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Exact solution of the Thomas-Fermi two-dimensionalN-electron parabolic quantum dot

Ramiro Pino*
Centro de Fı´sica, Instituto Venezolano de Investigaciones Cientı´ficas, Apartado 21827, Caracas 1020-A, Venezuela

~Received 5 March 1998!

The Thomas-Fermi approach is applied to the problem of the two-dimensional parabolic quantum dot. The
equation is solved exactly in conjunction with Poisson’s equation for a circularly symmetric parabolic con-
finement. The solutions depend only on the ratio between the square of the product of the confinement constant
and the dielectric constant of the host material and on the number of electrons. Asymptotic solutions for weak
and strong confinement were also obtained for the chemical potential, the total energy, and the differential
capacitance, reproducing the correct trends. For bounded parabolic potentials, an estimate of the maximal
number of electrons that a dot can support is given. Appropiate Gaussian asymptotic behavior for the density
is obtained by including a Weizsa¨cker-type kinetic energy term.@S0163-1829~98!07831-X#
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I. INTRODUCTION

The study of quantum dots with parabolic confineme
has been the object of very active research in recent y
~see, e.g., Refs. 1 and 2 and references therein!. Most quan-
tum dots are structures of mesoscopic dimensions c
structed on semiconductor surfaces or interfaces. While t
effective dimension is usually 2, the presence of many in
acting electrons renders the computation of the ground s
and charge density a complicated many-body problem.
that reason only few electron dots have been treated
fairly high degree of accuracy. Exactly solvable models ha
been proposed in order to gain insight into the behavior
these systems3–5 at the exact, Hartree-Fock, or Hartree lev
using simplified electron-electron interaction potentials.

When the number of electrons is large enough, the sys
behaves like an electron gas. It is then that the Thom
Fermi approximation becomes useful. This approximat
and its modifications6–11 have been of frequent use in th
computation of ground state properties of three-dimensio
problems, e.g., in the treatment of atoms, molecules, so
and nuclei. It has been also applied to the calculation
properties of quasi-two-dimensional systems, such as pl
molecules.12 Recently, Liebet al.13 rigorously analyzed the
two-dimensional Thomas-Fermi problem in the presence
magnetic field, with a~three-dimensional! Coulomb electron-
electron interaction and parabolic confinement. The thr
dimensional version of the Thomas-Fermi problem of pa
bolic confinement was discussed by Ballinger and March14

Here we solve exactly the two-dimensional Thoma
Fermi equation coupled to Poisson’s equation for a parab
circular quantum dot. Our approach allows the analysis
the behavior of fundamental magnitudes in the limits
strong and weak confinement. For the purpose of comp
son, we have also solved the corresponding classical p
lem. The article has been structured as follows. In Sec. II
solve exactly the two-dimensional Thomas-Fermi equat
coupled to Poisson’s equation and the corresponding cla
cal problem. In Sec. III we analyze the cases of weak
strong confinement and we calculate the effective size,
chemical potential, the total energy, and the differential
pacitance. An estimate of the maximal number of electr
PRB 580163-1829/98/58~8!/4644~5!/$15.00
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that a bounded dot can support is given. In Sec. IV we co
pare our results and discuss the effect of the inclusion o
Weizsäcker-type correction to the kinetic energy.

II. EXACT SOLUTIONS

The Thomas-Fermi equation for aD-dimensional electron
gas in the effective-mass approximation can be writ
as15–17

1

2m*
pF

21v1Ve5m, ~1!

wherem* is the effective mass,pF is the Fermi momentum
v is the external potential,Ve is the electrostatic potential
satisfying Poisson’s equation, andm is the chemical poten-
tial. SincepF}r2/D (D is the dimension of the space! and
Ve5*drW8r(rW8)K(urW2rW8u), where K is the kernel of the
electron-electron interaction, one obtains

m5v~rW0!1Ve~rW0!, ~2!

whererW0 is the classical turning point, at which the dens
vanishes. This is a fundamental magnitude since it will d
termine the appearance of the conductance peak by
equalization of the dot’s chemical potential with that of t
gates.2

The two-dimensional Thomas-Fermi equation~1! has to
be solved in conjuction with Poisson’s equation

¹2Ve522p
r~rW !

e
, ~3!

wheree is the dielectric constant of the host material. So
ing the above equation for the electrostatic potential we

Ve~rW !52
1

eE d2rW8r~rW8!ln~ urW2rW8u/a!. ~4!

Equation ~4! fixes the form of the kernel of the electron
electron interaction. Obviously, any other choice of the k
nel ~see, e.g., Ref. 5! will not satisfy Poisson’s equation. In
circularly symmetric configuration, Eq.~4! can be written as
4644 © 1998 The American Physical Society
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Ve~r !522pF lnr E
0

r

dr8r 8r~r 8!1E
r

r 0
dr8r 8lnr 8r~r 8!G

1Nlna, ~5!

wherea is a constant that fixes the zero of the electrosta
potential. A choice ofa>r 0 will guarantee that the electron
electron interaction is always repulsive inside the dotr 0

5urW0u). For simplicity we will takea5r 0, which means that
Ve(r 0)50. This form of the electron-electron interaction
more realistic than, e.g., the harmonic one~see, e.g., Refs
2–5!.

From Eq.~1!

¹2Ve522p
r~rW !

e
5¹2S m2

p

m*
r~rW !2

m* v2

2
r 2D ~6!

using that in two dimensionspF
252pr and taking

v~rW !5
m* v2

2
r 2 ~7!

as the confining potential~throughout the whole paper we a
going to use the units ofme5e5e05\51), wherev is the
strength parameter of the potential~confinement constant!.
For circular symmetry and making the change of variable

y5r2m* v2e/p, ~8!

with x5r /r 0, and defining

k5~2m* /e!1/2r 0 , ~9!

we obtain the differential equation

y91
y8

x
2k2y50 ~10!

for x<1 and we take

r~x!50 ~11!

for x>1, as usual in the Thomas-Fermi approximation. T
solution of Eq.~10! for r is

r~x!5AI0~kx!1BK0~kx!1
m* v2e

p
, ~12!

whereI 0(x) andK0(x) are the modified Bessel functions o
the first and second kind, respectively,18 and A and B are
constants. Taking into account that forx→0, I 0(x)→1, and
K0(x)→2(lnx/21C),18 we see thatB50, since close to the
origin the external potential is zero.

The continuity condition ofr(1)50 gives us that

A52
m* v2e

pI 0~k!
. ~13!

Note that in this case, as the external potential is boun
at the origin, the density does not diverge, like in the tw
dimensional atom.17 Instead, the density is constant close
the origin and then decays to zero at the classical turn
point
c

e

d
-

g

r~x!5H m* v2e

p F12
I 0~kx!

I 0~k! G , x<1 ~14!

0, x>1. ~15!

It can be seen that there is no need of having an infin
confining parabola since the density vanishes beyond a
tain value of the radius. In practical situations the confini
potential is always bounded. Let us assume that the max
value of the confining potential isV0. From Eq.~7! there is a
radiusR5(2V0 /m* )1/2/v, such that forr<R the parabolic
potential is valid, and then we assume that the Thom
Fermi approximation will work forr 0<R since any electron
outside the confining potential will be free. This means th
the constraint that fixes the maximal number of electrons
the dot can support will be

k<
2

vS V0

e D 1/2

. ~16!

The determination ofk will be done with the help of the
normalization condition

N52pr 0
2E

0

1

dx xr~x!5v2e2k2F12
I 1~k!

kI 0~k!G , ~17!

i.e.,

N

v2e2
5

k2

2
2

kI 1~k!

I 0~k!
, ~18!

from which we can determinek, A, r 0, and m. The above
equation means thatk ~and the rest of the magnitudes o
interest! is a function only ofV5v2e2/N.

It has been shown in Ref. 13 that the classical limit~i.e.,
the kinetic energy term is neglected! gives the correct limit
for weak confinement. Here we are going to do the sa
calculation, but requiring that Poisson’s equation be satisfi
i.e.,

m* v2r 2

2
1Ve~r !5m. ~19!

Using Eq.~3! we obtain

rc~r !5H m* v2e

p
, r<r 0c

0, r<r 0c ,

~20!

~21!

where thec stands for classical. The turning pointr 0c can
now be determined from the normalization condition, whi
gives

r 0c
2 5

N

m* v2e
. ~22!

Figure 1 shows the behavior of the density for a choice
V51, for which @solving numerically Eq.~18!# we get that
k52.346 738. The density has been measured in units
m* v2e/p and r in units of (e/m* )1/2.
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The total energy can be calculated by takingVe from Eq.
~1! and substituting it into the total energy expression, wh
we also see that the kinetic energy is eliminated,

E5
1

2
mN1pm* v2E

0

r 0
dr r 3r~r !. ~23!

Substituting and solving the integrals we get

E5
1

8
v2k2eN1

1

8
v4k4e3F1

4
2

I 1~k!

I 0~k!k
12

I 2~k!

I 0~k!k2G .

~24!

The differential capacitance can be calculated following19

Cd5
1

m~N!2m~N21!
. ~25!

III. ASYMPTOTIC BEHAVIOR

In the limit of weak confinement, whereN@e2v2 (V
→0, k→`, and fixing the number of electronsv→0), us-
ing the asymptotic behavior ofxI1(x)/I 0(x)5x21/2
1O(x21), we get

N

v2e2
'

k2

2
2k1

1

2
, ~26!

from which we get the solution

k'11S 2

V D 1/2

511
21/2N1/2

ve
. ~27!

In practice, the above approximation will work forV,0.1
with a relative error better than 0.1%. The weak confinem
limit would correspond to

k'S 2

V D 1/2

5
21/2N1/2

ve
. ~28!

Making an expansion around zero ofxI1(x)/I 0(x)5x2/2
2x4/161O(x6), we get the solution for strong confineme
(N!e2v2, V→`, andk→0)

FIG. 1. Density of a parabolic two-dimensional quantum dot
the Thomas-Fermi and classical approximations forV51. r(r ) is
in units of m* v2e/p and r is in units of (e/m* )1/2.
e

t

k'
2

V1/4
5

2N1/4

~ve!1/2
, ~29!

which works with a relative error better than 0.5% forV
.103. The effective size of the dot can be determined us
Eq. ~9!:

r 0'
N1/2

v

1

~m* e!1/2
~30!

for weak confinement and

r 0'N1/4S 2

m* v
D 1/2

~31!

for strong confinement.
The chemical potential can be calculated after Eq.~2! as

m5v2ek2/4 since we have chosen the zero of the elect
static potential atr 0. Therefore, in the strong confineme
limit we have

m'vN1/2 ~32!

and for the weak confinement limit

m'
N

2e
. ~33!

Reading the asymptotics of Eqs.~32! and~33!, we conclude
that for fixed confinement constant, the chemical potentia
the dot will change the dependence of the number of e
trons from a power law with an exponent of 1/2 to 1. On t
other hand, fixing the number of electrons, with the incre
of the value of confinement constant, the behavior of
chemical potential will change from independent to a line
dependence onv. From Eqs.~19! and ~22! the classical re-
sult coincides with Eq.~33!.

After Eq. ~24! and using the corresponding asymptotic
in the strong confinement limit the total energy will be

E'
2

3
vN3/2 ~34!

and for the weak confinement limit

E'
3

8

N2

e
. ~35!

Again, for the energy we observe a change in the power
with N ~the exponents moves from 3/2 to 2! and for the
confinement constant from independent to a linear dep
dence. The classical total energy can be easily calcula
using Eqs.~19! and ~22! and gives

Ec5
N2

2e
. ~36!

After Eq. ~25!, the differential capacitance in strong co
finement will be

Cd'
1

v@N1/22~N21!1/2#
. ~37!
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If, furthermore,N@1, then

Cd'S dm

dND 21

5
2N1/2

v
. ~38!

For weak confinement

Cd'S dm

dND 21

52e. ~39!

The classical result will be the same as Eq.~39!.
Finally, let us obtain a bound for the number of electro

that a dot can support from Eq.~16!. For strong confinemen
it will be

N<
V0

2

v2
~40!

and for weak confinement

N<2eV0 . ~41!

IV. DISCUSSION AND FINAL REMARKS

We would like to note the agreement of the behavior
the magnitudes calculated in the weak confinement limit
the classical one, as can be checked by comparing the re
for the chemical potential for the differential capacitance a
Eqs. ~35! and ~36! for the energy, where there is a sma
difference in the multiplicative constant, since in the clas
cal limit we have not included the kinetic-energy term. Th
is in agreement with the results of Ref. 13 that the we
confinement limit corresponds to the classical one.

Also, we would like to note the qualitative agreement
our results with the results of Ref. 19, where the total ener
the chemical potential, and the differential capacitance fo
few electrons in the unrestricted Hartree-Fock approxima
were calculated. In their Fig. 1, a change can be seen in
dependence of the energy on the number of electrons u
increasing the strength of confinement, in agreement w
our results. Similar changes can be seen in the chemica
tential in their Fig. 2. The capacitance, as seen in their Fig
increases for small confining constanta and stays almos
constant for stronger confinementc @compare with the re-
sults of Eqs.~37!–~39!#. Of course, we should not expe
oscillations in the chemical potential or the capacitance si
we are dealing with an approximation that is not able
reproduce the shell structure.

From Eqs. ~14! and ~15! and Fig. 1 we see that th
asymptotic behavior at infinity is not correct, but it can
checked easily that the introduction of a Weizsa¨cker-type
correction to the kinetic-energy term would give the corr
one, which is proportional to exp(2vr2). For arbitrary di-
mensions, writing the first-order density matrix as a prod
of a local ~purely density-dependent! factor and a nonloca
one gives a separation of the kinetic energy into Weizsa¨cker
and a non-Weizsa¨cker terms20 ~see also, e.g., Ref. 21!. This
suggests the appearance of a Weisza¨cker-type correction to
the kinetic energy.
s
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The Hamiltonian for theN-electron two-dimensiona
parabolic quantum dot is2

2
1

2m*
(
i 51

N

¹ i
21

m* v2

2 (
i 51

N

r i
21(

i , j
V~ urW i2rW j u!. ~42!

For large distances, the electron-electron interaction term
be neglected and then the corresponding Schro¨dinger equa-
tion decouples in a set ofN harmonic oscillatorlike equa
tions, which asymptotically behave as the Gaussian
cussed above.

For larger , where we expect the density to vanish, t
dominant term of the kinetic energy will be the Weizsa¨cker-
type correction

DT5dE drW
u¹W r~rW !u2

r~rW !
, ~43!

whered is some parameter. Taking the functional derivati
of the above expression and taking into account that for la
distances the other surviving term will be the external pot
tial, we obtain

u¹W ru2

r2
22

¹2r

r
'2

v2

2d
r 2. ~44!

Substitution of the ansatzr(r )}exp(2ar2) into the above
equation leads to the result thata is proportional tov, show-
ing that the inclusion of a Weizsa¨cker-type term in the ki-
netic energy may correct the asympotic behavior of the d
sity.

We have solved exactly the problem ofN particles of
effective massm* interacting through a logarithmic potentia
~i.e., satisfying Poisson’s equation! in a medium of dielectric
constante confined by a harmonic field of constantv in the
Thomas-Fermi approximation in two dimensions. For co
parative purposes we have also solved the classical case
have calculated the chemical potential, the total energy,
the differential capacitance and we have analyzed their
haviors in the limits of weak and strong confinement. Fro
the analysis of the results we conclude that the qualita
behavior of the calculated magnitudes is the correct one
that the weak confinement limit corresponds to the class
behavior. We have also given an estimate of the maxim
number of electrons that a dot can support if the confin
potential is bounded. Furthermore, we have shown that
inclusion of a Weizsa¨cker-type correction to the kinetic en
ergy may cure the improper behavior of the Thomas-Fe
density.
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