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Topological aspects of shift in hierarchies of the fractional quantum Hall effect
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In this paper we aim at understanding the topological aspects of the shift vectors appearing in the fractional
quantum Hall effec{FQHE) of hierarchy states. The topological features of the quasiparticles are visualized
through the quantization procedure by acquiring gauge theoretic extensions. These gauge fields play the role of
fibers at each space-time point. The origin of this shift lies in the interaction between the gauges and effectively
it is related to the departure in the Berry phase factor in the presence and absence of strong external magnetic
field. In fact we have pointed out that the shift visualizes the angular momentum of the quasiparticle in every
hierarchy of the FQHE stategS0163-18208)05128-5

[. INTRODUCTION From the topological point of view, we shall find out the
physics of the coupling between the orbital spin and the cur-
vature of the space in a relativistic framework. We have
considered here that the topological features of quasiparticles
in hierarchies are visualized when through quantization it

aLmd (;'I_ 1/Tr)1 with an odd_mtggter. HOIW.EV(S:’ an ext(_ansmtn ﬁf acquires two gauge-type extensions imparted by its own in-
augniin's theory IS required to explamn the experimentaily ;o ) geometry and also from the strong external magnetic
observed higher filling fractions of the form=p/q. It was Cg

Haldané who first gave a deeper insight into these observe thé eSAiSCt\L/ﬁT};"(; :(l; ?rl:?c?u éﬂt?rzzc;g?ryb&tgggTnt:]eerffs tg\;c;h e
subsidiary fractions (2/5,2/7,3/7,3/11,4/9,...) by using a hier-difference of magnetic charges known as the shift vector.
archical approach. The filling fraction at th¢h level of this

hierarchy is given by continued fraction

The theory of Laughlih for the ground state of elemen-
tary excitations in the fractional quantum Hall eff€EQHE)
is quite successful in describing the filling fractions 1/m

Il. TOPOLOGICAL FEATURES OF HALL PARTICLES

B 1 i In the quantum Hall effect the quantization of particles
Ve a involves the appearance of gauge fields. When we consider
m+  a the relativistic generalization of the stochastic quantization
p1— % procedure, we find that in stochastic phase space, a relativ-
Pz --a’/p istic quantum particle appears as a gauge theoretically ex-

The ground state of each level of hierarchy becomes a corf€nded One, so that we can write for the position and momen-

densate of elementary excitations of the previous one. IfUM OperatoQ, andP, (Ref. 12
view of Haldane, Laughlin, and Halpefithe quasiparticles

are anyons obeying fractional statistics. In the view of Q#:—i(i—}—BM , 2
Wilczek® these composite particles are formed by charged IPu

particles tied to magnetic flux tubes in two dimensions. Here

the Chern-SimoiiCS) gauge theory is best suited. A notable P =i(i+~B &)
recent attempt to provide an alternative hierarchical approach # aq, )’

is the work of Jaiftand his collaborators. The essence of his .
physics lies on the formation of composite fermions whereWhe_reqﬂ (p,.) denote the mean posmdm.omentun)n of the
he pointed out that the FQHE of fermions is nothing but theParticle andB,,,B,, correspond to gauge fields. In the case of
integer QHE(IQHE) of composite fermions. A more gener- & fermionB, andB,, are matrix-valued SL(&) gauge fields
alized theory was given by Wémand Wen and Zéﬁhrough and in the case of bosons these are just Abelian fields.
a concept ofopological orderto characterize FQH liquid by From the geometrical point of view the introduction of the
symmetric integer matriX<. A new quantum number shift additional gauge degrees of freedom in the phase space for-
vector has been introduced through spin vectors due to itBulation deforms the symplectic structure when the one-
coupling to the curvature of space. form is given by®
In a recent communicatiSrwe have pointed out that the
hierarchical theory of Jain is equivalent to that of Haldane.
This idea is similar to the other recent work of Basu andith
Bandyopadhya} where hierarchies of FQHE have been dis-
cussed through the angular momentum aspect and final re- \=B,d pM+§#dq# (5)
sults support the findings of Jain. _
Here, in this paper, we shall aim at studying the origin offor B, ,B, € SL(2c).
the appearance of shift vectors in hierarchies of the FQHE. The deformation of symplectic structure is given by

W=pdg+r (4)
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F=DA=d\+ L/ \,\], (6) should take into account the polar coordinates, ¢ along
i , ) i . with the angley specifying the rotational orientation around
where F is the field st_rength two-form that is obtained in {he girection vector¢, . For an extended body, ¢, andy
terms of gauge potentid,, as just represent the three Euler angles.
_ In an anisotropic space, these three Euler angles have
Fuv=0,8,=3,B,+[B,.B,]. @) their correspondence in an axisymmetric system where the
This implies that the quantization enlarges the compact spaagisotropy is introduced along a particular direction. It is to
S? to S® whereS?® acts as principle fiber bundle. be noted that the axisymmetric system may be considered in

This analysis suggests that for a charged particle movingtudying the behavior of particles in two dimensions by put-
in an intense magnetic field, a process similar to quantizatioting them on the surface of this anisotropic three-
procedure may arise and the particle may acquire the quamlimensional manifold. In this space, the components of the
tum holonomy due to the topological features generated byinear momentum satisfy a commutation relation of the form
the background magnetic field.

To this effect, following Friedman and othétsve note
that to describe a Hall particle at a filling facter=1/m on
the surface of a 3D sphere in a radiahonopolg strong
magnetic field, the topological Lagrangian will be

K
[pi.pj]=1pei 3 (13

In such a space, the motion of a charged particle is equiva-
lent to the motion of a charged particle in the field of a
magnetic monopole where the conserved angular momentum

Tr*F,F (8) is given by

L0:_ 16’7T2 Muvtopv

whered s the coupling constant associated with filling factor J=rxp-pr. (14)
v=1/m through Hall conductivityg(6#=g/c?). It is noted In general, u can take the valueg.=0,+1/2,=1,+3/2,

that the term-1/167* Tr* F, F,, is a total divergence and =2,.... Fier?® and Hurst® have extensively studied the

can be written ag,(), where() , is the Chern-Simon sec- spherical harmonics incorporating the terms Following

ondary characteristic class defined by them, we can write
OF=—1/16m2€,,,5TI[B,F.z—2/3B,B,Bp)], (9 gi-m

Y{n”’“z(1+X)_(m_“)lz(l—x)_(m+“)/2 —
where the Pontryagin density is given By=4,(),, which dx

gives rise to the topological index by= [P d*x, which is X[(L+X)"#(1—x)'+#]eimee=inx, (15)
the charge corresponding to the gauge field part related to the
Pontryagin indexg where we have wherex= cosé.

That the angular momentum can take the valus found
q:f j§d3x=f P j2d4x=f ciik g 2 to be analog.ous to the rgsult that a mqnopole charged. par-
wlu surface iTjk ticle c_lzompo_sue representing a dyon _satlsfylng the _condltl_on
ew =3 has its angular momentum shifted by 1/2 unit and its
(i,j,k=1,2,3. (10)  Statistics shift accordingly. This suggests that a fermion can
be viewed as a scalar particle moving with 3 in an aniso-
Visualizing F, to be the magnetic-field-like components for tropic space. The specification of thevalue for the particle
the vector potentiaB?, we see thay is actually associated and antiparticle states then depicts it as a chiral spinor. This
with the magnetic pole strength for the corresponding fieldmay be associated with a spin system when electrons are
distribution. This helps us to identify the magnetic fi@d polarized in one or the other direction.

with the field strength:jzk where we can write Now we note that when the ange depicting the rota-
Lo tional orientation around theirection vector¢,, attached to
B=—-3€'Fj, (1)  the space-time point, is gradually changed over the closed

path O< y<2 it gives rise to a phase factor in the wave

where F? is the second component of the Slqp field . . .
] . ' function. Indeed, the angular part associated with the gpgle
strength matrix and hence corresponds to tH&) yauge E the spherical harmonic€™* is given bye~'4X where we

counterpart related to the magnetic field. Thus we observ
that the effect of the magnetic field may be related to that o
the Chern-Simons characteristic class in the effective action.

d ) )
In fact, the introduction of the Chern-Simons term modifies i — e 'MX=pe M, (16)
the axial vector current 2
— . Now wheny is changed to¢+ Sy, we find
Jo=i 260, (12
~ . . 17 . J . .
when we haveaM]fL:O. A comparison with Eq(12) sug- “lux=j —— @ inxtox)gimdx

| =i
gests thaj? effectively represents the Chern-Simons téfm. I x+6x) I(x+8x)

It may be noted that the wave function given Byz,) 17
=¢(x,) +igp(£,) can be treated to describe a particle mov-Thus the wave function will acquire an extra phase factor
ing in the external space-time having the coordingtewith e'#% when the angley is changed over the closed path 0
an attacheddirection vector¢,. Thus the wave function < x=<2m. For one such complete rotation, the wave function
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will acquire the phasei“f(z)”b‘)(:eiz”/‘_ Thus for a closed Ill. TOPOLOGICAL PHASES OF THE HALL PARTICLES

parameter space, we have the extra phase fal®t, which IN HIERARCHIES
represents the Berry phase. This analysis also suggests that
this is related to the Pontryagin indexas is evident from
Egs. (100—(12) and hence is associated with the chiral
anomaly?®

The occurrence of FQHE, in the presence of strong exter-
nal orthogonal magnetic field causes a chiral symmetry
breaking of fermiongHall particles and as a result anomaly
is realized in association with the Hall conductivity when we
-1 have shown in the previous section that in quantization the
2M=q:j 9, id“x: — j 3, id“x_ (18  Hall carrier will acquire a gauge theoretic extension induced
2 by background magnetic field. At long distances these
Thus we find that a quantum particle in an intense magnetigauges play a key role in forming the Chern-Simons terms,

field will acquire the Berry phase, which is associated withwhich describe the effective theory of Hall fluid. In hierar-
the change in chirality over a closed path. chies, the effect of the interactions between the quasiparticles

To study a quantum Hall fluid, we have considered a two-are Visualized through the modification of the coefficients of
dimensional electron gas of particles on the spherical sur- the Chemn-Simon terms. Wen and Z8&ave shown that the
face of a three-dimensional sphere of large radusm a  effective Lagrangiarion suppressing indicgsn (2+1) di-
radial (monopole strong magnetic field. In such a 3D aniso- mensions. after the introduction pfexcitations with the par-
tropic space we can construct the spherical harmonjeg ~ €nt state is
with 1=1/2, |m|=|u|=1/2 when the angular momentum is

given b_yJ=r><p—,ur. From th_e description of spheri_cal L= ﬁ BedB. (22)
harmonics a two-component spiné# (;) has been consid- ™
ered: HereK is a symmetric integer valueX n matrix that de-
P fines the filling factor through Hall conductance ag
u=Y}2l= sin > exdi(6—x)/2], =3K,;%. In fact, thisK matrix formalism provides a com-

(190  plete classification of Abelian quantum Hall fluid and is
0 based on the same physical theory of Haldane and Halperin
v=Yl_,21/2'1/2=COS— exd —i(¢+x)/2], where in the hierarchical construction, the quasiparticles
2 from the last condensate condense to obtain the next level
hierarchical state.
Haldané extended the Laughlin scheme to describe a hi-
erarchy of fluid states by considering a 2D electron gal of
V=11 (uvj—up)™ (200 particles on the surface of a sphere having radiusn a
=) radial (monopol¢ magnetic fieldB=#%S/eR?(>0). This
wherem= 1/v. Evidently for odd(even m, we will have the 2S=N is an integer that defines the total amount of mag-
fermionic (bosonig state. Sincenis an integer, we can iden- netic flux through the surface. For the parent statel/m
tify it, following Haldane? as m=J;=J;+J; for an the total flux isS= (1/2)m(N—1). The field strengtl$in the
N-particle system. It is noted that for|=1=1/2, we have first level hierarchy is
m=1, which describes the complete filling of the lowest
Landau level and corresponds to the ground state for the ~ S(N:m,*p)=(1/2)m(N—-1)=(1/2)(N/p+1), (23
contribution of the factorr Xxp=0. Following the Dirac
guantization conditiorepx=1/2, the quasiparticle fom=1
IQH state has fermion number 1.
However, if we consider the next excited state with
X p=1, the respective angular momentum is changed to 1
=3/2 for u=1/2. This can be viewed as a system wjthy 25=Ny=v "N=5. (24

=3/2 havingrxp=0. Hence for the three-particle statd (|, the Janguage of Wen and Z8ehis S is the shift, a topo-
=3) where each electron carries 3/2 angular momentum, thggical quantum number. It is developed from the coupling
filing factor is fractional forv=1/m=1/3 wherem=3/2  petween the orbital spin and curvature of the space. This
+3/2=3. In this excited state, the fermion number of the grpital spin is the spin of the Hall particlsifferent from
quasiparticle is 1/3. In this way, we note that the 1/5 filling the spin of electronsassociated with the orbital angular mo-
factor of FQH states corresponds to the excited state havingientum in cyclotron motion. In the thermodynamic limit,
rxp=2. It may be pointed out that the other fractionally the filling factor in each Landau level is given by= N/2S

quantized Hall states may be associated with the parent stalen/N,, when this shift becomes insignificant. On a sphere,

closed path on the surface of a 3D sphere, the parallel trans-

which construct theN-particle wave function as

which is formed whemp (p is an even integgexcitations are
added in the parent state= 1/m. These show that the filling
factor satisfies a slightly complicated relation

port of these Hall states develop the topological phase of 1
Berry, €' %8, where S= " > (K™Y 5Ky, (25)
1J
dp=2pml0=7TW4H=m0, (21

having spins=3K,, . For av=1/m parent state this shift is
which indicates the relationship with the Hall conductivity. simply S=2(n—1)+m with orbital spin s=n—1+m/2,
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wheren identifies the Landau levels. In the effective theory, note here that in the external magnetic field associated with
this shift can be introduced if the Lagrangian in E2R) can  the field strengtlf ,, such a quasiparticle on the surface of a

be modified as follows: 3D sphere can be described by the topological Lagrangian
L=1/471(KBedB+2AeedB+ 2CsedB), (26) 0 6’ -
_ _ _ L'=———Tr*F, F,,— —= Tr*F,F,,
where the second term is the electromagnetic coupling and 16w 16w

the third one is the coupling to the curvature of space. 9" o
In the light of the above works, we shall here give a more —— Tr*F F . 30
16 2 mvl uy ( )
meaningful idea of shift, which will be visualized from the &

Berry phase of the Hall particles. The appearance of this shiffyo e every term corresponds to a total divergence of a topo-

in the parentv=1/m FQHE states is very trivial, which is |ogical quantity, known as Chern-Simons secondary charac-
visualized through Berry phasanw 6. But in hierarchies, at  teristics class defined by

filing factor »v=1/(m+1[p]) (where 1Jp]l=a;/p;

—a,/p,...a"p") where the interactions between the parent QF= —1/167725WaBTr[BVFaB—2/3(BVBHBB)], (31

state and added excitations take place, the role of shifts is

nontrivial. o o 0F=—1/16m2¢,,,,5TH C,F .5~ 2/3(C,B,By)], (32
It may be pointed out that quasiparticles in the hierarchies

are formed when additional flux is attached with quantized L 2 T

particles, which in the effective theory is visualized through 0=~ 116 €,up T CoF ap = 2C,CaCp) | (33)

the CS term in the Lagrangian. In particular, théerm (in

Lagrangian leads to a vortex line and the correspondingAssuming a particular choice of coupliry=6'= 6" in the

gauge field can be considered to be the field of the vortexagrangian the topological part of the action in+3) di-

line. With this view, the interaction between the vorticesmensions becomes

plays a primary role in forming the quasiparticle. Apart from _

the extensiorB,, induced by external strong magnetic field Wy=2(pet pi+p)0, (34

y7s
each particle has its own internal extens©p, which visu-

i i X ~ where ue, ui, and p are the corresponding magnetic
alizes the internal topology through the field strengtp,

(charges that are connected with the respective charges

(Ref. 19 through the Dirac quantization conditions and Pontryagin
~ density:
F.,=9,C,—3,C,+[C,.C,I. 7 9M™Y

This inherent gauge field structure is responsible for the to- _ :J 4

pological features of a fermion and gives rise to quantum 2pn=q Il dx. 39

holonomy corresponding to the Berry phd3é¢ience in the . 9
light of Wen’s work, the effective theory of the Hall fluid It has been pointed out earlfér°that over a closed path on
the surface of a 3D sphere the parallel transport of a Hall

can be accurately presented if we take into consideration th erarchy state develoos the tonolodical phase of Berrv:
interaction betwee s andB, s. In the language of differ- y P pological p y:

ential geometry they are two fibers acting on each point ofd,B: TW,=

2T e 0=2 +w)m0=2m( e+ pi+ 1) 6.
the base spac®, which is similar to the discussion of two- el =2( pesrt 1) (pet pi )

dimensional vector bundles such that the total bundle is just (36)
the vector sum of two one-dimensional bundles. Here the first term is associated with the Berry phase factor
In (2+1) dimensions the topological Lagrangian of the of Hall particles due to external magnetic figld. The sec-
Ith hierarchical state will be ond term gives rise to the inherent Berry phase fagtpr
associated with the chiral anomaly of a free electfionthe
. unh o' o absence of an external magnetic fjethd the third one ef-
L=7—B,e""d,By+ 71— C.e""d,By fectively relates the coupling of the external field with the

internal one, which gives rise to the phase fagtohis e
actually visualizes the filling factor through the relation
=n/2ue, Wheren denotes the Landau levEl.In fact this

) Mg Satisfies the Dirac quantization condition
where # and ¢’ and #" are the coupling constants of the

B,-B,, C,-B,, andC,-C,, interactions, respectively. Here , n
each term is connected with the chiral anomaly through the & pef =75 - (37)
Hopf invariant as follows:

//

+ - Cle"™9,Cy, (28)

Each quasiparticle in theth Landau level having chargs
3 p€punAuFn=12€,,,,F . F o (29 behaves as a composite fermion in the higher Landau level.
will behave as a fermion in the ground state following the

Now we have pointed out in our earlier discussion that th L o
irac condition

guantization of a fermion that is responsible for the anomal
is associated with the gauge theoretic extension when the
anomaly is related to TrF , F,, whereF,, is the “inter-

nal” field strength behaving like a magnetic field. We canwhich can be obtained from E37) as follows:

Th=+1/2, (39)
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| u —El)=tE (39)
eff 2 2"

This implies that 6 =1)/2 is the magnetic strengl’ of the

added quanta, which is associated with the excitations devel-

oped due to change of Landau levels. Here fidr=+1/2,
+3/2,... the quanta behave like fermions and fdr=*1,

+2,... they show bosonic behavior. We can identify here thafor

this change inu has been visualized through shftby the
relation

- n
2u=5=2per—(nx1)=——(nx1),

(40

wheren=1,2,3,... denotes the hierarchy levels.

In view of this the shift on a sphere can be related to th

factor Zu=2(ucz—p'). It shows the deviation from the
Berry phase factor of a free electron where the termil/2

can be associated with the second term, which correspon%

to the Berry phase factqe'.

In the light of Jain formalism Basu and BandyopadhYay
pointed out that FQHE states can be depicted by the filling

factor

n n
YT 24y 2mn=1’

(41)

where Zu.s*1 is an even integer given byn2n for n being
any integer andt implies the orientation of the vortex line.
This leads the shift to be in the form

S=(2mn*x1)—(n*1). (42

An equivalent scheme of Haldane’s hierarchy gives rise to

the filling factor of continued fractionv=(m=1[P]) "%,
where[ P] can be written a®, /P,. This causes the shift to
be written in the form

_ mP =P,

—(n+
P, n—(nx1).

(43

These results are identical with that obtained inKheatrix
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for v=%, €'3=1=1/2+1/2 or e'(5/2-1/2)=1/2
or S=2u=4

for v=2, e'1=3/2=1+1/2 or e'(7/2—1)=1/2
or §=5

e'3=2, or e'(9/2-3/2=1/2 or S=6

<
I
IEN

for

<
Il

Slen
()

z
e’¥=3, or e'(13/2-5/2) or S=8.

<
Il
Gle

for

It is transparent from the above that these shifts actually
visualize the resultant angular momentdm=J;+J; of the
quasiparticles in the respective hierarchy state wiiemnd
J; denote the angular momentum of the parent=(/m)
state and added particle, respectively. Earlier we have
pointed out that the filling fractions of the type
=1/3,1/5,1/7,... are associated with higher angular momen-

Sumrx p=1,2,3,..., respectively. In this case, from Etj4)

the respective angular momentum will have valugs
=3/2,5/2,7/2,... . Here we have found that the 2/5 state has
%gular momentum

‘]ij :Ji+Jj:5/2_ 1/2

in the 2nd Landau levelLL ), which implies that the added
quantum is a fermion having angular momentdys 1/2. In
the 3rd LL the angular momentum of the quasiparticle will
be

‘]ij :7/2_1,

where a boson having=1 is added to form the 3/7 state. In
this way we find that the shift in every hierarchy state can
shed light on the angular momentum acquired by the quasi-
particle in that state.

Finally, we would like to express the wave functions of
the FQHE state having filling factor

_p_ n _ n
"TO 2mer n(m—1)*1

in terms of spherical harmonicg™*. In the absence of
disorder, Jaiff has constructed the incompressible sthg’
as

¥ ,(R)M= D (RI[Py(R)]™* (44)

wherem=odd andn=integer for¥ ,™ anisymmetric. Here
®,(R) is theN-particle antisymmetric wave functions far
filled LL’s in a fixed area(}. In particular the Laughlin state
at v=1/m is a special example of such a state witk 1

scheme as well as the Jain scheme. It also implies that shiftghenw ,(R)™=®,(R)™. It should be noted that in the pres-

obtained from the two different hierarchy schentéain and

ence of disordef,(R) is the Slater determinant for nonin-

Haldane yield identical values. It effectively represents the teracting electrons at filling factar. States of the above form
deviation from the inherent Berry phase factor associatedre grouped into a family depending on the valuesmof
with the chiral anomaly in the absence of external magnetiThusm=1 are integer states, states with= 3 are the same

field.

family of the Laughlinvy=1/3 state, etc. Hence this implies

Now we will study the angular momentum of the quasi- that any FQHE state can be expressed in terms of the IQHE

particles from the topological aspects of the shift<onsid-
ering the hierarchies 3/%4/9—5/11—6/13 of the state 2/5,

state and as a result the wave functions of the filling factors
v=1/3,1/5,... will be

the daughter state of 1/3 parent state in the first Landau level

we can write

P3(R=P1 (R, W5(R)=Dy(R)'®. (49)
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They are the primary states, which further help to have th&his leads to the generalized wave function of FQHE fluid in

hierarchical states the relativistic framework to conceive thedependent term
visualizing ue, Which in fact defines the resultant chirality
Wo5(R)=Do(R)®1(R)* =D (R)%?, (46)  of the hierarchical state. The ters '“eiX physically de-
notes the resultant topological phase of the quasiparticle over
W37(R)=d1(R)"S. (47)  a closed path in the thermodynamic limit. In this case the

;hift becomes insignificant. Normally from our above analy-
sis we note that the shift is effectively related to the depar-
ture in the Berry phase factor associated with the chiral
anomaly in the presence and absence of the external mag-
netic field. In fact the topological phase of the composite
"'article is related to the inherent Berry phase, which when in

In our previous works we have defined the wave function
for the FQHE state having= 1/m, which we have shown in
Eqg. (20). Now we want to generalize it for the FQHE hier-
archy state of filling factow=[(m—1)+1/n]"L. Identify-
ing the Hall particles moving on the surface of a 3D sphe

by the spinorg=(,) where the presence of external magnetic field is accompanied with
p the AB-type phase becoLneTseff as in Eq.(36) visualizing
u:Yig,l/z: sin 3 exdi(d—x)/2], the shift through the term.
(48) IV. DISCUSSION
v=Y2 = Cosg exg —i(¢+x)/2] It is known'® that in the presence of an intense magnetic

field, the space-time structure gets modified in such a way

and denoting®,(z)=(ujv;—uv;) the relativistic wave that a “direction vector” is attached to each space-time
functions ¥ ,(R) M= & (R)[éb (ﬁ)]mfl will be point. In addition, the quantization visualizes the topological
v n . features of the fermion by acquiring gauge theoretic exten-

¥ (R)"=d (R)[®4(R)]™ 1 sions through the appearance of the Berry pl"l§§ehis_ im-
plies that apart from the self-extension of the quantized par-
=P, (2)[P1(2)]" =D (2)°" =[P, (2)]*". ticle, the external anisotropymagnetic fiel) attaches a
(49) vortex at each space-time point. As a result the combined

effect gives rise to a composite particle or quasiparticle in the
This shows that in the absence of disorder the relativistidhierarchies of FQHE. The shif, appearing in every filling

generalized wave function far=1/[(m—1)+1/n] is simi-  factor, is originated from the interaction between these two
lar to that of ther=1/m. gauges. In the presence of an external magnetic field, the

Here if we consider the choicg = x;= x then our wave Berry phasg factor _changes, which is manifested in FQHE
function for ann=1 IQHE state will be and the shift effectively represents the departure from the

fermion number of a free fermion induced by the external
_ —— e 2 strong magnetic field. In the generalized wave function this
CDl—H (UiUi_UiUJ)H e (50 shift remains insignificant for a number of particles being
large (thermodynamic limit. On the other hand we have
pointed out that the shift visualizes the angular momentum of
the quasiparticle in the hierarchies of the FQHE states.
¥ (R)"=[D,(2)]Y We can add here that in a flat space, when the Hall system
v is represented by &, spin system, the anomaly vanishes and
e~ 1 v hence we cannot define a conserved charge, indicating that
=11 (Ujvj—Uujv)) II e ' the shift here is zerdIn view of this, shift can be associated
with the curvature of space, and it vanishes when the curva-
_ ~ e (i ture associated with the quantization procedure vanishes in a
=11 (Ujj = Uiv;) IT e7ttwerimxe (5 certain geometrical setup.

whereli=sin(6/2)e'¥? andv = cos@2)e'#'2.
This helps one to express the wave function in @§) as
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