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Boundary-condition problem in the Kane model
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The boundary conditions for a multicomponent effective wave function are obtained in the eight-band Kane
model. The relations are established between boundary-condition matrix elements and the Kane Hamiltonian
parameters in constitutive semiconductors. In general, these relations are incompatible with component-by-
component continuity of the effective wave function, traditionally employed in multiband models. We show
that the boundary conditions in the isotropic eight-band Kane model involve three linearly independent phe-
nomenological parameters. Neglecting the spin-orbit interaction at the heterointerface, only two parameters are
required to completely describe the matching conditions. These parameters do not depend on the energy of the
charge carrier state, hence the nonparabolic regime is described in the most natural way. The boundary
condition matrices are derived also for the most important approximate limits: the six-band Kane model,
describing the energy spectrum of narrow-gap semiconductors, and the four-band Luttinger model, describing
the valence-band top energy region in zinc-blende and diamondlike semiconductors.
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I. INTRODUCTION

In multiband effective mass theory an electric charge c
rier state can be represented phenomenologically by a
umn of smoothly varying functions,C5$cn%, convention-
ally referred to as envelope functions. The number of th
functions equals the number of energy bands explicitly c
sidered in the model. In a homogeneous crystal, such a m
ticomponent wave function satisfies the Schro¨dinger equa-
tion with an effective matrix HamiltonianĤ. The general
form of the effective Hamiltonian can be obtained by sy
metry considerations alone,1–3 while the values of the phe
nomenological parameters used in the Hamiltonian are de
mined primarily by the microscopic structure of the cryst
In the presence of an abrupt heterointerface it seems t
possible to also separate themesoscopic, or quasiparticle,
description of the charge carrier state~on the spatial scale o
the quasiparticle de Broglie wavelength! from the micro-
scopic description ~on the characteristic scale of a lattic
constant!. Below we consider an abrupt heterointerfacez
50 between semiconductorsA andB. The phenomenologi-
cal description of an arbitrary mesoscopic state in the bulk
constitutive semiconductors by means of an effective Sch¨-
dinger equation should be accomplished with appropr
boundary conditions providing the matching procedure
tween theA andB parts of the effective wave functionC.
Since the effective Hamiltonian is supposed to include te
quadratic in the momentum operatorp52 i\¹, the required
boundary conditions are of the form

S CA

CA8
D

z520

5TABS CB

CB8
D

z510

; ~1!
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TAB5S F̂ Ŝ

R̂ Ĝ
D ; C5S c0

A

cn

D ; C85
]C

]z
.

Boundary conditions for the effective wave function ca
not be obtained by integrating the field equations across
interface, since the phenomenological equations of the ef
tive mass theory are valid neither at the heterointerface
inside any hypothetical transition layer.4 Nevertheless, the
integration procedure is often used in multiband models t
assume the continuity of wave-function envelopes, result
in boundary conditions of the following type:5–7

CA5CB ; ĵ zCA5 ĵ zCB ; j ẑ5
]Ĥ

]pz
. ~2!

Here ĵ z is thez component of an effective current operato
The assumptionF̂ 51, used in the latter form of boundary
conditions, is not generally justified. It has been argued fo
long time that more complete form of boundary conditio
should be used, which includes some inherent paramete
the heterointerface.8–16 The most general boundary cond
tions of this kind consistent with the effective-mass appro
mation were suggested by Andoet al.,12 and in this paper we
extend their method to eight-band Kane model,2 which is
widely used for the description of electron energy spectra
direct-band-gapA3B5 andA2B6 semiconductor heterostruc
tures. Boundary conditions in the general form~1! have not
been obtained yet for this model, thus the simplified euris
form ~2! is still in use even for very subtle problems.17,18
4605 © 1998 The American Physical Society
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In this paper we follow the traditional effective-ma
scheme and construct the effective quasiparticle wave fu
tion piecewise in the different materials, rather than us
more sophisticated technique developed recently by Bu13

which requires some modifications of the Hamiltonian. N
modification of the effective Hamiltonian is assumed in o
approach, so we can keep the original eight-band bulk K
Hamiltonian, which is usually well known for constitutiv
materials. In the proposed scheme the boundary cond
matrix structure is determined only by the reduction of t
symmetry group of the effective bulk Hamiltonian due to t
presence of an abrupt heterointerface. In this reduced s
metry group the matrix representation of the multicompon
effective wave function also becomes reducible, and wa
function components associated with equivalent irreduc
representations mix at the interface, resulting in a nontriv
structure of boundary condition submatrices in Eq.~1!. We
assume an isotropic bulk quasiparticle energy spectr
which is a good approximation for most of the cubicA3B5
semiconductors. High-symmetry interface perpendicular
four-fold or three-fold axis is assumed between two adjac
crystals. This is equivalent to the reduced symmetryC`v of
the electron energy spectrum of the heterostructure. Effe
resulting from the reduced symmetry of some particular h
erointerfaces, such as theC2v symmetry of a zinc-blende
based$001% interface, can be included in our boundary co
ditions as additive terms.17 Luttinger model with anisotropic
bulk quasiparticle energy spectrum is considered in the
section of the paper.

We show that in the eight-band Kane model the bound
condition set includes only three independent phenome
logical parameters and, therefore, the boundary condi
matrix, TAB , assumes a rather simple form in a wide varie
of applications. These parameters, being determined by
microscopic structure of the heterointerface, do not dep
explicitly on the quasiparticle energy, thus the nonparabo
ity of the energy spectrum can be treated in the most sim
and effective way. We show also that in the framework
multiband effective-mass theory the number of bound
conditions implied on the smooth envelope functions d
not necessarily equal the number of bands explicitly con
ered in the model. A simple and unambiguous truncat
procedure for boundary conditions is defined in this pape
avoid the problem of spurious solutions.19–22No independent
matrix invariant in the effective Hamiltonian has been
jected in our scheme for this purpose in contrast to the
approach.22 Finally, we derive the truncated boundary cond
tion systems for smooth effective wave function in the s
band Kane model,2 describing narrow-band semiconducto
and in the four-band Luttinger model,1 corresponding to the
valence-band top energy region.

II. BASIC RELATIONS AND THE KANE MODEL
WITHOUT SPIN

The boundary condition problem can be more clearly
lustrated if we first consider the simplest isotropic four-ba
Kane model without spin. This model phenomenologica
describeskp mixing between two close groups of basis ele
tron states with opposite parities,$u0% and $u1 ,u2 ,u3%,
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~states ofs- and p-type symmetry, respectively!. The effec-
tive wave function of an arbitrary mesoscopic state is rep
sented in this basis by the four-component columnC, which
consists of scalarU and vectorV̄ parts~with allowance for
spin, these become, respectively, one even and three
spinors!:

C5S U

V̄
D . ~3!

The overlined vector quantities will be considered below
three-component columns. Particular representation of
components of these columns depends on the choice o
vector part of the basis function set$un%n51,2,3. Apparently,
the simplest~canonical! form of the boundary condition ma
trix can be obtained in the basis corresponding to the di
sum of irreducible representations of the reduced symm
group of the heterostructure energy spectrum. In the prese
of an interface, the full spherical group of the isotropic bu
energy spectrum reduces to the axial symmetry groupC`v ,
thus the canonical basis may be written in the form

$un%A,B5H S; Z;
X1 iY

A2
;

X2 iY

A2
J

A,B

; n50,1,2,3.

~4!

It is worthy to emphasize that in the proposed phenome
logical approach we neither deal with the microscopic wa
function of the system nor refer to any particular form of t
basis functionsun of different irreducible representations o
the effective Hamiltonian symmetry group. The irreducib
representations for explicitly treated bands are suppose
be the same in constitutive semiconductors; however,
make no specific assumptions about the basis functions
each side of the heterointerface (A andB). The vector part
of the basis~4! consists of the eigenfunctions of operatorJz
corresponding to thez component of the angular momentu
J51. First two basis functions,u0 andu1 , transform under
all symmetry operationsvPC`v according to the equivalen
unit representations. The last pair of functions,u2 and u3 ,
form the basis of a two-dimensional representation. Symm
try considerations3 require the boundary condition submatr
ces in Eq.~1! to be partitioned into blocks linking only the
wave-function components, which transform according
the equivalent representations. All other blocks should v
ish identically. As a result, we have

F̂5F F0 F01 0 0

F10 F1 0 0

0 0 F2 F23

0 0 F32 F3

G ,

Ĝ5F G0 G01 0 0

G10 G1 0 0

0 0 G2 G23

0 0 G32 G3

G , ••• ~5!
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Since all one-dimensional representations in the canon
basis~4! are equivalent, we cannot further elaborate on
structure of the upper left 232 blocks in the boundary con
dition submatrices. On the other hand, the internal struc
of the lower right 232 blocks is quite severely restricted b
symmetry. Let us consider a certain spatial transformatiov
from the reduced groupC`v of the heterostructure energ
spectrum. It may be a rotationvzf of the coordinate system
xyz through an anglef about the main symmetry axisz of
the heterostructure, or the reflection operation, for certai
in xz plane,vxz . The matrixv̂mn of the corresponding uni
tary transformation describes the transition from a basis$un%
to a basis set$ũn% in the new coordinate systemx̃ỹz̃: un

5v̂mnũm . The invariance of the boundary conditions upon
symmetry operationv means that relation~1!, with the same
boundary condition matrix, can be applied to theA and B
parts of the transformed wave function

C̃~ r̃ !5vC~r !5v̂C~v21r̃ !. ~6!

Let us consider, for instance, the first matrix row in Eq.~1!:

C̃A~ r̃ !5vCA~r !5v@ F̂ABCB~r !1ŜABCB8 ~r !#

5v̂@ F̂ABCB~v21r̃ !1ŜABCB8 ~v21r̃ !#

5v̂F̂ABv̂21C̃B~ r̃ !1v̂ŜABv̂21C̃B8 ~ r̃ !

5F̂ABC̃B~ r̃ !1ŜABC̃B8 ~ r̃ !. ~7!

Therefore, the invariance condition, for example for subm
trix F̂, has the form

F̂5v̂F̂v̂21. ~8!

The time-reversal operationtC(t)5 t̂C* (2t) can also be
included in the symmetry group of the effective Hamiltonia
leading to

F̂5 t̂F̂ t̂21. ~9!

In basis ~4!, the transformationsvzf , vxz , and the time-
reversal operator,t, are represented, respectively, by 434
matrices

v̂z,f5eif Ĵz5F 1 0 0 0

0 1 0 0

0 0 eif 0

0 0 0 e2 if

G ;
al
e

re

y,

-

,

v̂xz5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

G ; t̂5F 1 0 0 0

0 1 0 0

0 0 0 1

0 0 1 0

GK. ~10!

HereK is the complex conjugation operator. Note thatv̂xz
2

5 t̂251, as it should be in a spinless model. Substituting E
~10! into Eqs.~8! and ~9!, we readily obtain the following
additional restrictions on the matrix elements:

F235F3250; F25F3 ; Fmn5Fmn* . ~11!

All the restrictions, which have been imposed above on
matrix elements of submatrixF̂, hold true also for the matrix
elements of all other boundary condition submatrices.

We can extend this general analysis, considering
structure of spinless Kane model eigenfunctions in grea
detail. The free-quasiparticle Hamiltonian includes first- a
second-order terms in the momentum operatorp and can be
constructed as a superposition of invariants in the form:1,3

Ĥ5EgB̂01P~pÂ!1g0p2B̂02g3p2B̂32g2~pĴ!2.
~12!

Spherical symmetry is assumed here for the quasiparticle
ergy spectrum, therefore, only three second-order invaria
are included in the Hamiltonian. The structure of the bu
Hamiltonian is similar on both sides of the interface, but
least some of the parameters involved in Eq.~12! are differ-
ent in the half-crystalsA and B. All hatted operators are
represented in the four-band model by square 4x4 matri
The matricesB̂0(B̂3) are diagonal unit matrices for scala
~vector! subspaces, revealing the intraband nature of co
sponding operators, while the nondiagonal matrix operatoÂ
represents the matrix structure of interbandkp-mixing, char-
acterized by Kane’s velocityP. For the sake of a uniform
description of the model, we also introduce square 4x4 m
trices Ĵi which have nonzero elements only in the vec
subspace, where they coincide with ordinary 3x3 matriceJi

of angular momentumJ51. OperatorĴ plays the part of the
quasiparticle spin operator, because it compensates the
mutator of the Hamiltonian with the orbital angular mome
tum operator\L̂5(B̂11B̂3)(r3p), and guarantees the con
servation of the total angular momentum of the quasipart
L̂1 Ĵ:

@Ĥ,~ L̂1 Ĵ!#250; @Ĥ,Ĵ#252@Ĥ,L̂ #25 iP~Â3p!.
~13!

QuasispinĴ is determined by the microscopic orbital motio
of the electron and, hence, is nonrelativistic by nature.
nally, in basis~4! the Hamiltonian~12! is represented by the
matrix
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Ĥ5FEg1g0p2 Ppz Pp1 Pp2

Ppz 2g3p222g2p1p2 g2pzp1 g2pzp2

Pp2 g2pzp2 2g3p22g2~pz
21p1p2! g2p2

2

Pp1 g2pzp1 g2p1
2 2g3p22g2~pz

21p1p2!

G ; p65
1

A2
~px6 ipy!.

~14!
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It is convenient to classify the bulk eigenfunctions of t
Kane model into the ‘‘light’’ and the ‘‘heavy’’ states.23 Since
the spherical symmetry of the free quasiparticle energy sp
trum has been assumed, the only distinguished spacial d
tion is the direction of the quasiparticle momentumk. Under
the rotation of the coordinate system about this direction,
the wave-function components must transform in the sa
way and get the same phase shift. Two different situation
be considered in spinless model and used to establish
classification scheme. First, there should be two purely v
tor eigenfunctions with vector parts orthogonal to the vec
k and to each other. Under rotations of the coordinate sys
about thek direction, these functions transform into ea
other, hence in the bulk they relate to a double degene
band. We shall refer to these eigenfuctions as ‘‘heavy’’ sta

Ch1,25S 0

V̄h
D

1,2

; ~Vh1,2k!50; ~Vh1Vh2!50. ~15!

MatricesJi of angular momentumJ51 allow us to express
the vector multiplication operation in convenient matrix for
ik3V[(kJ)V̄, hence a projection operator onto the su
space of two-fould ‘‘heavy’’ states can be readily defined

L̂h5~mĴ!2; m5k/k; L̂h
25L̂h ; SpL̂h52;

~16!
V̄h5~mJ!2V̄52m3~m3V!5~V̄2~mV!m̄!'m.

Since the total dispersion equation in four-band Kane mo
is fourth order ink2, then, besides two ‘‘heavy’’ states, the
should be two independent ‘‘light’’ states with different va
ues ofk2. For ‘‘light’’ eigenfunctions consisting of thekp
mixture of scalarU and vectorV components, the vector pa
of the wave function must transform like a scalar under
rotations about the quasiparticle momentum direction, t
for these states one hasV l ik. Due to relation (kJ)2k[0 ~or
L̂hC l[0), the Schro¨dinger equation for ‘‘light’’ eigenstates
leads to the form

C l1,25S Ul

V̄ l
D

1,2

; V̄ l5
Pk̄1,2

E1g3k2
Ul , ~17!

and gives the dispertion equation

det$~Eg1g0k22E!B̂01P~Âk!2~E1g3k2!B̂3%

5~E1g3k2!~Eg1g0k22E!1P2k250. ~18!

If g0 ,g3!P2/Eg , which is usually the case, this dispersio
relation gives
c-
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k1
2'

~E2Eg!E

P2
; k2

2'2
P2

g0g3
. ~19!

As a result, for each energy value and for given quasip
ticle momentum direction we have four independent eig
functions, two ‘‘heavy’’ and two ‘‘light.’’ Therefore, in the
bulk of constitutive semiconductors any arbitrary mes
copic state,C, may be represented as a superposition of f
wave packetsC5C l11C l21Ch11Ch2 . This fact is of
principal importance for the boundary condition analysis, b
cause it allows us to consider all four components of
arbitrary columnC as independent variables. This can
further used in the analysis of the current continuity a
heterointerface. The current operator in the four-band sp
less Kane model has the form

ĵ5
]Ĥ

]p
5PÂ12p~g0B̂02g3B̂3!2g2~ Ĵ~pĴ!1~pĴ!Ĵ!.

~20!

In the canonical basis~4!, z component of this operator i
represented by the matrix

ĵ z

5F 2g0pz P 0 0

P 22g3pz 2g2p1 2g2p2

0 2g2p2 22~g21g3!pz 0

0 2g2p1 0 22~g21g3!pz

G .

~21!

Accordingly, we have the current continuity condition

^ j z&A5^ j z&B ; ~22!

^ j z&A,B5$P~c0* c11c.c.!2g2@c1* ~p1c21p2c3!1c.c.#

2 ig0~c0* c082c.c.!1 ig3~c1* c182c.c.!

1 i ~g21g3!~c2* c281c3* c382c.c.!%A,B .

Since all of the wave-function components are treated
independent quantities, the component combinations in
rentheses in the last expression are also independent.
pressing allCA components in the left-hand side of Eq.~22!
throughCB components by means of boundary conditio
~1! and equating the coefficients at independent comb
tions of CB components, we can continue the analysis
boundary condition matrix structure and impose additio
restrictions on the matrix elements. First, we notice that d
to the boundary mixing some combinations ofCB compo-
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nents can appear in the left-hand side of current contin
Eq. ~22!, which are incompatible with the matrix structure
the current operatorĵ zB or, equally, with the matrix structure
of the bulk HamiltonianĤB . For example, the mixing be
tween the scalar,c0 , and the vector,c1 , wave-function
components induces the appearence of the combinations
(c1* c11c.c.)B , which would require the presence of line

in pz terms on the main diagonal of the HamiltonianĤB .
Analogously, the mixing between wave-function comp
nents and their derivatives, induced by the boundary co
tion submatrix Ŝ, leads to the combinations (c i* c j8
1c.c.)B , which would correspond to the nonhermitian term
in current and Hamiltonian operators. The coefficients
such combinations must equal zero. As a result we have

Ŝ[0; F015F1050; G015G1050; R015R1050,
~23!

so that in the spinless Kane model all the boundary condi
submatrices become diagonal. Finally, the following cano
cal relations between nonzero boundary condition matrix
ements can be readily obtained from current continuity c
dition:

F0F15
PB

PA
; F1F35

g2B

g2A
; F25F3 ; G25G3 ;

~24!

F0G05
g0B

g0A
; F1G15

g3B

g3A
; F3G35

~g21g3!B

~g21g3!A
.

The diagonal elements of the submatrixR̂ do not enter the
current continuity equation Eq.~22! because they cancel i
component combinations (c1* c182c.c.). These elements ca
be found from the reciprocity relation for the boundary co
ditions. To relate the boundary condition matrixTAB for AB
heterointerface with the boundary condition matrixTBA for
BA interface, let us consider a narrow double heterostruc
A-B-A with small width 2d of the B-type semiconductor
Since the reflection operation

vxyC~x,y,z!5v̂xyC~x,y,2z! ~25!

is included into the symmetry group of the double hete
structure, we have

C̄̄A~2d!5TABC̄̄B~2d!5TABVxyC̄̄B~1d!

5TABVxyTBAC̄̄A~1d!5VxyC̄̄A~1d!, ~26!

where the shorthand notations have been introduced:

C̄̄5S C

C8
D ; Vxy5F v̂xy 0

0 v̂xy
G . ~27!

In the limit d→0 it gives the reciprocity condition in the
form

TABVxyTBA5Vxy . ~28!

In the canonical basis~4! the matrix representation of th
reflection operationvxy is
ty

ike

-
i-

t

n
i-
l-
-

-

re

-

v̂xy5F 1 0 0 0

0 21 0 0

0 0 1 0

0 0 0 1

G , ~29!

and~28! readily leads to the following relations between d
agonal elements of boundary condition submatrices:

FiF̃ i51; GiG̃i51; RiF̃ i1GiR̃i50. ~30!

The elements of reciprocal matrixTBA , which are marked

here with tildes (F̃ i , G̃i and R̃i), should satisfy relations
~24! with transposed indexesA and B. Combined with Eq.
~30! this gives us the general form of the diagonal eleme
of submatrixR̂:

Ri5uFiGi u1/2r i ; rAB52rBA . ~31!

Here we introduce parametersr i , which have the dimension
of an inverse length and change sign upon reflection in
heterointerface. These parameters must vanish in a hom
neous material, so the dependence on the corresponding
offsets may be expectedr iAB;(EiA2EiB). Following
Volkov and Pinsker,24 we regard these parameters as me
scopic in our classification scheme, that
r i!1/a, (a-lattice constant!. Large value ofr i relates to
an impenetrable interface for quasiparticle state near
band edgeEi .14

It should be noted that boundary conditions in the gene
form ~1! can be used only if we consider the complete effe
tive Hamiltonian including all possible independent mat
invariants. Correspondingly, all four independent eigenfu
tions should be used in the wave-function expansion. Ar
trary discarding any solution unavoidably results in ov
completeness of the boundary condition system~1!.
However, if the effective mass of one of the ‘‘light’’ eigen
state in Eq.~17!, C l1 , is formed mainly due tokp interaction
of nearest bands, i.e., ifg0 ,g3!1/ml1;P2/Eg , then the
other ‘‘light’’ eigenstate,C l2 , represents a spurious solutio
evanescent or propagating, depending on the sign of
productg0g3 .19,20 An explicit treatment of the spurious so
lutions is beyond the applicability of the multiband effectiv
mass theory,21,22 thus we have to truncate the number
boundary conditions, providing them only for smooth part
the effective wave function. Rejected spurious solutio
would then affect the values of the boundary condition p
rameters. Consider, for example, the evanescent solu
C l2 . The propagating spurious solutions can be treated
the same way. In the case of single heterointerface only
creasing exponentials are to be considered. From Eqs.~17!
and~20! it follows that in canonical basis~4! the evanescen
solution has the form

C l2.S 1

6 iAg0

g3

0

0

D Ul2e6Pz/Ag0g3. ~32!
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The last two components of the columnC l2 are of the order
of k6 /kz!1 and can be neglected in the boundary con
tions if Ul2 and Ul1 are of the same order of magnitud
Assumingkl2@kl1 ,kh ,r, we can show thatUl2!Ul1 . To
check this, let us write schematically the matching condit
for the effective wave-function derivatives:

~kl1C l11kl2C l21kh1,2Ch1,2!A8

.R̂CB1Ĝ~kl1C l11kl2C l21kh1,2Ch1,2!B8 . ~33!

Here,k stands forz component of a wave vector. The rat
between the first two elements in column~32! is different in
materialsA andB, therefore, the first two rows of the bound
ary condition~33! can be fulfilled only if all terms in the
parentheses are of the same order of magnitude. Thus,

Ul2;~kl1 /kl2!Ul1!Ul1 , ~34!

and we can lawfully omit the spurious solutionC l2 in the
following truncated boundary condition set:

CA5F̂CB ; S c28

c38
D

A

5G3S c28

c38
D

B

1R3S c2

c3
D

B

. ~35!

Here, the effective wave function of an arbitrary mesosco
state C5C l21Ch11Ch2 includes only smooth compo
nents provided the ‘‘heavy’’ massmh is not too large. If
mh@ml , the ‘‘heavy’’ states,Ch1,2, should also be exclude
from the effective wave-function expansion. In this ca
Kane’s Hamiltonian becomes first order in the moment
operatorp, and boundary conditions are reduced simply
the relation CA5F̂CB . This situation corresponds to
‘‘flat-band’’ approximation for the ‘‘heavy’’-state dispersio
and can be used only if the energy of the mesoscopic s
under cosideration is not too close to the valence-band to
eitherA or B material.

Finally, we conclude that in the isotropic spinless fou
band Kane model, the heterointerface is described by
boundary conditions~1! with only two independent phenom
enological parameters. The existence of these two param
in the spinless model and the absence of the submatrixŜ in
the total boundary condition matrixTAB both confirm the
assumptions used in preceding works.12,14 One independen
parameter of the boundary conditions can be arbitrarily c
sen from the parameter set~24!. Depending on the choice,
relates to the matching condition at the corresponding b
edge. It is interesting to derive the boundary conditions
an electron state near the nondegenerate conduction
edge characterized by the scalar effective wave functionC
'c0 ~one-band effective-mass model!. In this case, the
Hamiltonian parametersg0A,B should be renormalized to in
clude the contribution from the basisV states. Then, from
the relations~24! and~31! the effective boundary condition
can be readily obtained. Omitting the unnecessary ma
indexes, we have

cA5FcB ; cA85GcB81RcB ; ~36!

FG5
mcA

mcB
; R5S mcA

mcB
D 1/2

r.
i-

n

ic

,

te
in

-
e

ers

-

d
r
nd

ix

Here quantitiesmcA,B represent conduction-band bulk effe
tive masses in constitutive semiconductors. Relations~36!
are the modified BenDaniel-Duke boundary conditions d
cussed in the Introduction. ParameterF can be chosen as th
first independent phenomenological parameter describing
matching conditions at the conduction band edge. The s
ond independent parameter,r, has the dimension of invers
length. Boundary condition parameter of this type have b
discussed by Volkov and Pinsker,24 Zhu and Kroemer,9

Ando et al.,12 and Laikhtman.14

III. KANE MODEL WITH SPIN

For a correct description of valence-band states, spin
the electron,s5 1

2 s, must be included in the Kane mode
Assuming isotropic quasiparticle energy spectra in the c
stitutive semiconductors, we can write the effective bu
Hamiltonian in the following form:

Ĥ5EgB̂01
D

3
~2Ĵŝ21!B̂31P~pÂ!1g0p2B̂02g3p2B̂3

2
1

2
g2~pĴ!@p~ Ĵ12ŝ!#. ~37!

Since the spin states$a,b% are explicitly included in the
basis set, the order of all matrix operators is now be
doubled, for example, 4x4 unity matrices of the scalar a
vector subspaces,B0 andB3 , are multiplied by the 2x2 unity
matrix B2 of the spin space,B̂0(3)5B0(3)^ B2 . Operators
with hats will refer in this section to the 8x8 matrices in th
complete basis set. Second term of the Hamiltonian~37!,
Ĥso, has no counterpart in the spinless model~12!. This
operator represents the spin-orbit splitting of the energy
the vector subspace basis states by the amountD and, simul-
taneously, allows us to keep the energy zero at the top of
valence band. The last term in Eq.~37! is formally analogous
to the last term of the Hamiltonian~12!, and has the matrix
structure of the projection operatorL̂h onto the ‘‘heavy’’
state subspace~see Appendix!. Phenomenological param
etersg i used in our form of Kane Hamiltonian will be relate
below to the original Luttinger parametersgL.

For isotropic spin-including Kane model, the canonic
basis is given by a set of four Kramers-conjugate pairs
states, representing the basis of coupled angular momen

$un
n%5H S Sa

Sb D ;
1

A6
S 2Za2~X1 iY!b

2Zb1~X2 iY!a
D ;

1

A3
S Za1~X1 iY!b

Zb2~X2 iY!a
D ;

1

A2
S ~X1 iY!a

~X2 iY!b
D J . ~38!

The first three doublets in Eq.~38!, $un
n%n50,1,2, relate to

three equivalent two-dimensional representations of the s
metry group of the heterostructure energy spectrum. T
wave-function components corresponding to the equiva
irreducible representations can mix at the heterointerfa
consequently, all the submatrices of the boundary conditi
~1! should be sought in the form
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F̂5F F0 F01 F02 0

F10 F1 F12 0

F20 F21 F2 0

0 0 0 F3

G ,

Ĝ5F G0 G01 G02 0

G10 G1 G12 0

G20 G21 G2 0

0 0 0 G3

G , . . . . ~39!

All the considerations of the previous section remain va
We need only to substitute the quasispin operatorŜ for Ĵ in
space transformation operators~see the Appendix! and take
into account the different form of the time-reversal opera
t̂

v̂z,f5eifŜz5F e~ i /2! fsz 0 0 0

0 e~ i /2! fsz 0 0

0 0 e~ i /2! fsz 0

0 0 0 e~3i /2! fsz

G ;

~40!

v̂xz5~B01B3! ^ isy ; t̂5~B01B3! ^ isyK.

Here v̂xz
2 5 t̂2521, because now the fermionic nature

Kane quasiparticle is consistently included in the model. R
lations ~8! and ~9! allow us to find the matrix structure o
232 blocks, linking the envelopes of Kramers conjugat
basis states. Boundary condition invariance according to
rotationsv̂zf provides the diagonal structure of each bloc
whereas the reflection operatorv̂xz exchanges the ‘‘upper’’
and ‘‘lower’’ components of basis Kramers doublets, th
making the diagonal elements equal. Taking into acco
time-reversal symmetry, we finally find that each element
block in Eq.~39! is represented by a real number multiplie
by 232 diagonal unity matrixB2 . This structure of bound-
ary condition submatrices means that in canonical repre
tation the basis states with opposite sign of indexn do not
mix at the interface, and we can analyze the mixing of
spinor components of the arbitrary mesoscopic wa
.

r

-

d
e

,

s
nt
y

n-

e
-

function disregarding their particular ‘‘spin’’ structure. Th
effective wave function of the mesoscopic state should n
be expanded into the wave packets, corresponding to dif
ent types of eigenfunctions of Schro¨dinger equation in the
eight-band Kane model. One of these eigenfunctions has
matrix structure of ‘‘heavy’’ state and can be defined
means of the projection operatorL̂h ~see the Appendix!

Ch5L̂hS U

V̄
D 5S 0

V̄h
D . ~41!

To find out the matrix structure of the ‘‘light’’ eigenstates
the spin-including Kane model, we have to take into acco
the existence of two linearly independent Hermitian ope
tors exhibiting the transformation properties of a polar ve
tor, specifically,p andp5s3p.25 Therefore, the vector par
of the wave functionC l should be thought of as a linea
combination of both columnk̄ and column q̄5s3k5

2 i (Js) k̄

C l5S Ul

V̄ l
D ; V̄ l5P~ak̄1 ibq̄!Ul5P@a1b~Js!# k̄Ul .

~42!

From the dispersion Eq.~A17! it follows that for a given
energyE there exist three ‘‘light’’ eigenfunctionsC l with
different k2. As a result, the effective wave function of a
arbitrary mesoscopic state,C, can be expanded in four in
dependent wave packetsC5C l11C l21C l31Ch , and all
four spinor componentscn of the corresponding column ca
be considered as independent variables. The current con
ity analysis developed in the previous section is still app
cable and provides additional restrictions on the bound
condition matrix elements. In the eight-band Kane mo
with Hamiltonian~37!, the current operator has the form

ĵ5PÂ12p~g0B̂02g3B̂3!2
1

2
g2$@ Ĵ~pĴ!1 ŝ~pĴ!1 Ĵ~pŝ!#

1c.c.%, ~43!

and itsz component in the coupled angular momenta basi
represented by the matrix operator
ĵ z53
2g0pz A2

3
P A1

3
P 0

A2

3
P 22g3pz 0 2

A3

2
g2~px1 iszpy!

A1

3
P 0 22g3pz 0

0 2
A3

2
g2~px2 iszpy! 0 22~g21g3!pz

4 ~44!
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with the average value

^ j z&5PFc0* SA2

3
c11A1

3
c2D 1c.c.G

2
A3

2
g2@c1* ~px1 iszpy!c31c.c.#

2 ig0~c0* c082c.c.!1 ig3~c1* c181c2* c282c.c.!

1 i ~g21g3!~c3* c382c.c.!. ~45!

Similar to the spinless model, current continuity analysis r
ders vanishing most of the nondiagonal blocks in Eq.~39!.
There is no mixing at the interface between the scalar and
vector wave-function components, and the submatrixŜ van-
ishes identically. However, now the submatrixF̂ can have
one nonzero nondiagonal matrix element,F21. The existence
of nondiagonal element in submatrixF̂ induces the existenc
of nonzero nondiagonal elements in submatricesĜ ~element
G12) and R̂ ~elementsR12 andR21). Canonical relations be
tween boundary condition matrix elements and bulk Ham
tonian parameters are given by

F0F25
PB

PA
; F1F35

g2B

g2A
; F215A2~F22F1!;

G125A2~G22G1!; F0G05
g0B

g0A
;

F1G15F2G25
g3B

g3A
; F3G35

~g21g3!B

~g21g3!A
;

F1R122F2R211F21R250. ~46!

The matrix representation of the reflection operation in h
erointerface planevxy can be obtained as the product

inversion operator matrixÎ 5B̂02B̂3 and operatorv̂z,p

v̂xy5v̂z,p Î 5F 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 1

G ^ isz . ~47!

Using this representation in reciprocity condition~28!, we
arrive at the same expression~31! for the elements of sub
matrix R̂ in eight-band Kane model.

For the Kane model with spin, the nondiagonal mat
elementF21 plays the part of a third independent pheno
enological parameter in the boundary conditions. App
ently, it is determined by spin-orbit interaction at the hete
interface. In what follows, we assume this interaction to
‘‘relativistic’’ small. Neglecting the parameterF21, we can
significantly simplify the boundary conditions. All submatr
ces become diagonal and, moreover, the relations

F25F1 ; G25G1 ; R25R1 ~48!

hold for diagonal matrix elements. It is interesting to no
that only in this approximation and, additionally, ifPA
-

he

-

t-

-
r-
-
e

5PB andg2A5g2B , the component-by-component contin
ity of effective wave function becomes possible in the Ka
model.

Next, we consider the problem of approximate bound
conditions for the most important limiting situations. First
all, we suppose the remote band effects to be small,g0 ,g3
!1/ml , as is usually the case for all materials of intere
One spurious ‘‘light’’ stateC l3 and, correspondingly, two
matching conditions for the effective wave function deriv
tives should be truncated in accordance with the small
rameterAg0g3Eg /P2, as was described in previous sectio
In the basis of coupled momenta first two vector compone
of the spurious stateC l3 are linearly dependent~see the Ap-
pendix!, therefore, in the boundary condition set we shou
keep the matching condition only for the linear combinati
(c182A2c28), where the components of the spurious soluti
C l3 are absent. Taking into account Eq.~48!, we arrive at a
simple truncated boundary condition system:

CA5F̂CB ;

~c12A2c2!A85G1~c12A2c2!B81R1~c12A2c2!B ;
~49!

c3A8 5G3c3B8 1R3c3B .

For narrow band-gap semiconductors, the limit of lar
spin-orbit splitting of the valence band is often used.
D@Eg ,E, then from Eqs.~A14! and ~A16! it follows that
the third line of each boundary condition submatrices~39!
can be omitted. Two solutions of the dispersion Eq.~A17!
become spurious in this limit and should be rejected in
effective wave-function expansion. One of these eigenfu
tion relates to the ‘‘remote’’ spin-orbit split-off band, th
other has the matrix structure similar to Eq.~32!. As a result,
for the so-called six-band Kane model we obtain the follo
ing truncated system of boundary conditions in the coup
angular momentum basis:

C5S c0

c1

c3

D ;

c0A5F0c0B ; c1A5F1c1B ; c3A5F3c3B ;

c3A8 5G3c3B8 1R3c3B . ~50!

The total effective wave function in this model is represen
by a superposition of smooth wave packets of one ‘‘ligh
and one ‘‘heavy’’ states with sufficiently small wave vecto
C5C l1Ch .

Finally, we obtain the approximate boundary conditio
for Luttinger’s model, describing the valence-band states
the energy regionuEu!Eg ,D. In this limit the dispersion
relation ~A17! for ‘‘light’’ eigenstates has only one solution
with the dispersion

El.2~g312P2/3Eg!k2. ~51!

Multicomponent eigenfunctions of the Luttinger model in t
coupled momenta basis do not contain the first and the t
rows. For ‘‘light’’ solutions, these components are small
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TABLE I. Material and boundary condition parameters for GaAs-based heterointerfaces.

GaAs AlAs Al0.2Ga0.8As GaAs/AlAs GaAs/Al0.2Ga0.8As

mc /m0 0.0665 0.150 0.083 F0F1 1.10 1.02
g1

L 6.85 3.45 5.64 F1F3 2.53 1.29
g2

L 2.10 0.68 1.57 F0G0 -7.92 0.60
g3

L 2.90 1.29 2.32 F1G1 0.63 9.67
Eg ,eV 1.519 3.130 1.746 F3G3 3.12 1.20
EP ,eV 25.7 21.1 24.8 R0 /r0 2.82 0.77
D,eV 0.341 0.275 0.328 R1 /r1 0.79 3.11

R3 /r3 1.77 1.10
fo
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accordance with small parametersE/Eg and E/D, respec-
tively, and the dispersionless partial boundary conditions
the four-component Luttinger effective wave function a
given by

C5S c1

c3
D ;

c1A5F1c1B ; c3A5F3c3B ;

c1A8 5G1c1B8 1R1c1B ; c3A8 5G3c3B8 1R3c3B . ~52!

Parametersg3A,B should be renormalized according to E
~51! to include the contribution of the basisS states, which
now become ‘‘remote’’ states. In the isotropic model it
much more convenient to use the matching parameters
pressed in terms of the quasiparticle effective masses,ml and
mh ,

F1G15
mlA

mlB
; F3G35

mhA

mhB
; F1F35

~1/ml21/mh!A

~1/ml21/mh!B
.

~53!

Similar boundary conditions hold in Luttinger’s model wi
anisotropic quasiparticle spectrum, if the heterointerface
orthogonal to one three-fold or four-fold axis and one surfa
of symmetry of the bulk energy spectrum. For example, c
sider the$001% boundary of a diamond-like semiconducto
The Luttinger Hamiltonian can be written in the tradition
manner1 using matricesĴ of angular momentum 3/2, which
now play the part of a quasispin:

ĤL5
1

2m0
F S g1

L1
5

2
g2

LDp2B̂422g2
L~px

2Ĵx
21••• !

22g3
L~pxpyĴxĴy1••• !G ; ~54!

@ĤL ,~ L̂1 Ĵ!#250; \L̂5B̂4~r3p!.

Ĵx5F sx 2
A3

2
sz

2
A3

2
sz 0

G ; Ĵy5F sy 2 i
A3

2

i
A3

2
0

G ;

Ĵz5F 1
2 sz 0

0 3
2 sz

G .
r

x-

is
e
-

Here we use the canonical basis$u1
n ;u3

n%, diagonalizing qua-

sispin componentĴz . In this basis, successively applyin
symmetry operationsvz,p/2 andvxz ,26 we again arrive at the
boundary conditions~52! with parameters

F1G15
~g1

L12g2
L!B

~g1
L12g2

L!A

; F3G35
~g1

L22g2
L!B

~g1
L22g2

L!A

;

F1F35
g3B

L

g3A
L

, ~55!

which in the spherical approximationg2
L'g3

L results in Eq.
~53!. In this approximation, the Luttinger Hamiltonian re
duces to the form

ĤL5
1

2m0
F S g1

L1
5

2
ḡLDp2B̂422ḡL~pĴ!2G , ~56!

and we can easily relate the phenomenological parame
used in our form of Kane’s Hamiltonian~37! to the original
Luttinger parametersg1

L and ḡL5 1
2 (g2

L1g3
L):

g252
1

m0
2ḡL; g35

1

m0
S 1

2
g1

L1ḡL2
EP

3Eg
D ;

EP52m0P2. ~57!

Parameterg0 can be evaluated trough the experimentally d
termined conduction-band massmc using relation~A17!

g05
1

2m0
F S mc

m0
D 21

2
EP~Eg1 2

3 D!
Eg~Eg1D!

G . ~58!

In Table I we show the results of exemplary calculation
the main relations between the boundary condition para
eters ~46! for G2envelopes at GaAs/AlAs and
GaAs/Al0.2Ga0.8As heterointerfaces. Material paramete
used in the calculation are taken from tables
Landolt-Bornstein.27 It is interesting to note the strong de
pendence of the matching parameters for wave-function
rivative Gi on the Luttinger parameters of constitutive sem
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conductors. The basic phenomenological parameters of
boundary conditions, for exampleF0 andr i , should be ob-
tained by a more detailed microscopic analysis of the bou
ary condition problem, which is beyond the scope of t
present article.

IV. CONCLUSIONS

The virtue of the phenomenological description of
abrupt heterointerface lies in the simplicity of the resulti
boundary condition matrix. At an abrupt heterointerface,
multiband effective wave function should satisfy the boun
ary conditions of the most general form~1!. In this paper, we
have analyzed the structure of boundary conditions in eig
band Kane model and shown that in the canonical basis
boundary condition matrix assume a ruther simple for
Only two independent phenomenological parameters
needed to characterize the matching conditions at the ab
heterointerface in the case when bulk energy spectrum
quasiparticles is isotropic and spin-orbit interaction at
interface is small. In the spirit of the effective-mass theo
these parameters are determined by the microstructure o
interface and do not depend explicitly on the energy of
charge-carrier state. This provides the easiest way to trea
nonparabolicity effects in direct band-gap semiconduc
heterostructures. Simple canonical relations have been e
lished between the boundary condition matrix elements
parameters of the Kane’s Hamiltonian in constitutive se
conductors. It follows that in general situation, when Ham
tonian parameters in both semiconductors are different,
assumption of effective wave-function component-b
component continuity is unapplicable. The relations betw
major boundary condition parameters has been evaluate
two examplary GaAs-based heterointerfaces to demons
strong dependence of the matching conditions on the ef
tive Hamiltonian parameters.
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APPENDIX

In this Appendix we consider the matrix structure of sp
including eight-band Kane Hamiltonian~37! and correspond-
ing eigenfunctions. First of all, to avoid confusion, we no
that all hatted matrices used in the model, for exampleŝ and
Ĵ, have trivial matrix structure only in the basis of dire
product

$un
n%5$S,X,Y,Z% ^ $a,b%5 HSa

Sb
Xa
Xb

Ya
Yb

Za
ZbJ ; ~A1!

n50,1,2,3;n561.

In this basis we have

ŝi5~B̂01B̂3! ^ si ; Ĵi5~0•B01Ji•B3! ^ B2 , ~A2!
he
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e

e
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and the relation

~ Ĵŝ!5(
i

Ji ^ si ~A3!

holds true. When the basis is changed, the matricesĴi and
ŝi , as well as matricesÂi , suffer a unitary transformation
and cannot be decomposed into the direct product of
orbital and spin parts. For example, the unitary matrix

w5F 1

A6S isy

2 isx

2
D 1

A3S 2 isy

isx

1
D 1

A2S 1

isz

0
D G ~A4!

describes the transition from basis~A1! to the coupled angu-
lar momenta basis~38! used in the text. Only the nontrivia
part of the matrix, corresponding to the vector subsp
transformation, is shown here. All the vector columns, li
V̄, k̄, q̄, which we use in the eight-band Kane model, are
be transformed also and become six-component colu
with complex spin structure. For instance, the vector colu
k̄ is represented in the coupled momenta basis as

k̄5w21S kx

ky

kz

D 5S 2~kz1 iqz!/A6

~kz22iqz!/A3

~kx2 iszky!/A2
D ;

qz5
1

2
~sxky2sykx!. ~A5!

The matrix structure of the spin split-off operatorĤso in
Eq. ~37! has been chosen to keep the energy zero at the
of the valence band, assuming that the highest energy l
corresponds to the four-fold degenerate valence basis s
Indeed, the eigenvaluesl of the operator (Js) can be easily
obtained from the well-known relation for Pauli matrice
(as)(bs)5(ab)1 i @a3b#s, if we put a5b5J:

~Js!25J22~Js!522~Js!; l2522l. ~A6!

The eigenvaluesl, which arel1/2522 andl3/2511, are
twofold degenerate. Moreover, since all the spin matricesJi
ands i , are traceless, there should be an additional two-f
degeneracy of the second eigenvaluel3/2. According to the
form of the spin split-off operator, the energy of this fou
fold degenerate state is precisely zero, while the energy
the two-fold degenerate state is equal2D. In the basis of
coupled angular momenta operatorĤso becomes diagona
with only nonzero matrix elements

~Hso!33
~1!5~Hso!33

~21!52D. ~A7!

Now, let us consider the structure of the last term of t
eight-band Hamiltonian~37!. In the absence of externa
fields the total angular momentum of the quasiparticle m
be conserved. By analogy with Eq.~13!, it thus follows that
matrix operators of quasispinŜ and quasihelicitym̂5(mŜ)
should exist. Quasispin operator can be defined as

Ŝ5 ŝ1 Ĵ; @Ĥ,~Ŝ1L̂ !#250. ~A8!
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In basis of coupled momenta this operator has the matrix representation

~mŜ!53
1

2
~ms! 0 0 0

0 ~misi!1
1

2
mzsz 0 2

iA3

2
sy~misi!

0 0
1

2
~mzsz2~misi!! 0

0
iA3

2
~misi!sy 0

3

2
mzsz

4 . ~A9!

Since quasihelicity of a free quasiparticle is a good quantum number, the scalar invariant (pŜ)2 should enter the eight-ban
Kane Hamiltonian instead of the matrix form (pĴ)2, which has been used in spinless model. In Eq.~37! we use the operato

L̂h5
1

2F ~mŜ!22
1

4G5
1

2
~mĴ!@m~ Ĵ12ŝ!#, ~A10!

which in vector subspace of basis~38! is represented by the matrix

Lh5
1

2F 3

2
~12mz

2! 0 2
iA3

2
~ms1mzsz!sy~misi!

0 0 0

iA3

2
~misi!sy~ms1mzsz! 0

1

2
~113mz

2!
G . ~A11!
at
s,

s

ion

s

According to the definition~A10!, operatorL̂h affects the
wave functions with quasihelicitym̂56 1

2 like a zero opera-
tor, therefore, it can be considered as a projection oper
onto the subspace of two-fold degenerate ‘‘heavy’’ state28

which are characterized now by the quasihelicitym̂56 3
2

and have the dispersion

Eh~k!5
1

2
Sp~L̂hĤ !52~g21g3!k2;SpL̂h52.

~A12!

In basis~A1! spin matricess are diagonal in indexn and
vector columnV̄h of a free ‘‘heavy’’ quasiparticle state ha
an especially simple form

V̄h5V̄2~mV!m̄12i ~ms!@m3V#. ~A13!

Using Eq.~A4! we obtain the corresponding representat
in the basis of coupled momenta

V̄h5S A3ki

0

4
qzsy

ki
~pz2 iqz!

D Uh . ~A14!

Here ki5Akx
21ky

2, and Uh is normalizing factor. For
‘‘light’’ quasiparticle eigenstates, substituting Eq.~42! into
or

Schrödinger equation with Hamiltonian~37! and making use
of L̂hC l[0, we easily obtain the coefficientsa(E) andb(E)

a5
Ẽ1 2

3 D

Ẽ~Ẽ1D!
; b5

2
3 D

Ẽ~Ẽ1D!
; Ẽ5E1g3k2,

~A15!

the matrix representation of the vector columnV̄ l in the
coupled momenta basis

V̄ l53
1

Ẽ
0 0

0
1

Ẽ1D
0

0 0
1

Ẽ

4 Pk̄Ul , ~A16!

and the dispersion relation for corresponding ‘‘light’’ band

~Eg1g0k22E!1P2k2

Ẽ1
2

3
D

Ẽ~Ẽ1D!
50, ~A17!
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which is third order ink2. As a result, in eight-band Kan
model we have three different types of ‘‘light’’ eigenstate
Usually, g0 ,g3!P2/Eg , and only two of these states,C l1
and C l2 , are physically relevant. They can be attributed
conduction–light-hole and spin-orbit split-off bands, resp
tively. The thirdk2 solution of Eq.~A17!, k3

2'2P2/g0g3 ,
leads to spurious ‘‘light’’ eigenstate,C l3 . Using Eqs.~A5!
ts

os
ic

er
la

pli
en
th
ng

.

.

-

and ~A16!, we find the matrix structure of this column

C l35S 1

iA g0

3g3
S A2

1
D

0

D Ul3~z!. ~A18!
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