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Boundary-condition problem in the Kane model
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The boundary conditions for a multicomponent effective wave function are obtained in the eight-band Kane
model. The relations are established between boundary-condition matrix elements and the Kane Hamiltonian
parameters in constitutive semiconductors. In general, these relations are incompatible with component-by-
component continuity of the effective wave function, traditionally employed in multiband models. We show
that the boundary conditions in the isotropic eight-band Kane model involve three linearly independent phe-
nomenological parameters. Neglecting the spin-orbit interaction at the heterointerface, only two parameters are
required to completely describe the matching conditions. These parameters do not depend on the energy of the
charge carrier state, hence the nonparabolic regime is described in the most natural way. The boundary
condition matrices are derived also for the most important approximate limits: the six-band Kane model,
describing the energy spectrum of narrow-gap semiconductors, and the four-band Luttinger model, describing
the valence-band top energy region in zinc-blende and diamondlike semiconductors.
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In multiband effective mass theory an electric charge car-
rier state can be represented phenomenologically by a col-
umn of smoothly varying functionsy={,}, convention-
ally referred to as envelope functions. The number of these Boundary conditions for the effective wave function can-
functions equals the number of energy bands explicitly cony,q e ohtained by integrating the field equations across the
sidered in the model. In a homogeneous crystal, such @ Mufperface, since the phenomenological equations of the effec-
ticomponent wave function satisfies the Salinger equa- e mass theory are valid neither at the heterointerface nor
tion with an effec_twe matrix Hamﬂtomarh-l. The general inside any hypothetical transition lay&iNevertheless, the
form of the effective Hamiltonian can be obtained by Sym-j,.o4ration procedure is often used in multiband models that

. . _3 .
metry cons_|derat|ons alorie; Wh'l.e the Va'“?s Of the phe- assume the continuity of wave-function envelopes, resulting
nomenological parameters used in the Hamiltonian are dete[ﬁ boundary conditions of the following typs’

mined primarily by the microscopic structure of the crystal.
In the presence of an abrupt heterointerface it seems to be
possible to also separate timeesoscopicor quasiparticle,
description of the charge carrier stdtm the spatial scale of
the quasiparticle de Broglie wavelengtfrom the micro-

scopic description(on the characteristic scale of a lattice fere | is thez component of an effective current operator.
iogsgzg}vezﬁlg\évmﬁ%ncdouncigj;;r?g;a[ﬁgt Eiféﬂlgféfgcﬁ The assumptiok =1, used in the latter form of boundary
' P 9 onditions, is not generally justified. It has been argued for a

cal description of an arbitrary mesoscopic state in the bulk o ong time that more complete form of boundary conditions

constitutive sgmlconductors by means of an effectwe SChroshould be used, which includes some inherent parameters of
dinger equation should be accomplished with appropnat?

boundary conditions providing the matching procedure be-he heterainterface:™® The most general boundary cond-
tween theA andB parts of the effective wave functiof. tions of this kind consistent with the effective-mass approxi-

Since the effective Hamiltonian is supposed to include termg]xetlggg vtvr:e erﬁ s;;;gtgheosc;e%bgi ghrfk?ae::a I?a?r? emr;gggﬁzﬁr iv;/e
quadratic in the_ momentum operafps —i#V, the required widely used for the description of electron energy spectra of
boundary conditions are of the form direct-band-gapA;Bs and A,Bg semiconductor heterostruc-
W, Vg tures. Boundary conditions in the general fofb) have not
il vl
z=-0 z=+0

o

R v
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Vp=Tg; [, Va=1,Ys; Jzza- (2
z

!

. 1) been obtained yet for this model, thus the simplified euristic
A B

form (2) is still in use even for very subtle probleris'®
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In this paper we follow the .tradition.al e_ffective-mass (states ofs- and p-type symmetry, respectivelyThe effec-
scheme and construct the effective quasiparticle wave fungive wave function of an arbitrary mesoscopic state is repre-
tion piecewise in the different materials, rather than use &ented in this basis by the four-component coluthnwhich
more sophisticated technique developed recently by Burt, .o nqists of scalat and vectoV. parts (with allowance for

Wh|c_h_ requires some mo_d|f|cat|or_15 of thg Hamlltoma_n. Nospin, these become, respectively, one even and three odd
modification of the effective Hamiltonian is assumed in Ourspinors):

approach, so we can keep the original eight-band bulk Kane

Hamiltonian, which is usually well known for constitutive

materials. In the proposed scheme the boundary condition \P—(U>
matrix structure is determined only by the reduction of the vV
symmetry group of the effective bulk Hamiltonian due to the

presence of an abrupt heterointerface. In this reduced Syrﬂihe overlined vector quantities will be considered below as
metry group the matrix representation of the multicomponenthree-component columns. Particular representation of the
effective wave function also becomes reducible, and wavecomponents of these columns depends on the choice of the
function components associated with equivalent irreducible/ector part of the basis function sit,},-1 3. Apparently,
representations mix at the interface, resulting in a nontriviafhe simplest{canonical form of the boundary condition ma-
structure of boundary condition submatrices in Ef). We  trix can be obtained in the basis corresponding to the direct
assume an isotropic bulk quasiparticle energy spectrunfum of irreducible representations of the reduced symmetry
which is a good approximation for most of the cubigBs group.of the heterostructure energy spectrum. IIn the presence
semiconductors. High-symmetry interface perpendicular t®f an interface, the full spherical group of the isotropic bulk
four-fold or three-fold axis is assumed between two adjacengnergy spectrum reduces to the axial symmetry giGup,
crystals. This is equivalent to the reduced symmelry of thus the canonical basis may be written in the form

the electron energy spectrum of the heterostructure. Effects,

()

resulting from the reduced symmetry of some particular het- X+iY  X—iY
erointerfaces, such as ti®,, symmetry of a zinc-blende- {up}ag=1S, Z;, ——; —— ; n=0,1,2,3.
based{001} interface, can be included in our boundary con- \/E \/E AB

ditions as additive term¥. Luttinger model with anisotropic (4)

bulk guasiparticle energy spectrum is considered in the Iaq; is worthy to emphasize that in the proposed phenomeno-

section of the paper. logical approach we neither deal with the microscopic wave
We show that in the eight-band Kane model the boundary,,q(ion of the system nor refer to any particular form of the

Cor?d'“"” set includes only three independent phenom.e.nodasis functionsu, of different irreducible representations of
logical parameters and, therefore, the boundary conditiog,s effective Hamiltonian symmetry group. The irreducible

matrix, Tag, assumes a rather simple form in a wide variety o oqentations for explicitly treated bands are supposed to
of applications. These parameters, being determined by t e the same in constitutive semiconductors; however, we

microscopic structure of the heterointerface, do not depeng, ., o specific assumptions about the basis functions on

explicitly on the quasiparticle energy, thus the nonparabolic-each side of the heterointerfacA @ndB). The vector part
ity of the energy spectrum can be treated in the most simpl

Bf the basig4 ists of the eigenfuncti f
and effective way. We show also that in the framework of e basis4) consists of the eigenfunctions of operafor

. : corresponding to the component of the angular momentum
multiband effective-mass theory the number of boundary;_ ) “Firt o basis functionsyp anduy, transform under
conditions |m_pI|ed on the smooth envelope f“f?CF'O”S do_e%” symmetry operations e C.., according to the equivalent
not necessarily equal the number of bands explicitly consid- v

ered in the model. A simple and unambiguous. truncatio unit representations. The last pair of functions,and us,
' ple. . iguous orm the basis of a two-dimensional representation. Symme-
procedure for boundary conditions is defined in this paper

Q i i X " .
, . TR N ry consideratiornsrequire the boundary condition submatri-
avouj the pr‘.’b'em of spurious SOIUUOH).S' No independent ces in Eq.(1) to be partitioned into blocks linking only the
matrix invariant in the effective Hamiltonian has been re-

: : . ) ave-function components, which transform according to
jected in 2‘”_ scheme for Fh's purpose in contrast to the laﬁ e equivalent representations. All other blocks should van-
approactt? Finally, we derive the truncated boundary condi- ish identically. As a result, we have

tion systems for smooth effective wave function in the six- ' ’
band Kane modél,describing narrow-band semiconductors,
and in the four-band Luttinger modetorresponding to the Fo Foo 0 O

valence-band top energy region. . |Fp F, O 0
F: 1
0 0 Fgzp F3

Il. BASIC RELATIONS AND THE KANE MODEL
WITHOUT SPIN

The boundary condition problem can be more clearly il- Go G O 0
lustrated if we first consider the simplest isotropic four-band Gyp G; O 0
Kane model without spin. This model phenomenologically 0 0 G Gul' 5
: i : 2 23
describekp mixing between two close groups of basis elec-
tron states with opposite paritie$uy} and {u,,u,,us}, 0 0 Gsp G

o)
Il
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Since all one-dimensional representations in the canonical 1 0 0 O 1 0 0 O
basis(4) are equivalent, we cannot further elaborate on the 010 0 010 0
structure of the upper left>22 blocks in the boundary con- o .o K. (10
dition submatrices. On the other hand, the internal structure 10 0 0 1 0 0 01
of the lower right 22 blocks is quite severely restricted by 00 10 00 10

symmetry. Let us consider a certain spatial transformation

from the reduced groug.., of the heterostructure energy R
spectrum. It may be a rotatian,, of the coordinate system Here K is the complex conjugation operator. Note thagft,
xyz through an anglep about the main symmetry axisof ~ =72=1, as it should be in a spinless model. Substituting Eq.
the heterostructure, or the reflection operation, for certainty(10) into Egs.(8) and (9), we readily obtain the following

in xz plane,w,,. The matrix,, of the corresponding uni- additional restrictions on the matrix elements:

tary transformation describes the transition from a basi$

to a basis sefu,} in the new coordinate systeryz: u,

= @ Uy The invariance of the boundary conditions upon a
symmetry operatiom means that relatiofil), with the same
boundary condition matrix, can be applied to theandB  All the restrictions, which have been imposed above on the
parts of the transformed wave function matrix elements of submatrix, hold true also for the matrix
elements of all other boundary condition submatrices.
We can extend this general analysis, considering the
(T — -7 -7 structure of spinless Kane model eigenfunctions in greater
(=¥ =w¥ (o). © detail. The free-quasiparticle Hamiltonian includes first- and
second-order terms in the momentum operatand can be
constructed as a superposition of invariants in the fofm:

F2s=F3,=0; Fy=F3; Fpa=Fp,. 1D

Let us consider, for instance, the first matrix row in Ef:

~ - . R ) H= Egé’oJr P(pA) + yop?Bo— ¥3p*B3— v2(pd)%
WA(r)=WPa(r)=o[Fag¥p(r)+Sag¥p(r)] 12

= [l,[f:AB\pB(w—lF)+éABxpl’3(w—1?)] Spherical symmetry is assumed here for the quasiparticle en-
ergy spectrum, therefore, only three second-order invariants
~ are included in the Hamiltonian. The structure of the bulk
= 0F a0 W (1) + 0Sape  1WL(T) Hamiltonian is similar on both sides of the interface, but at
least some of the parameters involved in Ep) are differ-
_ _ ent in the half-crystalsA and B. All hatted operators are
=FasWs(r)+SapWa(T). (7)  represented in the four-band model by square 4x4 matrices.
The matricesBO(I%3) are diagonal unit matrices for scalar
Therefore, the invariance condition, for example for subma<{vecton subspaces, revealing the intraband nature of corre-
trix F, has the form sponding operators, while the nondiagonal matrix operator
represents the matrix structure of interbdpimixing, char-
acterized by Kane's velocity?. For the sake of a uniform
F=wFw L (8) description of the model, we also introduce square 4x4 ma-
trices 3i which have nonzero elements only in the vector
The time-reversal operation¥ (t)=7¥*(—t) can also be Subspace, where they coincide with ordinary 3x3 matries
included in the symmetry group of the effective Hamiltonian, of angular momentund= 1. Operator) plays the part of the
leading to guasiparticle spin operator, because it compensates the com-
mutator of the Hamiltonian with the orbital angular momen-
o tum operator: L = (B, +B;)(r X p), and guarantees the con-
F=7F7 1 (9)  servation of the total angular momentum of the quasiparticle
L+3:
In basis(4), the transformationso,,, wy,, and the time-
reversal operatorr, are represented, respectively, by4

matrices [H,(L+J)]-=0; [H,J]-=—[H,L]-=iP(AXp).
(13
1 0 0 0
- lo 1 o 0 QuasispinJ is determined by the microscopic orbital motion
&)Z,(ﬁ:e”’JZ: » ; of the electron and, hence, is nonrelativistic by nature. Fi-
0 0 e 0 nally, in basis(4) the Hamiltonian(12) is represented by the
0 0 0 el matrix
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Eg+ vop? Pp, Pp. Pp-
H Pp,  —7yap’—27,p.p- Y2PP+ Y2PoP- L o tipy
- ; +=—=(pxEipy).
Pp_ Y2PP- — y3p?— (P2 +pip-) y2p> Pe= g PPy
Pp, Y2PP+ 72P% —¥3P? = y2(Pi+pPip-)
(14
|
It is convenient to classify the bulk eigenfunctions of the (E—E,)E p2
Kane model into the “light” and the “heavy” states.Since K~ ——— K~- : (19
the spherical symmetry of the free quasiparticle energy spec- P Y073

trum has been assumed, the only distinguished spacial direc- _ )
tion is the direction of the quasiparticle momenturrUnder . AS @ result, for each energy value and for given quasipar-
the rotation of the coordinate system about this direction, alficle momentum direction we have four independent eigen-
the wave-function components must transform in the samé!nctions, two “heavy” and two “light.” Therefore, in the
way and get the same phase shift. Two different situation caRUlK Of constitutive semiconductors any arbitrary mesos-
be considered in spinless model and used to establish tfROPIC Statel, may be represented as a superposition of four
classification scheme. First, there should be two purely vec¥ave packets¥ =W, +W,+Wy,+Wy,. This fact is of
tor eigenfunctions with vector parts orthogonal to the vectoP"incipal importance for the boundary condition analysis, be-
k and to each other. Under rotations of the coordinate systeffuse It allows us to consider all four components of the
about thek direction, these functions transform into each arbitrary column¥ as independent variables. This can be
other, hence in the bulk they relate to a double degenerafélither used in the analysis of the current continuity at a
band. We shall refer to these eigenfuctions as “heavy” statefeterointerface. The current operator in the four-band spin-
less Kane model has the form
0 A
‘l’h1,2:(\7> v (Vh, K)=0;  (Vh1Vh2)=0. (15 IH
1,2

- = PA+2p(70Bo— 7383) — 72(3(pd) +(pd)J).

. 20
MatricesJ; of angular momentund=1 allow us to express _ . _ 20 _
the vector multiplication operation in convenient matrix form In the canonical basi¢4), z component of this operator is
ikxV=(kJ)V, hence a projection operator onto the sub-féPresented by the matrix

space of two-fould “heavy” states can be readily defined .
z

h =

©

Ap=(md)Z m=kik; A2=R,; sph,=2; 2yop, P 0 0

B B _ _ (16) - — -

Vi=(mJ)2V=—mx(mxV)=(V—(mV)m)Lm. | " 275Pe 7o P
0 —y2P-  —2(y2t+vy3)P: 0

Since the total dispersion equation in four-band Kane model 0 _ 0 2yt 7a)
is fourth order ink?, then, besides two “heavy” states, there YaP+ Y2T ¥3)P:
should be two independent “light” states with different val- (21
ues ofk?. For “light” eigenfunctions consisting of thé&p
mixture of scalat) and vectolV components, the vector part
of the wave function must transform like a scalar under the (da={Ds: (22)
rotations about the quasiparticle momentum direction, thus

ff)r these states one h&s|k. Due to relation kJ)?k=0 (or () a=P(JE gy +C.C)— yol ¥ (s tho+ P tha) +C.C]
AnW¥,=0), the Schrdinger equation for “light” eigenstates ’

Accordingly, we have the current continuity condition

leads to the form —iyo(¥ p—c.c)+iys(¥ 1 —c.c)
U — iyt va) (Y3 o+ d3d3—CChiag-
[ = Pkyp
Y=o = 2 17 since all of the wave-function components are treated as
V| 12 E+ Ysk . ™ . . .
: independent quantities, the component combinations in pa-
and gives the dispertion equation rentheses in the last expression are also independent. Ex-

pressing all? , components in the left-hand side of E§2)
2 A A P through¥g components by means of boundary conditions
det(Eg+ yok™—E)Bo+ P(AK) — (E+ y3k)Bg} (1) and equating the coefficients at independent combina-
=(E+y3k2)(Eg+y0k2—E)+ P2k2=0. (18)  tions of ¥z components, we can continue the analysis of
boundary condition matrix structure and impose additional
If y0,v3<< P2/Eg, which is usually the case, this dispersion restrictions on the matrix elements. First, we notice that due
relation gives to the boundary mixing some combinationsbBg compo-
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nents can appear in the left-hand side of current continuity 1 0 0 O

Eq. (22), which arejncompatible with the matrix structure of 0 -1 0 0

the current operatar, g or, equally, with the matrix structure Q,Xy: o o 1 o (29
of the bulk HamiltonianHg. For example, the mixing be-

tween the scalaryy,, and the vectory;, wave-function 0 0 01

components induces the appearence of the combinations like ) . _ .
(% i, +c.C.)g, which would require the presence of linear and(28) readily leads to the following relations between di-

. o A agonal elements of boundary condition submatrices:
in p, terms on the main diagonal of the Hamiltoni&y .

Analogously, the mixing between wave-function compo-
nents and their derivatives, induced by the boundary condi-

tion submatrix S, leads to the combinations yf i The elements of reciprocal matrikg,, which are marked
+c.c.)s, which would correspond to the nonhermitian termspqre with tildes f;i’ éi and ﬁi)' should satisfy relations

in current and Hamiltonian operators. The coefficients a(24) with transposed indexe& and B. Combined with Eq.
such combinations must equal zero. As a result we have (3 this gives us the general form of the diagonal elements

8=0: For=F10=0: Gg;=G1=0: Rp=Rys=0, of submatrixR:

(23

so that in the spinless Kane model all the boundary condition

submatrices become diagonal. Finally, the following canoniHere we introduce parametegs, which have the dimension

cal relations between nonzero boundary condition matrix elof an inverse length and change sign upon reflection in the
ements can be readily obtained from current continuity conheterointerface. These parameters must vanish in a homoge-

Fl’ﬁlzl, Glélzl, thlil‘I‘Glﬁl:O (30)

Ri=|FiGi|"¥%pi;  pas=—pga. (31

dition: neous material, so the dependence on the corresponding band
offsets may be expectegiag~(Eia—Eig). Following
_Pg. _ Y28, . o Volkov and Pinskef? we regard these parameters as meso-
FOFl_P_A’ F1F3_a’ Fa=Fs;  G2=Gg; scopic in our classificaton scheme, that s

(24 pi<l/a, (a-lattice constant Large value ofp; relates to
an impenetrable interface for quasiparticle state near the
FoGo=22; FiGy= 1, FyGe= 1220 band edges, . * .
=0 yoa’ SV 8737 (vt ya)a” It should be noted that boundary conditions in the general
R form (1) can be used only if we consider the complete effec-
The diagonal elements of the submatixdo not enter the tive Hamiltonian including all possible independent matrix
current continuity equation Eq22) because they cancel in invariants. Correspondingly, all four independent eigenfunc-
component combinations/§ 1 —c.c.). These elements can tions should be used in the wave-function expansion. Arbi-
be found from the reciprocity relation for the boundary con-trary discarding any solution unavoidably results in over-
ditions. To relate the boundary condition matfixz for AB  completeness of the boundary condition systdf).
heterointerface with the boundary condition maffix, for ~ However, if the effective mass of one of the “light” eigen-
BA interface, let us consider a narrow double heterostructurstate in Eq(17), ¥4, is formed mainly due t&p interaction
A-B-A with small width 25 of the B-type semiconductor. of nearest bands, i.e., ifg,y3<1/m;;~ P2/Eg, then the

Since the reflection operation other “light” eigenstate ¥, , represents a spurious solution,
) evanescent or propagating, depending on the sign of the
wyxy ¥ (X,Y,2) = 0y ¥ (XY, ~ 2) (25)  producty,ys.*>?° An explicit treatment of the spurious so-

lutions is beyond the applicability of the multiband effective-
‘mass theoryl?? thus we have to truncate the number of
boundary conditions, providing them only for smooth part of
= = = the effective wave function. Rejected spurious solutions
WaA(=8)=Tas¥s(~ 6)=TaslyyVs(+9) would then affect the values of the boundary condition pa-

= = rameters. Consider, for example, the evanescent solution
=TasyTea¥a(+ ) =0y ¥a(+3d), (260 . The propagating spurious solutions can be treated in

where the shorthand notations have been introduced: the same way. In the case of single heterointerface only de-

creasing exponentials are to be considered. From @J5.

is included into the symmetry group of the double hetero
structure, we have

_ ¥ o 0 and(20) it follows that in canonical basig!}) the evanescent
\If=( ,); Qyy= Y (270  solution has the form
v 0 Dy
In the limit 5—0 it gives the reciprocity condition in the 1
form \/%
*i _ +Pz
TABQxyTBA:Qxy- (28 W= vs | Vi€ ors, (32
0

In the canonical basi¢4) the matrix representation of the
reflection operation,, is 0
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The last two components of the colurtdf), are of the order Here quantitiesn,, g represent conduction-band bulk effec-
of k. /k,<1 and can be neglected in the boundary conditive masses in constitutive semiconductors. Relati8&
tions if U, and U,; are of the same order of magnitude. are the modified BenDaniel-Duke boundary conditions dis-
Assumingk;,>k;,ky,,p, we can show that);,<U;;. To  cussed in the Introduction. Paramefecan be chosen as the
check this, let us write schematically the matching conditiorfirst independent phenomenological parameter describing the

for the effective wave-function derivatives: matching conditions at the conduction band edge. The sec-
ond independent parameter, has the dimension of inverse
(ki1 W1t kW2t kng 2Whi oA length. Boundary condition parameter of this type have been

R R ) discussed by Volkov and Pinsk&r,Zhu and Kroeme?,
=RW¥g+G(k1 V1t k¥ 2+ Ky sVhig- (339 Andoet al,*? and Laikhtman

Here, k stands forz component of a wave vector. The ratio
between the first two elements in colur8®) is different in lll. KANE MODEL WITH SPIN
materialsA andB, therefore, the first two rows of the bound-  £4; 4 correct description of valence-band states, spin of

ary condition(33) can be fulfilled only if all terms in the 14 alectron s=1g, must be included in the Kane model.

parentheses are of the same order of magnitude. Thus,  Assyming isotropic quasiparticle energy spectra in the con-
stitutive semiconductors, we can write the effective bulk
Uiz~ (kiz/kiz) U <Uy, (34 Hamiltonian in the following form:
and we can lawfully omit the spurious solutioh,, in the
following truncated boundary condition set:

. s Wy (1/12)
Y,=FV¥g; =G R . (35 1 ~ A A
AT <¢§>A 3( wé); Ay S P)p(3+ 23] 37

Here, the effective wave function of an arbitrary mesoscopiGince the spin statefe, 8} are explicitly included in the
state W=W,+ Wy + ¥y, includes only smooth compo- pagis set, the order of all matrix operators is now being

nents providsd the”“heavy” mass, is not too large. If  goypled, for example, 4x4 unity matrices of the scalar and
mp>m;, the “heavy” statesi¥p, », should also be excluded yector subspaces,, andBs, are multiplied by the 2x2 unity

from the effective wave-function expansion. In this Case, tix B. of the Spin S aceBo .= By ®B,. Operators
Kane’s Hamiltonian becomes first order in the momentum 2 pin sp 0(3)~ Bo(3)®B2. Op

operatorn. and boundary conditions are reduced simol towith hats will refer in this section to the 8x8 matrices in the
P p - y oo Pl complete basis set. Second term of the Hamiltor(ian,
the relation ¥ p,=FW¥g. This situation corresponds to a

“flat-band” approximation for the “heavy”-state dispersion Hso has no counterpart in the spinless moded). This

) ; operator represents the spin-orbit splitting of the energy of
and can be used only if the energy of the mesoscopic sta&téje vector sFl)Jbspace basispstates by ?he a?n@umd, simuﬁy

neously, allows us to keep the energy zero at the top of the

. . A N A . .
H=E4Bo+3(2J5-1)By+ P(pA) + yop?Bo— 73p°By

under cosideration is not too close to the valence-band top Iy

eitherA or B material. valence band. The last term in E§7) is formally analogous

Finally, we conclude that in the isotropic spinless four- R, -
band Kane model, the heterointerface is described by th%zo the last term of the Hamiltoniaf1.2), and has the matrix

boundary condition&l) with only two independent phenom- Structure of the projection operatdr, onto the “heavy”

enological parameters. The existence of these two parameteiit€ subspacésee Appendix Phenomenological param-
. . o etersy; used in our form of Kane Hamiltonian will be related
in the spinless model and the absence of the subm&tiix

o ; X | he original Lutti .
the total boundary condition matriX,g both confirm the below to the original Luttinger parametefs

assumptions used in oreceding wolks? One independent For isotropic spin-including Kane model, the canonical
paramgter of the bounrt)jary congditions (':an be arbiFt)rarin chop asis is given by a set of four Kramers-conjugate pairs of
sen from the parameter s@4). Depending on the choice, it states, representing the basis of coupled angular momenta:

relates to the matching condition at the corresponding band _ .

edge. It is interesting to derive the boundary conditions forr ,»n — (Sa>- i 22a OHIY)B)-

an electron state near the nondegenerate conduction band" SB)"  \6\2ZB+(X—iY)a)’

edge characterized by the scalar effective wave funcifon

~ 1y, (one-band effective-mass mogeln this case, the 1 [Za+(X+iY)B 1 [ (X+iY)a
Hamiltonian parametergya g should be renormalized to in- — . ;= . )] . (39
clude the contribution from the basié states. Then, from V31ZB=(X=iY)a]" 2\ (X=iY)B

the relationg24) and(31) the effective boundary conditions
can be readily obtained. Omitting the unnecessary matri

idexes. we have The first three doublets in Ed38), {up}n=01.2, relate to

three equivalent two-dimensional representations of the sym-
_ . "~ . metry group of the heterostructure energy spectrum. The
= = + . . :
Va=Fysi  ¥a=GCiptRys; (36)  ave-function components corresponding to the equivalent
U2 irreducible representations can mix at the heterointerface,
consequently, all the submatrices of the boundary conditions
(1) should be sought in the form
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Fo For Fo, O function disregarding their particular “spin” structure. The
E £ F 0 effective wave function of the mesoscopic state should now
Eo| 't be expanded into the wave packets, corresponding to differ-
Fo F1 F, 0O ent types of eigenfunctions of Scliinger equation in the
0 0 0 Fy4 eight-band Kane model. One of these eigenfunctions has the
matrix structure of “heavy” state and can be defined by
Gy, Go; Ggp O means of the projection operatds, (see the Appendix
G G, G 0
é _ 10 1 12 , (39) A U 0
G G2z G O Tp=A, —| = vl (41
h

0 0 0 G

) ) ) ) . _ To find out the matrix structure of the “light” eigenstates in
All the considerations of the previous section remain Va“d.the Spin_inc'uding Kane modeL we have to take into account
We need only to substitute the quasispin operaidor Jin  the existence of two linearly independent Hermitian opera-
space transformation operatdee the Appendjxand take tors exhibiting the transformation properties of a polar vec-
into account the different form of the time-reversal operatortor, specifically,p and == sx p.?® Therefore, the vector part

T of the wave functiom¥, should be thought of as a linear

. combination of both columnk and columng=sxk=

e(|/2) do, 0 0 0 —I(JS)k
3 0 gli/2) g, 0 0
Ry _
wz,¢_el¢ 0 0 ali12) o, 0 ; U, . o -
_ V= —|; V,=P(ak+ibg)U,=P[a+Db(Js)]kU,.
0 0 0 e(3|/2) do, VI
(40) (42)

From the dispersion EqA17) it follows that for a given
energyE there exist three “light” eigenfunction®, with

R ~ differentk?. As a result, the effective wave function of an
Here w3,= 7*=—1, because now the fermionic nature of arbitrary mesoscopic stat, can be expanded in four in-
Kane quasiparticle is consistently included in the model. Redependent wave packels=W¥,,+V¥,,+¥ ;+ ¥, and all
lations (8) and (9) allow us to find the matrix structure of four spinor componentg, of the corresponding column can
2X2 blocks, linking the envelopes of Kramers conjugatedbe considered as independent variables. The current continu-
basis states. Boundary condition invariance according to thigy analysis developed in the previous section is still appli-
rotationsw,, provides the diagonal structure of each block,cable and provides additional restrictions on the boundary
whereas the reflection operatar,, exchanges the “upper” cc_>nd|t|on ‘matrix elements. In the eight-band Kane model
and “lower” components of basis Kramers doublets, thusWith Hamiltonian(37), the current operator has the form
making the diagonal elements equal. Taking into account

time-reversal symmetry, we finally find that each elementary . . . . 1 A A A a o aa

block in Eq.(39) is represented by a real number multiplied 1 =PA+2P(70Bo~ 73B3) = 5 v2{[J(pJ) +s(pd) + J(ps)]

by 2X 2 diagonal unity matrixB,. This structure of bound-

ary condition submatrices means that in canonical represen- +c.c}, (43
tation the basis states with opposite sign of indeso not

mix at the interface, and we can analyze the mixing of theand itsz component in the coupled angular momenta basis is
spinor components of the arbitrary mesoscopic waverepresented by the matrix operator

a)xz:(BO_"BB)@in; ;:(Bo+83)®i0'ylc.

2 V3
\@P —23p,; 0 - 772(px+iozpy)

jz: 1
\/;P 0 —2y3p; 0

V3
0 - 7’y2(px_io-zpy) 0 _2( 72+ ’)/3)p2

(44)
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with the average value =Pg and y,5= y»g, the component-by-component continu-
ity of effective wave function becomes possible in the Kane

N \F \/I model.

o §¢1+ §¢2 Next, we consider the problem of approximate boundary

conditions for the most important limiting situations. First of

all, we suppose the remote band effects to be smally;

(ip=P +c.c.

— = valdi(pctiopy)gstec] <1/m, as is usually the case for all materials of interest.
One spurious “light” state¥,; and, correspondingly, two
—iyo(¥p o—c.c.)+iys(¥1 i+ ¢ —cC.C) matching conditions for the effective wave function deriva-
iyt va) (P =) (45) tives should be truncated in accordance with the small pa-
Y2t v3) (Y33~ C.C). rameter\/yoy3E4/P?, as was described in previous section.

Similar to the spinless model, current continuity analysis ren!n the basis of coupled momenta first two vector components
ders vanishing most of the nondiagonal blocks in B89).  of the spurious stat®#,; are linearly dependertsee the Ap-
There is no mixing at the interface between the scalar and theendiX, therefore, in the boundary condition set we should
vector wave-function components, and the subméirisan- keep the matching condition only for the linear combination
ishes identically. However, now the submatfixcan have (1~ \2¢), where t_he components of the spuriogs solution
one nonzero nondiagonal matrix elemdy;. The existence \I.r'3 are absent. Taking into accqgnt Has), W? arrive at a

. i ~ . simple truncated boundary condition system:
of nondiagonal element in submatfxinduces the existence
of nonzero nondiagonal elements in submatriGeg@lement Va=FPy;
G1o) andR (elementsk;, and R,1). Canonical relations be-
tween boundary condition matrix elements and bulk Hamil- (¢ — \24,) h=G1(¢h1— 2) s+ Ru(th1— 2125 ;

tonian parameters are given by (49
FoFo=p2i FiFs= 2% o \2(F,—Fy) Van=Cataat Rotfse.
A A For narrow band-gap semiconductors, the limit of large
Yos_ spin-orbit splitting of the valence band is often used. If
G1=V2(G,—Gy); FoGo=-— A>E,E, then from Eqs(A14) and (A16) it follows that
Yoa' the third line of each boundary condition submatri¢as)
(Yot 72) can be omitted. Two solutions of the dispersion E417)
F.G=F,G,= 8. F,G,= 2 VB, become spurious in this limit and should be rejected in the
V3 (v2t+7v3)a effective wave-function expansion. One of these eigenfunc-
tion relates to the “remote” spin-orbit split-off band, the
F1R1o—F2Ro1t F2R,=0. (46)  other has the matrix structure similar to £§2). As a result,

for the so-called six-band Kane model we obtain the follow-
ing truncated system of boundary conditions in the coupled
angular momentum basis:

The matrix representation of the reflection operation in het:
erointerface planev,, can be obtained as the product of

inversion operator matrik= BO 83 and operatorwZ .

1 0 0 O v ZO .
.. . lo -1 0 o )
Wyy= 0z . = 0 0 -1 0 ®io,. (47 3
0 0 0 1 Yoa=Fovos: ¥1a=F11p;  $aa=Faihas;
Using this representation in reciprocity conditi¢28), we Y/3n=Csizpt Rathzs - (50
arrive at the same expressi¢dl) for the elements of sub- e total effective wave function in this model is represented
matrix R in eight-band Kane model. by a superposition of smooth wave packets of one “light”

For the Kane model with spin, the nondiagonal matrixand one “heavy” states with sufficiently small wave vectors

elementF,; plays the part of a third independent phenom-¥ =9 +¥, .
enological parameter in the boundary conditions. Appar- Finally, we obtain the approximate boundary conditions
ently, it is determined by spin-orbit interaction at the hetero-for Luttinger’'s model, describing the valence-band states in
interface. In what follows, we assume this interaction to bethe energy regiofE|<Ey,A. In this limit the dispersion

“relativistic” small. Neglecting the parametdf,;, we can relation (A17) for “light” e|genstates has only one solution
significantly simplify the boundary conditions. All submatri- with the dispersion

ces become diagonal and, moreover, the relations

Ei=—(y3+2P%3E k. (51)

F,=F;; G,=G;; R,=R 48 , . . . .
21 2 =t 2 “8) Multicomponent eigenfunctions of the Luttinger model in the

hold for diagonal matrix elements. It is interesting to notecoupled momenta basis do not contain the first and the third
that only in this approximation and, additionally, B,  rows. For “light” solutions, these components are small in
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TABLE |. Material and boundary condition parameters for GaAs-based heterointerfaces.

GaAs AlAs Aly Géay gAS GaAs/AlAs GaAs/A} Gay gAs

me/mg 0.0665 0.150 0.083 FoF1 1.10 1.02
Yy 6.85 3.45 5.64 FiFs 2.53 1.29
Vs 2.10 0.68 1.57 FoGo -7.92 0.60
v5 2.90 1.29 2.32 F1G, 0.63 9.67
Ey.eV 1.519 3.130 1.746 F3Gs 3.12 1.20
Ep.eV 25.7 21.1 24.8 Ro/po 2.82 0.77
A,eV 0.341 0.275 0.328 Ri/p; 0.79 3.11

Rs/p3 1.77 1.10

accordance with small parametef¢E; and E/A, respec- Here we use the canonical ba$isg ;us}, diagonalizing qua-

tively, and the dispersionless partial boundary conditions fogjspin componendl,. In this basis, successively applying
the four-component Luttinger effective wave function aresymmetry operations, ., andw,,,2 we again arrive at the
2 T '

given by boundary condition§52) with parameters
1
\P:(%); . _(7&4'23’5)3_ _(’}’5_27’5)5_
1G1=—F———1— FGe=—"1—7""77—;
(Y1+295)a (Y1—295)a
V1a=F1¥1e;  Yaa=Fziss;
Pia=G11p+Rihig;  ¥aa=GCathgg+Rahzg. (52) ”s
Parametersy;, g should be renormalized according to Eq. FiFs=—, (59
(51) to include the contribution of the bas®states, which Yaa

now become “remote” states. In the isotropic model it is = | ] ) ] L )
much more convenient to use the matching parameters exthich in the spherical approximatiop;~ y; results in Eq.
pressed in terms of the quasiparticle effective masseand (53). In this approximation, the Luttinger Hamiltonian re-

my, duces to the form
Mia Mpa (1/my—1/mp)a 1 5_ B
F1G1—m_IB, F3G3—m_hB, FlFS_—(llml_llmh)B. HLZZ_mO[('YIi"'E'}’L)p254_2?’|—(p~])2}1 (56)
(53

Similar boundary conditions hold in Luttinger's model with and we can easily relate the phenomenological parameters
anisotropic quasiparticle spectrum, if the heterointerface ig;sed in our form of Kane’s Hamiltonia87) to the original
orthogonal to one three-fold or four-fold axis and one surfacq_ : L L1/ Lo Ly

uttinger parametery; and y-=3(y5+ :
of symmetry of the bulk energy spectrum. For example, con- gerp 1 v =2(yzt%3)
sider the{001} boundary of a diamond-like semiconductor.

The Luttinger Hamiltonian can be written in the traditional _ iz_L- _i(l L E)
mannet using matrices) of angular momentum 3/2, which 72 mq LS mgp\ 2 " 3Eg)’
now play the part of a quasispin:
.1 5 . . Ep=2mP?. (57)
=gl | 70t 572 |PPBa 293P0t )
Parametety, can be evaluated trough the experimentally de-
n termined conduction-band masg using relation(A17)
_zyg(pxpnyJy"" e ):|1 (54)
N~ s A 1 |/{m.)\"1! EP(E+§A)
H ,(L+J)]_-=0; AL=B4(rxp). = =) A9 5=/
(A (C+3)] Arxp) Yo (mo) c e
V3 K]
Ox T 5 9z oy —I > In Table | we show the results of exemplary calculation of
J,.= : jy: : the main relations between the boundary condition param-
\/§ 0 . \/§ 0 eters (46) for I'—envelopes at GaAs/AlAs and
I '7 GaAs/Al ,.Ga, gAs heterointerfaces. Material parameters

used in the calculation are taken from tables of
lg, O Landolt-Bornsteirf’ It is interesting to note the strong de-
jZ: ) pendence of the matching parameters for wave-function de-
rivative G; on the Luttinger parameters of constitutive semi-
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conductors. The basic phenomenological parameters of thend the relation

boundary conditions, for exampke, and p;, should be ob-

tained by a more detailed microscopic analysis of the bound- A8 — e

ary condition problem, which is beyond the scope of the (Js) 2. Ji®s (A3)

present article. .
holds true. When the basis is changed, the matrigesnd

IV. CONCLUSIONS si, as well as matriced\;, suffer a unitary transformation

and cannot be decomposed into the direct product of the

The virtue of the phenomenological description of angrbital and spin parts. For example, the unitary matrix
abrupt heterointerface lies in the simplicity of the resulting

boundary condition matrix. At an abrupt heterointerface, the ioy —iay 1
multiband effective wave function should satisfy the bound- wel 2 o VA e 1Y e (Ad)
ary conditions of the most general forid). In this paper, we J6 ) I3 1X 2 OZ

have analyzed the structure of boundary conditions in eight-

band Kane model and shown that in the canonical basis thgescribes the transition from bagisl) to the coupled angu-
boundary condition matrix assume a ruther simple formyar momenta basié38) used in the text. Only the nontrivial
Only two independent phenomenological parameters argat of the matrix, corresponding to the vector subspace

needed to characterize the matching conditions at the abrugt,sformation. is shown here. All the vector columns. like

heterointerface in the case when bulk energy spectrum ({17 — = . . '
. ; L ) . L : , k, g, which we use in the eight-band Kane model, are to

quaS|part|_cIes is isotropic gljd spin-orbit mteracnon at thebe tranqsformed also and becgme six-component _columns

interface is small. In the spirit of the effect]ve—mass theory, ith complex spin structure. For instance, the vector column

these parameters are determined by the microstructure of tlﬁ_ . ' ' )

interface and do not depend explicitly on the energy of the< iS represented in the coupled momenta basis as

charge-carrier state. This provides the easiest way to treat the

nonparabolicity effects in direct band-gap semiconductor K 2(k2+'q2)/‘/6
heterostructures. Simple canonical relations have been estab- k=w1f ky | =| (k,—2ig)/\3 |;

lished between the boundary condition matrix elements and K K —io k)2

parameters of the Kane’s Hamiltonian in constitutive semi- z (kx—iozky)

conductors. It follows that in general situation, when Hamil- 1

tonian parameters in both semiconductors are different, the U,== (oyky— ayk,). (A5)
assumption of effective wave-function component-by- 2 oy

component continuity is unapplicable. The relations between . . . .
major boundary condition parameters has been evaluated for The matrix structure of the spin split-off operatdg, in
two examplary GaAs-based heterointerfaces to demonstrafed- (37) has been chosen to keep the energy zero at the top

strong dependence of the matching conditions on the effec@f the valence band, assuming that the highest energy level
tive Hamiltonian parameters. corresponds to the four-fold degenerate valence basis state.

Indeed, the eigenvaluesof the operator Jo) can be easily
obtained from the well-known relation for Pauli matrices,

ACKNOWLEDGMENTS (a0)(bo) = (ab) + i[ax b]e, if we puta=b=2J:
One of the authoréM.V.K) is indebted to Professor S.A. - )
Smolyansky for helpful discussions. This work was partly (Jo)*=J"-(Jo)=2-(Jo); \=2-\. (A6)

supported by the U.S. Army Research Office under Granipq eigenvalued, which are\,=—2 andhs,=+1, are

No. DAAGS5-97-1-0009. twofold degenerate. Moreover, since all the spin matrides,
ando;, are traceless, there should be an additional two-fold
APPENDIX degeneracy of the second eigenvalyg. According to the
form of the spin split-off operator, the energy of this four-
fold degenerate state is precisely zero, while the energy of
the two-fold degenerate state is equall. In the basis of

coupled angular momenta operaﬂélg0 becomes diagonal
with only nonzero matrix elements

In this Appendix we consider the matrix structure of spin-
including eight-band Kane Hamiltonid87) and correspond-
ing eigenfunctions. First of all, to avoid confusion, we note
that all hatted matrices used in the model, for exansmed
J, have trivial matrix structure only in the basis of direct
product (Hso%=(Hso)g5 "' =—A. (A7)

; Sa Xa Ya Za| Now, let us consider the structure of the last term of the
{u”}:{S’X’Y’Z}®{a"B}:[Sﬁ XB YB Zﬂ]’ (AL} eight-band Hamiltonian(37). In the absence of external
fields the total angular momentum of the quasiparticle must
n=0,1,23y=~+1. be conserved. By analogy with E(L3), it thus follows that
matrix operators of quasisp® and quasihelicityu = (mX)
In this basis we have should exist. Quasispin operator can be defined as

5i=(Bo+B3)®s;; J=(0-Bo+J;-B3)®B,, (A2) >=5+J; [A,E+0)]_=o0. (A8)



PRB 58 BOUNDARY-CONDITION PROBLEM IN THE KANE MODEL 4615
In basis of coupled momenta this operator has the matrix representation
E(m(r) 0 0 0
1 i3
) 0 (moy+5meo, 0 — 5 oy(mey)
(mX)= 1 (A9)
0 0 5 (Mo, —(mjoy)) 0
i3 3
0 S (mopay 0 2Mez

Since quasihelicity of a free quasiparticle is a good quantum number, the scalar invpﬁaﬁtshould enter the eight-band
Kane Hamiltonian instead of the matrix forrpr)z, which has been used in spinless model. In B) we use the operator

L~ 1 A 1 1 - A~ A
An=z{(Mm3)%— —}=—(mJ)[m(J+25)], (A10)
2 4| 2
which in vector subspace of bagi38) is represented by the matrix
- 3 I\/§ -
E(l—mf) 0 —T(mo-ﬁ—mzaz)oy(muo-“)
1
Ap== 0 0 0 (A11)
2| a .
i
— (Mo ay(mo+m,o;) O 5(1+3m3)

According to the definition(A10), operatorA,, affects the ~Schralinger equation with Hamiltonia(87) and making use
wave functions with quasihelicity = = 1 like a zero opera- 0f AW =0, we easily obtain the coefficienatE) andb(E)
tor, therefore, it can be considered as a projection operator
onto the subspace of two-fold degenerate “heavy” stéies,
which are characterized now by the quasiheliq&ytt% E

+3A
and have the dispersion a= EE+A)

ZA
b=—— ;
E(E+A)

E =E+ 'ygkz,
(A15)

1 .. "
En(k)=5SAARH) == (72+ y3)K% SpA=2.

(A12) the matrix representation of the vector colun?m in the

coupled momenta basis

In basis(Al) spin matricess are diagonal in index and
vector columnVy, of a free “heavy” quasiparticle state has

an especially simple form i 0 0
E
- = . - B 1 _
Vip=V—(mV)m+2i(ms)[mxV]. (A13) V=] 0 = 0|PkuU;, (A16)
Using Eq.(A4) we obtain the corresponding representation
in the basis of coupled momenta 0 0 1
- E-
V3K
_ 0 and the dispersion relation for corresponding “light” bands
qz0 .
4=~ (p,~id,)
| ~ 2
E+-A
Here kH:\/kszf kyz, and Uy is normalizing factor. For (Eg+ yok2—E)+ P2k2s——— =0, (A17)

“light” quasiparticle eigenstates, substituting E@2) into E(E+A) -



4616 M. V. KISIN, B. L. GELMONT, AND S. LURY!I PRB 58

which is third order ink?. As a result, in eight-band Kane and(A16), we find the matrix structure of this column
model we have three different types of “light” eigenstates.

Usually, yo,y3<P%Eg, and only two of these state¥; 1

and¥,,, are physically relevant. They can be attributed to
conduction—light-hole and spin-orbit split-off bands, respec-

tively. The thirdk? solution of Eq.(A17), k3~ —P?/yyys,
leads to spurious “light” eigenstatel,5. Using Egs.(A5) 0
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