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Further studies of anisotropy in the T1u ^ hg Jahn-Teller system

Q. C. Qiu, J. L. Dunn, C. A. Bates, and Y. M. Liu
Physics Department, University of Nottingham, University Park, Nottingham NG7 2RD, United Kingdom

~Received 17 March 1998!

In the linearT1u^ hg Jahn-Teller system, the adiabatic potential energy surface~APES! is a trough. How-
ever, in real systems, quadratic coupling will be present, which warps the APES to give wells of eitherD3d or
D5d symmetry. The degeneracy of the vibrations within the wells is also lifted. This anisotropy has recently
been investigated in theT1u^ hg system, and expressions for the frequencies in both types of wells obtained in
the strong coupling limit using the method of O¨ pik and Pryce. A scale transformation procedure was then used
to incorporate these results into expressions for the states in the wells and their associated energies. However,
this calculation did not allow for second-order perturbation effects and is only valid in the strong coupling
limit. In this paper, a revised scale transformation procedure is developed for theD5d wells, which allows
expressions for the anisotropic frequencies to be obtained without employing the O¨ pik and Pryce procedure.
An expression is obtained for the phonon overlap that is correct to second-order and is not restricted to the
strong coupling limit. Results are then obtained for the ground-state energies and inversion splitting. ForD3d

wells, the previous results are improved by application of a modified scale transformation procedure and
overlaps correct to second order obtained. The results obtained in this paper are of interest in studies of the
C60

2 anion state of the C60 molecule, which is known to occupy aT1u orbital ground state.
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I. INTRODUCTION

The discovery of the C60 molecule,1 and later other
fullerenes1–3 such as C180 and C240, opened up a whole new
area of study of physical effects in icosahedral (I h) symme-
try. Only a few examples of this very high symmetry we
previously known in nature and hence very few studies
been undertaken concerning it. One area of current intere
that of Jahn-Teller~JT! effects, in which highly degenerat
orbital states are coupled to highly degenerate vibratio
modes. Fourfold and fivefold degeneracies are possible iI h
symmetry; these are not found in other symmetri
T1u^ hg JT systems are of particular interest because m
lecular orbital calculations indicate that the lowest-ene
unfilled orbital in a C60 molecule is ofT1u symmetry. Hence
this system could be a model for C60

2.
In linear coupling, the adiabatic potential energy surfa

~APES! for the T1u^ hg JT system consists of a trough o
SO~3! symmetry. This has been studied by several author4,5

However, quadratic coupling must also be present in all r
systems to at least some degree. This will warp the troug
produce wells of eitherD3d or D5d symmetry, depending
upon the strengths of the two possible forms of quadr
coupling.5–10 It also lifts the degeneracy of the local phono
modes in the wells. This in turn changes the vibronic sta
of the system as a whole, which then affects further prop
ties of JT systems such as tunneling splittings and reduc
factors.

Anisotropic effects such as those induced by quadr
coupling are known to be important in cubic systems~Ref.
11 and references therein!. If the quadratic coupling is small
its effect can be treated as a perturbation on the linear c
pling states. However, if this is not the case it must be
cluded in the analysis from the beginning. The effects
anisotropy in theT1u^ hg system, as induced by quadrat
PRB 580163-1829/98/58~8!/4406~12!/$15.00
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coupling, have recently been considered in this manner
the first time, firstly for theD5d wells12 and secondly for the
D3d wells.13 Expressions for the reduced local vibration
frequencies were obtained using the method of O¨ pik and
Pryce,14 following procedures that are well known for cub
systems. Expressions for the states associated with the w
neglecting the anisotropic effect had already be
obtained,12,13 following the unitary shift transformation ap
proach of Bates, Dunn, and Sigmund.15 Anisotropy was then
included in these states by applying an additional scale tra
formation incorporating the new local vibrational freque
cies. However, due to the nature of the O¨ pik and Pryce pro-
cedure, the results obtained in Refs. 12 and 13 are str
valid only in the infinite coupling limit.

In the current paper, a modified version of the scale tra
formation method will be developed and applied to the sta
associated with both theD5d andD3d wells. The method to
be used for theD5d wells follows that developed originally
for the T^ t2 system in cubic symmetry.16 Values for the
local vibrational frequencies are obtained without using
Öpik and Pryce method, and hence the results are not
stricted to the strong coupling limit. In Ref. 12, the resu
obtained were taken to zeroth order in perturbation the
only. However, it will be shown here that significant corre
tion terms arise when the calculation is repeated to sec
order in perturbation theory. This calculation is nontrivi
because the ground states used now involve contribut
from excited phonon states. This vastly complicates
evaluation of the necessary overlap factors and matrix
ments, which now depend upon both of the second-or
coupling coefficients rather than just one as in the sim
case. In this paper, the magnitudes of the corrections to
isotropic result from these second-order effects and from
cluding the correct local frequencies will be calculated a
compared.
4406 © 1998 The American Physical Society
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PRB 58 4407FURTHER STUDIES OF ANISOTROPY IN THET1u^ hg . . .
Equivalent results for theD3d wells cannot be obtained
using the scale transformation directly due to a repeated
reducible representation in the reduction in symmetry of
hg mode. However, an alternative procedure will be dev
oped that also allows results to be obtained that are no
stricted to infinite coupling. Firstly, the reduced infinite co
pling frequencies as obtained using the O¨ pik and Pryce
method will be used to generate the diagonalizing matri
~calledS matrices! that arise as part of the scale transform
tion method. With these known, new expressions for the
quencies not restricted to infinite coupling will be obtain
by solving the original problem using the scale transform
tion. Results will be obtained that are correct to second or
in perturbation theory.

This paper begins by setting up the vibronic Hamiltoni
for the T1u^ hg JT system6 including the two quadratic cou
pling terms. A brief discussion of the application of the un
tary shift and scale transformation procedures to this sys
is then given. The local frequency problem is then solved
the D5d wells and then theD3d wells using the methods
described above. In both cases, phonon overlap integrals
be calculated to second order. Finally, expressions for
tunneling splittings are obtained, and the results both incl
ing and neglecting the revised frequencies compared to
isotropic case.

II. BACKGROUND THEORY

The componentsj of the h vibrational mode will be la-
beledu, «, 4, 5, and 6. In order to get the simplest matrices
H symmetry,17 the componentsu and« will be chosen to be
linear combinations of the standard components used in
bic symmetry, namely,

dz25 1
2A 3

2 Hu2 1
2A 5

2 H« ,
~2.1!

dx22y25 1
2A 5

2 Hu1 1
2A 3

2 H« .

The orbital tripletT1u is modeled using an isomorphicl 51
operator, and its three components will be labeledx, y, andz.

A. The Hamiltonian

The total vibronic Hamiltonian of the system includin
two quadratic terms can be written down in terms of colle
tive displacementsQi and corresponding conjugate momen
Pi . As the calculations to be described here involve
evaluation of rather complicated phonon overlaps, we fin
convenient to write the Hamiltonian in second quantized
erator form. Following Ref. 6, we express it in the form

H5Hvib1H11H21H3 , ~2.2!

whereHvib is the vibrational Hamiltonian,H1 the linear in-
teraction Hamiltonian andH2 andH3 the two quadratic cou-
pling Hamiltonians. Thus in second quantized form,

Hvib5(
j

\vS bj
†bj1

1

2D L̂A1
~ j 5u,«,4,5,6!, ~2.3!

wherev is the frequency of vibration,bj
† andbj are phonon

creation and annihilation operators, respectively. The lin
term of the Hamiltonian is
ir-
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H15K1(
j

~bj
†1bj !L̂H j ~2.4!

and the two quadratic terms are

H25K2(
j

Aj8L̂H j and H35K3(
j

Bj8L̂H j , ~2.5!

respectively. The coefficientsKi are defined by the relation

K152A\/2mvV1 and Ki5
Vi\

2mv
5

1

2
\vVi8 ~ i 52,3!,

~2.6!

whereVi85Vi /mv2, V1 is the linear coupling constant an
V2 andV3 are the quadratic coupling coefficients.L̂A1

is the
unit operator and

L̂Hu5 1
2A 3

5 ~f21c1
†c12fc2

†c21c3
†c3!,

L̂H«5 1
2A 1

5 ~f2c1
†c12f22c2

†c22A5c3
†c3!,

L̂H45A 3
10 ~c2

†c31c3
†c2!,

L̂H55A 3
10 ~c3

†c11c1
†c3!, ~2.7!

L̂H65A 3
10 ~c1

†c21c2
†c1!,

Aj85(
mp

amp
j ~bm

† 1bm!~bp
†1bp!,

Bj85(
mp

bmp
j ~bm

† 1bm!~bp
†1bp!,

wheref5 1
2 (11A5) is the golden mean,c1

† , c2
† , andc3

† are
orbital creation operators acting on the pure electronic b
statesux), uy), anduz), of T1u symmetry to createx, y, and
z, respectively, andamp

j andbmp
j ( j ,m,p5u,«,4,5,6) are co-

efficients whose nonzero terms are

au«
u 5A 1

2 , a44
u 52a55

u 5A 3
8 ,

auu
« 52a««

« 5a44
« 5a55

« 52 1
2 a66

« 5A 1
8 ,

au4
4 52au5

5 5A 3
2 , a«4

4 5a«5
5 5A 1

2 , a«6
6 52&,

buu
u 52b««

u 5A 3
8 , b44

u 5b55
u 52 1

2 b66
u 52A 1

24 , ~2.8!

bu«
« 52A 3

2 , b44
« 52b55

« 5A 1
8 ,

bu4
4 5bu5

5 52A 1
6 , bu6

6 5A 2
3 , b«4

4 52b«5
5 5A 1

2 ,

b56
4 5b46

5 522A 1
3 , b45

6 522A 1
3 .

B. Unitary shift and scale transformations

In very strong coupling, the system becomes frozen i
one of the minima in the APES at low temperatures.15 At
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finite coupling, it is possible to employ the crude adiaba
approximation and construct states for the whole sys
from a linear combination of the strong coupling stat
Hence it is important to be able to obtain accurate exp
sions for the infinite coupling states.

Previously,6 the positions of the minima in the APES hav
been determined by applying a unitary shift transformat
Ud to the original Hamiltonian. For wellk, this has the form

Ud
~k!5expH i(

j
a j

~k!Pj J [expH(
j

Cj
~k!~bj2bj

†!J ,

~2.9!

where Cj
(k)52Am\v/2a j

(k)5(K1 /\v) aj
(k) . The resultant

transformed Hamiltonian can be split into two parts. The fi
part contains thea j as free parameters but no phonon ope
tors, and so it can be used to determine the energy of
ground state of the system. Values for thea j ~or equivalently
theaj ) are then chosen to minimize the energy of the syst
This has the effect of fixing the system into one of the p
tential energy minima, because the transformation displa
the origin of the nuclear coordinates toQ̃j5Ud

†QjUd5Qj

2a j\. Infinite-coupling states can then be written down
multiplying the original basis states byUd

(k) . These zeroth-
order states are good as a first approximation, and have
used successfully to describe many properties of a rang
different JT systems. However, they do not incorporate c
rections due to anisotropy in the wells.

In strong coupling, the fivefold degeneracy of the vibr
tional hg mode is lifted as the symmetry is reduced fromI h
to D5d or D3d . It has been difficult previously to incorporat
the anisotropic effects induced by the lifting of this dege
eracy into analytical models. Recently,16 an extension of the
shift transformation method has been developed to autom
cally introduce anisotropy into theT^ t2 JT problem in cubic
symmetry. This involved applying an additional scale tra
formation, which for wellk has the form

Us
~k!5expH i

\ (
i j

Ai j
~k!~Qi Pj1PjQi !J

5expH(
i j

L i j
~k!~bibj2bi

†bj
†!J , ~2.10!

where L i j
(k)5Ai j

(k)Av j /v i are transformation paramete
whose values must be determined. It can be proved tha
eigenvalues of the matrixL are identical to those ofA, so it
is possible to work with either in subsequent calculations.
terms in the new transformed Hamiltonian contain botha j
and L i j , so thea j can be fixed to take the same values
with the shift transformation alone.

In the case of theT^ t2 JT system, values for theL i j were
fixed by minimization of the total energy taking into accou
the previously neglected part of the transformed Hamilton
to second order in perturbation theory. However, difficult
arise in applying this method directly to theT1u^ hg JT sys-
tem due to the higher fivefold degeneracy and the neces
to include quadratic couplings in the problem in order
generate wells rather than a trough. Only a simplified vers
of this procedure has been developed so far,2,13 using the
result that in infinite coupling it is possible to determin
-
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values for the local frequencies using the O¨ pik and Pryce
method. These were used to bypass the need to fix values
the parametersL i j in the scale transformation. We will now
develop the scale transformation theory for both sets
wells.

Using the formula

e2BAeB5A1
1

1!
@A,B#1

1

2!
†@A,B#,B‡1•••,

~2.11!

it is easy to show that

Us
†bjUs5(

i
@bi~cosh 2L! i j 2bi

†~sinh 2L! i j #,

~2.12!

where (cosh 2L) i j means the (i , j )th element of the matrix
cosh 2L ~and similarly for sinh 2L). The matricesf (G)
where f 5cosh, sinh, or exp can be defined18 in terms of
power series expansions, or via a matrixP which brings
f (G) to a diagonal formG8 by the relationship

f ~G!5Pf ~G8!P21. ~2.13!

The corresponding transformation forbj
† can be obtained by

taking the Hermitian conjugate of the equation above. Co
sequently,

Us
†~bj

†1bj !Us5(
i

~bi
†1bi !~e22L! i j . ~2.14!

The full transformed Hamiltonian is thereforeH̃
5Us

†Ud
†HUdUs5H̃11H̃21H̃3 , where in this case

H̃15(
j

F\v S CjCj1
1
2 D L̂A1

22K1CjL̂H j

1(
mp

4~K2amp
j 1K3bmp

j !CmCpL̂H j G , ~2.15!

H̃25(
j

F\v~sinh 2L! j j
2 L̂A1

1(
mp

~K2amp
j 1K3bmp

j !~e24L!mpL̂H j G
1(

i j
~bj

†1bj !F ~2\vCjL̂A1
1K1L̂H j !~e22L! i j

22(
mp

~K2amp
j 1K3bmp

j !@Cp~e22L! im

1Cm~e22L! ip#L̂H j G ,
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H̃35(
i j

@bi
†bj~cosh 4L! i j 2

1
2 ~bi

†bj
†1bibj !

3~sinh 4L! i j #L̂A1
1(

j
(
mp

~K2amp
j 1K3bmp

j !

3(
ks

~bk
†bs

†1bkbs1bk
†bs1bs

†bk!

3~e22L!km~e22L!spL̂H j .

As H̃1 contains no phonon creation and annihilation ope
tors, it can be used to describe the vibronic ground state
the system.H̃2 contains two contributions: one of them, lik
H̃1 , also contains no phonon operators. This describes
isotropic corrections to the ground-state energy produced
the scale transformation. The other term contains o
phonon creation and annihilation operators, and so descr
couplings to excited states with one phonon excitation~as
with the shift transformation alone!. H̃2 may be treated as
first-order perturbation correction to the ground states.H̃3
describes the higher-order vibronic coupling and it is o
necessary to calculate its effects in higher-order pertu
tions. We note that the results are consistent with those
glecting anisotropy because when all the elementsL i j above
are set to zero, the results become identical to those of
shift transformation alone.

In order to evaluate the overlaps between different
bronic states, it will be necessary to know the effect ofUs on
the collective displacementsQi . It can be proved that

UsQm5expH(
i

Aii J (
i

exp$2A% imQi ,

~2.16!

Us(
m

Qm
2 5expH(

i
Aii J (

im
exp$4A% imQiQm .

Therefore, for any differentiable functionf (Qi) of Qi ,

Usf ~Qm!5expH(
i

Aii J f S (
i

exp$2L% imQi D ,

~2.17!

Usf S (
m

Qm
2 D 5expH(

i
Aii J f S (

i ,m
exp$4A% imQiQmD .

Before the calculations can be performed, it is necess
to know how to write down vibronic states associated w
the wells with respect to the transformed Hamiltonian. In
transformed space, the zeroth-order ground electronic sta
well k is denoted byuX0

(k) ;0& where the ‘‘0’’ represents no
phonon excitations andX0

(k) represents the electronic stat
Equivalent states including phonon excitations are written
the form uX0

(k) ;Xp&. In Ref. 6, explicit expressions for th
electronic statesX0

(k) were obtained. In this reference, th
electronic states for the tenD3d wells were labeleda to j and
the states for the sixD5d wells labeledA to F. The states are
of A2u symmetry in both cases. Here, the effect ofH̃2 on the
ground state of the system will be calculated using pertur
tion theory. This involves correcting the zeroth-order sta
by coupling to first-order excited states in the wells conta
-
of
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ing at most one-phonon excitation.16 We will therefore add
subscriptsA0 , etc. to the state labels to indicate that t
states are zeroth-order ground states. We will illustrate
method of calculation by reference to the wellA for D5d
minima. The corrected energy in this well is

E5E01^A0 ;0uH̃2uA0 ;0&1(
i

u^Ai uH̃2uA0 ;0&u2

E02Ei
,

~2.18!

where uAi& represent all components of the relevant fir
order excited states in the wells, with corresponding energ
Ei , andE0 is the ground-state energy in wellA ~calculated
from E05^A0 ;0uH̃1uA0 ;0&). Explicit expressions for the
excited electronic states, which are ofE1u symmetry for the
D5d wells andEu symmetry for theD3d wells, are given in
Table I.

It is also necessary to write down states in the origi
untransformed space. This can be achieved by applying
transformation operators to the transformed vibronic sta
The zeroth-order untransformed states associated with
well will be written as

uX0
~k!8;Xp&5Us

~k!Ud
~k!uX0

~k! ;Xp&. ~2.19!

As in previous work, we note that because theU’s contain
phonon operators, the untransformed ground states are
bronic in nature even when there are no phonon excitati
present in the transformed picture.

III. CALCULATION OF LOCAL FREQUENCIES

A. The local frequency problem for D5d minima

In principle, the scale transformation parametersL i j can
be determined by minimizingE with respect toL i j . The
matrix L can be treated with the aid of group theory. It
known that the irreducible representations of theI h group

TABLE I. Excited electronic states in~a! D5d wells ~b! D3d

wells.

D5d well Electronic excited statesXi

A ~1,0,0!,~0,1,2f!

B ~1,0,0!,~0,1,f!

C ~0,1,0!,~2f,0,1!
D ~0,1,0!,~f,0,1!
E ~0,0,1!,~1,2f,0!

F ~0,0,1!,~1,f,0!

D3d well Electronic excited statesXi

a (1,0,0),(0,2f,f21)
b (1,0,0),(0,f,f21)
c (0,1,0),(2f21,0,f)
d (0,1,0),(f21,0,f)
e (0,0,1),(2f,f21,0)
f (0,0,1),(f,f21,0)
g (1,0,21),(1,22,1)
h (0,1,21),(2,1,1)
i ~21,0,1!,~1,2,1!
j ~1,0,1!,~21,2,1!
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will be reduced underD5d symmetry to the suma1% e1
% e2 . The frequencyv of the mode in each well is therefor
reduced to three values,va , ve1

, and ve2
. These will be

written in terms of scaled frequenciesl i5v i /v. As the
splittings are the same in each well, the frequencies will a
be the same in each well. The matricesL will be different.
However, they are connected by a unitary transformation

In order to illustrate the effect of the scale transformatio
we first investigate its effect on the zeroth-order wave fu
tions of a simple harmonic operator~SHO!. In the coordinate
representation, these wave functions can be written in
form

c~Qi !5N0expH 2
mv

\
Qi

2J , ~3.1!

whereN0 is a normalization factor. The scale transformati
operatorUs in Eq. ~2.10! is a product of operatorsUi j due to
each elementAi j of the matrixA. It can be shown that for the
diagonal elements,

Uii c~Qi !5l i
1/4N0expH 2

mv

\
l iQi

2J
[l i

1/4N0expH 2
mv i

\
Qi

2J , ~3.2!

wherel i are new parameters defined by the relationship

L i i 5
1
4 ln l i . ~3.3!

l i is thus the ratio of the anisotropic local frequencyv i of
the i mode to the original isotropic frequencyv. Comparing
with Eq. ~3.1!, it can be seen that the effect of the sca
transformation has been to change the original isotropic
quencyv to the local valuev i .
s

o

,
-

e

-

The above analysis for the part ofUs due toL i i acting on
a SHO wave function in the coordinate representation s
gests that it is reasonable to choose1

4 ln li as the eigenvalues
of the matrixL (k) in the general case. Thus we have

L~k!5 1
4 Sk

†@ ln l i #Sk , ~3.4!

where @ ln li# represents the diagonal matrix withi
5a1 , e1 , and e2 and Sk is a unitary matrix that has two
functions. Firstly, it can block diagonalize ten representat
matrices ofH symmetry of theI h group. The ten matrices
form a subgroupD5d of the I h group. Secondly, it can reduc
thehg modes ofI h symmetry into local modesa1g , e1g , and
e2g .

It is necessary now to determine an expression for
energyE of the system as a function ofla , le1

, andle2
. In

calculating the second-order correction toE, we must con-
sider the excited states with energiesE01\v ~degeneracy
5!, EE1u

~degeneracy 2!, and EE1u
1\v ~degeneracy 10!,

whereEE1u
is the energy of the excited electronicE1u state

with no phonon excitations. However, it is found that t
states defining the first two of these sets of energy lev
make no overall contribution to the total energyE. To illus-
trate the calculation involving the third set, we will use we
A. We must determineE using the transformed Hamiltonia
in Eq. ~2.15!, which in turn involves handling the matrice
exp(2L), etc. according to Eq.~2.13! ~as described in
Joshi18!. In particular,

exp$6nL%5SA
†@l i

6n/4#SA , ~3.5!

where @l i # represents the diagonal matrix withi 5a1 , e1 ,
ande2 andSA is the unitary matrix found previously by Liu
et al.12 ~using group theory! to be
SA5
1

A10 S 2) 21 A6 0 0

f2 2)f21 & 0 0

0 0 0 A10/~f12! fA10/~f12!

f22 )f & 0 0

0 0 0 2fA10/~f12! A10/~f12!

D . ~3.6!
sen
for

e

The sinh and cosh functions can be expressed in term
exponentials. Thus we obtain the result

ED5d
5E01

1

2
\vS la

2
1

1

2la
1le1

1
1

le1

1le2
1

1

le2

25D
1
&

10 FV28S 1

le1

1
1

le2

2
2

la
D 2A5V38S 1

le1

2
1

le2
D G

2
1

5

1

le1

K1
2

\v

@)1b~V281A5V38!#2

D5d
, ~3.7!
ofwhere

D5d511&S K1

\v D 2

b~)12bV28!. ~3.8!

The correct set of ratios of frequencies should be cho
to ensure that the energy is a minimum. Therefore, values
the parametersla , le1

, and le2 are fixed by solving the

three equations]E/]l i50. From perturbation theory, th
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first-order term gives the correction to the zeroth-order a
the second-order terms give the corrections to first order.
finally obtain the results

la
2512 4

5&V28 ,

le2

2 511 1
5&V281

2

5
A10V38 ,

~3.9!

le1

2 511
1

5
&V28

11&~K1 /\v!2b~3)1bV28!

D5d

2
1

5
A10V38

11&~K1 /\v!2b~3)1A5bV28!

D5d

2
6

5

~K1 /\v!2

D5d
,

where

b5
A6

524&V28
. ~3.10!

The formulas obtained forla andle2
are identical to the

results using the O¨ pik-Pryce method. Figure 1 shows a pl
of these results as a function of the linear coupling stren
k15K1 /\v for the quadratic coupling constants in the rati
K252K350.01K1 ~dashed lines!. The figure also shows th
results obtained forle1

using both the scale transformatio
and Öpik-Pryce methods. This shows that the primary diffe
ence between the two approaches is that the result obta
using the scale transformation correctly tends to 1 in w
coupling, whilst the O¨ pik-Pryce result tends to zero. This
because the latter is a strong coupling procedure.

For very weak coupling~i.e., K1→0), the second-orde
contributions can be neglected and the results obtained
identical to the first-order results. In the infinite couplin
limit ~i.e., K1→`), and if we takeV285V3850, we havela

5le2
51 and le1

50. This correctly describes the appea

FIG. 1. A comparison of the scaled frequenciesl i obtained after
the Öpik-Pryce method and after the scale transformation. T
dashed lines are the results for theD5d wells with K252K3

50.01K1 and the solid lines are for theD3d wells with K252K3

520.01K1 .
d
e

th

-
ed
k

re

ance of the trough in five-dimensional phonon space w
quadratic coupling is neglected. The two vibrational mod
with E1 symmetry have been completely quenched by
strong linear vibronic coupling. However, even if the tw
quadratic coupling terms in the total Hamiltonian of th
T1u^ hg JT system are ignored, the perfect trough appear
infinite coupling only. Away from the limitK1→`, ve1

does not take its ideal values of 0 but varies according to
relationship

le1

2 5
1

116~K1 /\v!2/5 . ~3.11!

The above results are consistent with the view that in
absence of vibronic coupling, the vibrational space is isot
pic and the frequencies in all directions are exactly the sa
When linear vibronic coupling is added, the isotropic vibr
tional space will be broken gradually according to t
strength of the coupling. When the strength increases,
two-dimensional trough becomes deeper.

B. The local frequency problem for D3d minima

For D3d minima, thehg vibrational modes withI h sym-
metry can be reduced intoag% 2eg . Solving the local fre-
quency problem involves constructingSmatrices for theD3d
minima. However, as theD3d subgroup contains a repeate
representation, properS matrices cannot be found usin
group theory alone. Group theory cannot distinguish betw
the two eg modes and so the resultingS matrix can only
block diagonalizeL. This suggests that suitableSmatrices to
makeL diagonal must be found using the O¨ pik and Pryce
method. These matrices can then be applied using the s
transformation procedure, thus allowing revised expressi
for the frequencies to be obtained that are not restricted
the strong coupling limit.

1. The Öpik-Pryce method

The values of the frequencies in infinite coupling can
derived using the method of O¨ pik and Pryce,14 as described
in detail for D5d wells in Ref. 12. Brief preliminary details
were also given forD3d wells in Ref. 13. The potential en
ergy U that generates the APES is expanded as a po
series inqGg5QGg2QGg

(k) about the minimum at the wel
positionQ(k) up to second order. The first- and second-ord
contributions are treated as perturbations, and a corre
energy up to second order obtained. This is written in a m
trix form:

E5E0~Q~k!!1
1

2
~qG1g1

qG1g2
¯ !MS qG1g1

qG1g2

]

D ,

~3.12!

where the matrixM is given explicitly in Ref. 12. As the
matrix elements have the same dimension asmv2, they are
therefore written asmvG1

2 ,mvG2

2 , . . . In general, the matrix

M can be diagonalized using a proper unitary transforma

e
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~quantum mechanically, this operation changesM from one
representation to another.!. The diagonalized matrix can b
expressed as

M̃5SMS215mv2S lG1

2

�

lG2

2

�

D ,

~3.13!

wherelG5vG/v. In the case of theD5d wells, the resulting
eigenvalues were then found. Normalizing each eigens
and substituting the corresponding electronic states and
positions of the wells allowed theS matrices to be deter
mined.

For theD3d minima, it would appear first that the proce
dure should follow that above forD5d wells. The requiredS
matrices can be determined following the procedure
scribed in the appendix of Ref. 12. The electronic sta
energies, and the positions of theD3d wells are known so
can be used to obtain the correspondingM matrices. How-
ever, unlike in theD5d case, theseM matrices cannot be
diagonalized directly. However, theSmatrices can block di-
agonalize theM matrices as theM matrices haveI h symme-
try and theSmatrices block diagonalize thehg representative
matrices that form aD3d subgroup ofI h . We will illustrate
the procedure using wella as an example. As a first step, w
use the matrixSa1

given by

Sa1
5

1

A6 S 1
2
0
1
0

2)
0
0
)
0

&
2&

0
&
0

0
0
A6
0
0

0
0
0
0

2A6

D ~3.14!

to operate onM. The block-diagonal matrixM̃ 8,

M̃ 85Sa1
MSa1

† , ~3.15!

is obtained. The second step is to determine the eigenva
and eigenvectors ofM̃ 8 and to find the final form ofM̃ . On
normalizing and simplifying the eigenvectors, a proper u
tary matrixSa2

that diagonalizesM̃ 8 is obtained. This has the
form

Sa2
5S 1

0
0
0
0

0
xy
0
0

2y

0
0
xy
2y
0

0
y
0
0
xy

0
0
y
xy
0

D , ~3.16!

where

x5
1

2

Q1Q2Q3Q4

Q5
, y5

1

A11x2

and where
te
he

-
s,

es

-

Q1545A51108A10V282150&V38118A5V28
2

142A5V38
22204V28V381W2 ,

Q2524516A10V38118V28
2126V38

2112A5V28V38 ,

Q3524516A10V38118V28
2126V38

2212A5V28V38 ,
~3.17!

Q4524526A10V38118V28
2126V38

2112A5V28V38 ,

Q5545426561000V28
213936600V28

421049760V28
6

1104976V28
8210935000V38

219622800V28
2V38

2

22449440V38
2V28

41139968V28
6V38

2110027800V38
4

24393440V38
4V28

21484704V28
4V38

423650400V38
6

1292032V38
6V28

21456976V38
8

with

W25~18225148600&V28211340A10V381118260V28
2

155980V38
2278840A5V28V38119440&V28

3

213848A10V38
31109440&V28V38

2250328A10V38V28
2

12916V28
4111524V38

4219632A5V28V38
3

29072A5V38V28
3155800V28

2V38
2!1/2.

Hence, the matrixM has been diagonalized usingSa1
~to

make M block diagonal! and then, usingSa2
, the block-

diagonalized form ofM is fully diagonalized. Thus the uni
tary matrix Sa that diagonalizes theM matrix for the D3d
well a is given by

Sa5Sa2
Sa1

51
1

A6
2

1

&

1

)
0 0

2~x11!y

A6

y

&
2

~x21!y

)
0 0

0 0 0 xy 2y

0 0 0 2y 2xy

~221x!y

A6

xy

&

~11x!y

)
0 0

2 .

~3.18!

This Sa matrix reduces thehg modes intoag , 1eg and 2eg
modes as it diagonalizesM. It will therefore also diagonalize
the matrixL of well a as they have the same properties. F
theD5d case at infinite coupling, the eigenvalues ofL andM
differed only by a factor ofmv2. Also, we know that ifSa
cannot diagonalizeL, the results obtained in the infinite cou
pling limit will be inconsistent with those derived using th
Öpik and Pryce method. Conversely, if it can diagonalizeL,
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the results should agree. Therefore, for theD3d case, we
have sufficient reason to useSa instead ofSa1

in our scale
transformation method.

2. Evaluation of local frequencies for D3d wells

UsingSa instead ofSa1
, and on substituting the electron

states, their corresponding energies and the position of wa
into Eq. ~2.16!, we obtain the result

ED3d
5E01

1

2
\vS la

2
1

1

2la
1l1e1

1

l1e
1l2e1

1

l2e
25D

1
1

A10

12x2

11x2 V28S 1

l1e
2

1

l2e
D1

1

3A10

3V38S 1

l1e
1

1

l2e
2

2

la
D1

2

5
A10

x

11x2

3V38S 1

l1e
2

1

l2e
D2

1

3D3d

K1
2

\v

3H f2

l1e
@a11g~a2V281a3V38!#2

1
f22

l2e
@a181g~a28V281a38V38!#2J , ~3.19!

where

g5
&

A1524A 2
3 V38

,

D3d5~11x2!F513A10S K1

\v D 2

g~)12gV38!G ,
~3.20!

a152)~x2f22!, a2523~x1f22!, a35xf231f,

a185)~x1f2!, a28523~x2f2!, a385xf32f21.

The final expressions for the local frequencies are thus

la
2512 4

15A10V38 ,

l ie
2 516

1

5
A10V28H 12x2

11x2
1

2A10

D3d
gS K1

\v D 2

~16xf62! f iJ
1

1

15
A10V38H 16

4x

11x2
7

2A10

D3d
gS K1

\v D 2

3~f636xf71! f iJ 2
2

D3d
f62S K1

\v D 2

~x7f72!2,

~3.21!

where the upper sign corresponds toi 51 and the lower sign
to i 52, and
l

f i5H 1

2
g~a2V281a3V38!1a1 for i 51

1

2
g~a28V281a38V38!1a18 for i 52.

~3.22!

A plot of the above frequencies forK252K3
520.01K1 is shown in Fig. 1~solid lines!. The formula for
la is identical to that obtained using the O¨ pik-Pryce method.
The result forl2e is not identical, but the difference in th
magnitude is very small and cannot be observed for
range of couplings. The O¨ pik-Pryce result forl1e is also
shown in Fig. 1. It can be seen that, as for theD5d results,
the primary difference is in correctly predicting thatl1e
tends to 1 in weak coupling, while the O¨ pik-Pryce results
tends to 0.

It is easy to see that whenK15V285V3850, the frequen-
cies coincide with the isotropic results~i.e., la5l1e5l2e

51). WhenK1 approaches infinity andV285V3850, we get
la5l2e51 andl1e50. Under this condition, wells do no
exist but a two-dimensional trough is formed in the fiv
dimensional phonon space. This is known to be the cor
result for linear coupling. Furthermore, whenV285V3850
andK1 is finite, the results are identical to those obtained
the D5d wells in the absence of quadratic coupling. It c
also be shown that whenV28 and V38 are nonzero but finite,
the results obtained converge with those obtained using
Öpik-Pryce method asK1 tends to infinity. The results forla
andl2e converge very quickly, while the convergence ofl1e
is much slower; the difference is around 0.01 atK1 /\v
510. The consistency of the two methods under the con
tion K1→` helps to verify that the results obtained using t
S matrices as described above are indeed valid.

IV. PHONON OVERLAPS

A. Results for D5d wells

The results obtained so far give the local reduced frequ
cies of thehg mode in the wells. It is interesting to invest
gate how the inclusion of anisotropy alters the overlaps
tween the well states. In the last section, perturbation the
was applied, keeping terms up to second order in the exp
sion for the energy. Accordingly, the zeroth-order appro
mate states are not appropriate for these further calculat
but revised states taken to second order must be used
example, the appropriate states for theD5d wells labeledA
andB are

uA&5uA0 ;0&1(
ia

8aia
~1!uAi ;1a&2a0

~2!uA0 ;0&

1(
mg

8amg
~2!uAm ;1g&,

~4.1!

uB&5uB0 ;0&1(
ia

8bia
~1!uBi ;1a&2b0

~2!uB0 ;0&

1(
mg

8bmg
~2!uBm ;1g&,

where
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aia
~1!5

^A0 ;0uH̃2uAi ;1a&
E02Eia

,

a0
~2!5

1

2 (
ia

8~aia
~1!!2, ~4.2!

amg
~2!5(

ig8

8
^Am ;1guH̃2uAi ;1g8&^Ai ;1g8uH̃2uA0 ;0&

~E02Emg!~E02Eig8!

2
^Am ;1guH̃2uA0 ;0^A0 ;0uH̃2uA0 ;0&

~E02Emg!2 .

and where the prime on the summation indicates that
electronic ground state is excluded. 1a , 1g , and 1g8 , indi-
cate single phonon excitations of any symmetry. The coe
cients b1a

(1) , b0
(2) , and bmg

(2) are obtained from Eq.~4.2! by
simply replacingA by B.

The phonon overlap between any two different wells
D5d symmetry up to second order is

SAB5
^AuUs

~A!1
Ud

~A!1
Ud

~B!Us
~B!uB&

^A0uB0&

5S00
AB1

1

^A0uB0& H(
ia

8^Ai uB0&aia
~1!Sa0

AB

1(
ig

8^A0uBi&big
~1!S0g

AB2^A0uB0&~a0
~2!1b0

~2!!S00
AB

1 (
i j ag

8^Ai uBj&aia
~1!bj g

~1!Sag
AB1(

ma
8^AmuB0&ama

~2!Sa0
AB

1(
mg

8^A0uBm&bmg
~2!S0g

ABJ , ~4.3!

whereSi j
AB is defined aŝ1i uUs

(A)1
Ud

(A)1
Ud

(B)Us
(B)u1 j&. These

can be evaluated as

S00
AB5Na

2S pn

det~W! D
1/2

3expH 2rWAB1
1

4 ( Bi
AB~W21! i j Bj

ABJ ,

Sa0
AB52S 2mv

\ D 1/2

S00
AB@~e2L!A~ 1

2 W21BAB2QA!#a ,

S0g
AB52S 2mv

\ D 1/2

S00
AB@~e2L!B~ 1

2 W21BAB2QB!#g ,

Sag
AB5

2mv

\
S00

AB$@ 1
2 ~e2L!AW21~e2L!B#ag

1 1
4 @~e2L!AW21BAB#a@~e2L!BW21BAB#g

2 1
2 @~e2L!AQA#a@~e2L!BW21BAB#g

2 1
2 @~e2L!AW21BAB#a@~e2L!BQB#g

1@~e2L!AQA#a@~e2L!BQB#g%, ~4.4!
e

-

f

where

Na5
~mv/p\!n/4

Adet~e22L!
, WAB5~QA!1WAQA1~QB!1WBQB,

WA5SA
†e4LSA , WB5SB

†e4LSB ,

~QA,B!†5
V1

mv2 @au
~A,B! ,a«

~A,B! ,a4
~A,B! ,a5

~A,B! ,a6
~A,B!#,

~4.5!

BAB52r~WAQA1WBQB!, W5r~WA1WB!,

~emL!G5SG
1@l i

m/4#SG , r5
mv

2\
,

with G labeling the wells,m are natural numbers, andn de-
notes the number of phonon modes (n55 for thehg modes!.
Thus

S00
AB5

5A5An1le1le2 exp$210~K1b/\v!2n1%

A~3la1le11le2!~le11f2le2!~le11f22le2!
,

~4.6!
where

n15
lale1le2

3le1le21lale11lale2
. ~4.7!

A calculation of the last two terms in Eq.~4.3! shows that the
two contributions cancel each other out. The full analytic
expression for the overlapSAB is very complicated so it will
not be given here. However, all contributions will be i
cluded in the subsequent calculations. The result for
overlap neglecting the second-order contributions is simp
to write down and can be expressed in the form

SAB5S00
ABF12

2

5

f AB

le1
S K1

\v D 2

~20bn11 f AB!G , ~4.8!

where

f AB52
)2b~V282A5V38!

&D5d

. ~4.9!

It is interesting to compare the magnitude of the over
calculated here with the zeroth-order overlap obtained us
the original shift transformation only. It is also interesting
calculate the overlap that is obtained using the shift trans
mation alone but including perturbation corrections. This e
ables us to estimate the relative corrections from the s
transformation and due to performing the calculations
higher order. Figure 2 shows a plot of the overlap as a fu
tion of the linear coupling constant forK252K350.01K1 .
These values for the quadratic coupling constants ensure
theD5d wells remain minima. It can be seen that both effe
are of similar orders of magnitude. The scale transformat
is particularly important at strong couplings; this is to
expected as it is in this region that the shape of the well
hence the anisotropic effects are the largest. Conversely
perturbation effects are largest at weak couplings. This
again to be expected as the states used were derived us
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strong-coupling model. It is only because the combin
states reproduce the correct weak coupling limit that the
sults in this region are valid at all. It is not surprising th
perturbation effects are relatively large here.

FIG. 2. A plot of the overlapSAB for D5d wells obtained includ-
ing the shift transformation only~solid line!, the shift transforma-
tion and perturbation corrections~long-dashed line!, and the shift
and scale transformations plus perturbation corrections~short-
dashed line!. The results are plotted forK252K350.01K1 .
d
-

t

B. Results for D3d wells

For D3d wells, the calculation can be performed in a sim
lar way using the properSmatrices found using group theor
in conjunction with the O¨ pik and Pryce method. As in the
equivalent zeroth-order calculation,6 there are found to be
two different overlaps between wells for this system. A
though the calculations have been performed to second
der, the results are again very complex so the analyt
forms are only given here to first order. Thus,

Sab5 f 0~x,l!@12 f 1~x,l!2 f 2~x,l!#expH 26g2n2
2S K1

\v D 2J ,

~4.10!

Sac5 f 08~x,l!@12 f 18~x,l!2 f 2~x,l!#

3expH 224g2n28
2S K1

\v D 2J ,

where
n25F ~x211!lal1el2e

l1el2e~x211!1l2ela~x21!21lal1e~x11!2G1/2

,

n285F ~x211!lal1el2e

lal2e~x21x11!1l1ela~x22x11!14l1el2e~x211!G
1/2

,

f 0~x,l!5
3~x211!n2n3

A~l2e1l1ex
2!~l1e1l2ex

2!
, ~4.11!

f 08~x,l!5
12~x211!n28n38

A@l2e~x21x11!1l1e~x22x11!#@l1e~x21x11!1l2e~x22x11!#
,

f 1~x,l!5
4&n2

2g

l1el2eD3d
S K1

\v D 2

$~x21!l2ef@a11g~a2V281a3V38!#2~x11!l1ef
21@a181g~a28V281a38V38!#%,

f 18~x,l!5
A10n28

2g

l1el2eD3d
S K1

\v D 2

$~xf412A511!l2e@a11g~a2V281a3V38!#2~xf2412A521!l1e@a181g~a28V281a38V38!#%,

f 2~x,l!5
5

3

11x2

l1el2eD3d
2 S K1

\v D 2

$l2ef
2@a11g~a2V281a3V38!#22l1ef

22@a181g~a28V281a38V38!#2%,
r-
ave

c-
to

of
and where

n35F ~x211!l1el2e

la~x211!1l1e~x21!21l2e~x11!2G1/2

,
~4.12!

n385F ~x211!l1el2e

4la~x211!1l1e~x21x11!1l2e~x22x11!G
1/2
Figure 3 shows a plot of the overlapsSab andSac as a func-
tion of the linear coupling strength using the full results co
rect to second order. Quadratic coupling parameters h
been chosen to ensure theD3d wells are minima. As for the
D5d wells ~Fig. 2!, it can be seen that the additional corre
tions due to taking the calculations to second-order and
including the scale transformation are of similar orders
magnitude.
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V. TUNNELING SPLITTINGS

The states associated with the wells are only good eig
states of the system as a whole in infinite coupling. For fin
couplings, the system will tunnel between equivalent we
It is therefore necessary to construct symmetry-adapted c
binations of the well states. This has been performed us
projection operators19 for the zeroth-order states. The form
of the symmetry-adapted states, their energies, and the
nelling splittings between them will all be affected by incl
sion of the scale transformation operator.

For both types of wells, the ground state is a triplet ofT1u
symmetry, derived from an original orbital state ofT1u sym-
metry. ForD5d wells, there is a tunneling state ofT2u sym-
metry, and for theD3d wells, there are tunneling states
T2u andGu symmetries. Explicit expressions for these sta
in terms of the zeroth-order states associated with the w
were given in Ref. 6.~We note that in this reference, th
labelsuGux

D & anduGuz
D & were inadvertently inverted. Also, th

sign of uGua
D & should be changed in order to make the ph

factor of the components of theG state consistent.!
Figure 4 shows a plot of the zeroth-order tunneling sp

FIG. 3. A plot of the overlaps forD3d wells obtained including
the shift transformation only~solid lines!, the shift transformation
and perturbation corrections~long-dashed lines!, and the shift and
scale transformations plus perturbation corrections~short-dashed
lines!. The results are plotted forK252K3520.01K1 . The upper
curves are forSab and the lower curves forSac .

FIG. 4. A plot of the zeroth-order tunneling splitting forD5d

wells for K252K350.01K1 obtained using~i! the shift transfor-
mation only~long-dashed line!, ~ii ! the simplified scale transforma
tion to incorporate the O¨ pik-Pryce frequencies~short-dashed line!,
and ~iii ! the full scale transformation procedure~solid line!.
n-
e
.

m-
g

n-

s
lls

e

-

ting between theT1u ground state and theT2u excited state
as a function of the linear coupling strength for theD5d
wells. The graph gives the results of~i! Ref. 6 using the shift
transformation only,~ii ! Ref. 12, in which a simplified scale
transformation procedure was used to incorporate the O¨ pik-
Pryce frequencies into the problem, and~iii ! the current cal-
culation, in which the scale transformation is included pro
erly. Figure 5 shows a similar plot for theT2u and Gu
tunneling states forD3d wells. It can be seen that method
~ii ! and ~iii ! coincide in strong coupling, which is to be ex
pected as the current results coincide with the O¨ pik-Pryce
results in this regime. However, methods~i! and ~iii ! coin-
cide in the weak coupling limit. This is because both t
current method and the original method of a shift transf
mation alone predict the correct frequencies in this lim
whereas the O¨ pik-Pryce method does not. Hence we can s
that the current method has incorporated the most impor
features of both strong and weak coupling. In particular
removes the problem of the result including the scale tra
formation to zeroth order12 tending to infinity in weak cou-
pling, which is obviously physically incorrect.

As expressions for the phonon overlap have been obta
correct to second order, it would obviously be desirable
obtain an expression for the inversion splitting correct
second order also. However, the first- and second-order
rections to the well states include one-phonon excitations
these revised states are substituted into the expression
the symmetry-adapted states obtained previously, it is fo
that the correct symmetries are broken. A full calculation
new symmetry-adapted states and their energies would th
fore be required, which becomes prohibitively complicate
They would be particularly involved for this system as it
necessary to include two quadratic couplings in order to
sure the existence of wells. However, as an approximatio
is possible to calculate revised energies neglecting
symmetry-breaking first-order contributions to the otherw
symmetrized states, both with and without the scale trans
mation. It is found that the second-order results conve
with the corresponding zeroth-order results in strong c
pling, with the former being lower than the latter for a

FIG. 5. A plot of the zeroth-order tunneling splittings forD3d

wells for K252K3520.01K1 obtained using~i! the shift transfor-
mation only~long-dashed line!, ~ii ! the simplified scale transforma
tion to incorporate the O¨ pik-Pryce frequencies~short-dashed line!,
and~iii ! the full scale transformation procedure~solid line!. Results
are shown for both theT2u andGu tunneling levels.
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coupling strengths. However, in weak coupling, the seco
order results both tend to a limit considerably less than
expected\v. The limits with the scale transformation are a
correct in zeroth order, and the limits attained in second
der are the same both with and without the scale transfor
tion. We can therefore conclude that the effect arises du
the perturbation corrections rather than the scale transfor
tion itself.

VI. CONCLUSION

The main aim of this paper has been to incorporate
effects of anisotropy into an analytical model for the qu
draticT1u^ hg JT system in a manner that is not restricted
the strong coupling limit. Although anisotropy must alwa
be present in real systems, this has not been attempted
viously. Expressions for the overlaps between different w
have been obtained for both theD5d and D3d cases. These
results differ from results obtained previously in two r
spects. Firstly, a scale transformation method has been
veloped that incorporates anisotropic effects into the prob
without restricting the calculations to the strong coupli
limit. Secondly, the calculations have been carried out
second order in perturbation theory. Plots of the overl
show that both factors result in corrections to the sim
isotropic result of similar orders of magnitude. In weak co
pling, the scale transformation corrections are smallest,
cause the anisotropic variations in the frequencies are sm
est in this regime. Conversely, in strong coupling t
changes introduced by the scale transformation domin
Therefore, it is indeed necessary to incorporate both a
tional features in our model.

The energies of the ground and first excited states for
T1u^ hg JT system have previously been calculated for b
D3d andD5d wells to zeroth order by incorporating freque
cies obtained using the O¨ pik-Pryce method for strong cou
E.
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pling. However, these results predict tunnelling splittin
that tend to infinity in weak coupling, which is obviousl
physically incorrect. Our results obtained using the sc
transformation procedure have been shown to exhibit
same behavior in strong coupling as obtained using the O¨ pik-
Pryce method. However, they also exhibit the correct lim
ing behavior in weak coupling.

Unfortunately, calculations of the energies correct to s
ond order are prohibitively complicated because the cor
well states to this order in perturbation theory include on
phonon excitations, which means that new symmet
adapted states must be derived. The construction
symmetry-adapted states and subsequent calculations u
them are much more complicated for icosahedral syste
than for cubic systems. In cubic symmetry, a set of w
states can be written down such that when one state is a
upon by any of the group operations, it is transformed in
one of the other states in the set~or into itself!. In icosahedral
symmetry, this is not possible because the transformatio
a set of phonon states from one well to another always
ates a new set of phonon states that is a linear combinatio
the original phonon states. This means that the results
inevitably immensely complicated. Currently, work is und
way in which different combinations ofu, «, 4, 5, and 6 are
used to define the excited states in each well. However,
is a far from trivial task and cannot be attempted in th
paper. Also, until energy expressions correct to second-o
have been obtained, the calculation of further properties s
as first-order reduction factors can only be undertaken i
simplified manner.
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