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We present details of earlier studi@henget al, Phys. Rev. Lett78, 310(1997 and Das Sarmat al,, 79,
917 (1997 ] and additional results on double-layer quantum Hall systems at a total filingv,, where a
single layer at fillingv, forms a ferromagnetic, fully spin-polarized, gapped incompressible quantum Hall
state. For the case;=1, a detailed Hartree-Fock analysis is carried out on a realistic, microscopic Hamil-
tonian. Apart from the state continuously connected to the ground state of two well-separated layers, we find
two double-layer quantum Hall phases: one with a finite interlayer antiferromagnetic spin ordering in the plane
orthogonal to the applied fiel@the “canted” statg, and the other a spin singlet. The quantum transitions
between the various quantum Hall states are continuous, and are signaled by the softening of collective
intersubband spin-density excitations. For the case of gengratlosely related results are obtained by a
semi-phenomenological continuum quantum field theory description of the low-lying spin excitations using a
nonlinearc model. Because of its broken symmetry, the canted phase supports a linearly dispersing Goldstone
mode and has a finite-temperature Kosterlitz-Thouless transition. We present results on the form of the phase
diagram, the magnitude of the canted order parameter, the collective excitation dispersions, the specific heat,
the form of the dynamic light-scattering spectrum at finite temperature, and the Kosterlitz-Thouless critical
temperature. Our findings are consistent with recent experimental rdS0t63-18208)10331-4

I. INTRODUCTION layer system at dotal Landau-level filling factorv=2v,,
wherev, is a filling factor at which an isolated single layer

Interaction in a low-dimensional system does not merelysystem forms a fully spin-polarized incompressible QH state
result in strong renormalization of physical quantities, but(e.g., v;=1,1/3, etc. We will discuss three distinct ground
can in many cases drive the system into completely nevgtates, and the nature of the zero or finite-temperature
phases with peculiar properties. For a two-dimensigaB) transitions/crossovers between them.
electron gas in a perpendicular magnetic field, the interaction (i) A fully polarized ferromagnetidFPH QH state in
effects are especially important because of Landau-levelhich the spins in each layer are aligned parallel to the mag-
guantization. When electrons are entirely restricted to thaetic field. This state is adiabatically connected to the ground
lowest Landau level by a large magnetic field, electron-state of well-separated layers, each forming a polarized QH
electron interaction completely dominates the properties o$tate at filling fractiorv,. We will denote this FPF state also
the system as the electron kinetic energy is quenched to aas the FM(for “ferromagnetic”) state.
unimportant constant. One of the most interesting phenom- (ii) A spin-singlet(SS state, which can be visualized
ena in this strongly correlated system is the quantum Haltrudely as consisting of singlet pairs of electrons in opposite
(QH) effect, which has attracted a great deal of experimentalayers. Alternatively, at;=1, we will discuss the Hartree-
and theoretical interest during the past fifteen yéaecent  Fock picture of spin-up and spin-down electrons fully occu-
advances in materials growth techniques have made it popying single-particle states that are symmetric in the layer
sible to fabricate high-quality double-layer two-dimensional*“pseudospin” index; hence the singlet state will also be re-
electron systems with the electrons confined to two parallelerred to as SYM. In the limit of a vanishing tunneling ma-
planes separated by a distance comparable to that betwetrix element between the layers, this state is simply the pseu-
electrons within a plane. With the introduction of this layer dospin polarized state of Refs. 3 and 4 for both spin-up and
degree of freedom, many qualitatively new effects due enspin-down electrons separately. Throughout, we will con-
tirely to interlayer correlations appear’ Many new QH  sider the case of a nonvanishing tunneling matrix element: in
phases in double-layer systems become real possibilities b#his case the pseudospin polarization is chosen by the phase
cause of the increased degree of freedom and the complef the tunneling amplitude, and not spontaneously. None of
cated interplay among interlayer tunneling energy, Zeemathe phase transitions we consider here require a vanishing
energy, and electron-electron Coulomb interaction energy. tunneling matrix element; on the contrary, changes in the

In this paper, we present the details of our earlier theoretvalue of the tunneling matrix element can drive the quantum
ical investigation§® of the possible QH phases in a double- transitions.
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(iii ) A canted(C) state in which the average spin momentsquantum nonlinear- model in the presence of a magnetic
in the layers have an antiferromagnetic correlation in thefield. For the casev=2, we are able to use our earlier
plane perpendicular to the magnetic field, and a ferromagHartree-Fock computations to precisely obtain all the renor-
netic correlation parallel to the magnetic field. Both ferro-malized parameters that universally determine the low-
magnetic and antiferromagnetic moments can vary continutemperature properties of the nonlinearmodel; for other
ously at zero temperature as parameters are varied. Th@lues ofv, including the fractional cases, these parameters
planar antiferromagnetic ordering breaks spin rotation symt€émain as phenomenological inputs. We will present the
metry about the magnetic-field axis: as a consequence thehase diagram of the sigma model, and describe the nature of
is a gap|essy |inear|y dispersing’ Goldstone collective mod@e finite-temperature crossovers above the various phases in
in its excitation spectrum and a Kosterlitz-Thouless transisome detail. In particular, we will obtain explicit predictions
tion at a finite temperature. The C phase is the canted antfor the temperature dependence of the line shape of the in-
ferromagnetic phaséCAF) discussed in our earlier short €lastic light-scattering spectrum.
publications”® We note that our findings from the two approaches are

We will use two distinct and complementary approachesonsistent  with  recent inelastic  light-scattering
to understand these phases. The first is a mean-field Hartre@€asuremerit, where a remarkable(and temperature-
Fock calculation: this applies only for integer values:of dependent softening of the long-wavelength intersubband
but has the advantage of working with a precise microscopi®PW mode in av=2 double-layer system is observed. We
Hamiltonian involving only parameters which are directly hope that our other explicit theoretical results may be tested
known experimenta"y‘ The second is a phenomenobgica“yﬂ future experiments. The experimental situation will be dis-
quantum field-theoretic formulation that applies for generalcussed in Sec. IV.
v;, and allows us to more precisely understand the conse- This paper is organized as follows. The results of the
quences of thermal and quantum fluctuations. We will nowHartree-Fock theory are presented in Sec. II. In Sec. Il A, we
discuss some of the results of these two approaches in tur§tudy the ground-state properties of the-2 double-layer

In the Hartree-Fock approximatidfiwe are able to show System in a self-consistent mean-field approximation. The
that the canted antiferromagneti€) phase is the energeti- intersubband SDW excitations in the time-dependent
cally favored ground state for=2 at intermediate layer Hartree-Fock approximation and associated mode softening
separations for systems with small Zeeman energy, and tha{e studied in Sec. Il B. The thermodynamic properties are
the phase transitions from the C to the FM or SYM phasegiscussed in Sec. Il C, and some further discussion, along
are continuous. We evaluate a2 the intersubband spin- with an assessment of the validity of the calculation, appears
density wave(SDW) dispersions of all phases in the time- in Secs. IID and Il E. In a long and self-contained Sec. Il
dependent Hartree-Fock approximafiband show that, as We give our nonlinear model effective field-theoretic de-
the precursor of the phase transitions, the collective intersutcription for a generie =2, situation. Comparison of our
band SDW mode softens at the phase boundaries of the Ffieory with recent light-scattering experiments is discussed
and SYM phases to the C phase_ The SDW becomes tH@ Sec. IV. A short summary in Sec. V concludes this paper.
linearly dispersing Goldstone mode in the C phase, and thé/e note that the readers who are interested only in micro-
temperature of the Kosterlitz-Thouless transition is obtainedcopic Hartree-Fock theory could skip Sec. Ill, and the read-
by evaluating its effective spin stiffness in the Hartree-Fockers wWho are interested only in our long-wavelength effective
approximation. In addition, we present results on the stabilityfield theory could skip Sec. Il. We have taken care in writing
energetics of the various phases, the antiferromagnetic ordéf€ two parts of our work, namely, the microscopic Hartree-
parameter, the phase diagram, the collective intersubbarfoock calculation fory=2 (Sec. 1) and the nonlineair
SDW excitation dispersions, and the specific heat. model description fow=2v, (Sec. Il as two separate self-

The v=2 Hartree-Fock results may also be qualitatively contained pieces that can be read reasonably independent of
applicable to the case of=6 if the Landau-level mixing is €ach other if so desired.
ignored (the Landau-level mixing may not be negligible at
v=6, though) On the other hand, the situation at4 is Il. HARTREE-FOCK THEORY
very different from the situation at=2, since the inter-
Landau-level excitation energies are comparable to the cy-,_ .. .

i Hamiltonian of a double-layer quantum Hall system.

clotron energy; our results do not applyat4. ithin the lowest Landau level. the single-particle eigen-

The microscopic Hartree-Fock analysis obviously does Within the lowest Landau level, the single-pa 9

e - . States may be denoted HQwuo), where « is the intra-
not apply to a situation where the average filling faaigin : . .
. X = ’ ; Landau-level index in the lowest Landau levek=0,1 is the
each layer is fractionale.g., v;=1/3) with each isolated

layer supporting a spin-polarized Laughlin fractional QHEpseudospin index that labels the symmetric and antisymmet-

state; such a many-body state will not appear in an meanr-iC subbands, and the spin index=x1 labelsT and |
’ y y PP y pins!2 The Hamiltonian of the double-layer system is

field decoupling of the Hamiltonian. However, an essential®
property of the phases we are discussing is that they all have H=Ho+H,, (2.2
a gap towards charged excitations, and the transitions be-

tween them are driven by changes in the nature of the meafhere the noninteracting Hamiltonian is

spin polarizations, and of the spin excitations. This suggests -

that it may be possible to develop a more general effectivey _ _ _ T _ Zt

theory that focuses on the spin excitations alone. We wiIIeHO Asa%a (/2= 1)CoapoCapo AZ% 2CanoCauo:
present such a theory in Sec. lll: it turns out to be tH8)O (2.2

We begin by writing down the explicit microscopic
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where the pseudospin splittiniy,sis the tunneling-induced HE_
symmetric-antisymmetric energy separation, the spin split- HF == > Xuu0,0,ChirCupory (29

ting A, is the Zeeman energy, a@f (C) is electron creation 7192 #1k2
(annihilatio operator. The Coulomb interaction Hamil- where
tonianH, is
1
2 > E 5 X == 2
0102 KM MA3M4 alaz k27172 277"5 Mg
—qA212iq (g — a)l? %2 ~t
Xz VM1M2M3M4(q)e Tt X% VM3M1M4M2(q)e K 02<C.U-3"2CM4"1>’
xcCl ct cC C (2.3

@yt Qyuy oy apppoy T apt yigoy T agpgoy which depends on the electronic state being sought through

where() is the area of the system, ahgk (fic/eB)2is the the expectation valugC], , C, ). We self-consistently
magnetic length. The nonzero Coulomb potential matrix elsearch for the symmetry broken states where, in addition to
ements are Vogo= Vo11= Vioor= Vi11:=V+ and Vipig (CLUCM>¢0, the possibility thal(CLTcl_M)#O is also
=Vo101= V110= Voo1:=V_ , with V. (9)=3[va(q) allowed. Because of the complete Landau-level degeneracy,
+v,(q)], wherev,(q)=27e% eq and v,(q)=va(a)e %  the Hartree-Fock Hamiltoniahl"F=Hy+H! in a uniform

are the intralayer and interlayer Coulomb interaction potenstate is a 44 matrix, representing the dimension of the
tials, respectively(The finite well-thickness corrections can subspace associated with the spin and layer degrees of free-
be taken into consideration by including appropriate formdom. It thus has four eigenenergigs. and four eigenstates
factors!®) ¢i+(i=1,2), which are obtained as shown below. In the

The following subsections will examine various proper- noninteracting base@1),|11),/01),|11)), H"F becomes
ties of H at v=2 by mean-field and RPA-like treatments of

the interactions irH,. E, A, 0 O
A. Ground states HHF— Ay B2 00 2.5
In this subsection, we investigate the ground state proper- 0 0 Es A
ties of H, and obtain the three phases discussed in the Intro- 0 0 A, E4
duction. Performing Hartree-Fock pairing of E@.3), one
obtains the mean-field interaction Hamiltonian as where
|
Agast A A 6, 0, 0,
E1=—%—U+(nl+sm2?+nlco§?)—u(n2+cos°-?+nzsm2? ,
AgstA 0 0 0 0
2=%—U+(nl+co§§+nlsin271)—u(n2+sin2?2+nzco§?2),
A,—A .0 0, 0, .01
ESZ%S_U+(n2+S|n27+nzco§7> —U(nl+co§5+nlsln2? ,
Agas— A 0, 02 01 01
E, Sa; Z—U+(n2+co§?+n2_sm2?>—U_(n“st?Jrnl_cogf ,
ng_— N,_—n
A=U, ——6ing,+U_ " sing,,
2 2
N, — n,_—n
A,=U, 2 5 2 sin 02+u,%sin ' (2.6

where 6, and 6, are associated with the Hartree-Fock eigenstd;t'esthat need to be obtained self-consistently, are

electron occupation numbe{’a’>|+¢|+> andU.=(1/Q)Ze? i /2V +(p). The off-diagonal matrix elements; represent the
possibility of the broken symmetr)((: 11C1- 21)#0) mentloned above. By diagonalizing the Hartree-Fock Hamiltokigh
of Eq. (2.5), one obtains the elgenstates
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sin(6./2)  cog 6,/2) 0 0
cog 6,/2) —sin(64/2) 0 0 )
(br4,b1 G20, )=| 0 sinos2  cosd2) | (27
0 0 c0%6,/2) —sin(6,/2)
|
and the eigenenergies state at small interlayer separations, the C state at intermedi-

ate separations, and the FM state at large interlayer separa-

== N (E;—E,)? tions. Ther=2 double-layer QH system thus undergoes two

E1= 2 - 4 + Ai’ quantum phase transitions as the layer separation is increased
from d=0 tod—oe at a fixed magnetic field.
Es+E, (Es—Ea? To show the antiferromagnetic spin correlations, we rear-
== + 7 +AS. (2.9 range the eigenstates as

— L R
Equations(2.5) to (2.8) form the complete self-consistent bi==(1N2)(|L)Sr +|R)SY), (2.9
Hartree-Fock equations_ fthat need to be s_olved_ nurr_1erica||3(,\,here SlLiR), electron spin configurations in the lefight)
In fapt, the only quantities to be determined in th!s self-|ayer in the eigenstated;., are S- =cos@/2)[1)
consistent manner are the two parametgrand 6,, which, —sin(@/2)|1), SR =cos@/2)|1)+sin(@/2)|]), and satisfy
in turn, uniquely define the eigenstates through EX7). L \tal — reR \fcR _ . . i
: : ; A (S)'S_=(S53)'S_=0. We immediately obtain the
The eigenenergies always satisty_<zj, (I,j=1,2), so canted antiferromagnetic spin order as
the ground state at=2 is given by| )=1II;¢{_|v), where 9 P
||;/> i<s|_|thJer llil'(i'lilzl).lm state. The ground state energy is given by (SRy=—(SL)=1(sin 6,+sin 6,), (2.10
=\Ho™2H," ).
There are several sets 6f and 8, which make Eq(2.7)  whereS® is the electron spin operator in the Igfight)
the self-consistent solutions to the mean-field Hartree-Foclayer, andx denotes the spin alignment direction within the
equations. One i8; =0 andd,=0, which corresponds to the two-dimensional plane. This canted interlayer antiferromag-
SYM state. Another i®); =0 and#é,= 7, which corresponds netic spin ordering is shown schematically in Fig. 2. Note
to the spin-polarized ferromagnetiEM) state. These two that the total spin magnetic moment still points in the direc-
are the spin ferromagnet§FM’s) or layer pseudospin tion of the magnetic field as required by symmetry. It is
“ferromagnets,’®4 (SYM'’s) whose existence is naturally ex- obvious that this antiferromagnetic order breaks thid)U
pected in the presence of finite Zeeman and tunneling eneBymmetry associated with the spin-rotational invariance of
gies. More interesting is that, fak,c>A,, there exists a the system. Its consequences on the low-temperature thermo-
solution at intermediate interlayer separations witkk @  dynamic properties will be discussed later. The numerical
<. As we shall see shortly, this new state possesses sult of this order parametéS) —(SF)| is shown in Fig.
canted antiferromagnetic orderirithe C phasg, i.e., an in- 3. One can see that when Zeeman ené¥gis increased, the
terlayer inplane antiferromagnetic spin ordering with the in-range of the layer separations where the canted antiferromag-
plane spin magnetic moment in each layer being equal imetic state exists shrinks in favor of the ferromagnetic state,
magnitude and the opposite of each other. The energies @ the Zeeman energy obviously favors the spin-polarized
these different states are shown in Fig. 1. It is clear from thistate. It is clear that the phase transition is continuous.
figure that the energetically favored ground state is the SYM The phase diagram, shown in Fig. 4, can be constructed
from this mean-field approximation. The stat@) and

1 osob ] |11) are occupied in the FM phasé,) and|0|) are occu-
' SYM pied in the SYM phase, and the C phase interpolates between

—1.040F E them. The SYM phase exists far;,e>A, andd<d.,, the C
- FM
¥ -1.050 e B
&

—-1.060F . c E *
- 2

~1.070} } ] <S>

—1.080F k| :

T S T 2DEG
0.2 04 0.6 08 1.0 1.2 1.4 <S>

d/1,
FIG. 1. The energy per magnetic flux in the SYM state, the _L IDEG

spin-polarized FM state, and the C state fora2 double-layer
system withA ., 0.07%%/ el ,, A,=0.01e?/ €l ,, and well thickness FIG. 2. Schematic display of electron spin orientations in the
d,=0.4d,. canted antiferromagnetic quantum Hall phase.
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In this subsection we have studied the ground-state prop-
erties of v=2 double-layer QH systems in a mean-field
] Hartree-Fock approximation and showed the existence of
three stable QH phases. The most interesting observation is
] the existence of a canted antiferromagnetic phase, with a
&m0ot broken spin rotation symmetry, in between the symmetric
1 and the ferromagnetic phases.

A..=0.07€°/¢l,

0.6

[<Sh>—<S%>|
o
N
:

0.2F
B. Intersubband SDW excitations and mode softening
0.0 b L L . . . .
0.0 05 10 15 In this section, we study collective intersubband SDW

d/1. spectra of v=2 double-layer QH systems in the time-
dependent Hartree-Fock approximatidriThese excitations
FIG. 3. The canted antiferromagnetic order parameter vs layeinvolve flipping both the spin and pseudospin of the electron
separation for the indicated tunneling and Zeeman energiessnd are the lowest-energy excitationsiat2. The phase
well thicknessd=0.8,. instability is studied by investigating the softening of the
collective intersubband SDW excitations. The results ob-
phase exists forAg,e>A, and d;<d<d,, and the FM tained in this section are in complete quantitative agreement
phase exists for eithex,>A,;or d>d.,. The FM phase is With the results obtained from the ground-state studies in the
favored whenA, is increased, while the SYM phase is fa- Previous section, as, of course, they should be if the calcu-
vored whenAg, is increased. In the next subsection, thelations are done correctly.

same phase diagram will be obtained by studying the soften- In the absence of interaction, the two branches of the
ing of the intersubband SDW excitations in the time-intersubband SDW excitations which correspond to transi-

dependent Hartree-Fock approximation.

.
A,=0.01¢e"/€l,

tions|07)«|1]) and|0])«|11), have excitation energies
|AsastA,|, whereAg,cand A, are interlayer tunneling and
Zeeman energies, respectively. Interaction renormalizes the

200 (a) excitation energies in two ways. One is a self-energy correc-
tion to the polarizability due to the loss of exchange energy
150 pM C ] when an electron is excited to a higher but empty level,
= . which raises the excitation energies. The other is the vertex
S 1.0 g correction to the polarizability due to an excitonic attraction
between the electron excited to the higher level and the hole
it leaves behind, which lowers the excitation energies. In
oo SYM ] diagrammatic perturbation theories, the effect of the ex-
, change energy on the excitation energies is accounted for by
0.0L : : : including the corresponding self-energy in electron Green’s
0.00 0.10 0.20 030 0.40 functions, and the effect of the excitonic attraction is repre-
B (e7/ely) sented by vertex corrections. The self-energy and the vertex
; . correction must be consistent with each other in obeying the
200 ) | 4,70.08¢%/el, | Ward identity. The direct Hartree term does not influence the
SDW excitations because Coulomb interaction is spin-
157 M C 1 rotationally invariant. Since the Coulomb interaction poten-
tials are subband-index dependent, they may introduce mode
§° Lol b coupling between the two branches of the intersubband SDW
excitations. This mode-coupling pushes down the frequency
of the low-lying excitation and hence helps mode softening.
057 —_— The intersubband SDW excitation spectra are obtained as
the poles of the retarded intersubband spin-density response
0.0 ‘ ‘ ‘ function,
0.00 010 020 0.30 0.40
A (e°/¢el,)

FIG. 4. The zero-temperature phase diagrams=a2 within the

x(g,0)=—i f:e“"%[pso(q,t),pén(—q,O)]>,

Hartree-Fock approximation at two different values of the Zeeman
energy:(a) A,=0.01%¢l, and(b) A,=0.01e%/¢l,. The quantum (211
well thickness id,,= 0.8, for both of the figures. Three phases are

present: the SYM phase, the spin-polarized FM phase, and the &/here the intersubband SDW operator is defined as
phase. Thet in (a) denotes the experimental sample parameters of
Ref. 8. The vertical dotted line in each figure indicated the

= A4, condition, which is the naive phase boundary between the
FM (A,>Ag,9 and the SYM Q,<A.,) phases with an expected
level crossing af\ ,= A .

2
psa(r>=§l ()i s (r). (2.12
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: 1
X = O + @ + @ + e e e Fi)\(Qaiw-a):equalg_ﬁ 2 exp—[p§+(a—a’)2]|§/2
Dy @'\

FIG. 5. Feynman diagram for the intersubband spin-density re- XexpipquliDiwfiw(q,i w,a’)
sponse function in the time-dependent Hartree-Fock approximation,
where solid lines are the self-consistent Hartree-Fock electron XN =N |V(py,a—a')|[i=N\;i'\"),
Grleen’s functions and zigzig lines are Coulomb interaction poten- (2.15
tials.

where the interaction matrix element is
psp(r) recovers to familiar  forms pgp(r)
=3 C (N Cy, (r) in the spin-polarized stated(=0 and  (i1A1;iN,|V(Q)]ighg;iaha)
02—17) and pgp(r) = E(,Cog(r)Cl -(r) in the symmetric

state (0,= 0,=0). =31+ (-Drittas, 'S, TS, TS
X"®(q,0) is evaluated in the time-dependent Hartree- . .
Fock approximatiort> which we adapt to double-layer sys- XV (@)1, +V (@) (1= 8i,1,)], (2.16

tems and, for simplicity, we ignore all of the higher Landau
levels. As argued earlier, this should be a good approxima-
tion for our problem. In this approximation, one includes the
single-loop self-energy and the ladder vertex diagrams in th
theory, which satisfies the Ward identities. This time-
dependent Hartree-Fock approximation, therefore, corre- Fm(k)zz Fix(a)e‘“‘”"g (2.17)
sponds to solving the vertex equation shown in Fig. 5, where
the electron propagators are the self-consistent Hartree-Fock
Green’s functions obtained from the mean-field approxima@"
tion discussed in the previous section. Due to the fact that the 1
Coulomb interaction is frequency independent and that the v} _ —p2212,5ipAgldy,
Landau levels are completely degenerate, the integral vertex Viine (@)= 2 e PR 0(p), (218
equation can be transformed into an algebraic matrix
equationt! The matrices can be further block diagonalizedwhere p/\q=p,ay—p,dx and Vi.i»=(i\;i’=\'|V(q)[i
into 4x 4 matrices, from which the poles of the spin-density —\;i’\"), as given by Eq(2.16). After an analytical con-
response function can almos) analytically calculated. tinuation, one obtains

Combining Egs(2.11) and (2.12), one obtains the spin-

hereSIx is the electron spin states given in E8.9).
To solve the vertex equation, we perform the following
gourier transformation’:

density response function in the Matsubara frequefities 422
y p q Xret(q,w):e q |0/2i:212Yi+(q’w)' (219)
(i) =e 1Y e %D (i)l (qiw,a),
ia where
(2.13

where Y=(D +V)"!N, (2.20
Ni—y—Nix N andY are 4x 1 matrices, withN;, = Q/2712, the number

2 Gin(ipptiw)Gi_\(ipn)= fote s—op of magnetic flux passing through the system, aig

L =D, ()T, (q,0). D and V are 4x4 matrices, with

=——— for T=0, (214) Di)\;il)\!: 5”,5)\)\,Di)\(w), andVi)\;i,}\, defined in Eq(218)
Motej —giy The intersubband SDW dispersiar{q), which occurs as

where8=1/kgT, G, is the Green’s function corresponding the pole of the retarded spin-density response fungtiBhis

to the self-consistent Hartree-Fock eigenstatg, and the solution to déD!(w)+V(q,w)|=0. After a lengthy
eigenenergy;, given in Egs.(2.7) and (2.8), respectively. but straightforward algebraic manipulation, the two intersub-
The ladder diagram vertex function is band SDW dispersions . (q) are obtained as

w2 =A2+B2-V2cog 6, + 0,) + \{V_[1—cod 6, + 6,) JA}2+ 4B2(A+C)(A—C), (2.29)
whereA=i(a+b), B=1(a—b), andC=1V_(1+cos@,+6,)), with

a=/(Agust A,+ U cos f;—U_cos b,)%+(U_sin 6;+U_sin 6,)>—V, ,

b=\(Ags A,+U, cosb,—U_cos )2+ (U, sin 6,+U_sin 6;)2—V. . (2.22
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1.0 " T 0.8+
& . CoP
o "
0.6+
= B
w
b -
R < 0.4t
o
—~ (0] i L
= =
‘31 ? 0.2 : b
& [ela=0) -

0.00 0.10 0.20 0.30 0.40 0.50
Ao (e'/el)

FIG. 8. The low-energy intersubband SDW mode (q=0)
and the canted antiferromagnetic order param@eP versus tun-
neling energy with layer separatiah=1.0,, Zeeman energy,
=0.08&% el,, and well thicknessl,,=0.9,.

ql,

FIG. 6. The intersubband SDW dispersian (q) in the spin-
polarized FM phase aty=2 with tunneling energy Ag.
=0.0%%/el,, Zeeman energp,=0.01e?/ el ,, layer separationl
=1.13,, and well thicknessl,=0.8 .

nt_he symmetric phase and the spin-polarized phase. However,
the mode softening does occur at the phase boundaries, as we
how below.

To illustrate the phase instability, we show, in Fig. 8, the
lower-energy branch of the intersubband SDW'gat0 as a
function of interlayer tunneling. We see that (q=0) in-
deed softens when approaching the phase boundaries from
temperatures. both the symmetric phase and the spin-polarized phase, and

In Fig. 6, we show the dispersion of the intersubband ; L . .
SDW above the FM ground state. As mentioned earlier,remams zero inside the canted antiferromagnetic phase. The

these two intersubband SDW modes (q) correspond, re- cant_ed antlfe_rrom_agnetlc order parameter, calcula‘ged in the
spectively, to transition$01)—|1]) and|11)—|0]). The previous section, is also showr) in Fig. 8 fpr comparison. We

0 i . L notice that the phase boundaries determined from these two
frequenciesw.. increase as functions off, approaching

. 0 0 independent approaches agree completely, as shown in the
asymptotlc .value&)'i(q.—mo): W+ o, V\(herewi are the figure. The softening of the collective mode and the appear-
noninteracting excitation energies and is the exchange_ ance of the antiferromagnetic order parameter implies that
energy of the electron in the ground state. Mode COUIOIInQWe have discovered a quantum phase transition in double-
which pushes doww _(q) and hence helps mode softening, layer QH systems.

is most visible ag—0. At zero layer separation, mode Cou- -\, kg 9. the collective intersubband SDW dispersions in
pling disappears, and we recover previously knowny,e canted antiferromagnetic QH state are shown. The first
”’?‘S“"S-.' In Fig. 7, we show the intersubband _SD.W thing to be noticed is that the lower-energy brareh(q) is
dispersion above the SYM state. The results are qualltatlvelg gapless mode. The existence of such a gapless Goldstone
S'T""a_f to those in F'.g' 6, except that there is no mOde_COQ'mode is due directly to the canted antiferromagnetic spin
pling in the symmetric state because Coulomb interaction iy, jering that spontaneously breaks the spin-rotational sym-
spin independent. The important thing to be noticed is thaf, ety of the Hamiltonian. This Goldstone mode is found to
the long-wavelength collective excitations are gapped in both, iFaar in the long-wavelength limit, consistent with the

The intersubband SDW dispersions in both the canted a
tiferromagnetic QH phas€C) and the normal QH phases
(FM or SYM) can be obtained from the above expression b
incorporating appropriate values 8f and 6. In the follow-
ing, we showw..(q) only at zero temperature for the sake of
simplicity, although the formalism applies equally at finite

1.0 ! 1.0 T T T
0.8 0.8
) o
~ 0.6] =06
2 2L
0.4l o 0.4
3 3
0.2 0.2+ ]
w_
0.0 0.0 ! .
0 1 3 4 5
ql. ql,

FIG. 9. The intersubband SDW dispersion (q) in the C phase

FIG. 7. The intersubband SDW dispersian (q) in the SYM
phase atv=2 with layer separatiord=0.89,, Zeeman energy at v=2 with layer separatiord=1.13,, tunneling energyA.,s
A,=0.0%%/€el,, tunneling energyA,=0.3%%el,, and well =0.14%/€l,, Zeeman energh,=0.01e?/ €l ,, and well thickness
thicknessd,,=0.8,. d,=0.8,.
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0.8 ‘ v=2 that may have any values of Zeeman energy, tunneling
M energy, layer separation, layer thickness, etc. We believe,
0.6} . however, that this remarkable scaling in the phase diagram
(which enables us to reduce an infinite numbengf ver-
4 o4t C sYM | susd diagrams for various values df,, of which examples
5 are shown in Fig. 4, to just one phase diagram shown in Fig.
“ 10) remains approximately valid, although the relative size
027 ] of various phases in the universal phase diagram of Fig. 10
. N may very well be quantitatively not particularly accurate. We
0.0 L M ; also mention here that this phase diagram is topologically
00 1.0 20 30 40 identical to that of a (2 1)-dimensional quantum @) non-
Au./U_ linear o model in a magnetic fieldas discussed in Sec. IlI

_ of this paper.
FIG. 10. Zero-temperature phase diagram ob-a2 double- In this subsection, we have studied the collective intersub-
layer quantum Hall system within the Hartree-Fock approximation.

The phase diagram is expressed in terms of scaled dimensionle%}g‘nd_SDW excitations fop=2 double—layer_ QHlsystemS n
variables. Thet+ mark represents the experimental sample of Ref.t e tlme-depenQent Hartree'FOCk apprc_)xmatlon. W? have
8. The N phase at,=0 andA_.<2U _ is represented by the thick Presented the dispersions of the collective SDW excitations

line. The M point represents the quantum critical poinf\at0. in both the normal QH phasg&M and SYM and in the
canted antiferromagnetic QH phase, and investigated the
mode softening that signals the phase instabilities. We have
fact that it describes antiferromagnetic fluctuations. The exrederived the same phase diagram as that obtained in the
istence of the gapless excitation in the canted antiferromagarevious section, and obtained analytic equations for the two
netic phase implies that some thermodynamic quantitiegshase boundaries separating the new canted antiferromag-

such as specific heat, have power-law temperature depefetic phase from the normal FM and SYM phases.
dence in the canted antiferromagnetic phase in contrast to

their exponential temperature dependence in the normal
(symmetric or ferromagnetiphases. C. Kosterlitz-Thouless transition
Simple expressions governing the phase boundaries can
be derived from the mode softening. The boundary between In this subsection, we discuss some thermodynamic prop-
the SYM phase and the C phase is found to satisfy the folerties ofy=2 double-layer systems that arise from the spon-
lowing equation taneous symmetry-breaking associated with the breaking of
U(1) planar spin rotational symmetry in the canted antiferro-
(AsaS_U*)ZZUZ*’LA?’ (2.23 magnetic quantum Hall phase. There should be a finite-
temperature Kosterlitz-Thouless transition in the canted an-

be noted that, for any giveA,,, the critical layer separation tlferromagr)ettl)c kphasBe,I smhce f[he | spln—rotatlonalﬁll)u
at this boundary is considerably smaller than the criticaSYMMetry Is broken. Below the critical temperature, the sys-

layer separation where the charge-density excitation in th&™M Supports a linear Goldstone mode, which gives rise to a
v=1 state becomes sdft.The reason for this is the absence POWer-law temperature dependence for the specific heat.
of Hartree contribution to the SDW excitations. The bound-Above the critical temperature thel) symmetry is restored

ary between the spin-polariz€éM) phase and the canted and the system is paramagnetic. These properties are, in prin-

where U_=V_(q=0)=(1/Q)= e P?52V_(p). It should

antiferromagneti¢C) phase is found to satisfy ciple, experimentally observable and provide direct ways to
test our theory.
(A, +U_)2=U2+AZ, (2.249 We can estimate the Kosterlitz-Thouless transition tem-

perature for our problem in the following manner. In the

canted antiferromagnetic phase, the low-temperature thermo-

dynamics is governed by long-wavelength phase fluctuations
the order parameter. L&,=(p|H|$)—(|H|), where| )

The simplicity of Egs.(2.23 and (2.24 makes the phase
diagram easy to construct. It is worthwhile to note that
the phase boundaries are determined by only three ener

scalesA,, Ag,,, andU _ in spite of the fact that the Hamil- . ) :
tonian is determined by four independent energy scale the ground state of the canted antiferromagnetic phase, and

A,, Ags andV.(q), of which the interlayer and intralayer ¢)=exp62j§z¢j)|>, with Sf as the spin operator of thigh
interactionsV . (q) are in fact continuous functions of wave- electron and is the (magnetic-field direction normal to the
lengthg. This unexpected dependence of the phase diagraiwo-dimensional plane. In the long-wavelength limit, one ob-
(Fig. 10 on just three energy scales that are entirely detertains
mined by the magnetic field, the sample parametess,
interlayer separation, well width, efc.and the tunneling
strength, is a specific result of the Hartree-Fock approxima-
tion. The zero-temperature phase diagram can thus be ex-
pressed as a function of two independent dimensionless vari-
ablesA, /A ,candU _ /A4, as shown in Fig. 10. This phase
diagram applies to all double-layer quantum Hall systems atvith

S AZ
E,,,z%)f a2 |V (r)[2, (2.25
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A,=0.04 e*/¢l,
0.025F ]
d=1.41,
 0.020F d=12l. 4 >
N{ d=1.01, =
@ 0.015F ! ] 3)
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FIG. 11. The calculated Kosterlitz-Thouless critical temperature FIG. 12. The heat capacity per magnetic flux ofa2 double-
T. vs tunneling energy ¢, at different interlayer separations: dot- layer quantum Hall system as functions of temperature in the SYM
ted lined=1.4,, solid lined=1.2,, and dashed linel=1.0. phase, in the spin-polarized FM phase, and in the C phase. The inset
Zeeman energyA,=0.04%/el,. The layer thickness isd,, showsC/ 72, whereT=kgT/(e%/€l,), vs T in the C phase.

=0.8 I,.
cal temperature. We emphasize that the Kosterlitz-Thouless

2 transition discussed here is present even in the presence of
) interlayer tunnelingin fact, the presence of finite interlayer
tunneling is essential to stabilize the canted antiferromag-
sing,—sing,)\ 2 netic phase, as described in the last two sectjandike the
+Ue(q)(f> }d , (2.26  case associated with the pseudospin transifioat v
=1/m (m odd integers where interlayer tunneling sup-
wherel, is the magnetic length angd,(v,) is intralayer(in-  presses Kosterlitz-Thouless transition.
terlaye) Coulomb potential. For future convenience, we Below the Kosterlitz-Thouless transition temperature, the
have written the stiffness as an explicit function Af, specific heat in the antiferromagnetic phase has qualitatively
which arises from the dependence of the angleson the different temperature dependence from those of the normal
Zeeman splitting. The effective planXY model defined by quantum Hall phases. This is of practical significance since it
Eq. (2.25 undergoes a Kosterlitz-Thouless phase transifion is possible to experimentally measure the specific heat of
at approximately kgT.= (7/2)ps(A,). Finite-temperature duantum Hall systemS. At low temperatures, the main con-
spin-wave and vortex-antivortex polarizations reduce thdribution to the specific heat comes from long-wavelength
transition temperature to approximat%’f}}g IOW-energy intersubband SDW'’s. With their diSperSionS cal-
culated in each of the quantum Hall phases, the heat capacity
kgT~0.904(A,). (2.27) is easily obtained:C=(d/dT)Z(n_(k))w_(k), where
- L _(k) is the energy of the low-lying intersubband SDW
lThese_ finite-temperature renormalizations can be mUCFé’xcitation and(n_(k)) is its Bose occupation factor. The
arger in the vicinity of the C-N and C-SYM phase bound- A . e
I . results are shown in Fig. 12. It is clear that the specific heat
aries: the expressiof2.27 can then no longer be used, and : o
we will discuss modifications near these boundaries later ihas an activated b_ehawor in the no_rmgl guantum HaII_phases
Sec. Il Because of the existence of an excitation gap in its spin wave
S.incé we knowp.(A,) exactly within the microscopic spectra, and a qu.adratlc powe_r-law temperature depender)ce
Hartree-Fock appro;imgtion the Kosterlitz-Thouless transi” the canted' antiferromagnetic pha_se because of the exis-
tion temperature can be eaéily determined for our problemtence of the linear Goldstone mode in the symmetry broken
. ; -. phase. The spin stiffness goes to zero discontinuously. at
In Fig. 11, we show the calculated Kosterlitz-Thouless criti- .
o and forT>T_; we have the usual disorder&dY phase of the
cal temperature inn=2 double-layer quantum Hall systems K . .
o : : . osterlitz-Thouless transition.
within the mean-field Hartree-Fock approximatiow., from
Eq. (2.26 for ps(A,)]. The phase transition exists only in the
canted antiferromagnetic quantum Hall phase. The critical
temperature vanishes at the phase boundaries as the Our analysis so far has obtained solutions for the FM,
symmetry-breaking order parameter drops continuously t&YM, and C phases obtained by varying the parameters
zero as the phase boundaries are approached from within tiae,, A, d in the Hamiltonian(see Figs. 4 and 30which
canted antiferromagnetic phase. We notice that the calculatadodify the relative strengths of the Zeeman energy, the tun-
Kosterlitz-Thouless temperature-(L K) is well within the  neling energy, and the Coulomb interaction energy, respec-
experimentally accessible regime for typical tively. Generically, these phases are separated by phase
Al,Ga _,As/GaAs—based double-layer systems. The effecboundaries representing second-order quantum transitions.
tive spin stiffnessp(A,) given in Eq.(2.26) is obtained in  However, there are also special quantum multicritical points
the mean-field Hartree-Fock approximation, i.e., using then Figs. 4 and 10 the physical significance of which we will
results from Secs. Il A and Il B, where quantum fluctuationnow discuss.
effects are not included. The results in Fig. 11 should thus be The first quantum multicritical point is apparent in Fig. 4
regarded as the upper bound for the Kosterlitz-Thouless critiwhere the FM, C, and SYM phases come together at a single

sinf,+sinég,
va()| ——5——

Ig © _ 2 2
ps(A))= 15— JO qe” ot

D. Multicritical points
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point on the abscissa corresponding to vanishing interlayesibsence of any Zeeman energy,£0) the spin magnetic
separation ¢=0). It is easily noted from Fig. 4 that this moment in each layer lies completely in the 2D plane of the
guantum multicritical point is in fact defined by electron gas where they must be equal and opposite in the
two layers. Therefore, tha,=0 antiferromagnetic phase of

Asas=4,, d=0, (2.28 Fig. 10 isnot a cantedphase, but is a purely ephaseN);
which is equivalent to the conditions indeed the Hamiltonian has full $B) spin rotation symme-
try for A,=0, and spin moments in the N phase can point in
Asas=Az, V_(q)=0, (229  any two antiparallel directions. The N, C, and SYM phases

using the definition of..(q) given immediately following meet at the m_ultic_ritit_:gl point _M. This mult_icriti_cal point WiI_I
Eq. (2.3 in Sec. Il A. The simple physical reason for the take on _spe_C|aI S|gn|f|cance_ in our effective field-theoretical
vanishing ofV_(q) along thed=0 line is that the intralayer formulation in the next section. _

and interlayer Coulomb interactions are identical in the limit L€t us also note that the existence of this purelyNgH

of vanishing interlayer separatiah Note also that the van- antiferromagnet at=2 double-layer system may not be just
ishing of V_ (and consequently dff ) pushes the quantum @ theoretical curiosity because it is possible to obtain vanish-
multicritical point to an infinite value of the abscissa ing Zeeman splitting in a GaAs double-layer system in a
(AgdU_—) in the scaled universal diagram given in Fig. finite magnetic-field situation by applying external pressure
10—in Fig. 10 the two phase boundaries separating the threbat under suitable conditions could lead to the vanishing of
phases approach each other asymptoticallAgg/U _— o the effective gyromagnetic ratighe g factor) due to band-
and A,/Ag,s—1 at the multicritical point. Note that the structure effects.

condition A,= A5 for the quantum multicritical point is a

particularly interesting criterion because, in the absence of

our predicted canted antiferromagnetic phése., if the v E. Comparison with earlier work

=2 double-layer QH systems allowed only the ferromag-
netic and the symmetric phases, as was assumed in the Iﬁ
erature before our wojkthe condition of the equality of the
Zeeman splitting and the symmetric-antisymmetric §am,
A,=Ag,) is precisely the single-particlevel crossingrite-
rion where, atv=2, one would make a transition from the
ferromagnetic phases where the two up-spin symmetric an?ip
antisymmetric levels are occupied and the down-spin level
are empty forA ,> A ,sto the symmetri¢spin-singlet phase
where the spin-up and spin-down symmetric subbands a
occupied(and the antisymmetric levels are empfgr Ao
>A,. What our theory definitely predicts is that such a sim-
plistic one-particle level crossing pictufevhich appears to
be obvious intuitively does not occuin a double-layer QH
system atv=2—instead, Coulomb interaction breaks the

Before concluding this section, and going on to the effec-
ve field-theoretic description of the double-layer QH sys-
tem, we will discuss the relationship of our results to some
earlier work on double layer systems. We will also use this
opportunity to comment on the validity of the Hartree-Fock
proximation in our and earlier work.

Most earlier studie$;**however, have focused an=1

%\Nith some worR on »=1/2). Although ther=1 and the

L= 2 QH systems exhibit some similarities such as the soft-
gning of their low-energy collective excitations under certain
conditions, there are important distinctions between them. At
v=1, the spin degree of freedom is normally frozen out by
the external magnetic field. The relevant low-energy excita-
tions in thev=1 QH state are therefore intersubband charge-

dospin levels are intrinsically mixed. The fact that the intu
itively expected level crossing phenomen@at A,=Ag,)
has never been obsenf8ih a v=2 double-layer QH system

“y=1 system is in fact a single-layer system with a layer
pseudospin-dependent interactiht* At »=2, both the

: ite of ¢ tic efforts is. | - th spin degree of freedom and the layer degree of freedom are
In spite of systematic €fiorts 1S, In our opinion, rather relevant, and the low-energy excitations are intersubband

strong indirect eV'de.”C.? In support of our phase d|agram._ SDW excitations. Consequently, the properties of the system
The second multicritical point becomes apparent only in

. : - are determined by the interplay among tunneling energy,
Fhf un(ljvgrsall_ ptrllasfe dlat%rar? sh dO\f[Vr? ;n Flg.b(h@d can beth Zeeman energy, and Coulomb interaction energy. Because of
|nherre d_lmp citly r:om e FTe)”4t a .C?n € Seen N Mehe increased degree of freedom, the system has more ways
phase diagrams shown in Fig). 41 existence Is a conse- optimize the total energy, and new states that are not pos-
guence of the intriguing finding that our antiferromagnetic

. . ~ sible atv=1 become possible at=2. The symmetric QH
state, in fact, persists all the way #5,=0 (as can be clearly . state is energetically favored at small layer separations be-

%ause it optimizes the tunneling energy. The spin-polarized
QH state is favored at large layer separations because it op-
Yimizes the Coulomb interaction energy. The canted antifer-
r%magnetic state is energetically favored at intermediate
layer separations. The reason for this is that the canted anti-
A,=2U_ with A,=0. (2.30 ferromagn_etic state tends to simultaneo_usly op_timize both

the tunneling energy and the Coulomb interaction energy,

Thus the critical line defining the phase boundary betweenvhich prevails at intermediate layer separations where the
the antiferromagnetic and the symmetric phasesNpt0  tunneling energy and the Coulomb interaction energy are
ends at a critical pointM) for A,=0. Itis evident that in the equally important. Both the canted antiferromagnetic state

state exists along thA,=0 line) where the spin-polarized
ferromagnetic phase no longer exists, and the antiferroma
netic phase is separated from the spin-singlet phase by
multicritical point(M) defined by the condition
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and the symmetric state exist only for systems with smalidentical, and that detailed additional predictions for the tem-
enough Zeeman energy, as the Zeeman energy clearly favoperature dependence of various observables can be made by
the spin-polarized state. a combination of the two methods. In particular, some ad-
Another important distinction between the=1 systems vantages offered by the continuum approach are the follow-
and thev=2 systems is that although at=1 the mode ing.
softening destroys the QH efféttand there is no reliable (i) It will become clear from the analysis below that there
description of the electronic state in the non-QH phase beare two basic ingredients necessary to obtain the phases of
cause beyond the critical layer separation the system besig. 10: two well-separated layers form fully polarized fer-
comes effectively a pair of isolated layers with compressibleomagnets with a gap towards charged excitati6res, an
half-filled Landau-level states, in contrast,at 2, the QH incompressib|e QH effect ga;’pand the primary Coup"ng
effect prevails at all phases because there is always a charggtween the layers is an antiferromagnetic exchahge a
gap in both layergeven asd—), and we have good un- superexchangeinteraction. As such, we expect a similar
derstanding of the ground-state and the low-energy excitgphase diagram to apply not only at filling=2, but also at
tions in each phase due to the existence of incompressibigny ,=2y,, wherev, is any filling fraction where a single-
filled Landau levels. Nevertheless, the mode softening anghyer has a charge gap, and is fully polarized. In particular,
the associated phase transitions'at2 are likely to be ob-  thjs criterion is satisfied at=2/m, m an odd integer, where
servable through inelastic light-scattering experi S each layer forms a polarized Laughlin fractional quantum
and thermodynamic measuremetits. Hall state. The Hartree-Fock analysis clearly cannot be ap-
Our work has studied'=2 double-layer systems by nu- plied for m>1, as the single-layer charge gap appears only
merically solving the self-consistent mean-field equations, after inclusion of the nontrivial correlations implicit in the
and obtained collective excitation dispersions using manyt gqughlin state.
body diagrammatic techniquesBoth approaches are, how- (i) The Hartree-Fock theory significantly overestimates
ever, based on the Hartree-Fock approximation. In singlethe energy of the spin-unpolarized SYM or SS state, as we
layer integer QH systems, calculatiohi the Hartree-Fock  will refer to it in this section. Spin-up and spin-down elec-
approximation agree well with experimerifsin double-  trons are simply placed into the same orbitals that are sym-
layer systems, the Hartree-Fock approximation is less acCinetric in the layer index. This is costly in Coulomb energy
rate because Coulomb interaction pOtentiaI is |ayer-indeX deas there are no correlations in the |ayer positions of the up-
pendent. Nevertheless, we expect that the Hartree-Focind down-spin electrons. It is clearly more advantageous to
approximation remains a reasonably good description for gorm spin-singlet states between electrons that are localized
double-layer system at=2, since the Hartree-Fock ground in opposite layers. The nonlinear model continuum field
state, which is nondegenerate and separated in energy frofReory to be discussed below does this in a natural way.
higher levels, is a good approximation for the real many-From now on in this section we refer to this symmetric or the
body ground state at=2 due to the existence of incom- spin-singlet phase as the SS to emphasize its correlated sin-
pressible filled Landau-level states with charge excitationylet nature.
gaps at any layer separations. We want to especially empha- (jii) A number of quantum-critical points have been un-
size the difference in the validity of the Hartree-Fock ap-covered in the Hartree-Fock analysis. There is ﬁ']zezo
proximation between'=1 andv=2. The approximation is quantum-critical point between the spin-singi86 or SYM
valid at v=1 only at small layer separations and fails com-and N phases, and a critical line between the SS and the C
pletely beyond a critical layer separation where the systemphases. Our continuum approach will obtain the critical
becomes effectively a pair of isolated layers with compresstheory for these transitions, and we will find that they have
ible half-filled Landau-level states in each layer. A2,  dynamic critical exponent$ z=1 and z=2, respectively.
incompressible states with filled Landau levels exist at anyrhere is also a second critical line between the C and the
layer separations. In particular, there is still one filled Landayully spin-polarized FM phases: this transition has2 and
level in each layer ati—co. This fact, namely, the existence will be discussed only in passing, as the critical theory is

of an incompressible energy gap at all layer separations, emather similar to one of the models discussed in detail in Ref.
sures that the Hartree-Fock approximation, upon which oup4.

calculations are based, is a reasonable formalisnr=ap (iv) The continuum theory offered not only provides us
regardless of the value of the layer separation. the zero-temperature quantum phase diagram but also a
streamlined approach to the study of properties at nonzero

[ll. CONTINUUM FIELD THEORY AND QUANTUM temperature, especially in the vicinity of the quantum-critical
CRITICAL PHENOMENA points where effects of fluctuations cannot be neglected. The

price one pays is that in general the parameters defining the

The Hartree-Fock analysis used in the previous sectiongffective field theory are quantitatively unknown and can
has the advantage of working with a realistic microscopiconly be calculated from a microscopic theory such as the
Hamiltonian and of making definite quantitative predictionsHartree-Fock theory of the previous sections.
for experimental observables in realistic samples. In this sec- We motivate our formulation of the continuum theory by
tion, we will present an alternative analysis based upon &onsideration of the physics of two well-separated identical
continuum effective quantum field theory for the low-lying layers atv=2/m. More specifically, the layer separatico,
spin excitations of a double-layer quantum Hall system. Wds much larger than the magnetic lengtly. Then the two
will find that the global phase diagrams obtained in the twolayers (labeled 1,2 are approximately decoupled, and each
approaches are very similar, and are, in fact, topologicallyseparately has filling fraction;=v,=1/m. Their ground
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states will be the familiar Laughlin states foe>1, orafully  The value of the interlayer exchandeis not known pre-
filled lowest Landau level ah= 1, both of which are incom-  cisely; we expect that it is of ordei~M,A2,/U whereA ¢,
pressible states with large energy gap to all charged excitds the tunneling matrix elemefsee Eq.2.2), for examplé
tions. These states are also fully spin polarized; the spibetween the layers, and~e?/ e/, is the Coulomb repul-
polarization is induced not just by the Zeeman couplingsion energy. In addition to the imprecisely known the
to the external magnetic field, but also by the significantlypresent approach also requires knowledge of the nature of
larger intralayer ferromagnetic exchartf?®> The low-  the short distance cutoff at lengths of ordéybeyond which
lying excitations in each layer are spin waves that have g@resent continuum approach cannot be applied. We will
small excitation gap given precisely by the Zeeman energghow later that our ignorance of these quantities can be re-
A,=gugB. For smallg, a complete descriptidf® of the  duced entirely to uncertainties in the value of a certain renor-
low-energy excitations of each layer can be given in terms ofnalized energy scale. This energy scale can be either mea-
an action for unit vector fields; , (nf,=1) representing sured directly in an experiment, or computed by any
the orientation of the ferromagnetic orders. Spin waves argnicroscopic theory such as the Hartree-Fock apprdaph
small fluctuations ofn,, about an ordered state, while Fr:i(;psf;ﬂgelea:;]:é)yggzglbheo(?/vlgvgreczji (I)If?h_e”pcr:é (ﬁg?g:];rg;nthe
; H 25,28 - ' '
charged qL.JaS|par.t|cIes are'S.kyrnﬂGFr textures Ofnl'?' present effective field-theoretical approach will be quantita-
The effective action describing the two layer$4>**(in & " precise
units withr =kg=1) Some potentially important terms have been omitted from
T Sy and our analytic computations: the Hopf term, which en-
SOZJ dsz dr(Le[ny]+ Le[N5]) dows the Skyrmions with fractional statistics, and the long-
0 range Coulomb interaction between the Skyrmions. We be-
lieve this is permissible because of the charge gap. Fuither,
- . pg . as the layers are antiferromagnetically correlated, Skyrmions
Le[n]=iMoA(n)- —=+ 7(Vxn)2_MOAznz- (3D in one layer will be correlated with anti-Skyrmions in the
other, and this neutralizes the leading contribution of both

>

Here terms. This latter argument should continue to hold even if
the charge gap were to vanish at a quantum critical ftet
1 charge gap remains nonzero at the quantum critical points in
0= > (3.2 both of our present calculationdNote also that no new term
4mm/g is necessary to induce charge transfer between the layers: a

hedgehog/antihedgehog pair in the two layers corresponds to
an event transferring Skyrmion number between them. Such
space-time singularities are absent in the strict continuum
limit but appear when a short-distance regularization is in-

troduced.

For completeness, we note that the punélﬁeld formu-
on becomes incomplete for>1 and largeg, as the spin

is the magnetization density per layer, withthe magnetic
length. The spin stiffness of each well-separated layer is re
resented bypY; for m=1, we have the exact restfitp?
=e?/(16\2me/ ), while for m>1 numerical estimates of
pg are given in Ref. 25. The term involviné accounts for
the Berry phase accumulated under time evolution of thefati

spins; hereA is any functional ofn that satisfies zero Laughlin quasiparticles can become the lowest-energy
charged excitations. These should, in principle, be accounted
. dA(N) - 3.3 for by a separate complex scalar field. However, these can

1k an; v ' also be neglected for the same reasons presented above for

. B . o nonzero spin charged excitations.
This Berry phase term also has a “dual” interpretation in the  \y/e now manipulate the effective action into a form more

picture in which Lg is viewed as an action for giaple for our subsequent analysis. We solve the constraints

i 26,29 ; T
Skyrmions><” it represents the coupling of the Skyrmion nizzl by representing

current to a “magnetic field” of strength #M,.

Now imagine reducing the value af to couple the two - i o 12
layers. As there is a charge gap in each layer, we can neglect n=(-1'(1-L9)"n+L, 3.9
all charge transfer processes, and focus solely on spin ex- - - L.
change. Because of the strong repulsive interactions withi¥/neren andL are vectors satisfying
each layer, we expect by an extension of the familiar argu- R ..
ments made in the context of the Hubbard model that there n’=1, L-n=0. (3.6
will be an antiferromagneticsuperexchange coupling be- _ L .
tween the layers. This can also be inferred easily by consid\ote that_th|s representation is so far exact. l_\lext, we msgrt
ering the leading effect of interlayer tunneling and PauliEQ- (3:9 into S;. Because the layers are antiferromagneti-
principle, which immediately provides a superexchange coucally correlated we expect thatwill not be too large, and it
pling between the layers. The complete double-layer actioff therefore permissible to expand the resulting action to qua-
is therefore dratic order inL. This is clearly an approximation: in Ap-
pendix A we examine a model solvable Hamiltonian by the
same method in order to assess the damage done by neglect-

T
s:fdzxfdcﬁ+cﬁ+35.ﬁ.3.4 :
! 0 m(Lelna] Flna] 1°Mo) (3.4 ing terms higher order in.—we find that this procedure
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obtains the low-energy spectrum correctly but introduces 6-

some spurious states at higher energies. To quadratic order in
L, S, takes the form

UT
Slzfdzxf d7
0

+pd(V,n)2+ ZJI:Z}, (3.7

QF,

2iML-

T
n><5+|AZz 4

wherez is a unit vector in the direction of the magnetic field.
Now we integrate oul. while maintaining the constraint

L-n=0 by adding an additional term to the energy N T
~C(L-n)? and then taking the limi€— . This yields the —
following effective action for the antiferromagnetic order pa- 0 l ‘ \ .
> 0.4 0.8 1.2 16 2
rametern
KZ/ f
T 1(on 2
8222 dzxf dr (Vxﬁ)2+ il —iAZEX n , I_:IG. 1_3. Mean-field phase diagram of thg qua_mtum rotor Hamil-
2t 0 c2\dr tonian in Eq. (3.10. The phases are described in Sec. lll A. Only

(3.9 the QR phase is expected to appear for the two-layer model under
consideration here, and is referred to elsewhere as the FM: the QF
phase is an artifact of the approximations made in deriving the rotor

12 model. The SS phase was also called the SYM phase in the Hartree

3.9 Fock computations.

where

1/2 Zng

M3

J
2pM}

are the rotor angular momenta. The operators on different
This is precisely the action of th@+1)-dimensional quan-  sjtes commute, while those on a single site obey the commu-
tum Q(3) nonlinear sigma model in a fieB coupling to the  tation relations(dropping the site indices
conserved global @) charge®?43233t is expected to apply
to double-layer quaﬁnltum/ Hall systems witk 2/m at length [ Lal=i€ap,ly, [LoNgl=ie€up,n,, [n,,Nng]=0.
scales larger than ~*~/,. (3.12

The remainder of this section consists of a detailed analy-

sis of the properties aof,. The techniques and some results We will describe the properties @{ by choosing the best
have already been presented earlier in Refs. 31, 24, and 38mong the mean-field Hamiltonians giverfby
we shall present here a unified treatment with a special em-
phasis on dynamical properties at honzero temperature. We
begin in Sec. Il A by developing a simple mean-field phase
diagram ofS,.

fs .5 5 3
Hue= 2 EL?—AZZ-Li—KZN-ni. (3.13
I

Here Z(=4) is the lattice co-ordination number, ahtis a
A. Mean-field theory variational parameter to be chosen so that the expectation

This section will summarize the results of the applicationvalue of#¢ in the ground state dFy is as low as possible;

of the mean-field theory of Ref. 24 to the actiSp Formu- Dy the usual argument, this is expected to happen vihen
lation of the mean-field theory requires some short distance. /y.

regularization, and we choose to place the continuum theory 'aq in Ref. 24. we numerically diagonalizédy - by trun-
on a square lattice in the spatial directions, with a Iatticecating its spect}um at some large angular momentum, and

spacinga~—/,; a continuum formulation is maintained then optimized the value dfi. The resulting phase diagram
along the time direction. The resulting action is equivalent ta plimize o 9p gra
the following lattice quantum rotor Hamiltonian: Is shown in Fig. 13. We discuss the properties of the various

phases in turn.

fa A LS
H= (EL 2_A,z- |_i> —K> n;- n;, (3.10 1. Spin singlet (SS or SYM)
i (.5 -
_ Each rotor is in its nondegenerate=0 state N=0, and
where the coupling constants tt are there is a gap to all excitations. The ground state is a spin
¢ singlet, and is therefore unaffected by variations in the value
c c
f=—, K=-. 3.11) Of Az
a? t
2. Quantized ferromagnets (QH

The Hamiltonian is expressed in terms of operatnrs Again, N=0, each rotor now has azimuthal angular mo-

which represent the orientation of the rotors, dndwvhich ~ mentumm=/" and this value remains pinned as various pa-
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rameters are varied. Each rotor is also in precisely the state

uT| 1
S(;S:f ddeO {E{(afd’x_iAz¢y)2+(af¢y+iAz¢x)2

with |:2=/’(/+ 1), although this latter feature is a special
property of mean-field theory that will not survive fluctua-
tions. Of these phases, only the=1 case is actually al- +(0,¢7)%+CA(Vy)2+r1 2} + @((zz)z . (3.14
lowed for the double-layer actia, and it is clearly the FM 4!
phase of Fig. 10. The other phases are an artifact of the

approximations made in mapping; to S,: this should be Here $= (b, ¢y, $,)~n is the soft-spin field that measures

clear from the discussion in Appendix A where we show thatthe staggered moment (.Jf the tW.O Iayers. Wwe have taken the
magnetic field to point in the direction. We will also be

expanding in powers df introduce spurious higher angular jnterested in the uniform ferromagnetic moment density of
momenta states. the systemM, and this is given by

, dF
3. Canted (C) and Nel (N) states M=M¢(Nn;,+ Ny} =— ﬂTz‘
These states havé+#0 and varying continuously as the \ynere Fis the free-energy density associated with the action

parameters are varied; we hadg#0, Ny#0 andN,=0. S, we have introduced two new coupling constantand
From Eq.(3.9), this implies that the two layers have opposite y, in S,,; these are related to the couplingf S,, and its
spin polarizations in the-y plane. The two layers also have short cutoff~/,. We will not specify the precise values of
these parameters here, as they merely appear at intermediate
stages of our computation, and not in our final results.
Let us first discuss the mean-field propertiesSpf, ob-

(3.1

an identical ferromagnetic polarization, given 413/) which
is oriented along the direction. This ferromagnetic moment
varies continuously as parameters are varied, and VaniSh%ned simply by minimizing the action while ignoring all
whenA,—0. So for general ,# 0 this state is canted, while , ; ~ 9
for A,=0 it is a pure Nel antiferromagnet. The C phase has SPatial and time dependencef Forr—A;>0, the ground
a single linearly dispersing spin wave mode in g plane, ~ State hag¢)=0, and is therefore in the quantum paramag-
while the N phase has two spin wavés. netic SS phase. Far— A2<0, the ground state hdg))+0

In the remainder of this section, we will present a detailedand in thex-y plane. This is the C phase and the fields have
theory of the universal properties of the system in the vicinthe expectation values
ity of the multicritical point M. This is the same quantum M

that exists in the universal Hartree-Fock phase diagram of L [[6(AF-r)\ Y2 0ol M= 6A(AZ-T)
Fig. 10 where the N phas@long theA,=0 line), the C ¢= U ek N Ug ’
phase, and the SYMSS phase come together ay,¢ (3.19

=2U_. We point out in this context that the other distinct .

multicritical point of the Hartree-Fock theory where the Or any rotation of¢ in the x-y plane. Notice thaM van-
canted antiferromagnetic phase, the ferromagnetic phase, affdhes forA,=0, and therefore the line<0, A,=0is the N

the symmetric phase coexiéhe point on the abscissa de- phase. The _resulting mea}n_-fi_e_ld phase diagram is shown in
fined by d=0 and A,=A in Fig. 4 is not accessible F_|g._ 14._ No_t|ce that the vicinities of the points M are very
within the effective field theory due to the long-wavelength Similar in Figs. 13 and 14. The quantum critical point M is
restrictiond>1,. (We mention that in our notations, in atA,=0, r=0, and it is cIear_ f“’"? the Lorentz-l_nvarlant
the Hartree-Fock theory corresponds to jasin the field structure ofS, at_AZZO that this point has gyr]am|c EXpo-
theory due to our choice of unijs. nentz=1. Rotations of the order parametér in the x-y

Note that the C, N, and SS phases meet at M, and so welane have associated with them a stiffnpg&\,) given by
will also discuss the universal second-order transitions be-

2
tween them. We will not discuss the nature of the second- ps(A,) = M (3.17
order transitions between th@F, and C phases: very Uo
closely related transitions, in the same universality classyis js the same stiffness that was computed in Sec. Il C and
have been discussed in some detail in Ref. 24. Eq. (2.26) in the Hartree-Fock theory.

We now include the effects of fluctuations at one loop.
We will quote results for the dynamic longitudinal and trans-
verse susceptibilities of thé field which are measured in
light scattering. Recall that in terms of the spin polarizations
of the two layersn;,n, we have ¢~n;—n,. We define
(with T as the temperatulgs=1 in our units in this section

B. Zero-temperature critical properties

A first study of the properties in the vicinity of the point
M has appeared in Ref. 31 using a lafgeexpansion in a
nonlinear sigma model withl component fields. The issues
of interest here are more conveniently obtained using a re- T
cently developed expansithin spatial dimensionalityl in X”(iw):J' dde' dre " ¢,(x,7) $,(0,0))
powers of e=3—d. The latter approach is expressed in 0
terms of a soft-spin field theory, and we therefore begin with
a soft-spin version of the nonlinear model S,: and

(3.18
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A T=0 for r<0 and A,=0. 3.22

C\ All of our results forr<0 will be expressed in terms of
/' ps(0). Again p(0)~|r|”, and the actual value of(0)
should be measured experimentally or computed in Hartree-
Fock or microscopic numerical studies of the double-layer
M Hamiltonian.
3S Before closing this subsection, we draw attention to the
fact that there are two phase boundaries that terminate at the
point M: the SS to C transition and the N to C transition. In
v the vicinity of these transitions the response functions com-
puted near the critical point M should turn imteducedscal-
r ing functions®34 characteristic of the respective phase tran-

FIG. 14. Mean-field phase diagram of the soft-spin acsigrin sitions. In the following subsections, we discuss simplified
Eq. (3.14. The SS phase was also called the SYM phase in th&/€rsions of the actio, that can be used to compute these
Hartree-Fock computations. Notice that it captures the vicinity offeduced scaling functions.
the point M in the rotor mean-field phase diagram in Fig. 13. The
multicritical point M is described by a relativistic continuum field 1. SS-C transition|A—A] <A, r>0
theory with dynamic exponemt=1. The SS-C boundary is a line of
second-order transitions with dynamic exponent2 and is de- . . . .
scribed by actionSy in Eq. (3.24). The position of this boundary only on t_he‘ﬁxﬂd’y that is undergoing Bose Condens_at'on'
is given exactly byA=A,, whereA~r" is the A,=0 spin gap of F_urther,_ it can also be shown that_the second-orde_r tlme de-
the SS phasex(is the correlation length exponent offMhe action ~ fivative in S, can be dropped. Making these approximations,
Sy holds for [A—A,|<A. The N state hag=0 spin stiffness and defining
ps(0)~(—r)”, and forA,<p,(0), theactionS, in Eqg. (3.29 de-
scribes lowT fluctuations. - b+ by

Nl

¥

In this region we can negleep, fluctuations and focus

(3.23
1 1T X
xio)=3 [ a | Tare (1,007 +i 00,71

we see thatS, reduces to
X[ ¢x(0,0) =i y(0,0)]). (3.19
2 T Cz 2 2
We can use the methods of Ref. 33 to compute the one-loops'«v:f d Xfo drf W* ——+ o[V W[*+ (A=A V|
values of these susceptibilities in the SS phébkes is, the z

phase with no broken symmelrin the vicinity of the point u
M; we obtain +— |4 (3.29
2472
x|(@)= FCEpT X1 (@)= ICETPENYE (3.20  This action has been previously studied in some dé&tdfit
e ~(0=4,) has az=2 quantum critical point aA=A,, and we will use
o _ the existing results later. Thus the SS-C transition is a line of
Here the quantiti is an observable defined by z=2 critical points terminating ir=1 critical end point M.
A=spin gap of the SS phase at=0 2. N-C transition, B<p40), r<0
for r>0 and A,=0. (3.21) Both the N and C phases are ordered, and it is sufficient to

simply focus on static, thermal, orientational fluctuations of

The value ofA should either be measured experimentally, orthe order parameter. We therefore quench the magnitude
computed by a detailed microscopic calculation like thefluctuations of¢p and return to the fixed length vector The
Hartree-Fock theory discussed earlier in the paper. We wilkffective action for statia fluctuations can be deduced from
express all our results far>0 completely in terms of uni- S, to be
versal functions of parametess, T andB (so that the mi-
croscopic couplings andug do not appear anywhere in our 1
results) Clearly, in the mean-field theory= Jr; at one-loop S”:ﬁf dzx[pS(O)(Vxﬁ)er yng]_ (3.25
order, we havel ~r”, where the exponent=1/2+5¢/44.
We need a separate experimental observable to measure )
the deviation of the system from the poikt at A,=0 for ~ As noted earlierps(0) is the spin stiffness of the Nestate,
r<0. A convenient choice, also used in Refs. 32,33 is thdully renormalized by quantum fluctuations. The anisotropy
spin stiffness. We therefore define y=6A2(A2—r)/u, to lowest order inu,, and we expect
~A§ more generally. The actiofi, has been studied in Ref.
ps(0)=renormalized spin stiffness of the N phase at 37, and we will use their results in the following subsection.
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C. Nonzero temperature response functions A, has to be included in the propagators for thg, fields,

A number of new phenomena occur at nonzero temperaa”d this modifies the values of the Matsubara frequency
tures, and these are addressed in a relatively straightforwafimmations in the loop diagrams by replacing an energy
manner using the present continuum effective field theorPY €+ A4;- The reader may also consult Appendix D of Ref.

approach. 38 where a simpler derivation of just the one-loop results of
(i) There is a brokex-y symmetry in the C phase, and Ref- 33 is given. o
therefore a nonzero temperatuf®.) at which this order dis- The nonzerdl” generalization of Eq(3.20) takes the form

appears in a Kosterlitz-Thouless transition. An estingte
was given earlie(Secs. Il C and Fig. J1in the Hartree-Fock ()=
theory that is valid when the system is well away from one X — o —iT(0)]
of the T=0 phase boundaries of the C phase in Figs. 13 and
14. We expect . to vanish continuously as the system in the 5
C phase approaches tfie=0 boundaries to the N or the SS ¥, ()=

) . oy 1 2 2 . .
phase: there is nonzero temperature phase transition above —(0—A)+mi—il' (w)
the N or the SS ground state. We discuss below the behavior o
of T, near the C-N and C-S$=0 phase boundaries. Near Herem), andl’; , depend implicitly upon the energy scales
the point M, T, is determined completely and universally by T+ Az, andA(pg(0)) for r>0 (r<0) in a manner we Sh"’},”
the two energy scales that measure the deviation of th@€scribe below to lowest order in Clearly, the “masses

ground state from M. So far>0 we expect my,. represent the peak absorption frequency, whijle are
the absorptive pieces that lead td adependent broadening
A of the line.
Tc:Az‘P>(A_Z)’ (3.26 First we describe the behavior of, .

For r>0, the masses are universal functiaks T, and
where W is a fully universal function; because the SS-C A, . They can be written as

phase boundary occurs preciselyAat A,, we have
27T
W (u=1)=0. (3.27) mf=Rj—e—7 3VRI+2VR)),

Similarly, for r<0 we have

2 27T
Tc:AZ‘P<<pSA(O))' (3.28 MR (REAR @29
. . Z, where
whereW _ is also a universal function. Clearly the two func-
tions should agree at=0, and therefore we havé& . (0) 5¢ T2 A2 AZ A
=W _(0); actually it is possible to say much more—iay, RH:AZ 1+ —In—|+—3G| —,0| +2G| —, ==2| |,
>0 we expect thal . is a smooth and analytic as a function 117A] 11 T2 T2 T
of r throughr =0, and so using the dependencieshofind
ps(0) onr, it is possible to expres¥ .. . as analytic con- 5¢ T] €T A2 A2 A
tinuations of each other. We will give explicit expressions R, =A2l1+ 1—1an T G| .0/ +4G —2?2
for V.. _ to leading order in the expansion &+3—d be- T T

low. (3.30

(i) The one-loopT=0 results for the SS phas®.20  The functionG(y,h) represents the value of the one-loop
predict infinitely sharp absorption peaksjfatw=A, and  momentum integral; it was computed in Refs. 33,38 for the

in x, atw=A*A,. As the SS phase has a spin gap, Wezero-magnetic-field cage= 0. The generalization to nonzero
expect these infinitely sharp peaks to survive at higher orderg g

in the perturbation theory at=0. For T>0 two qualita-

tively new features will arise. First, thermal damping will "
lead to a broadening of the peaks. Second, the peak positionsG(y,h)= _zf dq
will themselves become temperature dependent. We will de- 0
scribe these processes below in the vicinity of the point M,

cosh\/g?+y)—coshh
In| 29> —q

q*+y—h?

where both the broadening and tfiledependent shifts are _ y (3.31)
quite significant. Deep inside the SS phase, well away from 2o+ 1/e| '

the M point, theseT dependencies are exponentially acti-

vated, and therefore much weaker. This integral has to be evaluated numerically in general, but

We will restrict our results for the most part to the para-we have the limiting valu&(0,0)=27?/3. Stability of the
magnetic phase, although results in the magnetically ordergdaramagnetic state requires thmat=A,; this requirement
phases can be obtained by very similar methods. This meangads to an expression fdi;, which is determined by solv-
that we are working aT>0 above the SS phase, andTat ingm, =A,. Analysis of this equation in powers efshows
>T, above the C phase, all within the vicinity of the point that Tc~1/\Je. This implies thatA/T,A,/T~ e, and so to
M. The results are obtained using methods discussed in sonkeading order we can just use the value ®§0,0) in Eq.
detail in Ref. 33: the only change is that the Zeeman splitting3.30 to obtain
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33(A2—A2) Indeed, it is not difficult to show that the expression in Eg.
T§=Z—2 (3.32  (3.3) is actually analytic for all real-<y<o provided
107%e h>0. We can use the same stability condition used rfor

for A,>A. For A,<A the system is in the SS phase and =0 to now obtain the leading orderexpansion result for
z . z ’ )

thereforeT.=0. Notice that Eq(3.32 agrees with the scal- Te:

ing form (3.26. This result is expected to be the leading-

order result in powers o€, except in the regiodA,—A| T2

<A where thee expansion fails and the reduced actiSp ¢

of Sec. Il B 1 has to be used. Using results of Ref. 35 forthe , . . . . .
latter action we have the exact asSmptotic form which is of the scaling form(3.28. The € expansion fails

when A,<p(0) where the system approaches the C-N

33AZ+p3l2)

1072e

, (3.36

(A,—A)IN[A,/(A,—A)] phase boundary; here, we use the effective acfipof Sec.
= 4TINA,I(A,—A)] for In[A,/(A,—A)]>1. 111 B 2, and results for it in Ref. 37 to obtain
z V4
333 7o 2P0 OAS L. (337
Closely related results can be obtained fet0. In this ¢ In[ps(0)/A,] s e

case, the masses are universal functionp60), A,, and
T. However, considerable ambiguity arises in thexpan-
sion for the result because,(0) does not simply have the
dimensions of energy for all. The appropriate scaling
variable® is [p4(0)]¥@" Y, and it is necessary to keep the
full 1/(d—1) power, rather than expand it in powerseoin

Finally, we obtain the damping coefficients, ;. This
requires evaluation of two-loop diagrams and the results are
extremely lengthy. We will be satisfied here by simply quot-
ing the results valid forA,/T<1, [A or pg(0)]/T<1
which were obtained in Ref. 33:

order to make the engineering dimensions of the results 107 €2 w2
come out correct. This then leads to ambiguities as to pre- FL(“’):F\I(“’):H ?+172T2+ 6T2Liy(e” 2Ty,
cisely which numerical factors should be raised to the power (3.39
1/(d—1) and which to 1/2 €/4. A convenient choice that '
leads to the most compact expressions is to define where Lb(X) is the dilogarithm function

— 2¢  pg \Md-D . _ fxdy

| SM) | (3.34 Lz == | Sina—y). (3.39

where we have written the general expression for the
n-component order parameter: in the present ces8. The
factor Sq.; is a phase-space factor and is given 8y The effective field theory for the double-layer QH system
=2[T'(d/2)(4m)%?] (this factor was inadvertently omitted at a filling factor ofy=2/m (with m an odd integerthat we

in Ref. 33. Notice thatp, has the dimensions of energy in develop above is entirely built on the effective actiSg
d=2 (which is of interest hebe The value ofp,, however, defineq by Eq;_(3.8). In particular, we mak_e use o_f the fact
must be regarded as subject to large systematic correction@,a‘.t this effective action for our problem is |dent|ga| to the
in view of the ambiguities noted above. Using the method£ction f£4t2§’3g23‘; %gé9|m¢n3|onal @) quantum nonlineasr
and results of Ref. 33 far<0, and expressing them in terms modef* 24523353937 %ith the additional feature of an ex-

—~ i . ternal magnetic field coupled to the conserved globéd)O
g:gsrévgg(f;lgg g;/at the results3.29 still hold, but Eqs(3.30 charge. Once this precise mapping of our effective action to

that of the (2+1)-dimensional @) quantum nonlineawr

D. Connection to the Hartree-Fock theory

2 c 5¢ T T2 ~ 5 model becomes explicit, the rest of the re_sults derivgd in
R=— Ps 1— —+ —n—|+—3¢| - Ps 0 Secs. lll A-1lI C follow naturally. The question now arises
2 22 11 | 11 272 concering the correspondence between our effective field
-~ theory results in this section and the microscopic Hartree-
ps A, Fock resultgfor v=2) described in Secs. 1l A-Il C.
+2G| - o2 T/ It is to be noted that both the microscopic Hartree-Fock
theory(Secs. Il A—Il Q and the effective nonlinear model
~5 2 ~5 field theory predict the same number of zero-temperature
R =— Ps 1— i+ Elnl + i Gl - Ps 0 quantum phases, namely, the fully spin-polarized ferromag-
2 22 11 5| 11 272’ netic, the canted antiferromagnetic, théelNeand the sym-
- metric spin-singlet phase, for the double-layer QH system at
pPs 4, v=2. (The effective field theory, in addition, enables us to
+4G( o2’ T/ | (3.39 predict that the double-layer system at all fillings-2v,,

where v, =1/m with m odd, has these four phases with the
Notice thatG(y,h) is now needed for negative valuesyaf  spin-singlet phase in the general case being a nontrivial cor-
Despite appearances, the expressi@B1 actually also related SS phase rather than just the pseudospin-symmetric
holds for y<O—one simply uses the identity cost)( spin-antisymmetric SYM phase of the=2 Hartree-Fock
=cosk) when the square root becomes purely imaginarytheory) It should also be noted that both the Hartree-Fock
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ogy involving four distinct quantum phases as shown in Fig.
15 of the two phase diagrams with the effective coupling
parametert of the field theory[the abscissa in Fig. 15)]
being proportional to the paramet&g,J/U _ [the abscissa in
Fig. 15a)] of the Hartree-Fock theorgwhich is expected,
becauset~A,,JU with J being the interlayer superex-
change couplingand the ordinate{ A,) being the same in
both Figs. 16a) and 1%b), the multicritical point M on the
zero-magnetic-field line shows up in both phase diagrams. At
0.0 ‘ ‘ . the (zero-temperatujequantum multicritical point M, the
00 05 10 15 20 25 canted,. the spin—s_in_gllet, an_d the éllgphase coexistThe
U /B oth_er d_|st|nct multicritical point o_f the Hart_ree-Fock theory,
which is apparent on the abscissa of Fig. 10 whatg,
(b) =A, andd=0, where the ferromagnetic, the canted and the
FPF symmetric phase coexist is not accessible within the effec-
/ tive field theory because of its long-wavelength approxima-
tion, and cannot be seen in Fig.(&bas it is pushed to the
point U_/A,,&=0,A,/A;,&= 1 where the two Hartree-Fock
phase boundaries of Fig.  come togethet.It is, there-
fore, obvious that, except for very small valuesdofwhere
the effective field theory which applies only whei>1,),
the quantum phase diagrams predicted by the two theories
are topologically identical.
Finally, we can actually estimate the=2 double-layer
Kosterlitz-Thouless transition temperatuiig, of Sec. 11l C,
in the effective field theory by using the microscopic param-
FIG. 15. (a) The zero-temperature phase diagram of a doubleeters obtained within the Hartree-Fock theory. This
layer quantum Hall system at=2 within the Hartree-Fock ap- calculation? where one incorporates the calculated Hartree-
proximation. This is the same diagram as Fig. 10. It is redrawn her¢-ock parameters fok ande=1 in Eg.(3.36), leadé® to an
with the abscissa inverted. The mark represents the experimental estimated effective field theofl,~3 K which is somewhat
sample of Ref. 8. The N phase At=0 andAg,s<<2U_ is repre-  |arger than the critical temperatufe [Eq. (2.27] estimated
sented by the thick linetb) Zero-temperature phase diagram of a yithin the long-wavelength mean field Hartree-Fock treat-
double-layer quantum Hall system at=2v, derived from the ef-  ;ant of Sec. 11 C. In general, we believe teeexpansion
fective Lagrangiars, [Eq. (3.8)]. The inset shows the topologically o545 to substantial overestimates of transition temperatures

ggnt:al Hairrt]nta}:a -Frzcl:npﬁhasre dla:ggram %Tg'thloi::\;lhi\ip'zag’sin ecause it does not properly account for the low-dimensional
pnases € main figure correspond fo the FM, AF, a vortex effects responsible for the transition.

phases in the inset, respectively.

theory and the effective field theory predict the existence of a IV. COMPARISON WITH EXPERIMENTS

finite-temperature Kosterlitz-Thouless phase transition in the |n this section, we discuss some recent double-layer
canted antiferromagnetic phase with the planar antiferromag= 2 inelastic light scattering experiments whose findings are
netic ordering disappearing above the Kosterlitz-Thoulesgonsistent with our theoretical results. A detailed quantitative
transition temperature. The underlying physics in both of thecomparison between our theory and the experiment requires
theories is that the system is essentially XY antiferro-  an accurate knowledge of the temperature dependence of the
magnet in the layefi.e., in the plane perpendicular to the related experimentally relevant response functions as the sys-
magnetic-field directionin the new canted phase. tem undergoes a finite-temperature phase transition. at

On a more quantitative level it is easy to show that bothSuch a quantitative description is at present lacking, and
theories predict the same topology of the zero temperaturgherefore we restrict ourselves mostly to a qualitative discus-
guantum phase diagram. This is demonstrated in Fig. 15sjon.
where we have redrawn the Hartree-Fock phase diagram In a recent inelastic light-scattering experim@ite long-
[Fig. 15@)] of Fig. 10 inverting abscissdrom Ag,JU_ to  wavelengthw, mode of the intersubband SDW triplétee
U_/Ag9 and have somewhat reconfigured the effectiveFig. 16 for schematic details of the various possible SDW
field theory phase diagraffrig. 15b)] from Fig. 13 by keep- modes in the systemwhich corresponds to transitigoo)
ing only theQF; phase and by modifying the relative size of —|1¢), is measured fon=2 double-layer quantum Hall
the various phasesvhich are arbitrary within the effective systems. The double-layer samples used in the experiment
field theory. Using the definitions=(J/pM2)¥2 from Eq.  are by design in the canted antiferromagnetic phase accord-
(3.9 to define the abscissa, the effective field theory phaséng to our zero-temperature Hartree-Fock phase diagram,
diagram int— A, spaceg Fig. 15b)] can be seen to be iden- i.e., the ground state of the experimental system is the canted
tical topologically to the quantitatively calculated Hartree- antiferromagnetic quantum Hall statsee Figs. 4, 10, and
Fock phase diagranffor »=2) in the A;,JdU_—A,/A,s 15 for the location of the experimental sample in our theo-
space(Fig. 10. Note that, in addition to the identical topol- retical diagram The experimefitshows two important and
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1 * The spectral weight of the; mode should be nonzero but
small in the antiferromagnetic phase. This is because the
1\ 1 * canted antiferromagnetic phase lies between the symmetric
phase and the ferromagnetic phase in the phase diagram and
W, | O_ |04 its spin-flip dynamics should thus be intermediate. Moreover,
the canted antiferromagnetic phase is not an eigenstate for
0 * either spin or pseudospin, so the small spectral weight of the
wg mode is shared by many allowed transitions, spreading
0 ? the mode intensity over these transitions and thus making the
spectral weight of each transition even smaller. It is thus
plausible to regard the observed disappearance ofuihe
(a) mode at the threshold temperature as the transition to the

canted antiferromagnetic phase at lower temperatuvkere
1 * the spectral intensity for the, mode becomes very small
1\ Above the transition temperature the system is essentially a
0 * disordered planaX-Y magnet, and thus behaves like a para-
magnet whose SDW properties should be very similar to the
(VIR ) I paramagnetic spin-singlet symmetric phase.
1 ? Next, we notice that, in the symmetric phase, the excita-
tion energies of the intersubband SDW triplet have the fol-
lowing simple relationship

w+=woTA,. 4.1
(b)
This expression can be derived explicitly, using either the
q)l diagrammatic time-dependent Hartree-Fock approximation
+ or the single-mode approximation. It is a direct consequence
q)2+ of the fact that Coulomb interaction is spin independent. The
above relationship bears a clear physical meanisyg:- A,
means thatv_—0, i.e., mode softeningsee Fig. 16 Thus,
the experimental observation thag approaches the Zeeman
¢2- energy as the threshold temperature is reached from above
suggests that there is mode softenirg 0) at the phase
boundary, as predicted by the computations of the
T-dependent peak positions in Sec. Il C.
(C) Finally, we note that the critical temperatuitbe thresh-
old temperaturgin the experimefitis T,~0.52 K, which is
FIG. 16. The intersubband spin excitation transitions in areasonably close to our calculated Kosterlitz-Thouless criti-
double-layer quantum Hall system at=2 in the (a) symmetric  cal temperaturd .~1.8 K in the Hartree-Fock theof\Eq.
phase(b) ferromagnetic phase, arid) the canted antiferromagnetic (2.27] using the actual experimental sample parameters.
phases. The spin conserved transitia (node has large spectral  This discrepancy between the experiment and the Hartree-
weight in the symmetric phase and is prohibited in the ferromag+ock theory is small when compared with the energy scale of
netic phase. Coulomb interaction, which is about 70 K in this particular
sample. In addition, quantum fluctuations neglected in the
striking features: One is that there is a threshold temperaturdartree-Fock theory should lower the calculated critical tem-
(~0.5 K) below which thew, mode becomes unobservable perature and reduce this discrepancy.
as it seems to lose all spectral weight, the other feature is that From the above discussions, we conclude that our theo-
the excitation energw, approaches the Zeeman enetyy  retical predictions are consistent with the recent light-
when the threshold temperature is approached from thscattering experimental results. The most dramatic aspect of
above, i.e.wg~A,. We argue below that these experimentalthe experimental observations that give us confidence in be-
observations are completely consistent with our predictedieving that the experiment is really seeing the canted anti-
Kosterlitz-Thouless transition in the canted antiferromag-ferromagnetic phase afe the unambiguous observation of
netic phase being the observed experimental transitidig.at a mode softenindi.e., wg— A, implying o _—0); (ii) the
First, we notice that the, mode, which involves a no- observed temperature dependence indicating a finite-
spin-flip transition with §S,=0, has a maximum spectral temperature phase transitia(iij ) the location of the experi-
weight in the symmetric phase, where there are as mangental sample in our calculated phase diagram;(@ndhe
spin-up (down) empty states as there are spin-(gpwn) wo— A, collapse being observed preciselyiat 2.
electrons. The spectral weight of thg mode is identically While the recent inelastic light scattering experinfent
zero in the ferromagnetic phase, where all spin-up states aggovides, in our opinion, rather compelling evidence in favor
occupied and all empty states are spin down, and hence thaf there being a finite-temperatuii€osterlitz-Thouleskstran-
wo mode(which does not involve any spin fligs forbidden.  sition in the »=2 double-layer system with the low-

cacassasaa ().
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temperature phase being the canted antiferromagnetic phasendition. This is, of course, exactly what our phase dia-
(by virtue of the vanishing of thev_ mode at the phase gram[see Fig. 4] predicts—nothing interesting happens for
boundary, as discussed in Sec. Il B of this arficke com-  finite d at A,=Ag,sor for that matter even foA ;,&=3A, at
plete verification of our theory awaits further more conclu-d=2I, in Fig. 4@) for example—the system remains in the
sive and direct experimental measurements, especially hefitlly spin-polarized ferromagnetic phase and the naive ex-
capacity measurements, which should stvwg. 12 power-  pectation of a level crossing transition to the symmetric
law temperature dependence in the canted phase due to tABase simply does not occur. In this sense, our phase dia-
existence of the Goldstone mode and exponential tempergram for thev=2 double-layer system may have already
ture dependence in the two normal phases due to the exieen verified in 1996% Further experiments along this line
tence of gaps in the excitation spectra, would be particularlyat v=2v; double-layer systems would be useful.
well suited in verifying our phase diagram. The direct obser-
vation of a gapless Goldstone mofgg. 9) in the inelastic
light-scattering measurement in tlew-temperaturgcanted
phase would also be rather definitive in establishing the ex- In summary, we have studied both zero- and finite-
istence of the canted phase. In this context we mention thaémperature properties of the=2 double-layer QH systems
the SDW softening indicating a phase transition to the cantedjithin the framework of Hartree-Fock approximation. We
phase is a long-wavelength instability, and therefore opticaghow that, in addition to the fully polarized state adiabati-
spectroscoplt may also be useful in studying our proposedcally connected to the well-separated layer state, there are
v=2 double-layer phase diagram. Both of these proposeelvo other double-layer quantum Hall phases: the first is a
direct experiments are fraught with consideraleleperimen-  spin singlet, and the second is characterized by a finite inter-
tal) difficulties, however. Electronic heat capacity measuredayer inplane canted antiferromagnetic spin ordering. The
ments in quantum well structures are notoriously difficult bytransition between the different quantum Hall phases is con-
virtue of the extremely small magnitude of ti2D) elec- tinuous, and is signaled by the softening of collective inter-
tronic heat capacity compared with the backgrodiadtice)  subband spin-density excitations. Because of the broken
contribution. As for the direct experimental observation ofU(1) symmetry in the canted antiferromagnetic phase, the
the Goldstone mode, the experimental inelastic light-system has a finite-temperature Kosterlitz-Thouless transi-
scattering spectroscopy is severely restricted by the selectiafon (T.~1 K). Below the critical temperature, the canted
rules inherent in the resonant light-scattering spectroscopyntiferromagnetic phase supports a linear Goldstone mode.
and at this stage it is unclear whether the problems associat@thove, the system is essentially a paramagnet similar to the
with the selection rules would allow to directly observe thesymmetric phase. Our findings are consistent with recent
Goldstone mode. light-scattering spectroscopic experimental results. We
One striking difference between the physics 2  present detailed results of our study, including the stability
double-layer system and the correspondirrgl situation is  energetics of various phases, the antiferromagnetic order pa-
the existence of a charge gap in the 2 case for all values rameter in the canted phase, the phase diagram, the collective
of d andAg,s the system is always incompressiljile all its  excitation dispersions, the specific heat, and the Kosterlitz-
quantum phases including the canted phaBbus the quan- Thouless critical temperature, and suggest various experi-
tized Hall effect exists throughout our phase diagram, in conments which could, in principle, probe the rich double-layer
trast to the case in the corresponding 1 situation>*1442  phase diagram predicted by our theory.
The existence/nonexistence of the QH effect, which has been In addition to the microscopie=2 Hartree-Fock theory,
useful in mapping out the= 1 double-layer phase diagrdfn  we have developed a rather general long-wavelength effec-
would not work in our problem in a direct sense. We do,tive field theory for thev=2v,, wherev;=1/m with m an
however, speculate that the activation enefigs., the effec- odd integer, double-layer system. The essential inputs for
tive value of the incompressible charge pdpr the v  this effective field theory are the existence of charge gaps in
=2v, double-layer QH effect may very well show observ- the two layers and an effective interlayer antiferromagnetic
able structure at our calculated phase boundaries evesuperexchangenteraction. By mapping the effective action
though all the phase¢ferromagnetic, canted, symmelric for this problem to that of an @) quantum nonlineaw
would exhibitv=2v, QH effect. We suggest systematic ex- model, we have been able to show that the qualitative phase
perimental investigations of=2v, double-layer ¢;=1/m  diagram calculated within the Hartree-Fock theory #fer 2
with m=1,3,5...) QH activation energies by tuning is actually generically validtopologically for any v=2v,
Asas A, andd to look for signatures of our proposed zero- (with »;=1,1/3,1/5. .. ) double-layer system with the sym-
and finite-temperature phase transitions. metric phase of the Hartree-Fock calculation being replaced
In this context we point out that there is already someby a highly nontrivial correlated spin-singlet phaséwhich
experimental evidené&?! that the naiveA,=A, level the v=2 symmetric phase is a rather trivial examjpl€hus,
crossing inv=2 double-layer QH systems does not exast  there could be rather nontrivial cantédnd perhaps even
our theory proposes and clearly demonstrates in our calciNeel, if one can apply sufficient external pressure to produce
lated phase diagramsThe experimental observatiftt*has  vanishing gyromagnetic raticantiferromagnets at, for ex-
been that the naive=2 level crossing phenomendat A,  ample,v=2/3 in a double-layer system, where each single
=A,,) between ferromagnetic and symmetric phases, whiclfully spin-polarized Laughlin state spontaneously develops
would exist in the absence of our intervening canted phase, ifi-plane antiferromagnetic spin ordering. Observation of the
it happens at all in double-layer systems, must happen atanted or the spin-singlet phase iwa 2/3 double-layer QH
magnetic fieldsmuch lowerthan that satisfyingA,=Ag,s  system would significantly enrich the many-body strong-

V. SUMMARY
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correlation physics associated with QH systems. whereE, is an overall constant we shall not be interested in.
We conclude by pointing out that, although we have con- Let us attempt to obtain this result using the coherent state

fined ourselves in this article to the=2/m case, withm an  path integral. First, we transcril¥¢ into the effective action

odd integer, it is obvious that the physics we are considering

here applies, in principle, to all double-layer QH systems S:f dr

with v=2v,; where a single layer at filling; forms a fully

spin-polarizedincompressible QH state with a charge gap. (A3)

Thus, the same physics asiat 2 should apply, in principle, wheren? ,=1. Notice that this is the analog of the acti6p
atv=6 (butnotat v=4,8, ... where the charge gap is the in Eq.(3.4) with only the spatial gradient spin stiffness terms
cyclotron gap not\,,A¢,) in a double-layer system. In prin- now being absent. Now insert the parametrizatidb) into

E‘?"E Lho‘g’evelr: olur apgoxirgations which neglelct (@f- a{Eq. (A3), and expand to quadratic orderlin The neglect of
ital) Landau level couplings become progressively worse . Lo - _
higher Landau levels. In this respect, it is very gratifying that erms higher order irL is the only approximation being

here. This gi th I f
the experimental light-scattering measurem@fitsl qualita- made here. This gives us the analog of &y7),

. .. dny . Jn, I
ISA(nl)-E'FISA(HZ)-?"FJSZFIJ_-HZ ,

tively similar (but quantitatively much suppressgdathavior _ (. on R R
at v=6 as atv=2, but ther=4 situation is qualitatively S%J dr| 2iSL: nxzﬂAzz +2JL2%|.  (A4)
different.

Now we integrate oul as described above E@3.9 to
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S is the effective action for a quantum rotor in a fielgz.

APPENDIX: TWO SPIN PROBLEM This action is equivalent to the Hamiltonian
Here we will assess the validity of the mapping from the J=, A
action S; in Eq. (3.4 to S, in Eq. (3.8) by examining a Hr=5L "~ Az L, (AB)

simple toy model of two spins. We consider the Hamiltonian

> 2 A2 2 wherelL is the rotor angular momentum operator. The eigen-
H=185:5=4:2:(5+%), (A1) values ofHg are easily seen to be identical to thosetofn
where S, , are two quantum spins of spi. The energy Ed- (A2) with one simple difference. The allowed values of
spectrum off3 is clearly / now extend oveall non-negative integers. Thus the only
effect of dropping terms higher order Iinin the functional
analysis is that the upper bour@< 2S has disappeared. This
only introduces additional states at relatively high energies
and is therefore not expected to be of importance in our
m=-/,—/+1,.../-1/, (A2)  study of the low-energy properties 6%.
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