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Dynamics of stripes in doped antiferromagnets
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We study the dynamics of the striped phase, which has previously been suggested to be the ground state of
a doped antiferromagnet. Starting from thet-J model, we derive the classical equation governing the motion of
the charged wall by using a fictitious spin model as an intermediate step. A wavelike equation of motion is
obtained and the wall elasticity and mass density constants are derived in terms of thet andJ parameters. The
wall is then regarded as an elastic string that will be trapped by the pinning potential produced by randomly
distributed impurities. We evaluate the pinning potential and estimate the threshold electric field that has to be
applied to the system in order to release the walls. Besides, the dynamics of the stripe in the presence of a bias
field below the threshold is considered and the high- and low-temperature relaxation rates are derived.
@S0163-1829~98!00625-0#
o
ia
a

in
e
n
e
a

ol
e

th
a

on
ti-
-
re
s

te

ve
so
s
-
e
n

lso

ic
er

neg-

ory.
gi-
in-
he
ld
the
ith
in
red
eta-

o-
n
.
al-

s of
In

ed

t

s to
e
the
is
ion
a-
I. INTRODUCTION

The discovery of a deep connection between superc
ductivity and quantum antiferromagnetism in the phase d
gram of the cuprate perovskites has stimulated various
tempts to understand the effects of dilute holes in a sp1

2

Heisenberg antiferromagnet. The problem has usually b
addressed by assuming that a doped antiferromagnet ca
described by a gas of holes with uniform density. Howev
several calculations1–7 suggest that in this system there is
modulation of the charge and spin densities, i.e., the h
cluster along lines that separate undoped antiferromagn
domains~striped phase!.

Experimentally, recent measurements also indicate
striped order indeed occurs in doped planar antiferrom
nets. In the insulating nickel oxides, such stripe modulati
were reported8–10 and the data were consistent with mul
band Hubbard model calculations.11 For the case of the cop
per oxides, elastic neutron-diffraction experiments have
vealed static stripe order in the superconductivity suppres
compound La1.48Nd0.4Sr0.12CuO4 ~Ref. 12! while in the su-
perconducting compound La2-xSrxCuO4 inelastic scattering
peaks at incommensurate wave vectors suggest the exis
of a very similar, albeit slowly fluctuating, striped phase.13,14

Although incommensurate spin fluctuations are not obser
in the low doping region of the cuprates, muon spin re
nance and nuclear quadrupole resonance experiment
La2-xSrxCuO4 with 0<x<0.018 ~Ref. 15! have been suc
cessfully interpreted within models that presume a strip
structure.16 The surprisingly strong suppression of superco
ductivity in these materials for even low Zn doping was a
found to be consistent with the existence of stripes.17

The objective of the present work is to study the dynam
of this striped phase in the low doping regime, where int
PRB 580163-1829/98/58~1!/453~9!/$15.00
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actions between neighboring stripes are assumed to be
ligible. We treat the problem on the basis of thet-J model
and establish the connection to the discrete elastic the
The domain wall is then considered from a phenomenolo
cal point of view, i.e., as an elastic line trapped by the p
ning potential produced by impurities. The depinning of t
line from the potential well by applying an electrical fie
perpendicular to the stripe structure is investigated, and
threshold field corresponding to the onset of a state w
mobile lines is determined. Finally, the relaxation process
the presence of a bias field below the threshold is conside
and the classical and quantum decay rates from the m
stable state are computed.

The first calculations of the striped phase in tw
dimensional ~2D! antiferromagnets with holes have bee
done within the Hubbard model in the vicinity of half filling
They were based on the self-consistent Hartree-Fock form
ism and have been performed for small and large value
the ratioU/t. The results can be summarized as follows:
the smallU approximation, vertical domain walls~parallel to
the x or y axis! are stable,1,3 whereas for largeU diagonal
walls are energetically more favorable.2,3 This crossover
from vertical to diagonal stripes was numerically calculat
to happen atU/t;3.6 ~Ref. 3! ~see Fig. 1!.

In the U/t@1 limit, the Hubbard model with an almos
half-filled band can be reduced to thet-J model with an
effective exchange constantJ54t2/U.18 Contrary to the
Hubbard model, where each site of the lattice correspond
four possible states, in thet-J model only three states ar
allowed, since double occupancy is forbidden. Hence,
dimensionality of the Hilbert space in the latter model
much smaller and for finite clusters an exact diagonalizat
of the system, without using the Hartree-Fock approxim
tion, is possible. These studies of thet-J model have been
453 © 1998 The American Physical Society
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recently performed and they confirm the results obtained
viously: By exactly diagonalizing small systems, Prelovs
and Zotos7 have verified that a striped phase with hol
forming domain walls along the~0,1! or ~1,0! direction arises
for J.Js;1.5t, while in the regime 0.4,J/t,1.2 the do-
main walls appear along the~1,1! direction. Besides, they
found signs of phase separation into a hole-rich and a h
free phase atJ.Js* ;2.5t. In Fig. 1 we graphically represen
the results obtained from thet-J and Hubbard models to
allow for a direct comparison between them.

The results obtained for the striped phase can be un
stood on simple physical grounds. In Figs. 2~a! and 2~b!,
diagonal and vertical stripes~ensemble of holes! embedded
in an antiferromagnetic~AF! background are, respectively
represented. The holes can jump from one site to another
during this process they gain kinetic energyt. An inspection
of Fig. 2 leads us to conclude that the diagonal configura
favors the dynamics~in this case the holes can move in 2D
horizontally or vertically!, whereas for the vertical stripe th
holes are confined to move only in the horizontal directio
On the other hand, the vertical configuration breaks few
AF bonds and hence there is a gain in the exchange enerJ.
Then, the final behavior that results from the competit
between the kinetic (t) and the exchange (J) energies~see
Fig. 2! is as follows. Whent.J54t2/U, i.e., for U/t large,
the kinetic energy dominates over the exchange energy
the stripes are diagonally arranged. When the gain in
exchange energy becomes more relevant, fort,J, the verti-
cal ~horizontal! formation arises.

Besides the question concerning the orientation of
stripes~vertical/horizontal or diagonal!, another essential, ye
controversial, point about the domain-wall structu
emerges: the width and the composition of the wa
Neutron-scattering experiments suggest that single ch

FIG. 1. Regions corresponding to the diagonal and vert
striped phase obtained from~a! exact diagonalization in small sys
tems~Ref. 7!; ~b! Hartree-Fock calculations~Ref. 3!.

FIG. 2. ~a! Diagonal and~b! vertical stripe configurations.
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composed of one hole per two lattice sites should sepa
AF antidomains.12 On the other hand, Hartree-Foc
calculations1–4 and exact diagonalization in small cluster7

predict a domain-wall filling of one hole per unit cell. Rece
numerical density-matrix renormalization-group results sh
domain walls composed of a double chain of holes~bond-
centered structures!, or a triple chain of holes~site-centered
structures!, depending on the boundary conditions and on
dimensions of the clusters.19 Here, we concentrate on th
simplest possibility: a domain wall composed of one hole
site separating AF antidomains. Although this structu
seems to be more plausible for describing the nickelates~the
cuprate strings should be metallic; hence, with one hole
two sites!, we still apply our results to estimate the values f
a cuprate material.

Recently, the stripe dynamics have been studied from
different perspective: the domain walls were regarded from
phenomenological point of view as vibrating strings.20 The
motion of a single stripe was initially considered, and t
analysis was then extended to the more complicated reg
involving many~interacting! domain walls. Here, we adopt
similar description. However, instead of using the initial a
sumption that the stripe can be described by an elastic l
we start from thet-J model andshowthat the classical equa
tion of motion describing the stripe dynamics in the limit
long-wavelength displacements has a wavelike form. In t
way, we deduce the phenomenological mass and elastic
efficients for the string in connection with the ‘‘micro
scopic’’ t and J parameters. Without loss of generality, w
concentrate on the vertical configuration. This implies th
our considerations hold forJs* .J.Js , i.e., 2.5t.J.1.5t.7

On top of that, we study the problem in the dilute limit, whe
the doping concentration is low and we can investigate
behavior of a single stripe~chain of holes!.

In order to derive the quantum equation of motion d
scribing the dynamics of thenth hole in the chain, we map
the initial t-J Hamiltonian onto a quantum spin-chain pro
lem with large spin. Replacing the spin-chain operators
the quantum equation of motion by their classical values
considering the long-wavelength limit, a classical wave-ty
equation of motion is derived for the stripe. The justificati
for this classical approach rests on the assumption of
existence of zero mode excitations, i.e., we assume th
continuum description of the problem is possible and that
discreteness of the original lattice formulation is irrelevant
the long-wavelength limit. Recently, it was shown21–23 that
the striped phase undergoes a roughening transition, i.e.
flat ~gapped! phase present at higher values ofJ/t becomes
rough ~gapless! as J/t is reduced. Hence, our approach a
plies to the rough phase of the stripe, in which the underly
lattice structure is unimportant and the behavior of the s
tem is governed by a Gaussian fixed point.

Since the equation of motion describing the stripe dyna
ics has a wavelike form, the stripe is from then onwar
regarded as an elastic string. The random pinning poten
due to the presence of impurities is evaluated and the ac
tion energy barrier is calculated for the case of a bias elec
field applied perpendicularly to the stripe, both in the hig
temperature phase, where quantum fluctuations can be
glected, and in the quantum dominated low-temperat
phase. The threshold field is estimated and we briefly disc

l
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PRB 58 455DYNAMICS OF STRIPES IN DOPED ANTIFERROMAGNETS
if and how stripe depinning could be experimentally o
served. The dissipation effects are also considered and
influence in the stripe depinning is discussed.

The outline of the paper is as follows. In Sec. II, th
model is introduced and the equation of motion is deriv
The pinning potential and the threshold field are calculate
Sec. III. In Sec. IV we investigate the classical and quant
relaxation regimes at fields below the threshold. The disc
sions and conclusions are presented in Sec. V.

II. THE MODEL

The t-J Hamiltonian describing a chain of holes~stripe!
embedded in an antiferromagnetic background is18

HtJ52t(̂
i j &

cis
† cj s1J(̂

i j &
S SW i•SW j2

1

4
ninj D . ~1!

Here, HtJ acts in the truncated Hilbert space consisting
states for which the double occupancy of any site is forb
den, i.e.,ni50,1.

We apply this Hamiltonian for investigating the dynami
of an infinitely long stripe. The linear concentration of hol
along the stripe is assumed to be one hole per lattice poin
we can neglect charge and spin fluctuations along the st
The stripe represents a domain boundary~DB! dividing the
antiferromagnetic plane into two Ne´el’s phases. We conside
these two phases to have opposite staggered magnetiz
~antiphaseDB!. Hence, the string can move without distur
ing the initial magnetic order, i.e., it is delocalized@see Fig.
3~a!#. This case is opposite to the other hypothetical ca
when these two staggered fields are equivalent~phaseDB!
and the string is localized, since its motion is strongly fru
trated by the surrounding magnetic order@Fig. 3~b!#.

Here we concentrate on the dynamics of the vertical c
figuration and assume that the stripe is located along thy
direction. Furthermore, we make one additional hypothe
which reduces the problem to a directed, but discrete, p
mer problem: the holes are constrained to move along
transversalx direction only, i.e., we neglect overhangs. Th
assumption is true for the shortest excursions of the h
from the initial vertical position of the string~up to one step!
and therefore seems to be plausible as far as one cons
only small magnitudes of the oscillations. Therefore, the s
position holds for theJ.t case, when larger excursions
the holes are suppressed by the dominating exchangeJ term.
In the oppositeJ,t case, the hypothesis ceases to be va
and the one-dimensional approximation cannot be used

FIG. 3. ~a! Delocalized stripe~antiphase domain boundary!; ~b!
localized stripe~hypothetical case corresponding to a phase dom
boundary!.
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more. This corresponds to the more complicated case of
diagonal DB, which will be treated in a separate work.

Let us denoteun the displacement of thenth hole from its
equilibrium position along thex direction. We describe the
relative displacement of two neighboring holes bysn

z5un

2un21 and treat this value as thez component of some
effective local spinsW n . This spin is related to thenth seg-
ment of the stripe. Displacement of thenth hole by one step
along the positive direction of thex axis increasessn

z(sn
z

→sn
z11) and decreasessn11

z (sn11
z →sn11

z 21). Their sum
remains unchanged. Hence, the motion of thenth hole is
described by the spin operator2ts22(sn11

1 sn
21sn11

2 sn
1).

Thes22 factor provides the conservation of the norm und
the action of this term on the spin-wave function. Moreov
by accounting for the different Ne´el order to the left and
right of the stripe, we see that any increase of the rela
displacement of two neighboring holes by unity results in
increase of the exchange energy byJ/2. Thus, the contribu-
tion of thenth segment to the exchange energy of the str
is (J/2)usn

zu.
A similar problem was investigated by Eskeset al.,22 but

the Hilbert space in their work was truncated in a differe
way. Only configurations where two neighboring holes a
separated by one lattice unity were allowed. Hence, t
mapped the relative displacement coordinate onto a spin
chain and determined the phase diagram features, in the s
spirit as in Refs. 23 and 24. Here, we consider a broa
Hilbert space and search for the classical equations of mo
instead of the quantum phase diagram.

The projection of the initialt-J Hamiltonian onto the new
Hilbert space gives rise to the spin-chain problem with
effective Hamiltonian

H52
t

s2(n
~sn11

1 sn
21sn11

2 sn
1!1

J

2(n
usn

zu ~2!

and the standard commutation relations

@sn
z ,sm

6#56dn,msm
6 , @sn

1 ,sm
2#52dn,msm

z .

The effective spins is the maximal relative displacement o
two neighboring holes.

The configuration of the stripe is determined by thez
projection of the spin,sn

z . The quantum equation governin
the motion of thesn

z operator is

\2s̈n
z52†@sn

z ,H#,H‡. ~3!

The commutators involving theJ term of the Hamiltonian
~that contains theusn

zu) can be more easily evaluated with th
help of the general relation

@sn
6 , f ~sm

z !#5sn
6@ f ~sm

z !2 f ~sm
z 6dn,m!#. ~4!

Here, f (sm
z ) is an arbitrary function of the operatorsm

z .
The next step is to evaluate the commutators on the rig

hand side of Eq.~3!. Then, we consider the classical lim
s→` and replace the spin operatorssn

z and sn
6 by the c

numbers

sn
z→s sin an , sn

6→s exp~6 ifn!cosan . ~5!

in
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Note that the assumptions→` does not imply that we ex
clude the short excursions of the holes. Instead, due to
‘‘potential’’ J term in the Hamiltonian~2!, the long excur-
sions are in fact suppressed as compared to the short on
the long-wavelength limit, the discrete variablen can be re-
placed by a continuous one, which we denotey. Hence,

ufn112fnu5aU]f

]yU!1, uanu5aU1s ]u

]yU!1 ~6!

and the equation of motion~3! acquires the simple wavelik
form

S ]2

]t82
2

tJa2

\2

]2

]y2D a50. ~7!

Here, t8 denotes time anda is the lattice spacing. A more
detailed derivation is given in the Appendix.

Due to the differential relation between thea andu vari-
ables,a5(a/s)(]u/]y), the displacement of stripe obey
the same wavelike equation,

S ]2

]t82
2

tJa2

\2

]2

]y2D u50. ~8!

This equation describes the long-wavelength oscillations
the stripe around the equilibrium positionu5const. The cor-
responding action reads

S@u~y,t8!#5E
2`

`

dyE
0

`

dt8F \2

2ta3S ]u

]t8
D 2

2
J

2aS ]u

]yD 2G .

~9!

The problem has then been mapped onto a massive s
with linear mass densityr5\2/ta3 and elastic tension coef
ficient C5J/a.

Finally, one can observe from Eq.~8! that the long-
wavelength elementary excitations of the string are gap
and have the phononlike dispersion relation

v5ck, ~10!

with phase velocityc5aAtJ/\. We emphasize again tha
our derivation assumes the validity of a continuum desc
tion and hence it holds for the rough phase.

III. THRESHOLD FIELD

Up to now, we have only considered the dynamics o
stripe embedded in an antiferromagnetic background. H
ever, in real systems, we have also to take into account
presence of randomly distributed pointlike impurities that
to pin the lines, leading to a glassy phase with trapp
stripes. In order to reduce the pinning barrier, we apply
external electric field perpendicular to the stripe’s formatio
Then, we determine the threshold field above which the
tential barrier vanishes and the stripes can flow through
sample, as in a liquid state.

The free energy describing an elastic string along thy
direction, which tends to move due to the action of an ex
nally applied electrical fieldE competing against the pinnin
barrierVpin is
he
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F@u~y!#5E
2`

`

dyFC

2 S ]u

]yD 2

1Vpin2
eEu

a G . ~11!

The next step now is the evaluation of the pinning pote
tial Vpin . Let us consider that the pinning mechanism
produced by the ionized acceptors that sit on a plane par
to and close to the CuO plane. An impurity with two
dimensional coordinatesRW produces at the positionrW in the
CuO plane the Coulomb potentialG(RW 2rW),

G~RW 2rW !5
e2

euRW 2rWu
. ~12!

The total potential felt at positionrW on the CuO planes can
then be written as

Vpin~rW !5
1

a2E d2RWN~RW !G~RW 2rW !, ~13!

whereN(RW ) is the number of impurities~zero or one! at the
positionRW . Hence,N(RW )5@N(RW )#2. Let us denote the aver
age number of impurities per lattice site^N(RW )&5n, where
^•••& represents the average over the disordered impu
ensemble and 0,n,1. If the impurity distribution is uncor-
related, we can write the density-density correlator as

r05^N~RW !N~RW 8!&2^N~RW !&^N~RW 8!&5n~12n!d~RW 2RW 8!.
~14!

Its Fourier-transform is a constant for any value of the wa
vector kW , r0(kW )5n(12n)5const. This correlator describe
long-wavelength fluctuations with anyk, including the small
ones. Although the small-k fluctuations are allowed by the
statistics of the completely disordered state, in reality th
are strongly suppressed by the long-range Coulomb inte
tion of the impurities, since such fluctuations provide a lar
value of the Coulomb energy;k21. Hence, the real cor-
relator should be suppressed for smallk at some scalek
,l. This cutoff can be introduced by the following choic
of the correlation function:

r~kW !5
n~12n!

11l2/k2
. ~15!

Since the only length scale in the system of the impurities
the average distance between two neighbor impuritiesu
5an21/2, the l parameter should be estimated asl;1/u.
Furthermore, the two-point correlator of the impurity pote
tial is given by

K~rW !5^Vpin~rW !Vpin~0!&d2^Vpin~rW !&d^Vpin~0!&d

5
1

a4E d2RW d2RW 8G~RW 8!G~RW 2rW !r~RW ,RW 8!.

The Fourier transform ofK(rW) reads

K~kW !5G2~kW !r~kW !5~n2n2!S e2

eaD 2 4p2

~k21l2!a2
, ~16!
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whereG(kW )52pe2/(ek) is the 2D Fourier transform of the
Coulomb potentialG(rW). Rewriting then the correlator of th
potential in real space we find

K~rW !52pS e2

e D 2

~n2n2!K0~lr !, ~17!

whereK0(lr ) is the modified Bessel function.
Let us now define«pin5*dyVpin . If the stripe interacting

with the random pinning potential is stiff, the average p
ning energŷ «pin(L)&d of a segment of lengthL is zero. The
fluctuations of the pinning energy, however, remain finite

^«pin
2 &d5

1

a2E0

L

dy dy8K~0,y2y8!.gL ~18!

with

g5
2p2«c

2An

a
. ~19!

Here, «c5e2/ea denotes the Coulomb energy scale. T
sublinear growth of̂ «pin

2 (L)&d
1/2 is due to the competition

between individual pinning centers. The dynamic appro
to this problem was introduced by Larkin and Ovchinnikov25

in the ‘‘collective pinning theory’’~CPT! for describing the
dynamics of weakly pinned vortex lines in the hig
temperature superconductors. A scaling approach was
considered in connection with the pinning problem
charge-density-wave systems.26,27The results of the CPT ca
be summarized as follows:28 Equation ~18! implies that a
stiff stripe is never pinned, since the pinning force gro
only sublinearly, whereas the electric driving force increa
linearly with length. On the other hand, due to the elastic
the stripe can accommodate to the potential on some ‘‘
lective pinning length’’Lc . Hence, each segmentLc of the
stripe is pinned independently and the driving force is b
anced.

Our task now is to determine this lengthLc . The evalua-
tion of the free energy by using dimensional estimates p
vides

F@u,L#;C
u2

L
2AgL2

eEuL

a
. ~20!

By minimizing F@u,L#/L with respect toL at zero-bias
field,28 we determine the collective pinning lengthLc along
the string,

dF/L

dL
uLc

50, Lc.S Cu2

Ag
D 2/3

. ~21!

Assuming thatu;l21;a/An, the average impurity spac
ing, and using Eq.~19! we find

Lc.an25/6S « l

«c
D 2/3

, ~22!

where the elastic energy« l5Ca. Experimentally, it is diffi-
cult to measure the collective lengthLc . However, the
threshold electric fieldEc corresponding to the vanishing o
the barrier is a quantity that can be easily experiment
-

h

lso

s
s
,
l-

l-

-

y

determined. The critical valueEc can be estimated by equa
ing the pinning energyAgLc to the electric energy
eEuLc /a. We then obtain

Ec5
a

eu
A g

Lc
;

n7/6«c

ea S «c

« l
D 1/3

. ~23!

For typical high-Tc materials, such as La22nSrnCuO4, J
'0.1 eV,a'4 Å, ande5e0'30.29 Hence, one can estimat
the elastic energy« l5J'0.1 eV and the Coulomb energ
«c5e2/(ea)'0.1 eV. For a doping concentration in the a
tiferromagnetic insulating phase, for instance, forn51023,
we then obtain the collective pinning lengthLc'103 Å and
the critical electrical fieldEc'103 V/cm.

IV. CLASSICAL AND QUANTUM
RELAXATION PROCESS

We have estimated the threshold fieldEc corresponding to
the onset of the motion of depinned stripes. Next, we
interested in studying the relaxation process taking plac
applied fieldsE,Ec . In this case there is a finite pinnin
barrier preventing the motion of the stripe, but it can s
jump over~under! the barrier due to thermal~quantum! fluc-
tuations.

A. Classical limit

At high temperaturesT, the decay rateG t is given by the
Arrhenius law,G t;exp(2U/T). The activation energyU can
be determined by extremizing the free energy. In oth
words, within the semiclassical approximation, the ene
barrier U is nothing but the free energyF evaluated at the
saddle-point configurationus , U5F@us#. As far as we are
interested in evaluating the decay rate only within expon
tial accuracy, we can safely neglect the dynamical terms~as
for instance, the kinetic one! in the free energy, since thes
terms would give a correction only to the prefactor multipl
ing the exponential function.

By substituting the collective lengthLc as given by Eq.
~22! into the free energy~20!, we can estimate the collectiv
pinning energy barrier

Uc.AgLc.n21/6~« l«c
2!1/3. ~24!

For the case of La22nSrn CuO4 with n51023 considered in
the previous section, we estimate the pinning barrier to be
the order of 103 K. The barrier exhibits a weak dependen
on the doping parameter,Uc}n21/6. Notice that this barrier
height is compatible with the estimates presented in Ref.
for the binding energy of holes in a domain wall. Beside
this value is also comparable to the one obtained for
vortex creep process in high-Tc superconductors, whenUc
;1022103 K.

The dynamics of the stripe in the presence of the pinn
potential is simply an example of the more general probl
of elastic manifolds in quenched random media. Investi
tions of the statistical mechanics of this object have sho
that a stripe confined to move in a plane is always in
pinned phase,
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^^@u~L !2u~0!#2&& ; uc
2S L

Lc
D 2z

, L.Lc , ~25!

with a wandering exponentz5 2
3.

30,31 Here,^^•••&& denotes
the full statistical average over dynamical variables~thermal!
and over disorder,L is the distance along the stripe, anduc
and Lc are transverse and longitudinal scaling paramet
respectively. In our case,uc;l21 ~scale of the disorder po
tential! andLc is the collective pinning length.

It was also found that competing metastable states
differ from one another on a lengthL are separated by
distance

u~L !;ucS L

Lc
D z

, L.Lc ~26!

and a typical energy barrier

U~L !;UcS L

Lc
D 2z21

, L.Lc , ~27!

whereUc denotes the scaling parameter for energy. For
single stripe problem,Uc reduces to the collective pinnin
energy. The free-energy functional at low driving fieldsE
!Ec is

F~L !;UcS L

Lc
D 2z21

2
eELcuc

a S L

Lc
D z11

. ~28!

The problem now has been reduced to a nuclea
process.32 If a nucleus with lengthL larger than some opti
mal lengthLopt is formed, the system will move to the ne
minimum. On the other hand, if the activated segmen
smaller than the optimal one, the nucleus will collapse
zero. The optimal nucleus can be found by extremizing
free energy,]LF(L)uL5Lopt

50 and we obtain

Lopt~E!;LcS Ec

E D 1/~22z!

. ~29!

Inserting Eq.~29! back into the free energy~28! we verify
that the minimal barrier for creep increases algebraically
decreasing bias field,

U~E!;UcS Ec

E D m

~30!

with m5(2z21)/(22z)5 1
4. Hence, the system is in

glassy phase, with a diverging barrier in the limit of vanis
ingly small applied electric fields.

Another interesting limit to study the dynamical behav
of the stripe is at fields below but close to the critical fie
Ec , i.e., atEc2E!Ec . In this case, the effective potentia
given by the pinning and the bias electrical field terms can
written as28

Ve f f~u!5VFF S u

uF
D 2

2S u

uF
D 3G ~31!

with VF;Vc(12E/Ec)
3/2 and uF;uc(12E/Ec)

1/2. The
critical potential barrierVc5eEcuc /a. The energy of a dis-
tortion uF of the stripe on a scaleLF is estimated to be
s,

at

e

n

s
o
e

r

-

e

E~uF ,LF!;FC

2 S uF

LF
D 2

1Ve f f~uF!GLF . ~32!

The competition between the barrier to be overcome,VF ,
and the elastic energy densityCuF

2/LF
2 determines the length

of the saddle-point configuration

LFS;ucAC

Vc
S 12

E

Ec
D 21/4

;LcS 12
E

Ec
D 21/4

. ~33!

Finally, the energy barrier for thermal activation of th
stripe out of the pinning potential reads

U~E!;ucVcS C

Vc
D 1/2S 12

E

Ec
D 5/4

;UcS 12
E

Ec
D 5/4

. ~34!

Equations~30! and ~34!, together with Eq.~24! are the
main results of this section. From the experimental point
view, it would be easier to observe the creep of the str
near criticality, where the thermal process is described
Eq. ~34! and the activation barrier~24! can be reduced by
one or two orders of magnitude due to the presence of
bias electric field.

B. Quantum limit

At low temperatures, we expect the decay process to
driven by quantum fluctuations. In this case, the dynam
terms become essential since they are related to the so-c
traversal time. The tunneling rate is thenGq;exp(2B/\),
whereB is given by the Euclidean actionSE of the system
~the action in the imaginary time formalism! evaluated at the
saddle-point solution,B5SE@us#. The total Euclidean action
describing the elastic domain wall in the presence of rand
impurities and an external electric field is

SE@u~y,t!#5E
2`

`

dyE
0

`

dtFr2S ]u

]t D 2

1
C

2 S ]u

]yD 2

1Vpin

2
eEu

a G . ~35!

The tunneling timetc can be estimated by equating th
kinetic and elastic terms,

r
uc

2

tc
2

;C
uc

2

Lc
2

. ~36!

We then obtaintc;LcAr/C. Substitutingtc into the Euclid-
ean action~35!, we find

Bc
m;tcLc

Cuc
2

Lc
2

;uc
2ArC;

\

n
A« l

t
. ~37!

It is important to notice that the extremal value of the acti
Bc

m does not depend on the collective pinning lengthLc and
hence it is independent of the pinning potential.

Next, we account for dissipation effects in order to ge
eralize our model. Since we cannot determine the frict
coefficienth from microscopic calculations~we are consid-
ering frozen Ne´el phases for describing the antiferromagne
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background!, we will evaluate it in a phenomenological wa
Moreover, we restrict ourselves to the simplest case of oh
dissipation and study the problem within the framework
the Caldeira-Leggett model.33

In the overdamped limit, whenhtc /r!1, we can neglect
the massive term in Eq.~35! and substitute

r

2S ]u

]t D 2

→E
0

`

dt8
h l

4pFu~t!2u~t8!

t2t8
G 2

. ~38!

The tunneling time can now be obtained by comparing
dissipative and elastic terms. It readstc

h;h lLc
2/C and the

corresponding minimal action for the tunneling process i

Bc
d;tc

hLc

Cuc
2

Lc
2

;h luc
2Lc . ~39!

Now, we replace the physical quantities in the estima
expressions by their numerical values in order to improve
understanding of our results. The friction coefficient per u
lengthh l5h/a can be estimated from the known data for t
metallic phase (n50.1). By using the Drude formula, we ca
evaluateh5ne2/s and the corresponding relaxation timet
5m/h. Here,n is the hole concentration per unitary volum
V0, n5n/V0;1021/200 Å350.531021 cm23, s is the
normal-state conductivity,s;103 V21 cm21 ~Ref. 34!,
and m is the effective tight-binding mass of the carriers
the CuO plane,m/me;1,35 with me denoting the free-
electron mass. We then obtainh;10213 g/s andt;10214 s.
The relaxation time is assumed to be independent of
doping, and to have the same order of magnitude for
metallic and insulating states. The tunneling timetc

;10212 s andtc
h;10210 s. This indicates that the quantu

dynamics is overdamped, and that a proper theory for
scribing the relaxation process should account in a more
curate way for the dissipative term.

Let us now calculate the correction to the minimal acti
due to the presence of the electric field. In general, a qu
tum d-dimensional problem can be regarded as a class
(d11)-dimensional problem, with the imaginary time bein
considered as the additional dimension. However, one sh
notice that the disorder potential fluctuates in space, but
in time. At high temperatures, the stripe jumps over the b
rier and the time needed for the jump is irrelevant. At lo
temperatures, instead, this time is essential. Hence, for
classical motion the stripe can choose optimal barriers@see
Eq. ~27!#, whereas for tunneling the relevant barrier sca
like the average barrierUc(L/Lc) ~see Ref. 28 for a more
detailed discussion!. As a consequence, we obtain that in t
limit of low driving fields E!Ec , the minimal action reads

B;BcS Ec

E D mq

, ~40!

where mq5(11z)/(22z) and Bc is Bc
m or Bc

d @given by
Eqs.~37! or ~39!, respectively#, depending if we are consid
ering the massive or the dissipative limits. Remembering
in our casez5 2

3, we finally obtain a quantum glassy exp
ic
f

e
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nentmq5 5
4. Near criticality, the results change considerab

as in the thermal case, the quantum action exhibits in
limit a power-law behavior,

B;BcS 12
E

Ec
D a

, ~41!

with a51 for the massive stripe anda5 3
4 for the over-

damped one.

V. DISCUSSIONS

In this work we have succeeded in deducing a wavel
equation for the motion of a line of holes embedded in
antiferromagnetic phase, which we have chosen to desc
by a t-J model. This was done through the application
semiclassical methods to a fictitious spin chain whose lo
spins can appropriately be related to the difference betw
the displacements of neighboring holes along a direction p
pendicular to the line itself. Therefore we were able to est
lish a connection between the microscopic parameters of
t-J model and the phenomenological mass and elastic c
ficients of the continuum theory by using the fictitious sp
model as an intermediate step.

We have also extended the well-established ‘‘collect
pinning theory,’’ which has successfully been applied to v
tices in superconductors and charge density waves
quasi-1D electronic systems, to the case of the wall of ho
In so doing, we were able to estimate the threshold field
the depinning of the wall as well as the energy barrier
unit length felt by the trapped line. These quantities allow
us to compute the thermal and quantal rates for the depin
of a single wall of holes.

These results can be tested by measuring the conduct
of a sample, which presents the striped phase in its ant
romagnetic regime, as a function of the external field~volt-
age!. From our findings, we expect to have a vanishing
small conductance up to the threshold field and then
gradual tendency to recover the ohmic regime forE.Ec .
This highly nonlinear behavior of the conductance is ana
gous to that observed in charge-density-wave systems.36 It is
also important to notice that in order to compare our res
with the experimental ones, one should take into account
inhomogeneities in the barrier height distribution may affe
the observed threshold field. Actually, the measured valu
a lower bound for the estimated voltage, and results differ
by even one order of magnitude from our findings would n
be surprising.

Finally, we would like to say some words about our a
proach to the damping of the wall motion. We have chos
to use an entirely phenomenological approach to the prob
because it is not possible to describe dissipation from
present microscopic model. The first step in this direct
would be to allow the spin system to respond to any cha
of the line configuration, i.e., we should assume a finite st
ness for the magnetic system. We plan to proceed fur
along this direction in a future publication.
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APPENDIX

Our aim here is to calculate the commutators on the rig
hand side of Eq.~3!. With the help of the relation~4!, one
obtains
\2s̈n
z52†@sn

z ,H#,H‡

5
tJ

s2
$~sn

1sn11
2 !~ usn11

z u1usn
zu2usn11

z 21u2usn
z11u!2~sn

2sn11
1 !~ usn11

z u1usn
zu2usn11

z 11u2usn
z21u!

1~sn
1sn21

2 !~ usn21
z u1usn

zu2usn21
z 21u2usn

z11u!2~sn
2sn21

1 !~ usn21
z u1usn

zu2usn21
z 11u2usn

z21u!%

1
2t2

s4
$sn11

z ~sn
1sn

21sn
2sn

11sn
1sn12

2 1sn
2sn12

1 !1sn21
z ~sn

1sn
21sn

2sn
11sn

1sn22
2 1sn

2sn22
1 !

2sn
z~sn11

1 sn11
2 1sn11

2 sn11
1 1sn21

1 sn21
2 1sn21

2 sn21
1 12sn21

1 sn11
2 12sn21

2 sn11
1 !%.
Now, we consider the problem in the classical limit, wh
the operatorssn

z and sn
6 can be replaced byc numbers. In

spherical coordinates, we can write

sn
z5s sin an , sn

65s exp~6 ifn!cosan , ~A1!

wherean5p/22un . Using thatfn2fn21;0 andsn
z!1,

we obtain the classical equation of motion

\2än5tS J1
8t

s2D ~an1122an1an21!. ~A2!
Further, we take the limits→` and go to the continuous
approximation. In this limit, we can replace

an→a~y!, an61→a~y!6aa8~y!1
a2

2
a9~y!,

~A3!

and we eventually obtain the wavelike equation

S ]2

]t82
2

tJa2

\2

]2

]y2D a50. ~A4!
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