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Topological aspects of shift in hierarchies of the fractional quantum Hall effect

Dipti Banerjee*
Physics and Applied Mathematics Unit, Indian Statistical Institute, Calcutta 721 302, India

~Received 3 November 1997!

In this paper we aim at understanding the topological aspects of the shift vectors appearing in the fractional
quantum Hall effect~FQHE! of hierarchy states. The topological features of the quasiparticles are visualized
through the quantization procedure by acquiring gauge theoretic extensions. These gauge fields play the role of
fibers at each space-time point. The origin of this shift lies in the interaction between the gauges and effectively
it is related to the departure in the Berry phase factor in the presence and absence of strong external magnetic
field. In fact we have pointed out that the shift visualizes the angular momentum of the quasiparticle in every
hierarchy of the FQHE states.@S0163-1829~98!05128-5#
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I. INTRODUCTION

The theory of Laughlin1 for the ground state of elemen
tary excitations in the fractional quantum Hall effect~FQHE!
is quite successful in describing the filling fractionsn51/m
and (121/m) with an odd integer. However, an extension
Laughlin’s theory is required to explain the experimenta
observed higher filling fractions of the formn5p/q. It was
Haldane2 who first gave a deeper insight into these obser
subsidiary fractions (2/5,2/7,3/7,3/11,4/9,...) by using a h
archical approach. The filling fraction at thenth level of this
hierarchy is given by continued fraction3

n5
1

m1
a1

p12
a2

p2¯an/pn .

~1!

The ground state of each level of hierarchy becomes a c
densate of elementary excitations of the previous one
view of Haldane, Laughlin, and Halperin4 the quasiparticles
are anyons obeying fractional statistics. In the view
Wilczek5 these composite particles are formed by charg
particles tied to magnetic flux tubes in two dimensions. H
the Chern-Simon~CS! gauge theory is best suited. A notab
recent attempt to provide an alternative hierarchical appro
is the work of Jain6 and his collaborators. The essence of
physics lies on the formation of composite fermions wh
he pointed out that the FQHE of fermions is nothing but
integer QHE~IQHE! of composite fermions. A more gene
alized theory was given by Wen7 and Wen and Zee8 through
a concept oftopological orderto characterize FQH liquid by
symmetric integer matrixK. A new quantum number shif
vector has been introduced through spin vectors due to
coupling to the curvature of space.

In a recent communication9 we have pointed out that th
hierarchical theory of Jain is equivalent to that of Halda
This idea is similar to the other recent work of Basu a
Bandyopadhyay10 where hierarchies of FQHE have been d
cussed through the angular momentum aspect and fina
sults support the findings of Jain.

Here, in this paper, we shall aim at studying the origin
the appearance of shift vectors in hierarchies of the FQ
PRB 580163-1829/98/58~8!/4666~6!/$15.00
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From the topological point of view, we shall find out th
physics of the coupling between the orbital spin and the c
vature of the space in a relativistic framework. We ha
considered here that the topological features of quasiparti
in hierarchies are visualized when through quantization
acquires two gauge-type extensions imparted by its own
ternal geometry and also from the strong external magn
field.11 Actually ~coupling! interaction between these tw
gauges is visualized through the Berry phase in terms of
difference of magnetic charges known as the shift vector

II. TOPOLOGICAL FEATURES OF HALL PARTICLES

In the quantum Hall effect the quantization of particl
involves the appearance of gauge fields. When we cons
the relativistic generalization of the stochastic quantizat
procedure, we find that in stochastic phase space, a rel
istic quantum particle appears as a gauge theoretically
tended one, so that we can write for the position and mom
tum operatorQm andPm ~Ref. 12!

Qm52 i S ]

]pm
1BmD , ~2!

Pm5 i S ]

]qm
1B̃mD , ~3!

whereqm (pm) denote the mean position~momentum! of the
particle andBm ,B̃m correspond to gauge fields. In the case
a fermionBm andB̃m are matrix-valued SL(2c) gauge fields
and in the case of bosons these are just Abelian fields.

From the geometrical point of view the introduction of th
additional gauge degrees of freedom in the phase space
mulation deforms the symplectic structure when the o
form is given by13

W5pdq1l ~4!

with

l5Bmdpm1B̃mdqm ~5!

for Bm ,B̃mPSL(2c).
The deformation of symplectic structure is given by
4666 © 1998 The American Physical Society
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F5Dl5dl11/2@l,l#, ~6!

where F is the field strength two-form that is obtained
terms of gauge potentialBm as

Fmn5]mBn2]nBm1@Bm ,Bn#. ~7!

This implies that the quantization enlarges the compact sp
S2 to S3 whereS3 acts as principle fiber bundle.

This analysis suggests that for a charged particle mov
in an intense magnetic field, a process similar to quantiza
procedure may arise and the particle may acquire the q
tum holonomy due to the topological features generated
the background magnetic field.

To this effect, following Friedman and others14 we note
that to describe a Hall particle at a filling factorn51/m on
the surface of a 3D sphere in a radial~monopole! strong
magnetic field, the topological Lagrangian will be

Lu52
u

16p2 Tr* FmnFmn , ~8!

whereu is the coupling constant associated with filling fact
n51/m through Hall conductivityg(u5g/c2). It is noted
that the term21/16p2 Tr* FmnFmn is a total divergence and
can be written as]mVm whereVm is the Chern-Simon sec
ondary characteristic class defined by

Ve
m521/16p2emnabTr@BnFab22/3~BnBaBb!#, ~9!

where the Pontryagin density is given byP5]mVm , which
gives rise to the topological index byq5*Pd4x, which is
the charge corresponding to the gauge field part related to
Pontryagin indexq where we have

q5E j 0
2d3x5E ]m j m

2 d4x5E
surface

e i jkds iF jk
2

~ i , j ,k51,2,3!. ~10!

VisualizingF jk
2 to be the magnetic-field-like components f

the vector potentialBi
2, we see thatq is actually associated

with the magnetic pole strength for the corresponding fi
distribution. This helps us to identify the magnetic fieldB
with the field strengthF jk

2 where we can write

B52 1
2 e i j Fi j

2 , ~11!

where Fi j
2 is the second component of the SL(2,c) field

strength matrix and hence corresponds to the U~1! gauge
counterpart related to the magnetic field. Thus we obse
that the effect of the magnetic field may be related to tha
the Chern-Simons characteristic class in the effective act
In fact, the introduction of the Chern-Simons term modifi
the axial vector current

̃m
5 5 j m

5 12\Vm ~12!

when we have]m̃m
5 50. A comparison with Eq.~12! sug-

gests thatj m
2 effectively represents the Chern-Simons term13

It may be noted that the wave function given byf(zm)
5f(xm)1 if(jm) can be treated to describe a particle mo
ing in the external space-time having the coordinatexm with
an attacheddirection vectorjm . Thus the wave function
ce

g
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should take into account the polar coordinatesr, u, f along
with the anglex specifying the rotational orientation aroun
the direction vectorjm . For an extended body,u, f, andx
just represent the three Euler angles.

In an anisotropic space, these three Euler angles h
their correspondence in an axisymmetric system where
anisotropy is introduced along a particular direction. It is
be noted that the axisymmetric system may be considere
studying the behavior of particles in two dimensions by p
ting them on the surface of this anisotropic thre
dimensional manifold. In this space, the components of
linear momentum satisfy a commutation relation of the fo

@pi ,pj #5 ime i jk

xk

r 3 . ~13!

In such a space, the motion of a charged particle is equ
lent to the motion of a charged particle in the field of
magnetic monopole where the conserved angular momen
is given by

J5r3p2mr . ~14!

In general, m can take the valuesm50,61/2,61,63/2,
62,... . Fierz15 and Hurst16 have extensively studied th
spherical harmonics incorporating the termsm. Following
them, we can write

Yl
m,m5~11x!2~m2m!/2~12x!2~m1m!/2

dl 2m

dxl 2m

3@~11x! l 2m~12x! l 1m#eimfe2 imx, ~15!

wherex5cosu.
That the angular momentum can take the value1

2 is found
to be analogous to the result that a monopole charged
ticle composite representing a dyon satisfying the condit
em5 1

2 has its angular momentum shifted by 1/2 unit and
statistics shift accordingly.17 This suggests that a fermion ca
be viewed as a scalar particle moving withl 5 1

2 in an aniso-
tropic space. The specification of thel z value for the particle
and antiparticle states then depicts it as a chiral spinor. T
may be associated with a spin system when electrons
polarized in one or the other direction.

Now we note that when the anglex depicting the rota-
tional orientation around thedirection vectorjm attached to
the space-time pointxm is gradually changed over the close
path 0<x<2p it gives rise to a phase factor in the wav
function. Indeed, the angular part associated with the angx
in the spherical harmonicsYl

m,m is given bye2 imx where we
have

i
]

]x
e2 imx5me2 imx. ~16!

Now whenx is changed tox1dx, we find

i
]

]~x1dx!
e2 imx5 i

]

]~x1dx!
e2 im~x1dx!eimdx.

~17!

Thus the wave function will acquire an extra phase fac
eimdx when the anglex is changed over the closed path
<x<2p. For one such complete rotation, the wave functi
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will acquire the phaseeim*0
2pdx5ei2pm. Thus for a closed

parameter space, we have the extra phase factorei2pm, which
represents the Berry phase. This analysis also suggests
this is related to the Pontryagin indexq as is evident from
Eqs. ~10!–~12! and hence is associated with the chi
anomaly18

2m5q5E ]m j m
2 d4x5

21

2 E ]m j m
5 d4x. ~18!

Thus we find that a quantum particle in an intense magn
field will acquire the Berry phase, which is associated w
the change in chirality over a closed path.

To study a quantum Hall fluid, we have considered a tw
dimensional electron gas ofN particles on the spherical su
face of a three-dimensional sphere of large radiusR in a
radial ~monopole! strong magnetic field. In such a 3D anis
tropic space we can construct the spherical harmonicsYl

m,m

with l 51/2, umu5umu51/2 when the angular momentum
given by J5r3p2mr . From the description of spherica
harmonics a two-component spinoru5(v

u) has been consid
ered:

u5Y1/2
1/2,1/25sin

u

2
exp@ i ~f2x!/2#,

~19!

v5Y1/2
21/2,1/25cos

u

2
exp@2 i ~f1x!/2#,

which construct theN-particle wave function as

cN
~m!5)

i , j
~uiv j2ujv i !

m ~20!

wherem51/n. Evidently for odd~even! m, we will have the
fermionic~bosonic! state. Sincem is an integer, we can iden
tify it, following Haldane,2 as m5Ji j 5Ji1Jj for an
N-particle system. It is noted that forumu5 l 51/2, we have
m51, which describes the complete filling of the lowe
Landau level and corresponds to the ground state for
contribution of the factorr3p50. Following the Dirac
quantization conditionem51/2, the quasiparticle form51
IQH state has fermion number 1.

However, if we consider the next excited state withr
3p51, the respective angular momentum is changed tJ
53/2 for m51/2. This can be viewed as a system withmeff
53/2 havingr3p50. Hence for the three-particle state (N
53) where each electron carries 3/2 angular momentum,
filling factor is fractional for n51/m51/3 wherem53/2
13/253. In this excited state, the fermion number of t
quasiparticle is 1/3. In this way, we note that the 1/5 filli
factor of FQH states corresponds to the excited state ha
r3p52. It may be pointed out that the other fractiona
quantized Hall states may be associated with the parent
with the effect of majority spin.19 With this view, over a
closed path on the surface of a 3D sphere, the parallel tr
port of these Hall states develop the topological phase
Berry, eifB, where

fB52mpu5pWu5mpu, ~21!

which indicates the relationship with the Hall conductivity
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III. TOPOLOGICAL PHASES OF THE HALL PARTICLES
IN HIERARCHIES

The occurrence of FQHE, in the presence of strong ex
nal orthogonal magnetic field causes a chiral symme
breaking of fermions~Hall particles! and as a result anomal
is realized in association with the Hall conductivity when w
have shown in the previous section that in quantization
Hall carrier will acquire a gauge theoretic extension induc
by background magnetic field. At long distances the
gauges play a key role in forming the Chern-Simons term
which describe the effective theory of Hall fluid. In hiera
chies, the effect of the interactions between the quasiparti
are visualized through the modification of the coefficients
the Chern-Simon terms. Wen and Zee7,8 have shown that the
effective Lagrangian~on suppressing indices! in (211) di-
mensions after the introduction ofp excitations with the par-
ent state is

L5
K

4p
Be]B. ~22!

Here K is a symmetric integer valuedn3n matrix that de-
fines the filling factor through Hall conductance assH

5SKIJ
21. In fact, thisK matrix formalism provides a com

plete classification of Abelian quantum Hall fluid and
based on the same physical theory of Haldane and Halp
where in the hierarchical construction, the quasipartic
from the last condensate condense to obtain the next l
hierarchical state.

Haldane2 extended the Laughlin scheme to describe a
erarchy of fluid states by considering a 2D electron gas oN
particles on the surface of a sphere having radiusR, in a
radial ~monopole! magnetic field B5\S/eR2(.0). This
2S5Nf is an integer that defines the total amount of ma
netic flux through the surface. For the parent staten51/m
the total flux isS5(1/2)m(N21). The field strengthS in the
first level hierarchy is

S~N;m,6p!5~1/2!m~N21!6~1/2!~N/p11!, ~23!

which is formed whenp ~p is an even integer! excitations are
added in the parent staten51/m. These show that the filling
factor satisfies a slightly complicated relation

2S5Nf5n21N2S. ~24!

In the language of Wen and Zee,8 this S is the shift, a topo-
logical quantum number. It is developed from the coupli
between the orbital spin and curvature of the space. T
orbital spin is the spin of the Hall particles~different from
the spin of electrons! associated with the orbital angular mo
mentum in cyclotron motion. In the thermodynamic lim
the filling factor in each Landau level is given byn5N/2S
'N/Nf when this shift becomes insignificant. On a sphe
the shift for a hierarchical state is given by

S5
1

n (
IJ

~K21! IJKJJ ~25!

having spins5 1
2 KII . For an51/m parent state this shift is

simply S52(n21)1m with orbital spin s5n211m/2,
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wheren identifies the Landau levels. In the effective theo
this shift can be introduced if the Lagrangian in Eq.~22! can
be modified as follows:

L51/4p~KBe]B12Aee]B12Cse]B!, ~26!

where the second term is the electromagnetic coupling
the third one is the coupling to the curvature of space.

In the light of the above works, we shall here give a mo
meaningful idea of shift, which will be visualized from th
Berry phase of the Hall particles. The appearance of this s
in the parentn51/m FQHE states is very trivial, which is
visualized through Berry phase5mpu. But in hierarchies, at
filling factor n51/(m11/@p#) ~where 1/@p#5a1 /p1
2a2 /p2 ...anpn! where the interactions between the pare
state and added excitations take place, the role of shift
nontrivial.

It may be pointed out that quasiparticles in the hierarch
are formed when additional flux is attached with quantiz
particles, which in the effective theory is visualized throu
the CS term in the Lagrangian. In particular, theu term ~in
Lagrangian! leads to a vortex line and the correspondi
gauge field can be considered to be the field of the vo
line. With this view, the interaction between the vortic
plays a primary role in forming the quasiparticle. Apart fro
the extensionBm induced by external strong magnetic fie
each particle has its own internal extensionCm , which visu-
alizes the internal topology through the field strengthF̃mn

~Ref. 11!

F̃mn5]nCm2]mCn1@Cm ,Cn#. ~27!

This inherent gauge field structure is responsible for the
pological features of a fermion and gives rise to quant
holonomy corresponding to the Berry phase.19 Hence in the
light of Wen’s work, the effective theory of the Hall fluid
can be accurately presented if we take into consideration
interaction betweenCm8 s andBm8 s. In the language of differ-
ential geometry they are two fibers acting on each poin
the base spaceS2, which is similar to the discussion of two
dimensional vector bundles such that the total bundle is
the vector sum of two one-dimensional bundles.

In (211) dimensions the topological Lagrangian of t
I th hierarchical state will be

LI5
u

4p
Bmemnl]nBl1

u8

4p
Cmemnl]nBl

1
u9

4p
Cm

I emnl]nCl , ~28!

where u and u8 and u9 are the coupling constants of th
Bm-Bm , Cm-Bm , andCm-Cm interactions, respectively. Her
each term is connected with the chiral anomaly through
Hopf invariant as follows:

]rermnlAmFnl51/2ermnlFrmFnl . ~29!

Now we have pointed out in our earlier discussion that
quantization of a fermion that is responsible for the anom
is associated with the gauge theoretic extension when
anomaly is related to Tr* F̃mnF̃mn whereF̃mn is the ‘‘inter-
nal’’ field strength behaving like a magnetic field. We c
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note here that in the external magnetic field associated w
the field strengthFmn such a quasiparticle on the surface o
3D sphere can be described by the topological Lagrangi

LI52
u

16p2 Tr* FmnFmn2
u8

16p2 Tr* FmnF̃mn

2
u9

16p2 Tr* F̃mnF̃mn . ~30!

Here every term corresponds to a total divergence of a to
logical quantity, known as Chern-Simons secondary cha
teristics class defined by

Vm
e521/16p2emnabTr@BnFab22/3~BnBaBb!#, ~31!

Ṽm521/16p2emnabTr@CnFab22/3~CnBaBb!#, ~32!

Vm
i521/16p2emnabTr@CnF̃ab22/3~CnCaCb!#.

~33!

Assuming a particular choice of couplingu5u85u9 in the
Lagrangian the topological part of the action in (311) di-
mensions becomes

Wu52~me1m i1m̃ !u, ~34!

where me , m i , and m̃ are the corresponding magnet
~charges! that are connected with the respective charg
through the Dirac quantization conditions and Pontrya
density:

2m5q5E ]mVmd4x. ~35!

It has been pointed out earlier11,19 that over a closed path o
the surface of a 3D sphere the parallel transport of a H
hierarchy state develops the topological phase of Berry:

fB5pWu52pm̃effu52~meff1m̃ !pu52p~me1m i1m̃ !u.
~36!

Here the first term is associated with the Berry phase fa
of Hall particles due to external magnetic fieldme . The sec-
ond term gives rise to the inherent Berry phase factorm i
associated with the chiral anomaly of a free electron~in the
absence of an external magnetic field! and the third one ef-
fectively relates the coupling of the external field with th
internal one, which gives rise to the phase factorm̃. Thismeff
actually visualizes the filling factor through the relationn
5n/2meff , wheren denotes the Landau level.10 In fact this
meff satisfies the Dirac quantization condition

e8meff5
n

2
. ~37!

Each quasiparticle in thenth Landau level having chargee8
behaves as a composite fermion in the higher Landau le
It will behave as a fermion in the ground state following t
Dirac condition

ẽm̃561/2, ~38!

which can be obtained from Eq.~37! as follows:
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ẽS meff2
n61

2 D56
1

2
. ~39!

This implies that (n61)/2 is the magnetic strengthm8 of the
added quanta, which is associated with the excitations de
oped due to change of Landau levels. Here form8561/2,
63/2,... the quanta behave like fermions and form8561,
62,... they show bosonic behavior. We can identify here t
this change inm has been visualized through shiftS by the
relation

2m̃5S52meff2~n61!5
n

n
2~n61!, ~40!

wheren51,2,3,... denotes the hierarchy levels.
In view of this the shift on a sphere can be related to

factor 2m̃52(meff2m8). It shows the deviation from the
Berry phase factor of a free electron where the termn61/2
can be associated with the second term, which correspo
to the Berry phase factorm8.

In the light of Jain formalism Basu and Bandyopadhya10

pointed out that FQHE states can be depicted by the fil
factor

n5
n

2meff
5

n

2mn61
, ~41!

where 2meff61 is an even integer given by 2mn for n being
any integer and6 implies the orientation of the vortex line
This leads the shift to be in the form

S5~2mn61!2~n61!. ~42!

An equivalent scheme of Haldane’s hierarchy gives rise
the filling factor of continued fractionn5(m61/@P#)21,
where@P# can be written asP1 /P2 . This causes the shift to
be written in the form

S5
mP16P2

P1
n2~n61!. ~43!

These results are identical with that obtained in theK-matrix
scheme as well as the Jain scheme. It also implies that s
obtained from the two different hierarchy schemes~Jain and
Haldane! yield identical values. It effectively represents th
deviation from the inherent Berry phase factor associa
with the chiral anomaly in the absence of external magn
field.

Now we will study the angular momentum of the qua
particles from the topological aspects of the shiftsS. Consid-
ering the hierarchies 3/7→4/9→5/11→6/13 of the state 2/5
the daughter state of 1/3 parent state in the first Landau l
we can write
el-

t

e

ds

g

o

fts

d
ic

el

for n5 2
5 , e8 5

2 5151/211/2 or e8~5/221/2!51/2

or S52m̃54

for n5 3
7 , e8 7

2 53/25111/2 or e8~7/221!51/2

or S55

for n5 4
9 , e8 9

2 52, or e8~9/223/2!51/2 or S56

for n5 5
11 , e8 11

2 5 5
2 , or e8~11/222!51/2 or S57

for n5 6
13 , e8 13

2 53, or e8~13/225/2! or S58.

It is transparent from the above that these shifts actu
visualize the resultant angular momentumJi j 5Ji1Jj of the
quasiparticles in the respective hierarchy state whereJi and
Jj denote the angular momentum of the parent (n51/m)
state and added particle, respectively. Earlier we h
pointed out that the filling fractions of the typen
51/3,1/5,1/7,... are associated with higher angular mom
tum r 3p51,2,3,..., respectively. In this case, from Eq.~14!
the respective angular momentum will have valuesJ
53/2,5/2,7/2,... . Here we have found that the 2/5 state
angular momentum

Ji j 5Ji1Jj55/221/2

in the 2nd Landau level~LL !, which implies that the added
quantum is a fermion having angular momentumJj51/2. In
the 3rd LL the angular momentum of the quasiparticle w
be

Ji j 57/221,

where a boson havingm51 is added to form the 3/7 state. I
this way we find that the shift in every hierarchy state c
shed light on the angular momentum acquired by the qu
particle in that state.

Finally, we would like to express the wave functions
the FQHE state having filling factor

n5
p

q
5

n

2meff
5

n

n~m21!61

in terms of spherical harmonicsYl
m,m . In the absence of

disorder, Jain20 has constructed the incompressible stateCn
m

as

Cn~R!m5Fn~R!@F1~R!#m21 ~44!

wherem5odd andn5 integer forCn
m anisymmetric. Here

Fn(R) is theN-particle antisymmetric wave functions forn
filled LL’s in a fixed areaV. In particular the Laughlin state
at n51/m is a special example of such a state withn51
whenCn(R)m5F1(R)m . It should be noted that in the pres
ence of disorderFn(R) is the Slater determinant for nonin
teracting electrons at filling factorn. States of the above form
are grouped into a family depending on the values ofm.
Thusm51 are integer states, states withm53 are the same
family of the Laughlinn51/3 state, etc. Hence this implie
that any FQHE state can be expressed in terms of the IQ
state and as a result the wave functions of the filling fact
n51/3,1/5,... will be

C3~R!5F1~R!1/3, C5~R!5F1~R!1/5. ~45!
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They are the primary states, which further help to have
hierarchical states

C2/5~R!5F2~R!F1~R!3215F1~R!5/2, ~46!

C3/7~R!5F1~R!7/3. ~47!

In our previous works we have defined the wave functio
for the FQHE state havingn51/m, which we have shown in
Eq. ~20!. Now we want to generalize it for the FQHE hie
archy state of filling factorn5@(m21)11/n#21. Identify-
ing the Hall particles moving on the surface of a 3D sphe
by the spinoru5(v

u) where

u5Y1/2
1/2,1/25sin

u

2
exp@ i ~f2x!/2#,

~48!

v5Y1/2
21/2,1/25cos

u

2
exp@2 i ~f1x!/2#

and denotingF1(z)5(uiv j2ujv i) the relativistic wave
functionsCn(R)m5Fn(R)@F1(R)#m21 will be

Cn~R!m5Fn~R!@F1~R!#m21

5Fn~z!@F1~z!#m215F1~z!2m11/n5@F1~z!#1/n.

~49!

This shows that in the absence of disorder the relativis
generalized wave function forn51/@(m21)11/n# is simi-
lar to that of then51/m.

Here if we consider the choicex i5x j5x then our wave
function for ann51 IQHE state will be

F15) ~ ũi ṽ j2ũi ṽ j !) e2 ixk/2, ~50!

whereũ5sin(u/2)eif/2 and ṽ5cos(u/2)eif/2.
This helps one to express the wave function in Eq.~49! as

Cn~R!m5@F1~z!#1/n

5) ~ ũi ṽ j2ũi ṽ j !
n21

) e2 ixk/2n

5) ~ ũi ṽ j2ũi ṽ j !
n21

) e2 i ~meff /n!xk. ~51!
in
e

s

e

ic

This leads to the generalized wave function of FQHE fluid
the relativistic framework to conceive thex-dependent term
visualizingmeff , which in fact defines the resultant chiralit
of the hierarchical state. The terme2 imeffxk physically de-
notes the resultant topological phase of the quasiparticle o
a closed path in the thermodynamic limit. In this case t
shift becomes insignificant. Normally from our above ana
sis we note that the shift is effectively related to the dep
ture in the Berry phase factor associated with the ch
anomaly in the presence and absence of the external m
netic field. In fact the topological phase of the compos
particle is related to the inherent Berry phase, which when
the presence of external magnetic field is accompanied w
the AB-type phase becomesm̃eff as in Eq.~36! visualizing
the shift through the termm̃.

IV. DISCUSSION

It is known19 that in the presence of an intense magne
field, the space-time structure gets modified in such a w
that a ‘‘direction vector’’ is attached to each space-tim
point. In addition, the quantization visualizes the topologic
features of the fermion by acquiring gauge theoretic ext
sions through the appearance of the Berry phase.18 This im-
plies that apart from the self-extension of the quantized p
ticle, the external anisotropy~magnetic field! attaches a
vortex at each space-time point. As a result the combin
effect gives rise to a composite particle or quasiparticle in
hierarchies of FQHE. The shiftS, appearing in every filling
factor, is originated from the interaction between these t
gauges. In the presence of an external magnetic field,
Berry phase factor changes, which is manifested in FQ
and the shift effectively represents the departure from
fermion number of a free fermion induced by the extern
strong magnetic field. In the generalized wave function t
shift remains insignificant for a number of particles bein
large ~thermodynamic limit!. On the other hand we have
pointed out that the shift visualizes the angular momentum
the quasiparticle in the hierarchies of the FQHE states.

We can add here that in a flat space, when the Hall sys
is represented by aZp spin system, the anomaly vanishes a
hence we cannot define a conserved charge, indicating
the shift here is zero.9 In view of this, shift can be associate
with the curvature of space, and it vanishes when the cur
ture associated with the quantization procedure vanishes
certain geometrical setup.
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