PHYSICAL REVIEW B VOLUME 58, NUMBER 8 15 AUGUST 1998-II

Effect of impurity scattering in nanoscale Corbino disks
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We have studied electrical conductance of nanoscale Corbino disks having &ifugletion impurities.
Kirczenow[J. Phys.: Condens. Matté; L583 (1994] predicted that the conductan@in ballistic Corbino
disks at zero temperature is quantizecbid integer multiples of 2%/h. We found that the same feature of
conductance quantization as in the case of ballistic Corbino disks can be seen in the presence of single
repulsived-function impurity in nanoscale Corbino disks, regardless of the impurity strength. For an attractive
S&function impurity, howeverG decreases significantly at the energy levels of quasibound states formed in the
effective confining potential. This indicates that the presence of evanescent modes strongly affects the scatter-
ing of propagating waves by single attracti#éunction impurity. This feature appears distinctively in the first
step of the conductance for weak impurity whereas for strong impurity in the second or subsequent steps,
depending on the strength of the impurit0163-18208)03432-9

[. INTRODUCTION studied the effect of impurities on the conductance of quasi-
one-dimensional wires and showed that the presence of eva-
Recently, Kirczenow proposed nanoscale Corbino disks nescent modes strongly affects scattering of propagating
whose characteristic dimensions are smaller than the mednodes from those impurities in such systems. The conduc-
free path of electrons. A Corbino disk is an annular region oance quantization in ballistic Corbino disks is analogous to
conductoffan annular two-dimensional electron g29EG) that in quantum wires. However, the essential difference be-
systenj surrounding a metallic contact.e., an electrode tween a Corbino disk and quantum wire lies in the geometry
and surrounded in turn by a second metallic contact. This i®f their confinement potential since the boundaries of a
schematically illustrated in Fig.(4). Unlike the macroscopic Corbino disk consist entirely of metallic contacts so that
Corbino disks>? it is reasonable to expect that electrons inthere is no confinement potential. Thus, it is expected that
nanoscale Corbino diskg 8 K will be transported ballisti- the influence of impurity scattering in Corbino disks would
cally from one contact to the other without the influence ofbe different from that in quantum wires. In this paper, the
phonons and impurities. Kirczenow studied theoretically thetheoretical study of transport properties of nanoscale Corbino
transport properties of ballistic nanoscale Corbino disks wittdisks in the presence of impurities is presented. Our main
ideal contacts and showed that in the absence of magnetic
fields, ballistic(impurity free Corbino disks should exhibit
conductance quantization odd integer multiples of 2%/h. (a)
This characteristic feature of conductance for an annular
2DEG system arises from those electrons that are in the
eigenstates of angular momentum. Accordingly, those elec-
trons are able to flow freely from inner to outer contact
through the conduction channel of each médermed in a (b)
Corbino disk. Herel denotes azimuthal modes and takes all
integers. In the case of zero magnetic fields, two model,
and —|l|, contribute to the transport in the same conduction Vo, 1
channel. According to the Landauer formula, each channel A ] "DEG 0
contributes 2%/h to the conductance. Taking into account Ei(E1)-|----- —\ ---------------------

the contributions from modds=0 and|l|=1 to the conduc-
tion channels, one can thus easily understand the conduc
tance quantization in Corbino disks. This conductance quan- F
tization in ballistic Corbino disks is analogous to that ~ [=======omwpromomoos - Bl
observed in ballistic quantum wirés® However, in quantum £,.(0)
wires, all integer multiples of 2%/h are seen. This difference
in conductance quantization arises from those electrons in
guantum wires that flow the conduction channels opened for
each moden of the energy eigenstates in the direction of F|G. 1. (a) Schematic of a Corbino disk with inner and outer
quantum well. Heren takes any integer. radii p;, andp,,,; Of contacts. Shaded areas are electrgdestacts.
Many experimental and theoretical studies have beelb) Effective potentiaVq(p,l) vs p for =0, =1.1 andO represent
done on impurity scattering in quantum wires?Bagwell®  inner contact and outer contact respectively.
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goal in this paper is to understand the simplest possible scation can be expanded in terms ©f (). Thus, we may ex-
tering problem in nanoscale Corbino disks, that is, scatteringress the solution of the Schiinger Eq.(1) in the presence
from single &-function impurity that destroys the symmetry of impurity potential as
of annular 2DEG. We will study how the conductance is
influenced by the singlé-function impurity in a nanoscale -
Corbino disk with ideal contacts. n(p,é’):I;m =i(p)©,(6). )
This paper is organized as follows. In Sec. Il, a general
theoretical treatment of the quantum transport is given foHere, we note that the expansion coeffici&h(p) is p de-
annular 2DEG systems with static impurities in the polarpendent. By using Ed3) in Eq. (1), we obtain the equation
coordinates and an expression for the conductance is givéor =(p):
for Corbino disks with single>-function impurity on the ba-

+ oo

sis of the Landauer-Btiker formalism**!? The results of d? - 2m* -

numerical calculations for the conductance and their physical W Silp) hZ {E=Verp.D}=i(p)

analysis are given in Sec. Ill. Actual numerical calculations oo

are carried out by applying the method of transfer matrix, _ E T(p)E (p) (4)
which is outlined in the Appendix. In the final section, we o, - ImPI=mip

conclude with a brief summary of the results. _ L )
whereVx(p,|) denotes an effective potential in tipedirec-
tion and is given by
Il. THEORY

2

1

Let us first consider the quantum-mechanical problem of Verl(p,) = T (12— 1y, (5)
m*p

2D electron gas with static impurities in @nanoscalg

Corbino disk(i.e., an annular 2D conducfowithout elec-  gjecirons in Corbino disks feel this potential actually. Since
trodes. Within the effective-mass approximation, the Schroyq V.q(p,)) depends on?, it is degenerate with respect to

dinger equatio_n for an elect_ron with effective mas% can  the modest|l|. I';(p) indicates a coupling between modes
be expressed in an appropriate form for the transport in the 5nq4'm due to the presence of impuritj.e., Viy,,) and is

radial (p) direction a$® given by '
N 2m* (2w
T om* apz Zm*pz (9_02+ 4 +Vimp(P10) 7(p,0) [im(p)= 72 0 de 0y (G)Vimp(P,a)@)m( 0). (6)
=E7x(p,0), D Egs. (4)—(6) form the basic equations for further develop-
_ _ _ _ ment of the theory of 2DEG with any impurity in the circular
whereViy,(p, ) denotes an impurity potential gb,6). It is olar coordinates. In this paper, we shall consider the simple

clear that the first and the second terms on the left-hand sidgase of singles-function impurity. For impurity potential
of Eq. (1) represent the radi@p) and the azimuthald) com- Vimp, We adopt

ponent of the kinetic energy of an electron, respectively. The

remaining term ¢#2%/8m* p?) is the quantum-mechanical Vimp(p,0) = (/) 8(p— pimp) 50— Oipmp) - (7)
correction of potential, which arises due to the specific ge- - . L .
ometry of a Corbino disk® To obtain expressiotl), we Here, ©imp » Oimp) |nd|cgtes a position od-function Impurity
made the simple transformation for the wave functigp,§) 1 the 2D polar coordinates; denotes the strength of impu-
of the Schidinger equation for an electron in the polar co- "ty Potential, wherey>0 indicates a repulsive potential,
ordinates:(p, ) =p~ Y25(p, ). Our problem seems to be whereasy<<0 an a_lttrapnve potennal. The cqupllng _constant
reduced to a usual 1D potential-well problem if there were(®) for the &function impurity can be readily obtained by
no impurity[i.e., Vimp(p, ) = 0]. In order to obtain the solu- substituting Eq(7) into Eq. (6) as

tions 7(p,6) of Eq. (1) satisfying the boundary conditions of =

the Corbino disk, we shall apply the mode-matching method Lim(p) =T'imd(p = pimp), ®)
employed by Datta, Cahay, and McLenfarand Cahay, \herel". is given by

McLennan, and Datta for their calculation of impurity scat- '

tering in the Cartesian coordinate system to the present prob- ~ 2m* y

lem in the circular polar coordinate system. When there is no lim=72— O (Bimp) O m(( Bimp) - 9
impurity in the system, Eq1) can be easily separated in the Pimp

variables to obtain the equation fex(6): The above preliminary theory can be applied to the quan-
tum transport of noninteracting electrons in a Corbino disk
d? 0 _ |29 attached to metallic contactelectrodes [see Fig. 18)]. In
de? 1(0)==170,(6), 2 order to study electronic transport properties in Corbino
disks, it is, however, necessary to model the emission and
where | is an arbitrary constant. Imposing the periodic absorption of electrons by the electrodes. In this paper, we
boundary condition ford with a period 2r, | is given byl adopt a model of ideal contacts employed by Kirczeriow.
=...,—10,1.... Since the normalized wave function The model is constructed so that electrons may flow freely
0,(0)=(1/\2m)e'"? forms complete sets, an arbitrary func- into and out of the contacts in modeof the conduction
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channel in a Corbino disk and any electrons that enter corfor the electronic transport in a Corbino disk. Since the so-
tacts are absorbed by the electrodes. This can be achieved lyion of the Schrdinger equation inside the electrodes is
treating each electrode as if it were a two-dimensional sysaccordingly given by the linear combination of two waves
tem with I-dependent effective potenti®(p,I) defined in  propagating to the+p directions, an electron in the annular
the regionp e (02) by 2DEG entering the electrodes can never come back to the
annular region attached to such ideal contacts.

Now, let us consider the solutions of the Satirger Eq.
(4) with the effective potentia{10). Schematic view of the

( ﬁz
En()=5——= (1°=3) for pe(0,i)
2m Pin

52 , 4 effective potentiaV ¢x(l,p) for =0, =1 is given in Fig. 1b).
Ver(p,l) = 2mF 2 (1°=32) for pelpin,poul In order to obtain the solutions of E¢), we solve it sepa-
5 rately for mode | in the regions of pe(0,;,), P
E..{(l)= [2—1 for pe ,0), E[pinlpimp)v pe(pimpvpout]r andp € (pout,*), and then im-
\ ouf 1) 2m*p§ut( 4 P e (Pou) pose the boundary conditions at=pi,, p=pimp, and p
(100 =p,, on those wave functions. It should be noted that in

where pi,, pout denote the radii of inner and outer contacts, ese regions, there iso effect due to the presence of the
respectively. Thus, we must solve the Safinger Eq.(4)  Impurity [ie., I'y=0 in Eq. (4] The wave functions,
with the effective potentiaV4(p,!) under these conditions Z(p)’s, in each region are given by

( q ik bl —iky ;
—= i+ ——= e Min»  for pe(0,pi)
Ky in Ki in
_ ep'Zi(ap)+tipZi(ap) for pelpin.pimp
‘:|(p): < 1/2 1/2~ (11)
gip~“Zi(ap)thp™Z(ap) for pe(pimp.pPoul
il e'kiouf + d e Mo for pe(pou,®)
[ ,ou [ ,ou ts ,
\ \/kl,out Vkl,out >
|
wherea = \2m*[E[/42 andZ, , Z, are, respectively, defined [ 2m* {Ejnoun(1) — E}\ M2
by K} inouy =1 72
| \2 1 112
Z(ap)=Ji(ap), Z(ap)=N(ap) for E=O0, _I[(Pin(out)) 4p§1(0u0 k } =1K1,in(oup -
(12) (14
Herek=\2m*E/#%? is the wave vector of an electron with
Z(ap)=1,(ap), Z/(ap)=K(ap) for E<O. energyE. For a given energ¥, we write the largest mode

aslif o such that the wave function becomes a propagating
wave moddi.e., E>Vex(pinou »1)] at the inner(outen con-
Here, J)(x) denotes a Bessel functiolN;(x) a Neumann tact.
function, I1,(x) a modified Bessel function, anl;(x) a
modified Neumann functiotf. The K in andk; oy in Eq. (11)
are the radius wave vectors in the inner-contact and the

outer-contact regions, respectively. For propagating modes _ _
(E>Einouw): Ki.inouy @re given by Here Infx] represents the largest integer that is smaller than

x. It should be noted thal}, is always greater thafy,.
These wave function&(p) given in Eq.(11) must satisfy

Ii’;(out): Int 742 pin(out)+ 4

1/2
} . (15

(Zm*E , 1

2m* {E—Ejnou(D}| 2 the following boundary conditions for the continuity of the
K} inouy = 72 wave functions:
I \? 1 ]¥2 Ei(p—0)=E(p+0),
=[k2—< ) +4 2 } , 13 | | (16)
Pin(out) Pin(out) dE|(p)‘ :dE|(p)‘ o
dp ‘p_o dp ‘p+0 PinsPout

whereas for the evanescent mo@i&s< Ej,ouyl, K inouy are
given by and
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EI(pimp_o):El(pimp'ipo)a (17)
dEi(p) dEi(p) o %o
d 4 = I‘Im':m(pimp)-
p Pimp+0 p pimp70 m=-=

It is noted that each modeis not independent but coupled
with another modem (#1) (i.e., I,#0 for I#m) at p

=pimp- This is because the circular symmetry is destroyed

by the impurity in the system. Imposing these continuity
conditions[Egs. (16) and (17)] on the wave functiorE,(p)

in Egq. (11) at the boundaries p(=pinouy and p=pimp)
and also the normalization condition foE,(p), we
can in principle determine a set of
(a,b,c,d,,e,f;,9,,h)) for a given electron enerdy. The
summation on the right-hand side of Ed.7) includes the
infinite number of coupled modes, so that one must solve th
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€ FIG. 2. Conductances vs Fermi energyEg for nanoscale

infinite dimensional simultaneous equations to obtain the ex€orbino disk with single repulsivé-function impurity. Impurity is

act value of those parameter, (... ,h)).

The transmission coefficieft,, from a propagating mode
n (<Iy) in the inner contact to a propagating mote
(<I%,) in the outer contact can be expressed as

C 2
Ta= al (18
n

It should be noted again that one must take into account th
infinite number of coupled modes to obtain the exact answe¥
for T, . The conductance can be related to a transmissio

coefficient through the Landauer-Biker formula for
multichannels'2 The conductanc& of Corbino disks is
thus given by

I* I*
n out

> 2 Ta,

__* — *
n= IinI Iout

2e?
G= T (19)

whereT,, is given by Eq.(18). Actual numerical calculation
of the T,,, can be carried out by the method of transfer
matrix'”*8in which we have taken the summation in E&j7)

up to|m|=N,. (See the AppendixHereN, should be large

located atpinp=(pint+ pou)/2. Conductancé is scaled by 2?/h.

figure. We have used the effective mass of an electron as
m* =0.067Mn, for GaAs in this paper. In the presence of
single &-function impurity, thed component of the impurity
position (¢im,) doesnot affect the conductance due to the
geometric symmetry of the Corbino disk. The strengths of
gle impurity are listed in the figure. For comparison, the
onductance for the ballistigmpurity-free case is drawn as
solid line. The conductance is zero in the energy region
r<Eo,(0) for which the lowest modé=0 cannot flow
from inner contact to outer contact. The ballistic conductance
increases step wisely at eaéh,(1,2,...) and isapproxi-
mately given by G=(2e%*h)(2l}+1) as discussed by
Kirczenow? Herel? is given by Eq.(15). Due to the reflec-
tion by the spatially varying effective potentidl, the con-
ductance curve is rounded even in the ballistic case. As seen
in the figure, the repulsive impurity doest alter the quali-
tative behavior of the ballistic conductance though it de-
creases slightly due to the increase of the reflection by the
impurity potential. Interestingly, the conductance is less af-
fected by the repulsive impurity in the energy region of

enough to include sufficient evanescent modes. We note hege, (1)<E-<E(l) for eachl. In this energy region, there

that the transmission coefficiemt, is then given as a func-
tion of Fermi energy.

Ill. RESULTS AND DISCUSSION

The zero-temperature conductan& of a nanoscale
Corbino disk in the presence of singdfunction impurity is
calculated as a function of the Fermi eneifgy for various
cases by making use of E(.9) along with Eq.(18) (see also
the Appendix.

A. Repulsive impurity

are in general more than one propagating mode in the outer
contact than in the inner contact. Therefore, an electron with
energyE e [E,(1),Ei(1)] incoming from inner contact can

be transmitted into outer contact easily.

B. Attractive impurity

Figures 3a) and 3b) show Fermi-energy dependence on
the conductance in the case of attractive impurity. The same
values ofpiy,, and po/ pin are used as in Fig. 2. Being dif-
ferent from the case for repulsive impurity, the conductance
quantization is significantly affected by the presence of

Figure 2 shows Fermi-energy dependence on the condusingle-attractive impurity, and also by its strength. Let us

tance in the case of repulsive impurity with different
strengthsy at pimp= (pint poud/2 for the casequ/pin=1.1.
The Fermi energy is scaled I#,(1) in the lower axis and
by Eoqu{1) in the upper axis, whergj, (1) is defined by
Eq. (10). Thus, the effective potential of modet the inner
(outen contact(which we refer to théth subband energys
expressed by (4—1)/3 in the lower(uppe) axis of the

first consider the case for wedkhallow) impurity having
y=—1v [=—0.2%;,(1)p2] [dotted line in Fig. 8)]. In

this case, we can see that the conductance is zero just below
the energy aE,,(1). In this energy, as seen in Fig(k},

there is only one propagating modle 0. Hence, the intra-
mode transmission probability of mode=0 is zero at that
energy. This anomalous decrease in the transmission prob-
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EF/Et)ut(l) ST i
e e
i Attractive impurity ,.—:::::::"'}:’: = i Atractive Impurity
I e ff fo ,1 Pin/ P out=1.5
4F pout Pin=1.1 ¥ ] (‘\Ie ,", 2
i pit w2 & :','i ¥ /(Ein(1) p in)=—0.43
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8 | (T e yevo | /7 g e
- 1 / F Y B imp= P in
O 2r TTTTSA L e y="134y¢ - ! \‘V' Ii, ———-PimE=(Pin+Poul)/2'
_______ y=-182y9 F I//"‘\\\/,"\ I,i —-—-- Pimp= AP out
L ) ] 0‘.1..—’.\//..,...|
I ¥ 0/(Ein(1) pin*)=0.29 0 0.5 1
0 5 . 1'0 . Er/Ei(1)
(a) Ex/E, (1) FIG. 4. Conductances vs Fermi energyEr for nanoscale
Corbino disk with single attractivé-function impurity at three dif-
E/E, (1) ferent positions of the impurity. Conductan@es scaled by 2?/h.
0 5 10
A L L second step becomes deeper, at which the conductance is
| Atractiveimpurity /- s 2x2e?/h. In this case, the quasibound state is formed just
4 powd pin=ll  (F e i below E,,(2) even though the spatial variation @f«(p,2)
e i = ot pou)? ] is large since the strength'of the impurity is made strqnger. It
SO _ should be noted that since we assumed attractie “
\é‘\;’/ Ballistic function” impurity, the maximum decrease of the conduc-
O oL M y=22770 tance due_ to the qyasibound state &/B. The dip in the
______ Y2770 third step is thus' still shallow. ' ' .
L 4 Next we consider the case for an impurity with strength
LY ¥ 0Bin(1) pin?)=0.29 y=—1.82y, [dash-dotted line in Fig.(®]. In this case, the
ot Ll guasibound state drops below the bottom energy of the first
0 5 10 step and the dip in the first step disappears. The dip in the
(b) Ee/Ei(1) second step shifts to the lower-energy side and the dip in the

third step becomes deeper, at which the conductance is
4x2e?/h. When we further increase the strength of the im-
purity [dotted line in Fig. &)], the conductance in the first
step increases because the quasibound state does not influ-
nce the first step of the conductance in this case. Then the
ip in the second step disappears. As a whole, as the strength
of the attractive impurity is increased, the effect of the qua-
sibound state appears especially in the higher step, while the
i . j g effect in the lower step becomes weak. The dashed line in
effective potentialVe(pl==+1) is Eq,(1) as seen in Fig. piq 1) shows the casr,)e for the very strong attractive impu-
1(b). Thus, weak atiractive impurity patential for_med in the rity. In this case the impurity potential is so strong that the
effective potentialVeg(p.) has a bognd energy J_USt below first three steps of the conductance are not influenced by the
Eouf1). Therefore, an electron with energy just below g ,aqihound state and the conductance curve resembles one in

Eou(1) cannot flow through the propagating mote0 4 case of the strong repulsive impuritf. Fig. 2
since the electron is bounded by the potential well formed in g rep purtgf. Fig. 2.

the effective potentiaV«(p,1). That is why the transmission
probability in this case is zero. This bound state is called
quasiboundstate and is essentially the same as one observed Next, we consider the Corbino disk wifhy/pin=1.5. In

in quantum wires:® However, in the case of Corbino disks, this case the effective potenti®.«(p,l) varies fromp;, to

the appearance of dips in the conductance is very different ip,,; greatly as compared with the case fo§,/pin=1.1.

each step. In the case of the weakest attractive implddts  Thus, in the case of weak attractive impurity, the effect of
ted line in Fig. 3a)], we can see the dip in the second and thethe quasibound state appears in the first step of the conduc-
third step as well just belovE, (2) and E, (3), respec- tance distinctively. In Fig. 4 we show the position depen-
tively. These dips are, however, not so deep as the first onelence on the conductance for weak attractMenction im-

This feature can be explained as follows. Since the spatigburity. Since we are interested in the effect of the quasibound
variation of V.z becomes larger for largdy it is hard for  state, we show only the first step of the conductance in this
weak attractive impurity potential to confined an electron infigure. As seen in the figure, as the position of impufiy,

the effective potential/« for largel. That is why the dip in  approaches inner contact, the dip due to the quasibound state
the second and third step is shallow. When we increase thghifts to the lower-energy side. This feature can be explained
strength of attractive impurity, the dip in the first step of theas follows. In the circular polar coordinates thdunction
conductance shifts to the lower-energy side and the dip in thempurity is expressed by Ed7), which contains ¥. Thus,

FIG. 3. Conductanceés vs Fermi energyEg for nanoscale
Corbino disk with single attractivé-function impurity for five dif-
ferent strengths. Conductan@eis scaled by 2%/h.

ability can be realized by taking into account the evanesce
modes. As seen in Ed4), the potential energy felt by an
electron is actually given by the sum of effective potential
Veii(pl) and impurity potentiaV;,,. The lowest value of the

C. Impurity position dependence on the conductance
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in the 1D-like Schrdinger Eq.(4), the impurity potential we express the coefficients of the wave funct®yfp) in the
behaves like ¥in,. Therefore, the effect of the impurity electrodes in terms of the {2+ 1)-component vectors:
becomes strong when the impurity is put near the inner con-

tact, while it becomes weak when the impurity is put near the a'= {a_ Ng QN +11-e-805 s8N 1 ’aNc}'

outer contact. That is why the dip shifts lower in energy as

the position of attractives-function impurity approaches in- b'={b_n.,b_N +1+.--00,-.- by —1.bn
C Cc c C

ner contact. Due to the same reason, the conductance de-
creases slightly when single repulsigdunction impurity is

put near the inner contact, but its overall feature does not
alter.

(A1)

T—
c {c_Nc,c_NCH,...,co,...,ch_l,ch},

dT:{d*NC’d*NCJrl’""dO"'”dNC*l’dNC}'

IV. CONCLUSION Here, N, is a cutoff mode satisfyindN > 15, 15, for I, ou

In this paper, we have shown quantum-mechanical treat?e‘cm(ad by EQ(15). Then, the 2(Ri,+1)-component vec-

ment of 2D electronic system with any impurity potential in ors (@b and Ed) are. related to the 2(%
the polar coordinates, and studied the electronic transpoit 1) 2(2Nc+1) transfer matrixv:
problems of a Corbino disk.e., annular 2DEEwith single
Sfunction impurity. On the basis of LandaueriBker
formalism!''2we derived the formula for conductance of a
Corbino disk by assuming ideal contac&lectrodey pro-
posed by Kirczenow.Actual numerical calculations of the
conductance were carried out by utilizing a method of transyy _ le’fl(pm)Q(apm)éfl(apimp)

fer matrix1”18

In the case where single repulsidfunction impurity is X{é(apimp)_f‘(apimp)}éil(apoua P(pou)- (A3)
present in nanoscale Corbino disk, we found that the conduc- R . .
tance changes stepwise at the energies where new conductiBach matrix,P(x), Q(x), and I'(x), expresses a 2(%&
channels are opened as in the ballistic case. Even in the case1)x 2(2N.+ 1) matrix. P(x) is defined as
where the strength of the impurity is strong, the qualitative
feature of the conductance remains the same. This indicates - |5++(x) |5+,(x)
that the presence of single repulsi#éunction impurity does PX)=|p x) P__(x] (Ad)
not alter the conductance quantization and the qualitative - -
feature for the ballistic case significantly. On the other handjt is noted that the elements 6¥(x), P, . (x), P, (x),

in the presence of single-attractivefunction impurity, the 5 v 2ndP__(x). represent the +1)X(2N.+1
gualitative behavior of the conductance is different from the _+-( ), - )’- b (et 1)x (2Ne+1)

e ; matrix, and they are given by
ballistic case due to the quasibound states formed by the
presence of attractive impurity. This is because electrons are

actually bounded by the potential well formed by the effec-

a
b

. (#2)

whereM is defined by

“ ~ 1
{P++(X)}Im:{P+—(X)}Im:\/k: Sim s

tive potentialV¢¢ and the impurity potentia¥;,,,. Above all, 1(X)

the dips in the conductance appear at the energies of quasi-

bound states in the potential well. In a Corbino disk, the {|57+(X)}|m=i‘/k|(x)5|m7 (A5)
effective potential varies witp 2 and its variation fronp;,

to pout IS larger for largel. Accordingly, the quasibound {'5——(X)}|m=—i\/m5|m,

states due to the attractive impurity are hard to be formed in
the effective potential with large As a result, the dip of the respectively. Herek(x) is the wave vector of an electron
conductance appears distinctively in the first step of the conand is given byk,(x) = V2m* [E — Vex(x,1) /%2 Similarly, the
ductance for weak'shallow impurity whereas for strong atrix é(x) is defined as
(deep impurity it appears in the second or subsequent steps,
depending on the strength of the impurity. Finally, the effect . é (X) Q _(x)
of the quasibound state due to the presence of attractive im- QxX)=| ~ o N ,
purity is strong when the impurity is put near the inner con- Q-+(x) Q--(x)
tact, resulting in the dip shifting to the lower-energy side. \yhere

In this paper, we have presented the first theoretical study
of the transport properties of nanoscale Corbino disks with ~ _ ~ _7
single &function impurity. It is hoped that this work will {Q++ =108, Q- (Ohm=&1(X) Sim,
stimulate interest in these systems and facilitate future ex- (A7)
periments.

(AB)

{Q OOhm=8 () 8m»  {Q- () hm=&{ (X) Sim-

APPENDIX It is noted thatZ,(x) andZ,(x) are actually given by

The method of transfer matrix is outlined to calculate the _
conductance numerically in the present system. In(Egj, LOO=VXZ(X), L) =XZ(x), (A8)



PRB 58

andgI (x) and? | (x) express the first derivative ¢f(x) and
£1(x) with respect tax, respectively. HereZ(x), Z|(x) are
defined by Eq(12). TheI'(x) in Eqg. (A3) can be also ex-
pressed by

SN R ERTCOR WN(N
FO=\t 0 Fo_0): (A9)
where
{f++(x)}lm:{f+—(x)}lm:0,
(T 0Ohm=Timdm(¥), (A10)

{fff(x)}lm:f‘lmZm(X)-

Accordingly, the transfer matrik can be also expressed in

terms of four submatricedM ., M, _ ,M_, M__) as
~ (M., M,_

M= ~ . All

(M + M-—) (ALD

EFFECT OF IMPURITY SCATTERING IN NANOSCAE . ..
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Here, each submatrix has N2+1)X(2N.+1) elements.
The transmission coefficient from a propagating made
(<I3%) in the inner contactd;,) to a propagating mode
(<I%.9 in the outer contactd,,) can thus be expressed by

2

=ML} .2 (A12)

T |
nl— a,

By making use of Eq.(A12) and the Landauer-Btiker
formulat®*? for multichannels, conductanc& of Corbino
disks can be evaluated from

*
out

EE

* *
n=—1¥ I=—1%,

*
out

z z Tnl_

* *
n=—1% I=—1%,

* *
lin

2
HMTEH A%

(A13)

where the transmission coefficieft,; should be calculated
at the Fermi energ¥g. In the numerical calculation, we
have choseN.=7 throughout this paper.
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