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Exact solution of the Thomas-Fermi two-dimensionalN-electron parabolic quantum dot
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The Thomas-Fermi approach is applied to the problem of the two-dimensional parabolic quantum dot. The
equation is solved exactly in conjunction with Poisson’s equation for a circularly symmetric parabolic con-
finement. The solutions depend only on the ratio between the square of the product of the confinement constant
and the dielectric constant of the host material and on the number of electrons. Asymptotic solutions for weak
and strong confinement were also obtained for the chemical potential, the total energy, and the differential
capacitance, reproducing the correct trends. For bounded parabolic potentials, an estimate of the maximal
number of electrons that a dot can support is given. Appropiate Gaussian asymptotic behavior for the density
is obtained by including a Weizsker-type kinetic energy terniS0163-18208)07831-X

[. INTRODUCTION that a bounded dot can support is given. In Sec. IV we com-
pare our results and discuss the effect of the inclusion of a
The study of quantum dots with parabolic confinementWeizsaker-type correction to the kinetic energy.

has been the object of very active research in recent years
(see, e.g., Refs. 1 and 2 and references therblost quan- Il. EXACT SOLUTIONS
tum dots are structures of mesoscopic dimensions con- . . . :
structed on semiconductor surfaces or iFr)lterfaces. While their Th_e Tr;]omafsf-Fe_rm equation forDa_-d|m_en5|ona| zlectro_n
effective dimension is usually 2, the presence of many intergzlg_l'? the efiective-mass approximation can be written
acting electrons renders the computation of the ground sta
and charge density a complicated many-body problem. For
that reason only few electron dots have been treated to a
fairly high degree of accuracy. Exactly solvable models have

been proposed in order to gain insight into the behavior of

. . . .
these systenis® at the exact, Hartree-Fock, or Hartree level, wr;gr;rg eié?r?a?ﬁ%igxzanh}asifiri t(re]lee g?;g;&om;zm?;f
using simplified electron-electron interaction potentials. v P e P '

When the number of electrons is large enough, the systel%at'Sfymg Poisson's equation, apdis the chemical poten-

i i 2/D i i i
behaves like an electron gas. It is then that the Thomas:[—'al' Sincepgap™ (D is the dimension of the spacand

Fermi approximation becomes useful. This approximationVe=J/dr'p(r" )K([r—r’[), where K is the kernel of the
and its modificatios! have been of frequent use in the €lectron-electron interaction, one obtains

computation of ground state properties of three-dimensional - -

problems, e.g., in the treatment of atoms, molecules, solids, m=v(ro)+Ve(ro), 2
and nuclei. It has been aiso applied to the calculation O{/vherefo is the classical turning point, at which the density

properties of quasi-two-dimensional systems, such as planar sh his is a fund | tude si -t will d
molecules? Recently, Liebet alX3 rigorously analyzed the o ones: This is a fundamental magnitude since it will de-

two-dimensional Thomas-Fermi problem in the presence of éermme the appearance of the conductance peak by the

magnetic field, with dthree-dimensionalCoulomb electron- ggtjea;!zatmn of the dot's chemical potential with that of the

electron interaction and parabolic confinement. The three= . . . :
. . ) ) The two-dimensional Thomas-Fermi equatidn has to
dimensional version of the Thomas-Fermi problem of para;

bolic confinement was discussed by Ballinger and Mafch. be solved in conjuction with Poisson’s equation
Here we solve exactly the two-dimensional Thomas- -
o o . - p(r)
Fermi equation coupled to Poisson’s equation for a parabolic V= —2m—=, (3)
circular quantum dot. Our approach allows the analysis of €

the behavior of fundamental magnitudes in the limits ofyhearec is the dielectric constant of the host material. Solv-

strong and weak confinement. For the purpose of compariyg the above equation for the electrostatic potential we get
son, we have also solved the corresponding classical prob-

lem. The article has been structured as follows. In Sec. Il we . 1 . .

solve exactly the two-dimensional Thomas-Fermi equation Ve(r)=— Ef d’r’p(r")In([r—r'|/a). 4
coupled to Poisson’s equation and the corresponding classi-

cal problem. In Sec. Ill we analyze the cases of weak andEquation (4) fixes the form of the kernel of the electron-
strong confinement and we calculate the effective size, thelectron interaction. Obviously, any other choice of the ker-
chemical potential, the total energy, and the differential canel (see, e.g., Ref.)5will not satisfy Poisson’s equation. In a
pacitance. An estimate of the maximal number of electrongircularly symmetric configuration, E¢4) can be written as

PE+u+Ve=p, 1)

m*
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r r * 2
Inrfodr’r’p(r’)+J’r Odr’r’lnr’p(r’)} o(X)= m : E{l— |Io§(l:<)) , x=<1 (149

(5) 0, x=1. (15

Vo(r)=—2m

+NIna,

wherea is a constant that fixes the zero of the electrostatic It can be seen that there is no need of having an infinite
potential. A choice ofi=r, will guarantee that the electron- confining parabola since the density vanishes beyond a cer-
electron interaction is always repulsive inside the dqf ( tain value of the radius. In practical situations the confining
=|ro|). For simplicity we will takea=r, which means that potential is always bounded. Let us assume that the maximal
V(ro)=0. This form of the electron-electron interaction is Value of the conflnlnlglzpotennal ¥o. From Eq.(7) there is a
more realistic than, e.g., the harmonic oisee, e.g., Refs. radiusR=(2V,/m*)~7 w, such that for <R the parabolic

2-5). potential is valid, and then we assume that the Thomas-
From Eq.(1) Fermi approximation will work for ;<R since any electron
outside the confining potential will be free. This means that
p(F) T . mfe? the constraint that fixes the maximal number of electrons that
V2V9=—27TT=V2 p=—p(N-— r?2| (6) the dot can support will be
m
2(V 1/2
using that in two dimensiong2=2mp and taking K< _<_°) , (16)
w\ €
. Mfe?
v(r)= > r2 (7) The determination ok will be done with the help of the
normalization condition
as the confining potentiéthroughout the whole paper we are L (k)
going to use the units ah,=e=e€;=%=1), whereow is the N=2 rzf dx Xo(x)= w2e2k2 1— —* K 1
strength parameter of the potenti@lonfinement constant o 0 Xo(X)= "€k klo(k)|’ (17
For circular symmetry and making the change of variables .
ie.,
y=p—m* w’el , (8)
_ . N «® &ly(k) 1
with x=r/r,, and defining 222 To(n) (18
k=(2m*/e)Y?ry, (9)

from which we can determine, A, ry, and . The above
we obtain the differential equation equation means that (and the rest of the magnitudes of
interesj is a function only ofQ) = w2e?/N.
! It has been shown in Ref. 13 that the classical lihé.,

y'+ x K?y=0 (10 the kinetic energy term is neglechegives the correct limit
for weak confinement. Here we are going to do the same
for x<1 and we take calculation, but requiring that Poisson’s equation be satisfied,
ie.,
p(x)=0 11
* w2r2
for x=1, as usual in the Thomas-Fermi approximation. The +V(r)=pu. (19
solution of Eq.(10) for p is 2
m* we Using Eq.(3) we obtain
p(X)=Alo(kX)+BKo(xX) + ———, (12 m* wZe
[l rSrOC
wherel o(x) andKy(x) are the modified Bessel functions of pe(r)= ™ (20
the first and second kind, respectivéfyand A and B are 0, r<roc,
constants. Taking into account that for0, I4(x)— 1, and (22)

Ko(x)— — (Inx/2+ C), 8 we see thaB=0, since close to the
origin the external potential is zero.
The continuity condition op(1)=0 gives us that

where thec stands for classical. The turning poird. can
now be determined from the normalization condition, which
gives

A=— . (13) N

r2 _
Oc— .
m* w?e

(22

Note that in this case, as the external potential is bounded
at the origin, the density does not diverge, like in the two- Figure 1 shows the behavior of the density for a choice of
dimensional aton}’ Instead, the density is constant close to{) =1, for which[solving numerically Eq(18)] we get that
the origin and then decays to zero at the classical turning=2.346 738. The density has been measured in units of
point m* w?e/ 7 andr in units of (e/m*)Y2,
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FIG. 1. Density of a parabolic two-dimensional quantum dot in

the Thomas-Fermi and classical approximationsQot 1. p(r) is
in units of M* w?e/# andr is in units of (e/m*)*2

The total energy can be calculated by takihgfrom Eq.
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2 2N1/4
K~ —— =—
01/4 (w6)1/2

which works with a relative error better than 0.5% fQr
>10°. The effective size of the dot can be determined using
Eq. (9):

(29

N1/2 1
fo~—~ (M* €) 12 (30)
for weak confinement and
1/2
2
o=~ NlM( _m* ) (31)
w

for strong confinement.
The chemical potential can be calculated after &j.as
w=w?ex?l4 since we have chosen the zero of the electro-

(1) and substituting it into the total energy expression, Whergaiic potential ar,. Therefore, in the strong confinement

we also see that the kinetic energy is eliminated,

1
E==

;
2,u,N+7Tm*a)2f “dr r3p(r). (23
0
Substituting and solving the integrals we get
1 1 I1(x) Io( k)
-, 22 =44 31~ _
E 8wK6N+8wKE 4 g0k |0(K)K2 .
(24)

The differential capacitance can be calculated following

1

TN AN 2

IIl. ASYMPTOTIC BEHAVIOR

In the limit of weak confinement, wherd> e2w? (Q
—0, k—o, and fixing the number of electrons—0), us-
ing the asymptotic behavior ofxl{(x)/lI4(x)=x—1/2
+0(x™ 1), we get

2

N K 1
ﬁ” 7 — K+ E, (26)
from which we get the solution
2 1/2 21/2Nl/2
K~1+(5 =1+ — (27)

In practice, the above approximation will work fé¥<0.1

limit we have
w~wN? (32)
and for the weak confinement limit
N
~ o (33

Reading the asymptotics of Eq82) and(33), we conclude
that for fixed confinement constant, the chemical potential of
the dot will change the dependence of the number of elec-
trons from a power law with an exponent of 1/2 to 1. On the
other hand, fixing the number of electrons, with the increase
of the value of confinement constant, the behavior of the
chemical potential will change from independent to a linear
dependence ow. From Egs.(19) and (22) the classical re-
sult coincides with Eq(33).

After Eqg. (24) and using the corresponding asymptotics,
in the strong confinement limit the total energy will be

2
E~§wN3’2 (34)
and for the weak confinement limit
3 N?
“8 ¢ (39

Again, for the energy we observe a change in the power law
with N (the exponents moves from 3/2 tg and for the
confinement constant from independent to a linear depen-
dence. The classical total energy can be easily calculated
using Egs(19) and(22) and gives

with a relative error better than 0.1%. The weak confinement

limit would correspond to
2

Q
Making an expansion around zero if; (x)/1 o(x) =x/2

—x416+0(x®), we get the solution for strong confinement
(N<€?w?, Q—x, andk—0)

1/2 2 1/2N 12

(28)

K~
[OX3

NZ

ECZZ'

(36)

After Eq. (25), the differential capacitance in strong con-
finement will be

1
= w[N1/2_(N_ 1)1/2] !

(37)

Cq
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If, furthermore,N>1, then The Hamiltonian for theN-electron two-dimensional
dul-1 aNY2 parabolic quantum dotis
72
Cd’\"’(_) =—. (38) N x 2N
dN ) 1 m* w N
_ -2 Vi 2 i 2 V(T 42
For weak confinement 2m*i=1 i=1 N
du| 1 For large distances, the electron-electron interaction term can
Cdm(m) =2¢ (39 be neglected and then the corresponding Stihger equa-

tion decouples in a set dfl harmonic oscillatorlike equa-

The classical result will be the same as E2p). tions, which asymptotically behave as the Gaussian dis-
Finally, let us obtain a bound for the number of electronscussed above.

that a dot can support from E¢L6). For strong confinement ~ For larger, where we expect the density to vanish, the

it will be dominant term of the kinetic energy will be the Weizkar-

type correction

vi .
N=—3 (40 ¥p(1)|?
w AT=6| dr——s——, (43)
r
and for weak confinement p(r)
where § is some parameter. Taking the functional derivative
N=<2eVp. (41)  of the above expression and taking into account that for large
distances the other surviving term will be the external poten-
IV. DISCUSSION AND FINAL REMARKS tial, we obtain
We would like to note the agreement of the behavior of IVp|2 V2% w? )
the magnitudes calculated in the weak confinement limit and iy L (44
the classical one, as can be checked by comparing the results P

for the chemical potential for the differential capacitance andsubstitution of the ansata(r)=exp(-ar?) into the above
Egs. (35 and (36) for the energy, where there is a small equation leads to the result thais proportional taw, show-
difference in the multiplicative constant, since in the classing that the inclusion of a Weizsker-type term in the ki-
_cal_ limit we have not included the kinetic-energy term. Thisnetic energy may correct the asympotic behavior of the den-
is in agreement with the results of Ref. 13 that the weaksity.
confinement limit corresponds to the classical one. We have solved exactly the problem bf particles of
Also, we would like to note the qualitative agreement of effective massn* interacting through a logarithmic potential
our results with the results of Ref. 19, where the total energyj e, satisfying Poisson’s equatioim a medium of dielectric
the chemical potential, and the differential capacitance for &gnstante confined by a harmonic field of constaatin the
few electrons in the unrestricted Hartree-Fock approximatiomhomas-Fermi approximation in two dimensions. For com-
were calculated. In their Fig. 1, a change can be seen in thgarative purposes we have also solved the classical case. We
dependence of the energy on the number of electrons upqihye calculated the chemical potential, the total energy, and
increasing the strength of confinement, in agreement Withhe differential capacitance and we have analyzed their be-
our results. Similar changes can be seen in the chemical prviors in the limits of weak and strong confinement. From
tential in their Fig. 2. The capacitance, as seen in their Fig. 3he analysis of the results we conclude that the qualitative
increases for small confining constaatand stays almost pehavior of the calculated magnitudes is the correct one and
constant for stronger confinemeat[compare with the re- that the weak confinement limit corresponds to the classical
sults of Eqgs.(37)—(39)]. Of course, we should not expect pehavior. We have also given an estimate of the maximal
oscillations in the chemical potential or the capacitance sincumber of electrons that a dot can support if the confining
we are dealing with an approximation that is not able topotential is bounded. Furthermore, we have shown that the
reproduce the shell structure. inclusion of a Weizaker-type correction to the kinetic en-

From Egs.(14) and (15 and Fig. 1 we see that the ergy may cure the improper behavior of the Thomas-Fermi
asymptotic behavior at infinity is not correct, but it can bedensity.

checked easily that the introduction of a Weidezr-type

correctlo_n to_ the klnet_lc-energy term ;NOUld give the co_rrect ACKNOWLEDGMENTS
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