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Effect of impurity scattering in nanoscale Corbino disks

Satofumi Souma and Akira Suzuki
Center for Solid-State Physics and Department of Physics, Faculty of Science, Science University of Tokyo, 1-3 Kaguraza

Shinjuku-ku, Tokyo 162-8601, Japan
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We have studied electrical conductance of nanoscale Corbino disks having singled-function impurities.
Kirczenow @J. Phys.: Condens. Matter6, L583 ~1994!# predicted that the conductanceG in ballistic Corbino
disks at zero temperature is quantized inodd integer multiples of 2e2/h. We found that the same feature of
conductance quantization as in the case of ballistic Corbino disks can be seen in the presence of single
repulsived-function impurity in nanoscale Corbino disks, regardless of the impurity strength. For an attractive
d-function impurity, however,G decreases significantly at the energy levels of quasibound states formed in the
effective confining potential. This indicates that the presence of evanescent modes strongly affects the scatter-
ing of propagating waves by single attractived-function impurity. This feature appears distinctively in the first
step of the conductance for weak impurity whereas for strong impurity in the second or subsequent steps,
depending on the strength of the impurity.@S0163-1829~98!03432-8#
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I. INTRODUCTION

Recently, Kirczenow1 proposed nanoscale Corbino dis
whose characteristic dimensions are smaller than the m
free path of electrons. A Corbino disk is an annular region
conductor@an annular two-dimensional electron gas~2DEG!
system# surrounding a metallic contact~i.e., an electrode!
and surrounded in turn by a second metallic contact. Thi
schematically illustrated in Fig. 1~a!. Unlike the macroscopic
Corbino disks,2,3 it is reasonable to expect that electrons
nanoscale Corbino disks at 0 K will be transported ballisti-
cally from one contact to the other without the influence
phonons and impurities. Kirczenow studied theoretically
transport properties of ballistic nanoscale Corbino disks w
ideal contacts and showed that in the absence of magn
fields, ballistic~impurity free! Corbino disks should exhibi
conductance quantization inodd integer multiples of 2e2/h.
This characteristic feature of conductance for an ann
2DEG system arises from those electrons that are in
eigenstates of angular momentum. Accordingly, those e
trons are able to flow freely from inner to outer conta
through the conduction channel of each model formed in a
Corbino disk. Here,l denotes azimuthal modes and takes
integers. In the case of zero magnetic fields, two modes,1u l u
and2u l u, contribute to the transport in the same conduct
channel. According to the Landauer formula, each chan
contributes 2e2/h to the conductance. Taking into accou
the contributions from modesl 50 andu l u>1 to the conduc-
tion channels, one can thus easily understand the con
tance quantization in Corbino disks. This conductance qu
tization in ballistic Corbino disks is analogous to th
observed in ballistic quantum wires.4–6 However, in quantum
wires,all integer multiples of 2e2/h are seen. This differenc
in conductance quantization arises from those electron
quantum wires that flow the conduction channels opened
each moden of the energy eigenstates in the direction
quantum well. Here,n takes any integer.

Many experimental and theoretical studies have b
done on impurity scattering in quantum wires:7–10Bagwell7,8
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studied the effect of impurities on the conductance of qua
one-dimensional wires and showed that the presence of
nescent modes strongly affects scattering of propaga
modes from those impurities in such systems. The cond
tance quantization in ballistic Corbino disks is analogous
that in quantum wires. However, the essential difference
tween a Corbino disk and quantum wire lies in the geome
of their confinement potential since the boundaries o
Corbino disk consist entirely of metallic contacts so th
there is no confinement potential. Thus, it is expected t
the influence of impurity scattering in Corbino disks wou
be different from that in quantum wires. In this paper, t
theoretical study of transport properties of nanoscale Corb
disks in the presence of impurities is presented. Our m

FIG. 1. ~a! Schematic of a Corbino disk with inner and out
radii r in androut of contacts. Shaded areas are electrodes~contacts!.
~b! Effective potentialVeff(r,l) vs r for l 50, 61. I andO represent
inner contact and outer contact respectively.
4649 © 1998 The American Physical Society
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goal in this paper is to understand the simplest possible s
tering problem in nanoscale Corbino disks, that is, scatte
from singled-function impurity that destroys the symmet
of annular 2DEG. We will study how the conductance
influenced by the singled-function impurity in a nanoscale
Corbino disk with ideal contacts.

This paper is organized as follows. In Sec. II, a gene
theoretical treatment of the quantum transport is given
annular 2DEG systems with static impurities in the po
coordinates and an expression for the conductance is g
for Corbino disks with singled-function impurity on the ba-
sis of the Landauer-Bu¨ttiker formalism.11,12 The results of
numerical calculations for the conductance and their phys
analysis are given in Sec. III. Actual numerical calculatio
are carried out by applying the method of transfer mat
which is outlined in the Appendix. In the final section, w
conclude with a brief summary of the results.

II. THEORY

Let us first consider the quantum-mechanical problem
2D electron gas with static impurities in a~nanoscale!
Corbino disk~i.e., an annular 2D conductor! without elec-
trodes. Within the effective-mass approximation, the Sch¨-
dinger equation for an electron with effective massm* can
be expressed in an appropriate form for the transport in
radial ~r! direction as13

H 2
\2

2m*
]2

]r22
\2

2m* r2 S ]2

]u2 1
1

4D1Vimp~r,u!J h~r,u!

5Eh~r,u!, ~1!

whereVimp(r,u) denotes an impurity potential at~r,u!. It is
clear that the first and the second terms on the left-hand
of Eq. ~1! represent the radial~r! and the azimuthal~u! com-
ponent of the kinetic energy of an electron, respectively. T
remaining term (2\2/8m* r2) is the quantum-mechanica
correction of potential, which arises due to the specific
ometry of a Corbino disk.13 To obtain expression~1!, we
made the simple transformation for the wave functionc~r,u!
of the Schro¨dinger equation for an electron in the polar c
ordinates:c(r,u)5r21/2h(r,u). Our problem seems to b
reduced to a usual 1D potential-well problem if there we
no impurity @i.e., Vimp(r,u)50#. In order to obtain the solu
tions h~r,u! of Eq. ~1! satisfying the boundary conditions o
the Corbino disk, we shall apply the mode-matching meth
employed by Datta, Cahay, and McLennan14 and Cahay,
McLennan, and Datta15 for their calculation of impurity scat-
tering in the Cartesian coordinate system to the present p
lem in the circular polar coordinate system. When there is
impurity in the system, Eq.~1! can be easily separated in th
variables to obtain the equation forQ~u!:

d2

du2 Q l~u!52 l 2Q l~u!, ~2!

where l is an arbitrary constant. Imposing the period
boundary condition foru with a period 2p, l is given by l
5 . . . ,21,0,1, . . . . Since the normalized wave functio
Q l(u)5(1/A2p)eil u forms complete sets, an arbitrary fun
at-
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tion can be expanded in terms ofQ l(u). Thus, we may ex-
press the solution of the Schro¨dinger Eq.~1! in the presence
of impurity potential as

h~r,u!5 (
l 52`

1`

J l~r!Q l~u!. ~3!

Here, we note that the expansion coefficientJ l(r) is r de-
pendent. By using Eq.~3! in Eq. ~1!, we obtain the equation
for J l(r):

d2

dr2 J l~r!1
2m*

\2 $E2Veff~r,l !%J l~r!

5 (
m52`

1`

G lm~r!Jm~r!, ~4!

whereVeff(r,l) denotes an effective potential in ther direc-
tion and is given by

Veff~r,l !5
\2

2m* r2 ~ l 22 1
4 !. ~5!

Electrons in Corbino disks feel this potential actually. Sin
the Veff(r,l) depends onl 2, it is degenerate with respect t
the modes6u l u. G lm(r) indicates a coupling between mode
l and m due to the presence of impurity~i.e., Vimp) and is
given by

G lm~r!5
2m*

\2 E
0

2p

du Q l* ~u!Vimp~r,u!Qm~u!. ~6!

Eqs. ~4!–~6! form the basic equations for further develo
ment of the theory of 2DEG with any impurity in the circula
polar coordinates. In this paper, we shall consider the sim
case of singled-function impurity. For impurity potential
Vimp , we adopt

Vimp~r,u!5~g/r!d~r2r imp!d~u2u imp!. ~7!

Here, (r imp ,u imp) indicates a position ofd-function impurity
in the 2D polar coordinates.g denotes the strength of impu
rity potential, whereg.0 indicates a repulsive potentia
whereasg,0 an attractive potential. The coupling consta
~6! for the d-function impurity can be readily obtained b
substituting Eq.~7! into Eq. ~6! as

G lm~r!5G̃lmd~r2r imp!, ~8!

whereG̃lm is given by

G̃lm5
2m* g

\2r imp
Q l* ~u imp!Qm~u imp!. ~9!

The above preliminary theory can be applied to the qu
tum transport of noninteracting electrons in a Corbino d
attached to metallic contacts~electrodes! @see Fig. 1~a!#. In
order to study electronic transport properties in Corb
disks, it is, however, necessary to model the emission
absorption of electrons by the electrodes. In this paper,
adopt a model of ideal contacts employed by Kirczeno1

The model is constructed so that electrons may flow fre
into and out of the contacts in model of the conduction
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channel in a Corbino disk and any electrons that enter c
tacts are absorbed by the electrodes. This can be achieve
treating each electrode as if it were a two-dimensional s
tem with l-dependent effective potentialVeff(r,l) defined in
the regionrP(0,̀ ) by

Veff~r,l !55
Ein~ l ![

\2

2m* r in
2 ~ l 22 1

4 ! for rP~0,r in!

\2

2m* r2 ~ l 22 1
4 ! for rP@r in ,rout#

Eout~ l ![
\2

2m* rout
2 ~ l 22 1

4 ! for rP~rout,`!,

~10!

wherer in , rout denote the radii of inner and outer contac
respectively. Thus, we must solve the Schro¨dinger Eq.~4!
with the effective potentialVeff(r,l) under these condition
d

th
d

n-
by

s-

,

for the electronic transport in a Corbino disk. Since the
lution of the Schro¨dinger equation inside the electrodes
accordingly given by the linear combination of two wav
propagating to the6r directions, an electron in the annula
2DEG entering the electrodes can never come back to
annular region attached to such ideal contacts.

Now, let us consider the solutions of the Schro¨dinger Eq.
~4! with the effective potential~10!. Schematic view of the
effective potentialVeff(l,r) for l 50, 61 is given in Fig. 1~b!.
In order to obtain the solutions of Eq.~4!, we solve it sepa-
rately for mode l in the regions of rP(0,r in), r
P@r in ,r imp), rP(r imp ,rout#, andrP(rout,`), and then im-
pose the boundary conditions atr5r in , r5r imp , and r
5rout on those wave functions. It should be noted that
these regions, there isno effect due to the presence of th
impurity @i.e., G lm50 in Eq. ~4!#. The wave functions,
J l(r)’s, in each region are given by
J l~r!55
al

Akl , in

eikl , inr1
bl

Akl , in

e2 ikl , inr for rP~0,r in!

elr
1/2Zl~ar!1 f lr

1/2Z̃l~ar! for rP@r in ,r imp!

glr
1/2Zl~ar!1hlr

1/2Z̃l~ar! for rP~r imp ,rout#

cl

Akl ,out

eikl ,outr1
dl

Akl ,out

e2 ikl ,outr for rP~rout,`!,

~11!
h

ting

an

e

wherea5A2m* uEu/\2 andZl , Z̃l are, respectively, define
by

Zl~ar!5Jl~ar!, Z̃l~ar!5Nl~ar! for E>0,

~12!

Zl~ar!5I l~ar!, Z̃l~ar!5Kl~ar! for E,0.

Here, Jl(x) denotes a Bessel function,Nl(x) a Neumann
function, I l(x) a modified Bessel function, andKl(x) a
modified Neumann function.16 Thekl , in andkl ,out in Eq. ~11!
are the radius wave vectors in the inner-contact and
outer-contact regions, respectively. For propagating mo
(E.Ein~out!), kl , in~out! are given by

kl , in~out!5S 2m* $E2Ein~out!~ l !%

\2 D 1/2

5Fk22S l

r in~out!
D 2

1
1

4r in~out!
2 G1/2

, ~13!

whereas for the evanescent modes@E,Ein~out!#, kl , in~out! are
given by
e
es

kl , in~out!5 i S 2m* $Ein~out!~ l !2E%

\2 D 1/2

5 i F S l

r in~out!
D 2

2
1

4r in~out!
2 2k2G1/2

[ ik l , in~out! .

~14!

Herek5A2m* E/\2 is the wave vector of an electron wit
energyE. For a given energyE, we write the largest model
as l in~out!* such that the wave function becomes a propaga
wave mode@i.e., E.Veff(rin~out! ,l )] at the inner~outer! con-
tact.

l in~out!* 5IntF S 2m* E

\2 r in~out!
2 1

1

4D 1/2G . ~15!

Here Int@x# represents the largest integer that is smaller th
x. It should be noted thatl out* is always greater thanl in* .
These wave functionsJ l(r) given in Eq.~11! must satisfy
the following boundary conditions for the continuity of th
wave functions:

J l~r20!5J l~r10!,
~16!

dJ l~r!

dr U
r20

5
dJ l~r!

dr U
r10

at r in ,rout

and
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J l~r imp20!5J l~r imp10!,
~17!

dJ l~r!

dr U
r imp10

2
dJ l~r!

dr U
r imp20

5 (
m52`

`

G̃lmJm~r imp!.

It is noted that each model is not independent but couple
with another modem (Þ l ) ~i.e., G̃lmÞ0 for lÞm) at r
5r imp . This is because the circular symmetry is destroy
by the impurity in the system. Imposing these continu
conditions@Eqs.~16! and ~17!# on the wave functionJ l(r)
in Eq. ~11! at the boundaries (r5r in~out! and r5r imp)
and also the normalization condition forJ l(r), we
can in principle determine a set of paramete
(al ,bl ,cl ,dl ,el , f l ,gl ,hl) for a given electron energyE. The
summation on the right-hand side of Eq.~17! includes the
infinite number of coupled modes, so that one must solve
infinite dimensional simultaneous equations to obtain the
act value of those parameters (al ,...,hl).

The transmission coefficientTnl from a propagating mode
n (, l in* ) in the inner contact to a propagating model
(, l out* ) in the outer contact can be expressed as

Tnl5U cl

an
U2

. ~18!

It should be noted again that one must take into account
infinite number of coupled modes to obtain the exact ans
for Tnl . The conductance can be related to a transmiss
coefficient through the Landauer-Bu¨ttiker formula for
multichannels.11,12 The conductanceG of Corbino disks is
thus given by

G5
2e2

h (
n52 l in*

l in*

(
l 52 l out*

l out*

Tnl , ~19!

whereTnl is given by Eq.~18!. Actual numerical calculation
of the Tnl can be carried out by the method of trans
matrix17,18in which we have taken the summation in Eq.~17!
up to umu5Nc . ~See the Appendix.! HereNc should be large
enough to include sufficient evanescent modes. We note
that the transmission coefficientTnl is then given as a func
tion of Fermi energy.

III. RESULTS AND DISCUSSION

The zero-temperature conductanceG of a nanoscale
Corbino disk in the presence of singled-function impurity is
calculated as a function of the Fermi energyEF for various
cases by making use of Eq.~19! along with Eq.~18! ~see also
the Appendix!.

A. Repulsive impurity

Figure 2 shows Fermi-energy dependence on the con
tance in the case of repulsive impurity with differe
strengthsg at r imp5(r in1rout)/2 for the caserout/r in51.1.
The Fermi energy is scaled byEin(1) in the lower axis and
by Eout(1) in the upper axis, whereEin~out!(1) is defined by
Eq. ~10!. Thus, the effective potential of model at the inner
~outer! contact~which we refer to thel th subband energy! is
expressed by (4l 221)/3 in the lower~upper! axis of the
d

s

e
x-

e
er
n

r

re

c-

figure. We have used the effective mass of an electron
m* 50.067m0 for GaAs in this paper. In the presence
singled-function impurity, theu component of the impurity
position (u imp) doesnot affect the conductance due to th
geometric symmetry of the Corbino disk. The strengths
the impurity are listed in the figure. For comparison, t
conductance for the ballistic~impurity-free! case is drawn as
a solid line. The conductance is zero in the energy reg
EF,Eout(0) for which the lowest model 50 cannot flow
from inner contact to outer contact. The ballistic conductan
increases step wisely at eachEin(1,2, . . . ) and isapproxi-
mately given by G5(2e2/h)(2l in* 11) as discussed by
Kirczenow.1 Here l in* is given by Eq.~15!. Due to the reflec-
tion by the spatially varying effective potentialVeff , the con-
ductance curve is rounded even in the ballistic case. As s
in the figure, the repulsive impurity doesnot alter the quali-
tative behavior of the ballistic conductance though it d
creases slightly due to the increase of the reflection by
impurity potential. Interestingly, the conductance is less
fected by the repulsive impurity in the energy region
Eout( l ),EF,Ein( l ) for eachl. In this energy region, there
are in general more than one propagating mode in the o
contact than in the inner contact. Therefore, an electron w
energyEP@Eout( l ),Ein( l )# incoming from inner contact can
be transmitted into outer contact easily.

B. Attractive impurity

Figures 3~a! and 3~b! show Fermi-energy dependence o
the conductance in the case of attractive impurity. The sa
values ofr imp androut/r in are used as in Fig. 2. Being dif
ferent from the case for repulsive impurity, the conductan
quantization is significantly affected by the presence
single-attractive impurity, and also by its strength. Let
first consider the case for weak~shallow! impurity having
g52g0 @520.29Ein(1)r in

2 # @dotted line in Fig. 3~a!#. In
this case, we can see that the conductance is zero just b
the energy atEout(1). In this energy, as seen in Fig. 1~b!,
there is only one propagating model 50. Hence, the intra-
mode transmission probability of model 50 is zero at that
energy. This anomalous decrease in the transmission p

FIG. 2. ConductanceG vs Fermi energyEF for nanoscale
Corbino disk with single repulsived-function impurity. Impurity is
located atr imp5(r in1rout)/2. ConductanceG is scaled by 2e2/h.
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ability can be realized by taking into account the evanesc
modes. As seen in Eq.~4!, the potential energy felt by an
electron is actually given by the sum of effective potent
Veff(r,l) and impurity potentialVimp . The lowest value of the
effective potentialVeff(r,l561) is Eout(1) as seen in Fig.
1~b!. Thus, weak attractive impurity potential formed in th
effective potentialVeff(r,l) has a bound energy just belo
Eout(1). Therefore, an electron with energy just belo
Eout(1) cannot flow through the propagating model 50
since the electron is bounded by the potential well formed
the effective potentialVeff(r,1). That is why the transmissio
probability in this case is zero. This bound state is cal
quasiboundstate and is essentially the same as one obse
in quantum wires.7,8 However, in the case of Corbino disk
the appearance of dips in the conductance is very differen
each step. In the case of the weakest attractive impurity@dot-
ted line in Fig. 3~a!#, we can see the dip in the second and
third step as well just belowEout(2) and Eout(3), respec-
tively. These dips are, however, not so deep as the first
This feature can be explained as follows. Since the spa
variation of Veff becomes larger for largerl, it is hard for
weak attractive impurity potential to confined an electron
the effective potentialVeff for large l. That is why the dip in
the second and third step is shallow. When we increase
strength of attractive impurity, the dip in the first step of t
conductance shifts to the lower-energy side and the dip in

FIG. 3. ConductanceG vs Fermi energyEF for nanoscale
Corbino disk with single attractived-function impurity for five dif-
ferent strengths. ConductanceG is scaled by 2e2/h.
nt
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second step becomes deeper, at which the conductan
232e2/h. In this case, the quasibound state is formed j
below Eout(2) even though the spatial variation ofVeff(r,2)
is large since the strength of the impurity is made stronge
should be noted that since we assumed attractived-
function’’ impurity, the maximum decrease of the condu
tance due to the quasibound state is 2e2/h. The dip in the
third step is thus still shallow.

Next we consider the case for an impurity with streng
g521.82g0 @dash-dotted line in Fig. 3~a!#. In this case, the
quasibound state drops below the bottom energy of the
step and the dip in the first step disappears. The dip in
second step shifts to the lower-energy side and the dip in
third step becomes deeper, at which the conductanc
432e2/h. When we further increase the strength of the i
purity @dotted line in Fig. 3~b!#, the conductance in the firs
step increases because the quasibound state does not
ence the first step of the conductance in this case. Then
dip in the second step disappears. As a whole, as the stre
of the attractive impurity is increased, the effect of the qu
sibound state appears especially in the higher step, while
effect in the lower step becomes weak. The dashed line
Fig. 3~b! shows the case for the very strong attractive imp
rity. In this case the impurity potential is so strong that t
first three steps of the conductance are not influenced by
quasibound state and the conductance curve resembles o
the case of the strong repulsive impurity~cf. Fig. 2!.

C. Impurity position dependence on the conductance

Next, we consider the Corbino disk withrout/r in51.5. In
this case the effective potentialVeff(r,l) varies fromr in to
rout greatly as compared with the case forrout/r in51.1.
Thus, in the case of weak attractive impurity, the effect
the quasibound state appears in the first step of the con
tance distinctively. In Fig. 4 we show the position depe
dence on the conductance for weak attractived-function im-
purity. Since we are interested in the effect of the quasibo
state, we show only the first step of the conductance in
figure. As seen in the figure, as the position of impurityr imp
approaches inner contact, the dip due to the quasibound
shifts to the lower-energy side. This feature can be explai
as follows. In the circular polar coordinates thed-function
impurity is expressed by Eq.~7!, which contains 1/r. Thus,

FIG. 4. ConductanceG vs Fermi energyEF for nanoscale
Corbino disk with single attractived-function impurity at three dif-
ferent positions of the impurity. ConductanceG is scaled by 2e2/h.
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in the 1D-like Schro¨dinger Eq.~4!, the impurity potential
behaves like 1/r imp . Therefore, the effect of the impurit
becomes strong when the impurity is put near the inner c
tact, while it becomes weak when the impurity is put near
outer contact. That is why the dip shifts lower in energy
the position of attractived-function impurity approaches in
ner contact. Due to the same reason, the conductance
creases slightly when single repulsived-function impurity is
put near the inner contact, but its overall feature does
alter.

IV. CONCLUSION

In this paper, we have shown quantum-mechanical tr
ment of 2D electronic system with any impurity potential
the polar coordinates, and studied the electronic trans
problems of a Corbino disk~i.e., annular 2DEG! with single
d-function impurity. On the basis of Landauer-Bu¨ttiker
formalism,11,12 we derived the formula for conductance of
Corbino disk by assuming ideal contacts~electrodes! pro-
posed by Kirczenow.1 Actual numerical calculations of th
conductance were carried out by utilizing a method of tra
fer matrix.17,18

In the case where single repulsived-function impurity is
present in nanoscale Corbino disk, we found that the cond
tance changes stepwise at the energies where new condu
channels are opened as in the ballistic case. Even in the
where the strength of the impurity is strong, the qualitat
feature of the conductance remains the same. This indic
that the presence of single repulsived-function impurity does
not alter the conductance quantization and the qualita
feature for the ballistic case significantly. On the other ha
in the presence of single-attractived-function impurity, the
qualitative behavior of the conductance is different from
ballistic case due to the quasibound states formed by
presence of attractive impurity. This is because electrons
actually bounded by the potential well formed by the effe
tive potentialVeff and the impurity potentialVimp . Above all,
the dips in the conductance appear at the energies of q
bound states in the potential well. In a Corbino disk, t
effective potential varies withr22 and its variation fromr in
to rout is larger for largel. Accordingly, the quasibound
states due to the attractive impurity are hard to be forme
the effective potential with largel. As a result, the dip of the
conductance appears distinctively in the first step of the c
ductance for weak~shallow! impurity whereas for strong
~deep! impurity it appears in the second or subsequent ste
depending on the strength of the impurity. Finally, the eff
of the quasibound state due to the presence of attractive
purity is strong when the impurity is put near the inner co
tact, resulting in the dip shifting to the lower-energy side

In this paper, we have presented the first theoretical st
of the transport properties of nanoscale Corbino disks w
single d-function impurity. It is hoped that this work wil
stimulate interest in these systems and facilitate future
periments.

APPENDIX

The method of transfer matrix is outlined to calculate t
conductance numerically in the present system. In Eq.~11!,
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we express the coefficients of the wave functionJ l(r) in the
electrodes in terms of the (2Nc11)-component vectors:

a†5$a2Nc
,a2Nc11 ,...,a0 ,...,aNc21 ,aNc

%,

b†5$b2Nc
,b2Nc11 ,...,b0 ,...,bNc21 ,bNc

%,
~A1!

c†5$c2Nc
,c2Nc11 ,...,c0 ,...,cNc21 ,cNc

%,

d†5$d2Nc
,d2Nc11 ,...,d0 ,...,dNc21 ,dNc

%.

Here,Nc is a cutoff mode satisfyingNc@ l in* , l out* for l in,~out!*
defined by Eq.~15!. Then, the 2(2Nc11)-component vec-
tors (a,b)† and (c,d)† are related to the 2(2Nc

11)32(2Nc11) transfer matrixM̂ :

S a
bD5M̂ S c

dD , ~A2!

whereM̂ is defined by

M̂5 P̂21~r in!Q̂~ar in!Q̂21~ar imp!

3$Q̂~ar imp!2Ĝ~ar imp!%Q̂
21~arout!P̂~rout!. ~A3!

Each matrix, P̂(x), Q̂(x), and Ĝ(x), expresses a 2(2Nc

11)32(2Nc11) matrix. P̂(x) is defined as

P̂~x!5S P̂11~x!

P̂21~x!

P̂12~x!

P̂22~x!
D . ~A4!

It is noted that the elements ofP̂(x), P̂11(x), P̂12(x),
P̂21(x), and P̂22(x), represent the (2Nc11)3(2Nc11)
matrix, and they are given by

$P̂11~x!% lm5$P̂12~x!% lm5
1

Akl~x!
d lm ,

$P̂21~x!% lm5 iAkl~x!d lm , ~A5!

$P̂22~x!% lm52 iAkl~x!d lm ,

respectively. Here,kl(x) is the wave vector of an electro
and is given bykl(x)5A2m* @E2Veff(x,l)#/\2. Similarly, the
matrix Q̂(x) is defined as

Q̂~x!5S Q̂11~x!

Q̂21~x!

Q̂12~x!

Q̂22~x!
D , ~A6!

where

$Q̂11~x!% lm5z l~x!d lm , $Q̂12~x!% lm5 z̃ l~x!d lm ,

~A7!

$Q̂21~x!% lm5z l8~x!d lm , $Q̂22~x!% lm5 z̃ l8~x!d lm .

It is noted thatz l(x) and z̃ l(x) are actually given by

z l~x!5AxZl~x!, z̃ l~x!5AxZ̃l~x!, ~A8!
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andz l8(x) and z̃ l8(x) express the first derivative ofz l(x) and
z̃ l(x) with respect tox, respectively. Here,Zl(x), Z̃l(x) are
defined by Eq.~12!. The Ĝ(x) in Eq. ~A3! can be also ex-
pressed by

Ĝ~x!5S Ĝ11~x!

Ĝ21~x!

Ĝ12~x!

Ĝ22~x!
D , ~A9!

where

$Ĝ11~x!% lm5$Ĝ12~x!% lm50,

$Ĝ21~x!% lm5G̃lmzm~x!, ~A10!

$Ĝ22~x!% lm5G̃lmz̃m~x!.

Accordingly, the transfer matrixM̂ can be also expressed
terms of four submatrices (M 11 ,M 12 ,M 21 ,M 22) as

M̂5S M̂ 11

M̂ 21

M̂ 12

M̂ 22
D . ~A11!
i
T

H.
A

Here, each submatrix has (2Nc11)3(2Nc11) elements.
The transmission coefficient from a propagating moden
(, l in* ) in the inner contact (r in) to a propagating model
(, l out* ) in the outer contact (rout) can thus be expressed b

Tnl5U cl

an
U2

5u$M̂ 11
21 % l ,nu2. ~A12!

By making use of Eq.~A12! and the Landauer-Bu¨ttiker
formula11,12 for multichannels, conductanceG of Corbino
disks can be evaluated from

G5
2e2

h (
n52 l in*

l in*

(
l 52 l out*

l out*

Tnl5
2e2

h (
n52 l in*

l in*

(
l 52 l out*

l out*

u$M̂ 11
21 % l ,nu2,

~A13!

where the transmission coefficientTnl should be calculated
at the Fermi energyEF . In the numerical calculation, we
have chosenNc57 throughout this paper.
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