and the system is paramagnetic. These properties are, in
ciple, experimentally observable and provide direct ways
test our theory.

We can estimate the Kosterlitz-Thouless transition te
perature for our problem in the following manner. In th
canted antiferromagnetic phase, the low-temperature ther
dynamics is governed by long-wavelength phase fluctuati
of the order parameter. LetEf5^fuHuf&2^uHu&, whereu &
is the ground state of the canted antiferromagnetic phase,
uf&5exp(i(jSj

zfj)u&, with Sj
z as the spin operator of thej th

electron andẑ is the~magnetic-field! direction normal to the
two-dimensional plane. In the long-wavelength limit, one o
tains

Ef5
rs~Dz!

2 E d2r u¹f~r !u2, ~2.25!

with

.
ess
f.
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rs~Dz!5
l o
2

16p2E
0

`

q3e2 l o
2q2/2Fva~q!S sinu11sinu2

2 D 2

1ve~q!S sinu12sinu2

2 D 2Gdq, ~2.26!

wherel o is the magnetic length andva(ve) is intralayer~in-
terlayer! Coulomb potential. For future convenience, w
have written the stiffness as an explicit function ofDz ,
which arises from the dependence of the anglesu1,2 on the
Zeeman splitting. The effective planarXY model defined by
Eq. ~2.25! undergoes a Kosterlitz-Thouless phase transitio17

at approximately kBTc5(p/2)rs(Dz). Finite-temperature
spin-wave and vortex-antivortex polarizations reduce
transition temperature to approximately3,4,18

kBTc'0.90rs~Dz!. ~2.27!

These finite-temperature renormalizations can be m
larger in the vicinity of the C-N and C-SYM phase boun
aries: the expression~2.27! can then no longer be used, an
we will discuss modifications near these boundaries late
Sec. III.

Since we knowrs(Dz) exactly within the microscopic
Hartree-Fock approximation, the Kosterlitz-Thouless tran
tion temperature can be easily determined for our probl
In Fig. 11, we show the calculated Kosterlitz-Thouless cr
cal temperature inn52 double-layer quantum Hall system
within the mean-field Hartree-Fock approximation@i.e., from
Eq. ~2.26! for rs(Dz)#. The phase transition exists only in th
canted antiferromagnetic quantum Hall phase. The crit
temperature vanishes at the phase boundaries as
symmetry-breaking order parameter drops continuously
zero as the phase boundaries are approached from withi
canted antiferromagnetic phase. We notice that the calcul
Kosterlitz-Thouless temperature (;1 K) is well within the
experimentally accessible regime for typic
Al xGa12xAs/GaAs–based double-layer systems. The eff
tive spin stiffnessrs(Dz) given in Eq.~2.26! is obtained in
the mean-field Hartree-Fock approximation, i.e., using
results from Secs. II A and II B, where quantum fluctuati
effects are not included. The results in Fig. 11 should thus
regarded as the upper bound for the Kosterlitz-Thouless c

FIG. 11. The calculated Kosterlitz-Thouless critical temperat
Tc vs tunneling energyDsasat different interlayer separations: do
ted line d51.4l o , solid line d51.2l o , and dashed lined51.0l o .
Zeeman energyDz50.04e2/e l o . The layer thickness isdw

50.8 l o .
e
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cal temperature. We emphasize that the Kosterlitz-Thou
transition discussed here is present even in the presenc
interlayer tunneling~in fact, the presence of finite interlaye
tunneling is essential to stabilize the canted antiferrom
netic phase, as described in the last two sections!, unlike the
case associated with the pseudospin transition3,4 at n
51/m (m odd integers! where interlayer tunneling sup
presses Kosterlitz-Thouless transition.

Below the Kosterlitz-Thouless transition temperature,
specific heat in the antiferromagnetic phase has qualitativ
different temperature dependence from those of the nor
quantum Hall phases. This is of practical significance sinc
is possible to experimentally measure the specific hea
quantum Hall systems.19 At low temperatures, the main con
tribution to the specific heat comes from long-waveleng
low-energy intersubband SDW’s. With their dispersions c
culated in each of the quantum Hall phases, the heat capa
is easily obtained: C5(]/]T)(k^n2(k)&v2(k), where
v2(k) is the energy of the low-lying intersubband SDW
excitation and^n2(k)& is its Bose occupation factor. Th
results are shown in Fig. 12. It is clear that the specific h
has an activated behavior in the normal quantum Hall pha
because of the existence of an excitation gap in its spin w
spectra, and a quadratic power-law temperature depend
in the canted antiferromagnetic phase because of the e
tence of the linear Goldstone mode in the symmetry bro
phase. The spin stiffness goes to zero discontinuously atTc ,
and forT.Tc we have the usual disorderedX-Y phase of the
Kosterlitz-Thouless transition.

D. Multicritical points

Our analysis so far has obtained solutions for the F
SYM, and C phases obtained by varying the parame
Dz , Dsas, d in the Hamiltonian~see Figs. 4 and 10!, which
modify the relative strengths of the Zeeman energy, the t
neling energy, and the Coulomb interaction energy, resp
tively. Generically, these phases are separated by p
boundaries representing second-order quantum transiti
However, there are also special quantum multicritical poi
in Figs. 4 and 10 the physical significance of which we w
now discuss.

The first quantum multicritical point is apparent in Fig.
where the FM, C, and SYM phases come together at a si

e FIG. 12. The heat capacity per magnetic flux of an52 double-
layer quantum Hall system as functions of temperature in the S
phase, in the spin-polarized FM phase, and in the C phase. The
showsC/T 2, whereT5kBT/(e2/e l o), vs T in the C phase.
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point on the abscissa corresponding to vanishing interla
separation (d50). It is easily noted from Fig. 4 that thi
quantum multicritical point is in fact defined by

Dsas5Dz , d50, ~2.28!

which is equivalent to the conditions

Dsas5Dz , V2~q!50, ~2.29!

using the definition ofV6(q) given immediately following
Eq. ~2.3! in Sec. II A. The simple physical reason for th
vanishing ofV2(q) along thed50 line is that the intralayer
and interlayer Coulomb interactions are identical in the lim
of vanishing interlayer separationd. Note also that the van
ishing of V2 ~and consequently ofU2) pushes the quantum
multicritical point to an infinite value of the absciss
(Dsas/U2→`) in the scaled universal diagram given in Fi
10—in Fig. 10 the two phase boundaries separating the t
phases approach each other asymptotically asDsas/U2→`
and Dz /Dsas→1 at the multicritical point. Note that the
condition Dz5Dsas for the quantum multicritical point is a
particularly interesting criterion because, in the absence
our predicted canted antiferromagnetic phase~i.e., if the n
52 double-layer QH systems allowed only the ferroma
netic and the symmetric phases, as was assumed in th
erature before our work!, the condition of the equality of the
Zeeman splitting and the symmetric-antisymmetric gap~i.e.,
Dz5Dsas) is precisely the single-particlelevel crossingcrite-
rion where, atn52, one would make a transition from th
ferromagnetic phases where the two up-spin symmetric
antisymmetric levels are occupied and the down-spin lev
are empty forDz.Dsasto the symmetric~spin-singlet! phase
where the spin-up and spin-down symmetric subbands
occupied~and the antisymmetric levels are empty! for Dsas
.Dz . What our theory definitely predicts is that such a si
plistic one-particle level crossing picture~which appears to
be obvious intuitively! does not occurin a double-layer QH
system atn52—instead, Coulomb interaction breaks t
SU~2! spin rotational symmetry and drives the system into
intervening antiferromagnetic phase where spin and ps
dospin levels are intrinsically mixed. The fact that the in
itively expected level crossing phenomenon~at Dz5Dsas)
has never been observed20 in a n52 double-layer QH system
in spite of systematic efforts21 is, in our opinion, rather
strong indirect evidence in support of our phase diagram

The second multicritical point becomes apparent only
the universal phase diagram shown in Fig. 10~and can be
inferred implicitly from the trend that can be seen in t
phase diagrams shown in Fig. 4!. Its existence is a conse
quence of the intriguing finding that our antiferromagne
state, in fact, persists all the way toDz50 ~as can be clearly
seen in Fig. 10 where a finite region of the antiferromagne
state exists along theDz50 line! where the spin-polarized
ferromagnetic phase no longer exists, and the antiferrom
netic phase is separated from the spin-singlet phase b
multicritical point ~M! defined by the condition

Dsas52U2 with Dz50. ~2.30!

Thus the critical line defining the phase boundary betw
the antiferromagnetic and the symmetric phases forDzÞ0
ends at a critical point~M! for Dz50. It is evident that in the
er
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absence of any Zeeman energy (Dz50) the spin magnetic
moment in each layer lies completely in the 2D plane of
electron gas where they must be equal and opposite in
two layers. Therefore, theDz50 antiferromagnetic phase o
Fig. 10 isnot a cantedphase, but is a purely Ne´el phase~N!;
indeed the Hamiltonian has full SU~2! spin rotation symme-
try for Dz50, and spin moments in the N phase can point
any two antiparallel directions. The N, C, and SYM phas
meet at the multicritical point M. This multicritical point wil
take on special significance in our effective field-theoreti
formulation in the next section.

Let us also note that the existence of this purely Ne´el QH
antiferromagnet atn52 double-layer system may not be ju
a theoretical curiosity because it is possible to obtain van
ing Zeeman splitting in a GaAs double-layer system in
finite magnetic-field situation by applying external pressu
that under suitable conditions could lead to the vanishing
the effective gyromagnetic ratio~the g factor! due to band-
structure effects.

E. Comparison with earlier work

Before concluding this section, and going on to the effe
tive field-theoretic description of the double-layer QH sy
tem, we will discuss the relationship of our results to so
earlier work on double layer systems. We will also use t
opportunity to comment on the validity of the Hartree-Fo
approximation in our and earlier work.

Most earlier studies,2–4,14however, have focused onn51
~with some work5 on n51/2). Although then51 and the
n52 QH systems exhibit some similarities such as the s
ening of their low-energy collective excitations under certa
conditions, there are important distinctions between them
n51, the spin degree of freedom is normally frozen out
the external magnetic field. The relevant low-energy exc
tions in then51 QH state are therefore intersubband char
density-wave excitations, and the properties of the sys
are determined by the interplay between interlayer tunne
energy and Coulomb interaction energy. In this sense,
n51 system is in fact a single-layer system with a lay
pseudospin-dependent interaction.3,4,14 At n52, both the
spin degree of freedom and the layer degree of freedom
relevant, and the low-energy excitations are intersubb
SDW excitations. Consequently, the properties of the sys
are determined by the interplay among tunneling ener
Zeeman energy, and Coulomb interaction energy. Becaus
the increased degree of freedom, the system has more w
to optimize the total energy, and new states that are not p
sible atn51 become possible atn52. The symmetric QH
state is energetically favored at small layer separations
cause it optimizes the tunneling energy. The spin-polari
QH state is favored at large layer separations because it
timizes the Coulomb interaction energy. The canted anti
romagnetic state is energetically favored at intermed
layer separations. The reason for this is that the canted a
ferromagnetic state tends to simultaneously optimize b
the tunneling energy and the Coulomb interaction ener
which prevails at intermediate layer separations where
tunneling energy and the Coulomb interaction energy
equally important. Both the canted antiferromagnetic st
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and the symmetric state exist only for systems with sm
enough Zeeman energy, as the Zeeman energy clearly fa
the spin-polarized state.

Another important distinction between then51 systems
and then52 systems is that although atn51 the mode
softening destroys the QH effect14 and there is no reliable
description of the electronic state in the non-QH phase
cause beyond the critical layer separation the system
comes effectively a pair of isolated layers with compressi
half-filled Landau-level states, in contrast, atn52, the QH
effect prevails at all phases because there is always a ch
gap in both layers~even asd→`), and we have good un
derstanding of the ground-state and the low-energy exc
tions in each phase due to the existence of incompress
filled Landau levels. Nevertheless, the mode softening
the associated phase transitions atn52 are likely to be ob-
servable through inelastic light-scattering experiments8,22

and thermodynamic measurements.19

Our work has studiedn52 double-layer systems by nu
merically solving the self-consistent mean-field equation10

and obtained collective excitation dispersions using ma
body diagrammatic techniques.11 Both approaches are, how
ever, based on the Hartree-Fock approximation. In sin
layer integer QH systems, calculations11 in the Hartree-Fock
approximation agree well with experiments.22 In double-
layer systems, the Hartree-Fock approximation is less a
rate because Coulomb interaction potential is layer-index
pendent. Nevertheless, we expect that the Hartree-F
approximation remains a reasonably good description fo
double-layer system atn52, since the Hartree-Fock groun
state, which is nondegenerate and separated in energy
higher levels, is a good approximation for the real man
body ground state atn52 due to the existence of incom
pressible filled Landau-level states with charge excitat
gaps at any layer separations. We want to especially em
size the difference in the validity of the Hartree-Fock a
proximation betweenn51 andn52. The approximation is
valid at n51 only at small layer separations and fails co
pletely beyond a critical layer separation where the sys
becomes effectively a pair of isolated layers with compre
ible half-filled Landau-level states in each layer. Atn52,
incompressible states with filled Landau levels exist at a
layer separations. In particular, there is still one filled Land
level in each layer atd→`. This fact, namely, the existenc
of an incompressible energy gap at all layer separations,
sures that the Hartree-Fock approximation, upon which
calculations are based, is a reasonable formalism atn52
regardless of the value of the layer separation.

III. CONTINUUM FIELD THEORY AND QUANTUM
CRITICAL PHENOMENA

The Hartree-Fock analysis used in the previous sect
has the advantage of working with a realistic microsco
Hamiltonian and of making definite quantitative predictio
for experimental observables in realistic samples. In this s
tion, we will present an alternative analysis based upo
continuum effective quantum field theory for the low-lyin
spin excitations of a double-layer quantum Hall system.
will find that the global phase diagrams obtained in the t
approaches are very similar, and are, in fact, topologic
ll
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identical, and that detailed additional predictions for the te
perature dependence of various observables can be mad
a combination of the two methods. In particular, some
vantages offered by the continuum approach are the foll
ing.

~i! It will become clear from the analysis below that the
are two basic ingredients necessary to obtain the phase
Fig. 10: two well-separated layers form fully polarized fe
romagnets with a gap towards charged excitations~i.e., an
incompressible QH effect gap!, and the primary coupling
between the layers is an antiferromagnetic exchange~i.e., a
superexchange! interaction. As such, we expect a simila
phase diagram to apply not only at fillingn52, but also at
any n52n1, wheren1 is any filling fraction where a single
layer has a charge gap, and is fully polarized. In particu
this criterion is satisfied atn52/m, m an odd integer, where
each layer forms a polarized Laughlin fractional quantu
Hall state. The Hartree-Fock analysis clearly cannot be
plied for m.1, as the single-layer charge gap appears o
after inclusion of the nontrivial correlations implicit in th
Laughlin state.

~ii ! The Hartree-Fock theory significantly overestimat
the energy of the spin-unpolarized SYM or SS state, as
will refer to it in this section. Spin-up and spin-down ele
trons are simply placed into the same orbitals that are s
metric in the layer index. This is costly in Coulomb ener
as there are no correlations in the layer positions of the
and down-spin electrons. It is clearly more advantageou
form spin-singlet states between electrons that are local
in opposite layers. The nonlinears model continuum field
theory to be discussed below does this in a natural w
From now on in this section we refer to this symmetric or t
spin-singlet phase as the SS to emphasize its correlated
glet nature.

~iii ! A number of quantum-critical points have been u
covered in the Hartree-Fock analysis. There is theDz50
quantum-critical point between the spin-singlet~SS or SYM!
and N phases, and a critical line between the SS and th
phases. Our continuum approach will obtain the critic
theory for these transitions, and we will find that they ha
dynamic critical exponents23 z51 and z52, respectively.
There is also a second critical line between the C and
fully spin-polarized FM phases: this transition hasz52 and
will be discussed only in passing, as the critical theory
rather similar to one of the models discussed in detail in R
24.

~iv! The continuum theory offered not only provides
the zero-temperature quantum phase diagram but als
streamlined approach to the study of properties at nonz
temperature, especially in the vicinity of the quantum-critic
points where effects of fluctuations cannot be neglected.
price one pays is that in general the parameters defining
effective field theory are quantitatively unknown and c
only be calculated from a microscopic theory such as
Hartree-Fock theory of the previous sections.

We motivate our formulation of the continuum theory b
consideration of the physics of two well-separated identi
layers atn52/m. More specifically, the layer separation,d,
is much larger than the magnetic lengthl o . Then the two
layers ~labeled 1,2! are approximately decoupled, and ea
separately has filling fractionn15n251/m. Their ground
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states will be the familiar Laughlin states form.1, or a fully
filled lowest Landau level atm51, both of which are incom-
pressible states with large energy gap to all charged ex
tions. These states are also fully spin polarized; the s
polarization is induced not just by the Zeeman coupl
to the external magnetic field, but also by the significan
larger intralayer ferromagnetic exchange.3,4,25 The low-
lying excitations in each layer are spin waves that hav
small excitation gap given precisely by the Zeeman ene
Dz5gmBB. For small g, a complete description4,26 of the
low-energy excitations of each layer can be given in terms
an action for unit vector fieldsnW 1,2 (nW 1,2

2 51) representing
the orientation of the ferromagnetic orders. Spin waves
small fluctuations ofnW 1,2 about an ordered state, whil
charged quasiparticles are Skyrmion4,27,25,28textures ofnW 1,2.
The effective action describing the two layers is3,4,23,24 ~in
units with \5kB51)

S05E d2xE
0

1/T

dt~LF@nW 1#1LF@nW 2# !

LF@nW #[ iM 0AW ~nW !•
]nW

]t
1

rs
0

2
~¹xnW !22M0Dznz . ~3.1!

Here

M05
1

4pml o
2

~3.2!

is the magnetization density per layer, withl o the magnetic
length. The spin stiffness of each well-separated layer is
resented byrs

0 ; for m51, we have the exact result11 rs
0

5e2/(16A2pel o), while for m.1 numerical estimates o
rs

0 are given in Ref. 25. The term involvingAW accounts for
the Berry phase accumulated under time evolution of
spins; hereAW is any functional ofnW that satisfies

e i jk

]Ak~n!

]nj
5ni . ~3.3!

This Berry phase term also has a ‘‘dual’’ interpretation in t
picture in which LF is viewed as an action fo
Skyrmions:26,29 it represents the coupling of the Skyrmio
current to a ‘‘magnetic field’’ of strength 4pM0.

Now imagine reducing the value ofd to couple the two
layers. As there is a charge gap in each layer, we can ne
all charge transfer processes, and focus solely on spin
change. Because of the strong repulsive interactions wi
each layer, we expect by an extension of the familiar ar
ments made in the context of the Hubbard model that th
will be an antiferromagneticsuperexchange coupling be
tween the layers. This can also be inferred easily by con
ering the leading effect of interlayer tunneling and Pa
principle, which immediately provides a superexchange c
pling between the layers. The complete double-layer ac
is therefore

S15E d2xE
0

1/T

dt~LF@nW 1#1LF@nW 2#1JnW 1•nW 2! . ~3.4!
a-
in

y

a
y

f

re
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re
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The value of the interlayer exchangeJ is not known pre-
cisely; we expect that it is of orderJ;M0Dsas

2 /U whereDsas

is the tunneling matrix element@see Eq.~2.2!, for example#
between the layers, andU;e2/el o is the Coulomb repul-
sion energy. In addition to the imprecisely knownJ, the
present approach also requires knowledge of the natur
the short distance cutoff at lengths of orderl 0 beyond which
present continuum approach cannot be applied. We
show later that our ignorance of these quantities can be
duced entirely to uncertainties in the value of a certain ren
malized energy scale. This energy scale can be either m
sured directly in an experiment, or computed by a
microscopic theory such as the Hartree-Fock approach~ap-
propriate atn52) described in Secs. II A–II C. Apart from
this single energy scale, however, all of the predictions of
present effective field-theoretical approach will be quant
tive and precise.

Some potentially important terms have been omitted fr
S0 and our analytic computations: the Hopf term, which e
dows the Skyrmions with fractional statistics, and the lon
range Coulomb interaction between the Skyrmions. We
lieve this is permissible because of the charge gap. Furth30

as the layers are antiferromagnetically correlated, Skyrmi
in one layer will be correlated with anti-Skyrmions in th
other, and this neutralizes the leading contribution of b
terms. This latter argument should continue to hold eve
the charge gap were to vanish at a quantum critical point~the
charge gap remains nonzero at the quantum critical point
both of our present calculations!. Note also that no new term
is necessary to induce charge transfer between the laye
hedgehog/antihedgehog pair in the two layers correspond
an event transferring Skyrmion number between them. S
space-time singularities are absent in the strict continu
limit but appear when a short-distance regularization is
troduced.

For completeness, we note that the purelynW field formu-
lation becomes incomplete form.1 and largerg, as the spin
zero Laughlin quasiparticles can become the lowest-ene
charged excitations. These should, in principle, be accoun
for by a separate complex scalar field. However, these
also be neglected for the same reasons presented abov
nonzero spin charged excitations.

We now manipulate the effective action into a form mo
suitable for our subsequent analysis. We solve the constra
nW 1,2

2 51 by representing

nW i5~21! i~12LW 2!1/2nW 1LW , ~3.5!

wherenW andLW are vectors satisfying

nW 251, LW •nW 50. ~3.6!

Note that this representation is so far exact. Next, we in
Eq. ~3.5! into S1. Because the layers are antiferromagne
cally correlated we expect thatLW will not be too large, and it
is therefore permissible to expand the resulting action to q
dratic order inLW . This is clearly an approximation: in Ap
pendix A we examine a model solvable Hamiltonian by t
same method in order to assess the damage done by ne
ing terms higher order inLW —we find that this procedure
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obtains the low-energy spectrum correctly but introdu
some spurious states at higher energies. To quadratic ord
LW , S1 takes the form

S15E d2xE
0

1/T

dtF2iM 0LW •S nW 3
]nW

]t
1 iDzẑD

1rs
0~¹xnW !212JLW 2G , ~3.7!

whereẑ is a unit vector in the direction of the magnetic fiel
Now we integrate outLW while maintaining the constrain
LW •nW 50 by adding an additional term to the ener
;C(LW •nW )2 and then taking the limitC→`. This yields the
following effective action for the antiferromagnetic order p
rameternW

S25
c

2tE d2xE
0

1/T

dtF ~¹xnW !21
1

c2S ]nW

]t
2 iDzẑ3nW D 2G ,

~3.8!

where

t5S J

2rs
0M0

2D 1/2

, c5S 2rs
0J

M0
2 D 1/2

. ~3.9!

This is precisely the action of the~211!-dimensional quan-
tum O~3! nonlinear sigma model in a fieldB coupling to the
conserved global O~3! charge.31,24,32,33It is expected to apply
to double-layer quantum Hall systems withn52/m at length
scales larger thanL21;l o .

The remainder of this section consists of a detailed an
sis of the properties ofS2. The techniques and some resu
have already been presented earlier in Refs. 31, 24, and
we shall present here a unified treatment with a special
phasis on dynamical properties at nonzero temperature.
begin in Sec. III A by developing a simple mean-field pha
diagram ofS2.

A. Mean-field theory

This section will summarize the results of the applicati
of the mean-field theory of Ref. 24 to the actionS2. Formu-
lation of the mean-field theory requires some short dista
regularization, and we choose to place the continuum the
on a square lattice in the spatial directions, with a latt
spacing a;l o ; a continuum formulation is maintaine
along the time direction. The resulting action is equivalen
the following lattice quantum rotor Hamiltonian:

H5(
i

S f

2
LŴ i

22Dzẑ•LŴ i D2K(
^ i , j &

nŴ i•nŴ j , ~3.10!

where the coupling constants inH are

f 5
ct

a2
, K5

c

t
. ~3.11!

The Hamiltonian is expressed in terms of operatorsnŴ i ,

which represent the orientation of the rotors, andLŴ i which
s
r in

-

y-

3:
-
e

e

e
ry
e

o

are the rotor angular momenta. The operators on differ
sites commute, while those on a single site obey the com
tation relations~dropping the site indices!

@ L̂a ,L̂b#5 i eabgL̂g , @ L̂a ,n̂b#5 i eabgn̂g , @ n̂a ,n̂b#50.
~3.12!

We will describe the properties ofH by choosing the bes
among the mean-field Hamiltonians given by24

HMF5(
i

S f

2
LŴ i

22Dzẑ•LŴ i2KZNW •nŴ i D . ~3.13!

HereZ(54) is the lattice co-ordination number, andNW is a
variational parameter to be chosen so that the expecta
value ofH in the ground state ofHMF is as low as possible
by the usual argument, this is expected to happen wheNW

5^nŴ &.
As in Ref. 24, we numerically diagonalizedHMF by trun-

cating its spectrum at some large angular momentum,
then optimized the value ofNW . The resulting phase diagram
is shown in Fig. 13. We discuss the properties of the vari
phases in turn.

1. Spin singlet (SS or SYM)

Each rotor is in its nondegeneratel 50 state,NW 50, and
there is a gap to all excitations. The ground state is a s
singlet, and is therefore unaffected by variations in the va
of Dz .

2. Quantized ferromagnets (QFl )

Again, NW 50, each rotor now has azimuthal angular m
mentumm5l and this value remains pinned as various p

FIG. 13. Mean-field phase diagram of the quantum rotor Ham
tonianH in Eq. ~3.10!. The phases are described in Sec. III A. On
the QF1 phase is expected to appear for the two-layer model un
consideration here, and is referred to elsewhere as the FM: the2

phase is an artifact of the approximations made in deriving the r
model. The SS phase was also called the SYM phase in the Ha
Fock computations.
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rameters are varied. Each rotor is also in precisely the s

with LŴ 25l (l 11), although this latter feature is a spec
property of mean-field theory that will not survive fluctu
tions. Of these phases, only thel 51 case is actually al-
lowed for the double-layer actionS1, and it is clearly the FM
phase of Fig. 10. The other phases are an artifact of
approximations made in mappingS1 to S2: this should be
clear from the discussion in Appendix A where we show t

expanding in powers ofLW introduce spurious higher angula
momenta states.

3. Canted (C) and Ne´el (N) states

These states haveNW Þ0 and varying continuously as th
parameters are varied; we haveNxÞ0, NyÞ0 and Nz50.
From Eq.~3.5!, this implies that the two layers have oppos
spin polarizations in thex-y plane. The two layers also hav

an identical ferromagnetic polarization, given by^LŴ &, which
is oriented along thez direction. This ferromagnetic momen
varies continuously as parameters are varied, and vani
whenDz→0. So for generalDzÞ0 this state is canted, while
for Dz50 it is a pure Ne´el antiferromagnet. The C phase h
a single linearly dispersing spin wave mode in thex-y plane,
while the N phase has two spin waves.24

In the remainder of this section, we will present a detai
theory of the universal properties of the system in the vic
ity of the multicritical point M. This is the same quantum M
that exists in the universal Hartree-Fock phase diagram
Fig. 10 where the N phase~along theDz50 line!, the C
phase, and the SYM~SS! phase come together atDsas

52U2 . We point out in this context that the other distin
multicritical point of the Hartree-Fock theory where th
canted antiferromagnetic phase, the ferromagnetic phase
the symmetric phase coexist~the point on the abscissa de
fined by d50 and Dz5Dsas in Fig. 4! is not accessible
within the effective field theory due to the long-waveleng
restrictiond. l o . ~We mention that in our notationsDz in
the Hartree-Fock theory corresponds to justB in the field
theory due to our choice of units.!

Note that the C, N, and SS phases meet at M, and so
will also discuss the universal second-order transitions
tween them. We will not discuss the nature of the seco
order transitions between theQFl and C phases: very
closely related transitions, in the same universality cla
have been discussed in some detail in Ref. 24.

B. Zero-temperature critical properties

A first study of the properties in the vicinity of the poin
M has appeared in Ref. 31 using a largeN expansion in a
nonlinear sigma model withN component fields. The issue
of interest here are more conveniently obtained using a
cently developed expansion33 in spatial dimensionalityd in
powers of e532d. The latter approach is expressed
terms of a soft-spin field theory, and we therefore begin w
a soft-spin version of the nonlinears modelS2:
te

l

e

t

es

d
-

of
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e
e-
-
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e-

h

Sf5E ddxE
0

1/TF1

2
$~]tfx2 iDzfy!21~]tfy1 iDzfx!

2

1~]tfz!
21c2~¹xfW !21rfW 2%1

u0

4!
~fW 2!2G . ~3.14!

HerefW [(fx ,fy ,fz);nW is the soft-spin field that measure
the staggered moment of the two layers. We have taken
magnetic field to point in thez direction. We will also be
interested in the uniform ferromagnetic moment density
the system,M , and this is given by

M[M0^n1z1n2z&52
]F
]Dz

, ~3.15!

whereF is the free-energy density associated with the act
Sf . We have introduced two new coupling constants,r and
u0 in Sf ; these are related to the couplingt of S2, and its
short cutoff;l o . We will not specify the precise values o
these parameters here, as they merely appear at interme
stages of our computation, and not in our final results.

Let us first discuss the mean-field properties ofSf , ob-
tained simply by minimizing the action while ignoring a
spatial and time dependence offW . For r 2Dz

2.0, the ground

state haŝ fW &50, and is therefore in the quantum parama
netic SS phase. Forr 2Dz

2,0, the ground state has^fW &Þ0
and in thex-y plane. This is the C phase and the fields ha
the expectation values

fW 5F S 6~Dz
22r !

u0
D 1/2

,0,0G , M5
6Dz~Dz

22r !

u0
,

~3.16!

or any rotation offW in the x-y plane. Notice thatM van-
ishes forDz50, and therefore the liner ,0, Dz50 is the N
phase. The resulting mean-field phase diagram is show
Fig. 14. Notice that the vicinities of the points M are ve
similar in Figs. 13 and 14. The quantum critical point M
at Dz50, r 50, and it is clear from the Lorentz-invarian
structure ofSf at Dz50 that this point has dynamic expo
nent z51. Rotations of the order parameterfW in the x-y
plane have associated with them a stiffnessrs(Dz) given by

rs~Dz!5
6~Dz

22r !

u0
. ~3.17!

This is the same stiffness that was computed in Sec. II C
Eq. ~2.26! in the Hartree-Fock theory.

We now include the effects of fluctuations at one loo
We will quote results for the dynamic longitudinal and tran
verse susceptibilities of thefW field which are measured in
light scattering. Recall that in terms of the spin polarizatio
of the two layersnW 1 ,nW 2 we havefW ;nW 12nW 2. We define
~with T as the temperaturekB51 in our units in this section!

x i~ iv!5E ddxE
0

1/T

dt e2 ivt^fz~x,t!fz~0,0!&

~3.18!

and
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x'~ iv!5
1

2E ddxE
0

1/T

dt e2 ivt^@fx~x,t!1 ify~x,t!#

3@fx~0,0!2 ify~0,0!#&. ~3.19!

We can use the methods of Ref. 33 to compute the one-
values of these susceptibilities in the SS phase~this is, the
phase with no broken symmetry! in the vicinity of the point
M; we obtain

x i~v!5
1

D22v2
, x'~v!5

1

D22~v2Dz!
2

. ~3.20!

Here the quantityD is an observable defined by

D[spin gap of the SS phase atT50

for r .0 and Dz50. ~3.21!

The value ofD should either be measured experimentally,
computed by a detailed microscopic calculation like t
Hartree-Fock theory discussed earlier in the paper. We
express all our results forr .0 completely in terms of uni-
versal functions of parametersD, T andB ~so that the mi-
croscopic couplingsr andu0 do not appear anywhere in ou
results.! Clearly, in the mean-field theoryD5Ar ; at one-loop
order, we haveD;r n, where the exponentn51/215e/44.

We need a separate experimental observable to mea
the deviation of the system from the pointM at Dz50 for
r ,0. A convenient choice, also used in Refs. 32,33 is
spin stiffness. We therefore define

rs~0![renormalized spin stiffness of the N phase at

FIG. 14. Mean-field phase diagram of the soft-spin actionSf in
Eq. ~3.14!. The SS phase was also called the SYM phase in
Hartree-Fock computations. Notice that it captures the vicinity
the point M in the rotor mean-field phase diagram in Fig. 13. T
multicritical point M is described by a relativistic continuum fie
theory with dynamic exponentz51. The SS-C boundary is a line o
second-order transitions with dynamic exponentz52 and is de-
scribed by actionSC in Eq. ~3.24!. The position of this boundary
is given exactly byD5Dz , whereD;r n is theDz50 spin gap of
the SS phase (n is the correlation length exponent of M!. The action
SC holds for uD2Dzu!D. The N state hasT50 spin stiffness
rs(0);(2r )n, and forDz!rs(0), theactionSn in Eq. ~3.25! de-
scribes lowT fluctuations.
op

r

ill

ure

e

T50 for r ,0 and Dz50. ~3.22!

All of our results for r ,0 will be expressed in terms o
rs(0). Again rs(0);ur un, and the actual value ofrs(0)
should be measured experimentally or computed in Hart
Fock or microscopic numerical studies of the double-la
Hamiltonian.

Before closing this subsection, we draw attention to
fact that there are two phase boundaries that terminate a
point M: the SS to C transition and the N to C transition.
the vicinity of these transitions the response functions co
puted near the critical point M should turn intoreducedscal-
ing functions33,34 characteristic of the respective phase tra
sitions. In the following subsections, we discuss simplifi
versions of the actionSf that can be used to compute the
reduced scaling functions.

1. SS-C transition,zD2Dzz!D, r>0

In this region we can neglectfz fluctuations and focus
only on thefx1 ify that is undergoing Bose condensatio
Further, it can also be shown that the second-order time
rivative inSf can be dropped. Making these approximatio
and defining

C5
fx1 ify

ADz

, ~3.23!

we see thatSf reduces to

SC5E d2xE
0

1/T

dtFC*
]C

]t
1

c2

2Dz
u¹xCu21~D2Dz!uCu2

1
u0

24Dz
2

uCu4G . ~3.24!

This action has been previously studied in some detail:35,36 it
has az52 quantum critical point atD5Dz , and we will use
the existing results later. Thus the SS-C transition is a line
z52 critical points terminating inz51 critical end point M.

2. N-C transition, B!rs(0), r<0

Both the N and C phases are ordered, and it is sufficien
simply focus on static, thermal, orientational fluctuations
the order parameter. We therefore quench the magnit
fluctuations offW and return to the fixed length vectornW . The
effective action for staticnW fluctuations can be deduced from
Sf to be

Sn5
1

2TE d2x@rs~0!~¹xnW !21gnz
2#. ~3.25!

As noted earlier,rs(0) is the spin stiffness of the Ne´el state,
fully renormalized by quantum fluctuations. The anisotro
g56Dz

2(Dz
22r )/u0 to lowest order inu0, and we expectg

;Dz
2 more generally. The actionSn has been studied in Ref

37, and we will use their results in the following subsectio

e
f
e
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C. Nonzero temperature response functions

A number of new phenomena occur at nonzero temp
tures, and these are addressed in a relatively straightforw
manner using the present continuum effective field the
approach.

~i! There is a brokenx-y symmetry in the C phase, an
therefore a nonzero temperature (Tc) at which this order dis-
appears in a Kosterlitz-Thouless transition. An estimateTc
was given earlier~Secs. II C and Fig. 11! in the Hartree-Fock
theory that is valid when the system is well away from o
of theT50 phase boundaries of the C phase in Figs. 13
14. We expectTc to vanish continuously as the system in t
C phase approaches theT50 boundaries to the N or the S
phase: there is nonzero temperature phase transition a
the N or the SS ground state. We discuss below the beha
of Tc near the C-N and C-SST50 phase boundaries. Nea
the point M,Tc is determined completely and universally b
the two energy scales that measure the deviation of
ground state from M. So forr .0 we expect

Tc5DzC.S D

Dz
D , ~3.26!

where C. is a fully universal function; because the SS
phase boundary occurs precisely atD5Dz , we have

C.~u>1!50. ~3.27!

Similarly, for r ,0 we have

Tc5DzC,S rs~0!

Dz
D , ~3.28!

whereC, is also a universal function. Clearly the two fun
tions should agree atr 50, and therefore we haveC.(0)
5C,(0); actually it is possible to say much more—forDz
.0 we expect thatTc is a smooth and analytic as a functio
of r throughr 50, and so using the dependencies ofD and
rs(0) on r , it is possible to expressC.,, as analytic con-
tinuations of each other. We will give explicit expressio
for C.,, to leading order in the expansion ine532d be-
low.

~ii ! The one-loopT50 results for the SS phase~3.20!
predict infinitely sharp absorption peaks inx i at v5D, and
in x' at v5D6Dz . As the SS phase has a spin gap,
expect these infinitely sharp peaks to survive at higher ord
in the perturbation theory atT50. For T.0 two qualita-
tively new features will arise. First, thermal damping w
lead to a broadening of the peaks. Second, the peak posi
will themselves become temperature dependent. We will
scribe these processes below in the vicinity of the point
where both the broadening and theT-dependent shifts are
quite significant. Deep inside the SS phase, well away fr
the M point, theseT dependencies are exponentially ac
vated, and therefore much weaker.

We will restrict our results for the most part to the par
magnetic phase, although results in the magnetically orde
phases can be obtained by very similar methods. This me
that we are working atT.0 above the SS phase, and atT
.Tc above the C phase, all within the vicinity of the poi
M. The results are obtained using methods discussed in s
detail in Ref. 33: the only change is that the Zeeman splitt
a-
rd
y

d

ve
ior

e

rs

ns
e-
,

-
ed
ns

me
g

Dz has to be included in the propagators for thefx,y fields,
and this modifies the values of the Matsubara freque
summations in the loop diagrams by replacing an energ«
by «6Dz . The reader may also consult Appendix D of Re
38 where a simpler derivation of just the one-loop results
Ref. 33 is given.

The nonzeroT generalization of Eq.~3.20! takes the form

x i~v!5
1

2v21mi
22 iG i~v!

,

x'~v!5
2

2~v2Dz!
21m'

2 2 iG'~v!
.

Heremi ,' andG i ,' depend implicitly upon the energy scale
T, Dz , andD„rs(0)… for r .0 (r ,0) in a manner we shal
describe below to lowest order ine. Clearly, the ‘‘masses’’
mi ,' represent the peak absorption frequency, whileG i ,' are
the absorptive pieces that lead to aT-dependent broadenin
of the line.

First we describe the behavior ofm',i .
For r .0, the masses are universal functionsD, T, and

Dz . They can be written as

mi
25Ri2e

2pT

11
~3ARi12AR'!,

m'
2 5R'2e

2pT

11
~ARi14AR'!, ~3.29!

where

Ri5D2F11
5e

11
ln

T

D G1
eT2

11 F3GS D2

T2
,0D 12GS D2

T2
,
Dz

T D G ,

R'5D2F11
5e

11
ln

T

DG1
eT2

11 FGS D2

T2
,0D 14GS D2

T2
,
Dz

T D G .

~3.30!

The functionG(y,h) represents the value of the one-loo
momentum integral; it was computed in Refs. 33,38 for
zero-magnetic-field caseh50. The generalization to nonzer
h is

G~y,h!522E
0

`

dqF lnS 2q2
cosh~Aq21y!2coshh

q21y2h2 D 2q

2
y

2Aq211/e
G . ~3.31!

This integral has to be evaluated numerically in general,
we have the limiting valueG(0,0)52p2/3. Stability of the
paramagnetic state requires thatm'>Dz ; this requirement
leads to an expression forTc , which is determined by solv-
ing m'5Dz . Analysis of this equation in powers ofe shows
that Tc;1/Ae. This implies thatD/T,Dz /T;Ae, and so to
leading order we can just use the value ofG(0,0) in Eq.
~3.30! to obtain
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Tc
25

33~Dz
22D2!

10p2e
~3.32!

for Dz.D. For Dz,D the system is in the SS phase, a
thereforeTc50. Notice that Eq.~3.32! agrees with the scal
ing form ~3.26!. This result is expected to be the leadin
order result in powers ofe, except in the regionuDz2Du
!D where thee expansion fails and the reduced actionSC

of Sec. III B 1 has to be used. Using results of Ref. 35 for
latter action we have the exact asymptotic form

Tc5
~Dz2D!ln@Dz /~Dz2D!#

4 ln ln@Dz /~Dz2D!#
for ln@Dz /~Dz2D!#@1.

~3.33!

Closely related results can be obtained forr ,0. In this
case, the masses are universal functions ofrs(0), Dz , and
T. However, considerable ambiguity arises in thee expan-
sion for the result becausers(0) does not simply have th
dimensions of energy for alld. The appropriate scaling
variable33 is @rs(0)#1/(d21), and it is necessary to keep th
full 1/(d21) power, rather than expand it in powers ofe in
order to make the engineering dimensions of the res
come out correct. This then leads to ambiguities as to p
cisely which numerical factors should be raised to the po
1/(d21) and which to 1/21e/4. A convenient choice tha
leads to the most compact expressions is to define

r s̃[S 2e

~n18!

rs

Sd11
D 1/~d21!

, ~3.34!

where we have written the general expression for
n-component order parameter: in the present casen53. The
factor Sd11 is a phase-space factor and is given bySd
52/@G(d/2)(4p)d/2# ~this factor was inadvertently omitte
in Ref. 33!. Notice thatr s̃ has the dimensions of energy
d52 ~which is of interest here!. The value ofr s̃, however,
must be regarded as subject to large systematic correct
in view of the ambiguities noted above. Using the metho
and results of Ref. 33 forr ,0, and expressing them in term
of r s̃, we find that the results~3.29! still hold, but Eqs.~3.30!
are replaced by

Ri52
r̃ s

2

2 F12
e

22
1

5e

11
ln

T

r̃s
G1

eT2

11 F3GS 2
r̃ s

2

2T2
,0D

12GS 2
r̃ s

2

2T2
,
Dz

T D G ,

R'52
r̃ s

2

2 F12
e

22
1

5e

11
ln

T

r̃s
G1

eT2

11 FGS 2
r̃ s

2

2T2
,0D

14GS 2
r̃ s

2

2T2
,
Dz

T D G . ~3.35!

Notice thatG(y,h) is now needed for negative values ofy.
Despite appearances, the expression~3.31! actually also
holds for y,0—one simply uses the identity cosh(ix)
5cos(x) when the square root becomes purely imagina
e

ts
e-
r

e

ns,
s

.

Indeed, it is not difficult to show that the expression in E
~3.31! is actually analytic for all real2`,y,` provided
h.0. We can use the same stability condition used for
.0 to now obtain the leading ordere-expansion result for
Tc :

Tc
25

33~Dz
21 r̃ s

2/2!

10p2e
, ~3.36!

which is of the scaling form~3.28!. The e expansion fails
when Dz!rs(0) where the system approaches the C
phase boundary; here, we use the effective actionSn of Sec.
III B 2, and results for it in Ref. 37 to obtain

Tc5
2prs~0!

ln@rs~0!/Dz#
for ln@rs~0!/Dz#@1. ~3.37!

Finally, we obtain the damping coefficientsG',i . This
requires evaluation of two-loop diagrams and the results
extremely lengthy. We will be satisfied here by simply quo
ing the results valid for Dz /T!1, @D or rs(0)#/T!1
which were obtained in Ref. 33:

G'~v!5G i~v!5
10pe2

121 S v2

8
1p2T216T2Li 2~e2v/2T! D ,

~3.38!

where Li2(x) is the dilogarithm function

Li2~x!52E
0

xdy

y
ln~12y!. ~3.39!

D. Connection to the Hartree-Fock theory

The effective field theory for the double-layer QH syste
at a filling factor ofn52/m ~with m an odd integer! that we
develop above is entirely built on the effective actionS2,
defined by Eq.~3.8!. In particular, we make use of the fac
that this effective action for our problem is identical to th
action of the (211)-dimensional O~3! quantum nonlinears
model31,24,32,33,35,39,37,38with the additional feature of an ex
ternal magnetic field coupled to the conserved global O~3!
charge. Once this precise mapping of our effective action
that of the (211)-dimensional O~3! quantum nonlinears
model becomes explicit, the rest of the results derived
Secs. III A–III C follow naturally. The question now arise
concering the correspondence between our effective fi
theory results in this section and the microscopic Hartr
Fock results~for n52) described in Secs. II A–II C.

It is to be noted that both the microscopic Hartree-Fo
theory~Secs. II A–II C! and the effective nonlinears model
field theory predict the same number of zero-temperat
quantum phases, namely, the fully spin-polarized ferrom
netic, the canted antiferromagnetic, the Ne´el, and the sym-
metric spin-singlet phase, for the double-layer QH system
n52. ~The effective field theory, in addition, enables us
predict that the double-layer system at all fillingsn52n1,
wheren151/m with m odd, has these four phases with th
spin-singlet phase in the general case being a nontrivial
related SS phase rather than just the pseudospin-symm
spin-antisymmetric SYM phase of then52 Hartree-Fock
theory.! It should also be noted that both the Hartree-Fo
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theory and the effective field theory predict the existence o
finite-temperature Kosterlitz-Thouless phase transition in
canted antiferromagnetic phase with the planar antiferrom
netic ordering disappearing above the Kosterlitz-Thoul
transition temperature. The underlying physics in both of
theories is that the system is essentially anX-Y antiferro-
magnet in the layer~i.e., in the plane perpendicular to th
magnetic-field direction! in the new canted phase.

On a more quantitative level it is easy to show that b
theories predict the same topology of the zero tempera
quantum phase diagram. This is demonstrated in Fig.
where we have redrawn the Hartree-Fock phase diag
@Fig. 15~a!# of Fig. 10 inverting abscissa~from Dsas/U2 to
U2 /Dsas) and have somewhat reconfigured the effect
field theory phase diagram@Fig. 15~b!# from Fig. 13 by keep-
ing only theQF1 phase and by modifying the relative size
the various phases~which are arbitrary within the effective
field theory!. Using the definitionst5(J/rs

oMo
2)1/2 from Eq.

~3.9! to define the abscissa, the effective field theory ph
diagram int2Dz space@Fig. 15~b!# can be seen to be iden
tical topologically to the quantitatively calculated Hartre
Fock phase diagram~for n52) in the Dsas/U22Dz /Dsas
space~Fig. 10!. Note that, in addition to the identical topo

FIG. 15. ~a! The zero-temperature phase diagram of a doub
layer quantum Hall system atn52 within the Hartree-Fock ap
proximation. This is the same diagram as Fig. 10. It is redrawn h
with the abscissa inverted. The1 mark represents the experiment
sample of Ref. 8. The N phase atDz50 andDsas,2U2 is repre-
sented by the thick line.~b! Zero-temperature phase diagram of
double-layer quantum Hall system atn52n1 derived from the ef-
fective LagrangianS2 @Eq. ~3.8!#. The inset shows the topologicall
identical Hartree-Fock phase diagram of Fig. 10. The FPF, C,
SS phases in the main figure correspond to the FM, AF, and S
phases in the inset, respectively.
a
e
g-
s
e

h
re
5,
m

e

e

ogy involving four distinct quantum phases as shown in F
15 of the two phase diagrams with the effective coupli
parametert of the field theory@the abscissa in Fig. 15~b!#
being proportional to the parameterDsas/U2 @the abscissa in
Fig. 15~a!# of the Hartree-Fock theory~which is expected,
becauset;Dsas/U with J being the interlayer superex
change coupling! and the ordinate (;Dz) being the same in
both Figs. 15~a! and 15~b!, the multicritical point M on the
zero-magnetic-field line shows up in both phase diagrams
the ~zero-temperature! quantum multicritical point M, the
canted, the spin-singlet, and the Ne´el phase coexist.@The
other distinct multicritical point of the Hartree-Fock theor
which is apparent on the abscissa of Fig. 10 whereDsas
5Dz andd50, where the ferromagnetic, the canted and
symmetric phase coexist is not accessible within the eff
tive field theory because of its long-wavelength approxim
tion, and cannot be seen in Fig. 15~a! as it is pushed to the
point U2 /Dsas50,Dz /Dsas51 where the two Hartree-Foc
phase boundaries of Fig. 15~a! come together.# It is, there-
fore, obvious that, except for very small values ofd ~where
the effective field theory which applies only whend. l o),
the quantum phase diagrams predicted by the two theo
are topologically identical.

Finally, we can actually estimate then52 double-layer
Kosterlitz-Thouless transition temperature,Tc of Sec. III C,
in the effective field theory by using the microscopic para
eters obtained within the Hartree-Fock theory. Th
calculation,9 where one incorporates the calculated Hartr
Fock parameters forD ande51 in Eq. ~3.36!, leads40 to an
estimated effective field theoryTc'3 K which is somewhat
larger than the critical temperatureTc @Eq. ~2.27!# estimated
within the long-wavelength mean field Hartree-Fock tre
ment of Sec. II C. In general, we believe thee expansion
leads to substantial overestimates of transition temperat
because it does not properly account for the low-dimensio
vortex effects responsible for the transition.

IV. COMPARISON WITH EXPERIMENTS

In this section, we discuss some recent double-layen
52 inelastic light scattering experiments whose findings
consistent with our theoretical results. A detailed quantitat
comparison between our theory and the experiment requ
an accurate knowledge of the temperature dependence o
related experimentally relevant response functions as the
tem undergoes a finite-temperature phase transition atTc .
Such a quantitative description is at present lacking, a
therefore we restrict ourselves mostly to a qualitative disc
sion.

In a recent inelastic light-scattering experiment,8 the long-
wavelengthv0 mode of the intersubband SDW triplet~see
Fig. 16 for schematic details of the various possible SD
modes in the system!, which corresponds to transitionu0s&
→u1s&, is measured forn52 double-layer quantum Hal
systems. The double-layer samples used in the experim
are by design in the canted antiferromagnetic phase acc
ing to our zero-temperature Hartree-Fock phase diagr
i.e., the ground state of the experimental system is the ca
antiferromagnetic quantum Hall state~see Figs. 4, 10, and
15 for the location of the experimental sample in our the
retical diagram!. The experiment8 shows two important and
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striking features: One is that there is a threshold tempera
~;0.5 K! below which thev0 mode becomes unobservab
as it seems to lose all spectral weight, the other feature is
the excitation energyv0 approaches the Zeeman energyDz
when the threshold temperature is approached from
above, i.e.,v0'Dz . We argue below that these experimen
observations are completely consistent with our predic
Kosterlitz-Thouless transition in the canted antiferroma
netic phase being the observed experimental transition atTc .

First, we notice that thev0 mode, which involves a no
spin-flip transition withdSz50, has a maximum spectra
weight in the symmetric phase, where there are as m
spin-up ~down! empty states as there are spin-up~down!
electrons. The spectral weight of thev0 mode is identically
zero in the ferromagnetic phase, where all spin-up states
occupied and all empty states are spin down, and hence
v0 mode~which does not involve any spin flip! is forbidden.

FIG. 16. The intersubband spin excitation transitions in
double-layer quantum Hall system atn52 in the ~a! symmetric
phase,~b! ferromagnetic phase, and~c! the canted antiferromagneti
phases. The spin conserved transition (v0 mode! has large spectra
weight in the symmetric phase and is prohibited in the ferrom
netic phase.
re

at

e
l
d
-

ny

re
he

The spectral weight of thev0 mode should be nonzero bu
small in the antiferromagnetic phase. This is because
canted antiferromagnetic phase lies between the symm
phase and the ferromagnetic phase in the phase diagram
its spin-flip dynamics should thus be intermediate. Moreov
the canted antiferromagnetic phase is not an eigenstate
either spin or pseudospin, so the small spectral weight of
v0 mode is shared by many allowed transitions, spread
the mode intensity over these transitions and thus making
spectral weight of each transition even smaller. It is th
plausible to regard the observed disappearance of thev0
mode at the threshold temperature as the transition to
canted antiferromagnetic phase at lower temperatures~where
the spectral intensity for thev0 mode becomes very small!.
Above the transition temperature the system is essential
disordered planarX-Y magnet, and thus behaves like a pa
magnet whose SDW properties should be very similar to
paramagnetic spin-singlet symmetric phase.

Next, we notice that, in the symmetric phase, the exc
tion energies of the intersubband SDW triplet have the f
lowing simple relationship

v65v06Dz . ~4.1!

This expression can be derived explicitly, using either
diagrammatic time-dependent Hartree-Fock approxima
or the single-mode approximation. It is a direct conseque
of the fact that Coulomb interaction is spin independent. T
above relationship bears a clear physical meaning:v0→Dz
means thatv2→0, i.e., mode softening~see Fig. 16!. Thus,
the experimental observation thatv0 approaches the Zeema
energy as the threshold temperature is reached from ab
suggests that there is mode softening (v250) at the phase
boundary, as predicted by the computations of
T-dependent peak positions in Sec. III C.

Finally, we note that the critical temperature~the thresh-
old temperature! in the experiment8 is Tc'0.52 K, which is
reasonably close to our calculated Kosterlitz-Thouless c
cal temperatureTc'1.8 K in the Hartree-Fock theory@Eq.
~2.27!# using the actual experimental sample paramete9

This discrepancy between the experiment and the Hart
Fock theory is small when compared with the energy scale
Coulomb interaction, which is about 70 K in this particul
sample. In addition, quantum fluctuations neglected in
Hartree-Fock theory should lower the calculated critical te
perature and reduce this discrepancy.

From the above discussions, we conclude that our th
retical predictions are consistent with the recent lig
scattering experimental results. The most dramatic aspec
the experimental observations that give us confidence in
lieving that the experiment is really seeing the canted a
ferromagnetic phase are~i! the unambiguous observation o
a mode softening~i.e., v0→Dz implying v2→0); ~ii ! the
observed temperature dependence indicating a fin
temperature phase transition;~iii ! the location of the experi-
mental sample in our calculated phase diagram; and~iv! the
v0→Dz collapse being observed precisely atn52.

While the recent inelastic light scattering experimen8

provides, in our opinion, rather compelling evidence in fav
of there being a finite-temperature~Kosterlitz-Thouless! tran-
sition in the n52 double-layer system with the low

-
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temperature phase being the canted antiferromagnetic p
~by virtue of the vanishing of thev2 mode at the phase
boundary, as discussed in Sec. II B of this article!, a com-
plete verification of our theory awaits further more conc
sive and direct experimental measurements, especially
capacity measurements, which should show~Fig. 12! power-
law temperature dependence in the canted phase due t
existence of the Goldstone mode and exponential temp
ture dependence in the two normal phases due to the e
tence of gaps in the excitation spectra, would be particula
well suited in verifying our phase diagram. The direct obs
vation of a gapless Goldstone mode~Fig. 9! in the inelastic
light-scattering measurement in the~low-temperature! canted
phase would also be rather definitive in establishing the
istence of the canted phase. In this context we mention
the SDW softening indicating a phase transition to the can
phase is a long-wavelength instability, and therefore opt
spectroscopy41 may also be useful in studying our propos
n52 double-layer phase diagram. Both of these propo
direct experiments are fraught with considerable~experimen-
tal! difficulties, however. Electronic heat capacity measu
ments in quantum well structures are notoriously difficult
virtue of the extremely small magnitude of the~2D! elec-
tronic heat capacity compared with the background~lattice!
contribution. As for the direct experimental observation
the Goldstone mode, the experimental inelastic lig
scattering spectroscopy is severely restricted by the selec
rules inherent in the resonant light-scattering spectrosco
and at this stage it is unclear whether the problems assoc
with the selection rules would allow to directly observe t
Goldstone mode.

One striking difference between the physics ofn52
double-layer system and the correspondingn51 situation is
the existence of a charge gap in then52 case for all values
of d andDsas: the system is always incompressible~in all its
quantum phases including the canted phase!. Thus the quan-
tized Hall effect exists throughout our phase diagram, in c
trast to the case in the correspondingn51 situation.3,4,14,42

The existence/nonexistence of the QH effect, which has b
useful in mapping out then51 double-layer phase diagram42

would not work in our problem in a direct sense. We d
however, speculate that the activation energy~i.e., the effec-
tive value of the incompressible charge gap! for the n
52n1 double-layer QH effect may very well show obser
able structure at our calculated phase boundaries e
though all the phases~ferromagnetic, canted, symmetric!
would exhibitn52n1 QH effect. We suggest systematic e
perimental investigations ofn52n1 double-layer (n151/m
with m51,3,5, . . . ) QH activation energies by tuning
Dsas, Dz , andd to look for signatures of our proposed zer
and finite-temperature phase transitions.

In this context we point out that there is already so
experimental evidence20,21 that the naiveDz5Dsas level
crossing inn52 double-layer QH systems does not exist~as
our theory proposes and clearly demonstrates in our ca
lated phase diagrams!. The experimental observation20,21 has
been that the naiven52 level crossing phenomenon~at Dz
5Dsas) between ferromagnetic and symmetric phases, wh
would exist in the absence of our intervening canted phas
it happens at all in double-layer systems, must happe
magnetic fieldsmuch lower than that satisfyingDz5Dsas
se
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condition. This is, of course, exactly what our phase d
gram @see Fig. 4!# predicts—nothing interesting happens f
finite d at Dz5Dsasor for that matter even forDsas53Dz at
d52l o in Fig. 4~a! for example—the system remains in th
fully spin-polarized ferromagnetic phase and the naive
pectation of a level crossing transition to the symmet
phase simply does not occur. In this sense, our phase
gram for then52 double-layer system may have alrea
been verified in 1990!42 Further experiments along this lin
at n52n1 double-layer systems would be useful.

V. SUMMARY

In summary, we have studied both zero- and fini
temperature properties of then52 double-layer QH system
within the framework of Hartree-Fock approximation. W
show that, in addition to the fully polarized state adiaba
cally connected to the well-separated layer state, there
two other double-layer quantum Hall phases: the first i
spin singlet, and the second is characterized by a finite in
layer inplane canted antiferromagnetic spin ordering. T
transition between the different quantum Hall phases is c
tinuous, and is signaled by the softening of collective int
subband spin-density excitations. Because of the bro
U~1! symmetry in the canted antiferromagnetic phase,
system has a finite-temperature Kosterlitz-Thouless tra
tion (Tc;1 K). Below the critical temperature, the cante
antiferromagnetic phase supports a linear Goldstone m
Above, the system is essentially a paramagnet similar to
symmetric phase. Our findings are consistent with rec
light-scattering spectroscopic experimental results.
present detailed results of our study, including the stabi
energetics of various phases, the antiferromagnetic order
rameter in the canted phase, the phase diagram, the colle
excitation dispersions, the specific heat, and the Koster
Thouless critical temperature, and suggest various exp
ments which could, in principle, probe the rich double-lay
phase diagram predicted by our theory.

In addition to the microscopicn52 Hartree-Fock theory,
we have developed a rather general long-wavelength ef
tive field theory for then52n1, wheren151/m with m an
odd integer, double-layer system. The essential inputs
this effective field theory are the existence of charge gap
the two layers and an effective interlayer antiferromagne
~superexchange! interaction. By mapping the effective actio
for this problem to that of an O~3! quantum nonlinears
model, we have been able to show that the qualitative ph
diagram calculated within the Hartree-Fock theory forn52
is actually generically valid~topologically! for any n52n1
~with n151,1/3,1/5, . . . ) double-layer system with the sym
metric phase of the Hartree-Fock calculation being repla
by a highly nontrivial correlated spin-singlet phase~of which
then52 symmetric phase is a rather trivial example!. Thus,
there could be rather nontrivial canted~and perhaps even
Néel, if one can apply sufficient external pressure to produ
vanishing gyromagnetic ratio! antiferromagnets at, for ex
ample,n52/3 in a double-layer system, where each sin
fully spin-polarized Laughlin state spontaneously develo
in-plane antiferromagnetic spin ordering. Observation of
canted or the spin-singlet phase in an52/3 double-layer QH
system would significantly enrich the many-body stron
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correlation physics associated with QH systems.
We conclude by pointing out that, although we have co

fined ourselves in this article to then52/m case, withm an
odd integer, it is obvious that the physics we are conside
here applies, in principle, to all double-layer QH syste
with n52n1 where a single layer at fillingn1 forms a fully
spin-polarizedincompressible QH state with a charge ga
Thus, the same physics as atn52 should apply, in principle,
at n56 ~but not at n54,8, . . . where the charge gap is th
cyclotron gap notDz ,Dsas) in a double-layer system. In prin
ciple, however, our approximations which neglect all~or-
bital! Landau level couplings become progressively worse
higher Landau levels. In this respect, it is very gratifying th
the experimental light-scattering measurements8 find qualita-
tively similar ~but quantitatively much suppressed! behavior
at n56 as atn52, but then54 situation is qualitatively
different.
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APPENDIX: TWO SPIN PROBLEM

Here we will assess the validity of the mapping from t
action S1 in Eq. ~3.4! to S2 in Eq. ~3.8! by examining a
simple toy model of two spins. We consider the Hamiltoni

H5JSW 1•SW 22Dzẑ•~SW 11SW 2!, ~A1!

where SW 1,2 are two quantum spins of spinS. The energy
spectrum ofB is clearly

El 5
J

2
l ~ l 11!2Dzm1E0 , l 50,1, . . . 2S;

m52l ,2l 11, . . .l 21,l , ~A2!
n

er

.

,
.

C
.

.

-

g
s

.

t
t

at
,

whereE0 is an overall constant we shall not be interested
Let us attempt to obtain this result using the coherent s

path integral. First, we transcribeH into the effective action

S5E dtF iSAW ~nW 1!•
]nW 1

]t
1 iSAW ~nW 2!•

]nW 2

]t
1JS2nW 1•nW 2G ,

~A3!

wherenW 1,2
2 51. Notice that this is the analog of the actionS1

in Eq. ~3.4! with only the spatial gradient spin stiffness term
now being absent. Now insert the parametrization~3.5! into
Eq. ~A3!, and expand to quadratic order inLW . The neglect of
terms higher order inLW is the only approximation being
made here. This gives us the analog of Eq.~3.7!,

S'E dtF2iSLW •S nW 3
]nW

]t
1 iDzẑD 12JLW 2G . ~A4!

Now we integrate outLW as described above Eq.~3.8! to
obtain

S'E dt
1

2J
S ]nW

]t
2 iDzẑ3nW D 2

, ~A5!

where we recall that the functional integral is over the u
vector fieldnW (t) satisfyingnW 251 for all t. This last form of
S is the effective action for a quantum rotor in a fieldDzẑ.
This action is equivalent to the Hamiltonian

HR5
J

2
LŴ 22Dzẑ•LŴ , ~A6!

whereLŴ is the rotor angular momentum operator. The eige
values ofHR are easily seen to be identical to those ofH in
Eq. ~A2! with one simple difference. The allowed values
l now extend overall non-negative integers. Thus the on
effect of dropping terms higher order inLW in the functional
analysis is that the upper boundl <2S has disappeared. Thi
only introduces additional states at relatively high energ
and is therefore not expected to be of importance in
study of the low-energy properties ofS2.
,
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