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In the linearT,,®hy Jahn-Teller system, the adiabatic potential energy sufaB&S is a trough. How-
ever, in real systems, quadratic coupling will be present, which warps the APES to give wells oDejjtuar
D54 symmetry. The degeneracy of the vibrations within the wells is also lifted. This anisotropy has recently
been investigated in the,,® hy system, and expressions for the frequencies in both types of wells obtained in
the strong coupling limit using the method opiR and Pryce. A scale transformation procedure was then used
to incorporate these results into expressions for the states in the wells and their associated energies. However,
this calculation did not allow for second-order perturbation effects and is only valid in the strong coupling
limit. In this paper, a revised scale transformation procedure is developed f@sthevells, which allows
expressions for the anisotropic frequencies to be obtained without employingptkea@ Pryce procedure.
An expression is obtained for the phonon overlap that is correct to second-order and is not restricted to the
strong coupling limit. Results are then obtained for the ground-state energies and inversion splittidgy For
wells, the previous results are improved by application of a modified scale transformation procedure and
overlaps correct to second order obtained. The results obtained in this paper are of interest in studies of the
Cgo anion state of the £ molecule, which is known to occupy B, orbital ground state.
[S0163-18298)06632-9

[. INTRODUCTION coupling, have recently been considered in this manner for
the first time firstly for theD 54 wells'? and secondly for the
The discovery of the g molecule! and later other D,y wells!® Expressions for the reduced local vibrational
fullerenes=3 such as G and G4, opened up a whole new frequencies were obtained using the method @ikGand
area of study of physical effects in icosahedig) (symme-  Prycel* following procedures that are well known for cubic
try. Only a few examples of this very high symmetry were systems. Expressions for the states associated with the wells
previously known in nature and hence very few studies hadheglecting the anisotropic effect had already been
been undertaken concerning it. One area of current interest ebtained>* following the unitary shift transformation ap-
that of Jahn-TellexJT) effects, in which highly degenerate proach of Bates, Dunn, and SigmultdAnisotropy was then
orbital states are coupled to highly degenerate vibrationahcluded in these states by applying an additional scale trans-
modes. Fourfold and fivefold degeneracies are possiblg in formation incorporating the new local vibrational frequen-
symmetry; these are not found in other symmetriescies. However, due to the nature of theiband Pryce pro-
T1u®hy JT systems are of particular interest because moeedure, the results obtained in Refs. 12 and 13 are strictly
lecular orbital calculations indicate that the lowest-energyalid only in the infinite coupling limit.
unfilled orbital in a Gy molecule is ofT, symmetry. Hence In the current paper, a modified version of the scale trans-
this system could be a model fogC. formation method will be developed and applied to the states
In linear coupling, the adiabatic potential energy surfaceassociated with both thBsy and D34 wells. The method to
(APES for the T,,®hy JT system consists of a trough of be used for thédsy wells follows that developed originally
SQ(3) symmetry. This has been studied by several authdrs. for the T®t, system in cubic symmetr. Values for the
However, quadratic coupling must also be present in all redlocal vibrational frequencies are obtained without using the
systems to at least some degree. This will warp the trough t@pik and Pryce method, and hence the results are not re-
produce wells of eitheD3y or D5y symmetry, depending stricted to the strong coupling limit. In Ref. 12, the results
upon the strengths of the two possible forms of quadratiobtained were taken to zeroth order in perturbation theory
coupling®~ 191t also lifts the degeneracy of the local phonon only. However, it will be shown here that significant correc-
modes in the wells. This in turn changes the vibronic statesion terms arise when the calculation is repeated to second
of the system as a whole, which then affects further propererder in perturbation theory. This calculation is nontrivial
ties of JT systems such as tunneling splittings and reductiohecause the ground states used now involve contributions
factors. from excited phonon states. This vastly complicates the
Anisotropic effects such as those induced by quadratievaluation of the necessary overlap factors and matrix ele-
coupling are known to be important in cubic syste(Ref. = ments, which now depend upon both of the second-order
11 and references therginf the quadratic coupling is small, coupling coefficients rather than just one as in the simple
its effect can be treated as a perturbation on the linear cowase. In this paper, the magnitudes of the corrections to the
pling states. However, if this is not the case it must be indsotropic result from these second-order effects and from in-
cluded in the analysis from the beginning. The effects ofcluding the correct local frequencies will be calculated and
anisotropy in theT,,®h, system, as induced by quadratic compared.
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Equivalent results for th®;4 wells cannot be obtained -
using the scale transformation directly due to a repeated ir- Hi=K, > (b +bj)Ly; (2.4
reducible representation in the reduction in symmetry of the .
hy mode. However, an alternative procedure will be devel-and the two quadratic terms are
oped that also allows results to be obtained that are not re-
stricted to infinite coupling. Firstly, the reduced infinite cou- _ o _ .
pling frequencies as obtained using theild and Pryce T Kz; AjLnj and 7 K3; Bilnj, (29
method will be used to generate the diagonalizing matrices . - . .
(called S matrices that arise as part of the scale transforma-resPeCt'Vely' The coefficients; are defined by the relations
tion method. With these known, new expressions for the fre- , 1
quencies not restricted to infinite coupling will be obtainedK ;= — VA/l2uwV; and Ki==—== oV, (i=2,9),
by solving the original problem using the scale transforma- 2pw 2
tion. Results will be obtained that are correct to second order 2.6
in perturbation theory. whereV! =V, /uw?, V, is the linear coupling constant and

This paper begins by setting up the vibronic Hamiltoniany, andv, are the quadratic coupling coefficients, is the
for the Ty ®hy JT systerfiincluding the two quadratic cou- . operator and !
pling terms. A brief discussion of the application of the uni-
tary shift and scale transformation procedures to this system
is then given. The local frequency problem is then solved for
the D5y wells and then theD;y wells using the methods

o1 /3 —1.1 t t
Lo= V2 (¢ 1clc, - pefeo+clcy),

described above. In both cases, phonon overlap integrals will Lhe=1% \/g( p?cle,— ¢ 2che,—Beley),
be calculated to second order. Finally, expressions for the
tunneling splittings are obtained, and the results both includ- Lya= \/%(CZC# C;Cz),

ing and neglecting the revised frequencies compared to the

isotropic case. ~
P Lus= Vs (clor+cley), 27

IIl. BACKGROUND THEORY ~

. L _ Lhe= \/%(0102+ cic),

The components of the h vibrational mode will be la-

beled¥, ¢, 4, 5, and 6. In order to get the simplest matrices of , - :

H symmetry'’ the component® ande will be chosen to be Al =2 al (bl +by)(bl+by),

linear combinations of the standard components used in cu- me

bic symmetry, namely,

B/=>, bl (bl +by)(bl+by),
de=3VEH,~33H, 17 5 Ol O b3 B
@ where¢=%(1+ \5) is the golden meam, , ¢}, andc} are
dxz_y2=%\/§H ﬁ%\EHS- orbital creation operators acting on the pure electronic basis
stategx), |y), and|z), of Ty, symmetry to create, y, and
z, respectively, andy,, andby,, (j,m,p=6,¢,4,5,6) are co-
efficients whose nonzero terms are

A. The Hamiltonian
. . . . . . aZS = \/;1 324: - agSI \/gv
The total vibronic Hamiltonian of the system including
two quadratic terms can be written down in terms of collec-

tive displacement®; and corresponding conjugate momenta

The orbital tripletT,, is modeled using an isomorphie 1
operator, and its three components will be labeleg andz.

P;. As the calculations to be described here involve the 4 5 3 4 5 T 6
evaluation of rather complicated phonon overlaps, we find it ~ 8p= ~@g5= \/; 4= 8,5~ \/; 8= V2,
convenient to write the Hamiltonian in second quantized op-
erator form. Following Ref. 6, we express it in the form bzez _bgez \/g b§4= bgsz -1 bge: — \/g (2.9
H:Hvib+Hl+H2+H3! (22) e & &
b= — \/g, b34= —bgs= \/g’

whereH,;, is the vibrational Hamiltonian}{, the linear in-

teraction Hamiltonian an@{, and?; the two quadratic cou- 4 5 _ 1 6 _ |2 4 _ 5 _ |1
pling Hamiltonians. Thus in second quantized form, blga=bjs= V5, boe= V2, e V3,

~ 4 _ 5 _ 1 6 _ _ 1
La, (i=6,6,456, (23 bse=bze=—2V3, Dbis=-2Vs.

1
Hyip= > ﬁw( blb;+ >

j
wherew is the frequency of vibratiorb;r andb; are phonon B. Unitary shift and scale transformations
creation and annihilation operators, respectively. The linear In very strong coupling, the system becomes frozen into
term of the Hamiltonian is one of the minima in the APES at low temperatutest
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finite coupling, it is possible to employ the crude adiabaticvalues for the local frequencies using theikband Pryce
approximation and construct states for the whole systenmethod. These were used to bypass the need to fix values for
from a linear combination of the strong coupling states.the parameterd; in the scale transformation. We will now
Hence it is important to be able to obtain accurate expresdevelop the scale transformation theory for both sets of
sions for the infinite coupling states. wells.

Previously® the positions of the minima in the APES have  Using the formula
been determined by applying a unitary shift transformation
U4 to the original Hamiltonian. For wek, this has the form

“BA B:A+i A,B +i A,B],B]+---
e BA€ 11 [ABl+ 5, [[AB].B]+-,

ugk>:exp<i; a}“Pj] zexq'; C}'“(bj—b,-*)], ' ' (211

2.

@9 it is easy to show that
where C{¥= — uhw/2a{9= (K, /fiw) al). The resultant
transformed Hamiltonian can be split into two parts. The first
part contains the; as free parameters but no phonon opera- U;rbjUS= 2 [bi(cosh 2\);;— b (sinh 20,1,
tors, and so it can be used to determine the energy of the i
ground state of the system. Values for the(or equivalently (212
thea;) are then chosen to minimize the energy of the system.
This has the effect of fixing the system into one of the po-where (cosh &);; means thei(j)th element of the matrix
tential energy minima, because the transformation displacesosh 24 (and similarly for sinn4). The matricesf(I")
the origin of the nuclear coordinates t@jzquJUszj where f=cosh, sinh, or exp can be defiftédn terms of
— ajh. Infinite-coupling states can then be written down bypower series expansions, or via a matRxwhich brings
multiplying the original basis states hy{". These zeroth- f(I') to a diagonal forri’’ by the relationship
order states are good as a first approximation, and have been
uged successfully to describe many properties of a range of f(I)=Pf(I")P L. 213
different JT systems. However, they do not incorporate cor-
rections due to anisotropy in the wells. ) ] ]

In strong coupling, the fivefold degeneracy of the vibra- The corresponding transformation fof can be obtained by
tional h, mode is lifted as the symmetry is reduced from taking the Hermitian conjugate of the equation above. Con-
to Dsg or Dag. It has been difficult previously to incorporate Sequently,
the anisotropic effects induced by the lifting of this degen-
eracy into analytical models. Recentfan extension of the
shift transformation method has been developed to automati- U;r(bj’r+ b, U= > (bf+ bi) (e 24);; (2.14
cally introduce anisotropy into thE® t, JT problem in cubic i
symmetry. This involved applying an additional scale trans-

formation, which for wellk has the form The full transformed Hamiltonian is thereforeH

i =UlU$HUdUS=H1+H2+H3, where in this case
U(sk)=eXP[g ; A(QiPj+ PjQi)]

Hy= fm(c-c-+l La —2K,CiLy,
=exp[2 Afjk)(bibj—b?b})], (2.10 ! 2 e A SR
]
where A=A w;/w; are transformation parameters +%}) 4(Kaly+ K3bh ) CrCol |, (2.1

whose values must be determined. It can be proved that the

eigenvalues of the matriA are identical to those oA, so it

is possible to work with either in subsequent calculations. No

terms in the new transformed Hamiltonian contain bath Ho=2,

and Ajj, so thea; can be fixed to take the same values as ]

with the shift transformation alone. . . R
In the case of th@®t, JT system, values for thi;; were +> (Kaag,,+ K3b1mp)(e*4“)mpLHj

fixed by minimization of the total energy taking into account mp

the previously neglected part of the transformed Hamiltonian

to second order in perturbation theory. However, difficulties +Z (bJ-T+ b;)

arise in applying this method directly to tig,@hg JT sys- Y

tem due to the higher fivefold degeneracy and the necessity . .

to include quadratic couplings in the problem in order to —22 (K2a1mp+ Ksbjmp)[cp(e‘m)im

generate wells rather than a trough. Only a simplified version mp

of this procedure has been developed so®farusing the .

result that in infinite coupling it is possible to determine +Cm(e_2A)ip]|—Hj:|;

fio(sinh 20)2 L,

(_ﬁij£A1+ K1£Hj)(e_2A)ij
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TABLE |. Excited electronic states ifa) Dsyq wells (b) Dy

first-order perturbation correction to the ground staftes.
describes the higher-order vibronic coupling and it is only
necessary to calculate its effects in higher-order perturba-
tions. We note that the results are consistent with those ne-

glecting anisotropy because when all the eleménfsabove ing at most one-phonon excitatidhWe will therefore add

are set to zero, the results become identical to those of th?ubscriptsA etc. to the state labels to indicate that the
shift transformation alone. 0 )

In order to evaluate the overlaps between different Vi_states are zeroth-order ground states. We will illustrate the
P method of calculation by reference to the wallfor Dgy

bronic states, |t_W|II be necessary to know the effect/gfon minima. The corrected energy in this well is
the collective displacementy; . It can be proved that

(-1,0,9,(1,2,)
(1,0,9,(-1,2,1

Hs=2>, [bib;(cosh 4 ); — (/b +b;b;) wells.
]
. A _ D5y well Electronic excited stateX;
X (sinh 4/\)”]LA1+; ;p (Kaah,,+ Ksbl ) R 100010
B (1,0,0,(0,1¢)
X >, (bib!l+bbs+blbs+blb c (0,1,0,(-4,0,9
% (bybs+bybs+bybs+bsby) o 0.1.0.60.0
_ _ ~ E (0,0,]),(1,—1;15,0)
A
X (€M) (e gpbnj F (0,0,2,(1,¢0
As H, contains no phonon creation and annihilation opera- Dq well Electronic excited stateX;
tors, it can be used to describe the vibronic ground states of —
the systemH, contains two contributions: one of them, like a (1,00),(0~ ¢’¢il )
‘H,, also contains no phonon operators. This describes an- b (1,00),(04;7,;1) )
isotropic corrections to the ground-state energy produced by ¢ (0*19)'(_‘?1 0.9)
the scale transformation. The other term contains one- d (0,10),(¢ ,Ci,;b)
phonon creation and annihilation operators, and so describes e (0,01),(- ¢v¢l 0)
couplings to excited states with one phonon excitatias f (0,01),(¢,9"7,0)
with the shift transformation alopeH, may be treated as a g ((160i_ 11)5((12’_12;)
i
i

~ (A H,|Ag; 0)2
E=Ey+(Ay;0 Ag;0)+ —_—,
usczzm=exp[2i AnJZ exp2A}1n Q. ot (AoiOMlAgi0) + 20 ¢ T
(2.16 (2.18
) where |A;) represent all components of the relevant first-
UsEm: Qm=ex Z Aii % exp{4A}imQiQm- order excited states in the wells, with corresponding energies
_ _ _ Ei, andE, is the ground-state energy in well (calculated
Therefore, for any differentiable functioi{Q;) of Q;, from Eq=(Aq;0|H|Ao;0)). Explicit expressions for the
excited electronic states, which are®f, symmetry for the
Usf(Qm)zexp[Z A”]f( EI: exp[ZA}iin), _I?anbl\évTIIs andE, symmetry for theD 4 wells, are given in
(217 It is also necessary to write down states in the original
2| ) A untransformed space. This can be achieved by applying the
Usf(% Qm) —exp[zi A”]f< ;n exp{4A},leQm). transformation operators to the transformed vibronic states.

The zeroth-order untransformed states associated with each
Before the calculations can be performed, it is necessarwell will be written as
to know how to write down vibronic states associated with ,
the wells with respect to the transformed Hamiltonian. In the X5 Xy = ULPUTI XG5 X ). (2.19

transformed space, the zeroth-order ground electronic state i, . , .
. ®) . s s in previous work, we note that because th's contain
well k is denoted by Xy ;0) where the “0” represents no

o ® i phonon operators, the untransformed ground states are vi-
phonon excitations and,” represents the electronic state. pronic in nature even when there are no phonon excitations
Equivalent states including phonon excitations are written iNyresent in the transformed picture.

the form|X{9;X,). In Ref. 6, explicit expressions for the

electronic stateX{) were obtained. In this reference, the lll. CALCULATION OF LOCAL FREQUENCIES
electronic states for the tdb;4 wells were labeleé to j and o

the states for the siRs4 wells labeledA to F. The states are A. The local frequency problem for Dsq minima

of A,, symmetry in both cases. Here, the effecttf on the In principle, the scale transformation paramet&gs can

ground state of the system will be calculated using perturbabe determined by minimizing with respect toA;;. The
tion theory. This involves correcting the zeroth-order statesnatrix A can be treated with the aid of group theory. It is
by coupling to first-order excited states in the wells containknown that the irreducible representations of thegroup
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will be reduced undeDsgy symmetry to the suma;®e; The above analysis for the part 0f due toA;; acting on
@e,. The frequencyw of the mode in each well is therefore a SHO wave function in the coordinate representation sug-
reduced to three values),, we, and we,. These will be  gests that it is reasonable to chodshn \; as the eigenvalues
written in terms of scaled frequencies=w,/w. As the Of the matrixA( in the general case. Thus we have
splittings are the same in each well, the frequencies will also
be the same in each well. The matria@eswill be differen.t. A(k)z%lsl[m NS, (3.4)
However, they are connected by a unitary transformation.

In order to illustrate the effect of the scale transformation, _ ) -
we first investigate its effect on the zeroth-order wave funcVhere [In\j] represents the diagonal matrix with
tions of a simple harmonic operat(8HO). In the coordinate = @1, €1, ande; and S, is a unitary matrix that has two

representation, these wave functions can be written in thfunctions. Firstly, it can block diagonalize ten representation
form matrices ofH symmetry of thel,, group. The ten matrices

form a subgrou® 54 of thel,, group. Secondly, it can reduce
wo thehy modes ofl, symmetry into local modes, 4, e,4, and
p(Qj)= NoeXP{ — Q.z] : (3D €z _ '
It is necessary now to determine an expression for the
_ o __energyE of the system as a function af,, ¢, andie,. In
whereNg is a normalization factor. The scale transformatlonCa|cu|ating the second-order correctionEpwe must con-

operatotUs in Eq. (2.10 is @ product of operators; due to  gjger the excited states with energigg+%iw (degeneracy
each elemenh;; of the matrixA. It can be shown that for the 5), E. (degeneracy 2 and Ex +%w (degeneracy 10
! 1u 1u

diagonal elements, . .
g whereEElu is the energy of the excited electroriig,, state

® with no phonon excitations. However, it is found that the
Unel/(Qi):)\imNoeXD[ _ke MQiZ’ states defining the first two of these sets of energy levels
h make no overall contribution to the total energyTo illus-
o, trate the calculation involving the third set, we will use well
E)\ilmNOexp[ — TI Q?] (3.2 A We must determin& using the transformed Hamiltonian
in EqQ. (2.19, which in turn involves handling the matrices

_ . . exp(2A), etc. according to Eq(2.13 (as described in
where\; are new parameters defined by the relationship Josht®). In particular

Aii:% In N. (33)

\; is thus the ratio of the anisotropic local frequenay of
thei mode to the original isotropic frequeney Comparing
with Eqg. (3.1, it can be seen that the effect of the scalewhere[\;] represents the diagonal matrix witk-a,, ey,

transformation has been to change the original isotropic freande, andS, is the unitary matrix found previously by Liu

exp{ = nA}=Si\""4S,, (3.9

guencyw to the local valueaw; . et al? (using group theonyto be
|
-3 -1 6 0 0
¢ —Vip ' V2 0 0
1
SA:E 0 0 0 J10(¢p+2)  $J10(p+2) | . (3.6)
62 V¢ V2 0 0
0 0 0 —¢J10[(p+2) 10[(p+2)

The sinh and cosh functions can be expressed in terms ofhere
exponentials. Thus we obtain the result

Ep —Eot = o] 24 o hy 4 At ——5 Kq)?
Dgg— =0T 5 M@ 5 2N, @ 7‘_61 & )‘_eg_ A5d=1+\/i(ﬁ) B(V3+2BV,). (3.8
V2 1 1 2 1
10 Vé(r*r‘r)‘ﬁ"é o ”
e e, "a e e The correct set of ratios of frequencies should be chosen
2 , N2 to ensure that the energy is a minimum. Therefore, values for
_ Eiﬁ [‘/§+'B(V2+‘/§V3)] , (3.7 the parameters. ,, N, and A, are fixed by solving the
5 ke e Asqg three equations)E/dN;=0. From perturbation theory, the
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12— - " . ; T - . — ance of the trough in five-dimensional phonon space when
“r Ja A guadratic coupling is neglected. The two vibrational modes
10F :;;:;;%-:::::::::::::::-vj:;‘:::- with E; symmetry have been completely quenched by the
. 09 - {f . strong linear vibronic coupling. However, even if the two
§ 08 . L . quadratic coupling terms in the total Hamiltonian of the
g o7} o (OpilcPryee) T1u®hg JT system are ignored, the perfect trough appears at
Eosf e t“S“"’) -ozzzzzEE infinite coupling only. Away from the limitk;—, w,
“g 05 ezt = does not take its ideal values of 0 but varies according to the
2 Z:: /,,——“'/ 2, (Scale) ] relationship
Th Jsies 4,, (Opik-Pryce)
02F -~ i
L. ] 1
0.1 |, u 2
/ ] Ne=T——F——3—75- 3.1
0.0 : L : ' : L : . . & 1+6(K,/hw)? (3.19
0 1 2 3 4 5
k

The above results are consistent with the view that in the
FIG. 1. A comparison of the scaled frequencig®btained after ~ absence of vibronic coupling, the vibrational space is isotro-
the Qpik-Pryce method and after the scale transformation. Thepic and the frequencies in all directions are exactly the same.
dashed lines are the results for tipy wells with K,=—Kj When linear vibronic coupling is added, the isotropic vibra-
=0.01K; and the solid lines are for thB 54 wells with K,=—Kj tional space will be broken gradually according to the
=-0.0K;. strength of the coupling. When the strength increases, the
two-dimensional trough becomes deeper.
first-order term gives the correction to the zeroth-order and
the second-order terms give the corrections to first order. We 5. The local f blem for D -
flnally obtain the results . € local Trequency pronlem Tor D 3g minima
For D34 minima, thehy vibrational modes with, sym-
Na=1-3v2Vy, metry can be reduced intay®2e,. Solving the local fre-
quency problem involves constructiggnatrices for theD g4
minima. However, as th® ;4 subgroup contains a repeated
representation, prope® matrices cannot be found using

2
Ne,=1+3V2Vy+ £ V10v3,
(3.9 group theory alone. Group theory cannot distinguish between

5 , 1+V2(K,/hw)?B(3V3+ BV)) the two e; modes and so the resultirg matrix can only
)\elz 1+ 5 V2V, A block diagonalizeA. This suggests that suitatfiamatrices to
5 make A diagonal must be found using thepi® and Pryce
1 1+v2(K,/1hw)?B(3V3+ \/Eﬁvé) method. These matrices can then be applied using the scale
5 \/1_0V§ A transformation procedure, thus allowing revised expressions
5d for the frequencies to be obtained that are not restricted to
6 (K,/thw)? the strong coupling limit.
1. The pik-Pryce method
where o .
The values of the frequencies in infinite coupling can be
J6 derived using the method ofpik and Prycé:* as described
p=——. (3.10 in detail for D4 wells in Ref. 12. Brief preliminary details
5-4v2V, were also given foD 34 wells in Ref. 13. The potential en-

) ) ) ergy U that generates the APES is expanded as a power
The formulas obtained fax, and\., are identical to the  ggrjeg indr,=Qr,~ Q%k}), about the minimum at the well
results using the @k-Pryce method. Figure 1 shows a plot positionQ® up to second order. The first- and second-order
of these results as a function of the linear coupling strengtidontributions are treated as perturbations, and a corrected
k;=K;/fiw for the quadratic coupling constants in the ratiosenergy up to second order obtained. This is written in a ma-
K,=—K3=0.01XK, (dashed lines The figure also shows the trix form:
results obtained fok, using both the scale transformation

and pik-Pryce methods. This shows that the primary differ- ar,,

ence between the two approaches is that the result obtained _ (k) e

using the scale transformation correctly tends to 1 in weak E=Eo(Q™)+ P (Ar,5,Ar,y, )M qr_ﬂz -
coupling, whilst the @ik-Pryce result tends to zero. This is :

because the latter is a strong coupling procedure. (3.12

For very weak couplindi.e., K;—0), the second-order S o
contributions can be neglected and the results obtained atéhere the matrixM is given explicitly in Ref. 12. As the
identical to the first-order results. In the infinite coupling Matrix elements have the same dimensioruasg, they are

limit (i.e., K;—), and if we takeV,=V4=0, we havex, therefore written a&w%l,,uwﬁz, ... In general, the matrix
=Ne,=1 and Ae, =0. This correctly describes the appear- M can be diagonalized using a proper unitary transformation
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(quantum mechanically, this operation chanlye$rom one
representation to anothgrThe diagonalized matrix can be
expressed as

2
A
Iy

M=SMS = pw? \2
Iy

(3.13

wherehr= wr/w. In the case of th®gy wells, the resulting

eigenvalues were then found. Normalizing each eigenstate
and substituting the corresponding electronic states and the

positions of the wells allowed th& matrices to be deter-
mined.

For theD 34 minima, it would appear first that the proce-
dure should follow that above fdbsy4 wells. The requireds

matrices can be determined following the procedure de-
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Q,=45/5+108/10V}— 150/2V}+ 18,/5V >
+42\BV42—204V5V5+W,,

Qp=—45+6/10V4+18V52+ 26V32+ 12\/5V4V3,

Q3= —45+610V4+18V52+ 26V32— 12\/5V4V5,
(3.17

Qu= — 45— 6103+ 18V42+26V52+ 12\/5V,V},

Qs=45"—6561000/5°+ 3936600/, — 104976(/,°
+104976/,8 - 109350004 + 962280/ 42V 32
— 244944052V ,*+ 139968/,°V4%+ 10027800/ 4
— 4393440}V 5%+ 484704754V — 3650400/ 5°
+29203%/5°V,2+ 456976/48

scribed in the appendix of Ref. 12. The electronic states,

energies, and the positions of tiey wells are known so
can be used to obtain the correspondMgnatrices. How-
ever, unlike in theDsy case, theséM matrices cannot be
diagonalized directly. However, tif@matrices can block di-
agonalize theM matrices as th& matrices have, symme-
try and theSmatrices block diagonalize tlg, representative
matrices that form &34 subgroup ofl;,. We will illustrate
the procedure using wedl as an example. As a first step, we
use the matrixS, given by

1 -v3 v2 0 0
12 0 -v2 0 o0
Su=—=|0 0 0 6 0 | (314
Bli vi vz o0 o
0 0 0 0 -6
to operate orM. The block-diagonal matrifl’,
M'=s, M S (3.19

is obtained. The second step is to determine the eigenvalues

and eigenvectors df1’ and to find the final form oM. On

normalizing and simplifying the eigenvectors, a proper uni-

tary matrixSaz that diagonalize’ is obtained. This has the
form

1 0 0O 0 O
0 xy O y O
Sa,= 0 0 xy 0 vy|, (3.1
0 0 -y 0 xy
0O -y 0 xy O
where
L 1Qi00Q, 1
2 Qs J1+x2
and where

with

W, = (18225+ 48600/2V} — 11340/10V4+ 118260/42
+55980/4%— 78840,/5V, V4 + 19446/2V,°
—13848/10V4%+ 1094402V,V45% — 50328/10V5V,2
+2916v5%+11524/4%— 19632/5V, V43
—9072/5V4V43+55800/52V52) 12,

Hence, the matrisM has been diagonalized usilﬁigl (to
make M block diagongl and then, usingSaz, the block-

diagonalized form oM is fully diagonalized. Thus the uni-
tary matrix S, that diagonalizes thi matrix for the Dy
well a is given by

S‘a:SazSal
1 1 1 0 0
J6 V2 V3
2(x+1)y vy (x=1)y
2 0 0
B 3 % V3
0 0 0 Xy -y
0 0 0 -y —Xy
(=2+x)y xy (1+x)y
-7 0 0
J6 V2 V3
(3.18

This S, matrix reduces théy modes intoay, 1e, and 2
modes as it diagonalizéd. It will therefore also diagonalize
the matrixA of well a as they have the same properties. For
theDgy case at infinite coupling, the eigenvalues\odndM
differed only by a factor ofuw?. Also, we know that ifS,
cannot diagonalizd\, the results obtained in the infinite cou-
pling limit will be inconsistent with those derived using the
Opik and Pryce method. Conversely, if it can diagonalize
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the results should agree. Therefore, for thg, case, we
have sufficient reason to us instead ofS, in our scale

transformation method.

2. Evaluation of local frequencies for By wells

Using S, instead oiSal, and on substituting the electronic
states, their corresponding energies and the position ofavell

into EqQ.(2.16), we obtain the result

1 1
_+)\2e+ __5

En =En+
Paa 0 N Aoe

Lol 22 et
2" 2 Tan, e

L2 1—x2V,( 1 1>+ 1
\/ﬂ)1+xz 2 }\1e )\Ze 3\/ﬂ)

1
7\2e)\+\/—0

_+___
1 1) 1 K?

1+x?

Aoe

¢2 ’ ’
X _)\ [a1+ ’y(an2+ a3V3)]2
le

¢72 ’ 1AV ! 2
+)\28 )] '

(3.19
where

V2

’y: —1
Vi5-4\3v;

Agg=(1+x%)

2
5+3J1—o(;—1) y(\@-ﬁ-ZyVé)},
@ (3.20

a=—V3(x—¢ %), a=-3(x+¢ ?), az=x¢ +4¢,

aj=v3(x+¢%), a=-3(x—¢), a;=x¢’-¢ "
The final expressions for the local frequencies are thus

Na=1—£510V3,
2410 (Kl 2
y

Aoy %) (1ix¢i2)fi]

2110 (ﬁw)

Agqg
_ 2 Kqi\2 _
X(¢t3ix¢+l)fi] " Bag ¢i2(ﬁ> (XF 2?2,
(3.21

where the upper sign corresponds tol and the lower sign
toi=2, and

1-x?
1+x?

+

N 1sl ﬁvz{
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y(a,Vo+azVs)+a,; for i=1
(3.22

y(asVy+agVi)+a;  for i=2.

_—h
Il
N~ NP

A plot of the above frequencies forK,=—Kj
=—0.0XK, is shown in Fig. X(solid lines. The formula for
\g is identical to that obtained using theiR-Pryce method.
The result for\ 5 is not identical, but the difference in the
magnitude is very small and cannot be observed for this
range of couplings. The (@k-Pryce result for\ 4. is also
shown in Fig. 1. It can be seen that, as for ihg, results,
the primary difference is in correctly predicting that,
tends to 1 in weak coupling, while thepix-Pryce results
tends to O.

It is easy to see that wheg,=V,=V;=0, the frequen-
cies coincide with the isotropic resultse., A;=N\1c=N2e
=1). WhenK, approaches infinity andf;,= V3 0, we get
Na=M2.=1 and\1.=0. Under this condition, wells do not
exist but a two-dimensional trough is formed in the five-
dimensional phonon space. This is known to be the correct
result for linear coupling. Furthermore, whér,=V;=0
andK is finite, the results are identical to those obtained for
the Dgq wells in the absence of quadratic coupling. It can
also be shown that whewi; andV; are nonzero but finite,
the results obtained converge with those obtained using the
Opik-Pryce method aK; tends to infinity. The results for,
and\ 5., converge very quickly, while the convergencexgf,
is much slower; the difference is around 0.01kat/A
=10. The consistency of the two methods under the condi-
tion K;— o helps to verify that the results obtained using the
S matrices as described above are indeed valid.

IV. PHONON OVERLAPS

A. Results for D4 wells

The results obtained so far give the local reduced frequen-
cies of thehy mode in the wells. It is interesting to investi-
gate how the inclusion of anisotropy alters the overlaps be-
tween the well states. In the last section, perturbation theory
was applied, keeping terms up to second order in the expres-
sion for the energy. Accordingly, the zeroth-order approxi-
mate states are not appropriate for these further calculations
but revised states taken to second order must be used. For
example, the appropriate states for gy wells labeledA
andB are

[A)=1A0:0)+ X "al2| A1) —af? | Ao;0)
2 an/Anil,),
4.

[B)=1B0;0)+ 2, 'biZ|Bi 1) ~b(”|Bo;0)

+2'b@)|By;1,),
my

where
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(1) <AO;O|H2|Ai ;1a>
A Eo—Eia ’

= E (a)?,

(4.2)
a2 E (Ami 1 Hal A1, (A 1,0 Hal A3 0)
(EO_ Emy)(EO_ Eiy’)

<Am'17|H2|Ao 0(Ag;0|Ha| Ao; 0>
(EO m'y)

and where the prime on the summation indicates that the

electronic ground state is excluded,,11,, and 1, , indi-
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where

(polwh)™

Na= -,
& Jdete )

WA=Sle*\s,,

WAB: (QA) +WAQA_|_ (QB) +WBQB,
WB: S1B-e4ASB ’

[a(A B) a(A B) a(A B) a(A B) a(A B)]

(4.5

(QA B)T_
BAB=2p(WAQA+WBQB), W=p(WA+WE),

(™)' =SINMISr, p=57

cate single phonon excitations of any symmetry The coeffi-

cientsb{Y), b, and bﬁ; are obtained from Eq4.2) by
simply replacingA by B.

The phonon overlap between any two different wells o

Dsq symmetry up to second order is

(AU UR UPUe)
A8 <Ao|Bo>

-+ Gy | 2 (AlBaalsls

+ 2 (AgB)D{YSHE— (Ag|Bo)(al? + b)) SiF
iy
+ij2ay,<Ai|Bj>a§cly iy a7+2 (AnlBo)yainSho

+E (AolBrmbiZ) B} (4.3

whereS)® is defined ag1, U U UPUP|1)). These
can be evaluated as

SS\B: N2 77_n 1/2
0~ "2l de( W)

1
X exp{ —pWAB+ 2 > BRE(W 1), BIP

1/2
Sio= —(2’;—“’) S L(EMHAGW IBAE-QM)],,
1/2
86‘5:—(2“7“’) ool (21)P(3WBAP-QP)],,
SAB 2"; BI[L(e2V)AW (e8],

+ 4;[(GZA)Aw—1BAB]a[(e2A)Bw—1BAB]y
—z[(e2MAQ [ (e*Y)PW1BA?],
—3[(eMHAW B [(e2Y)PQP],

+[(eM QML (e*M)PQP],), (4.4

with T" labeling the wellsm are natural numbers, amdde-
notes the number of phonon modes<(5 for thehy modes.

fThus

as. 5Bk eher exp{— 10K, Blhiw) 2}
® JBNat Nert A Ner T 62N ea) Nert & 2Ngp)
(4.6

where

Naleiheo
3)\917\e2+ )\a)\e1+ )\a)\eZ .

V= 4.7

A calculation of the last two terms in EG4.3) shows that the
two contributions cancel each other out. The full analytical
expression for the overlap,g is very complicated so it will
not be given here. However, all contributions will be in-
cluded in the subsequent calculations. The result for the
overlap neglecting the second-order contributions is simpler
to write down and can be expressed in the form

Sas=Soo| 1

2AB

2
(20BV1+fAB) y (48)

where

o V3BV By 9

It is interesting to compare the magnitude of the overlap
calculated here with the zeroth-order overlap obtained using
the original shift transformation only. It is also interesting to
calculate the overlap that is obtained using the shift transfor-
mation alone but including perturbation corrections. This en-
ables us to estimate the relative corrections from the scale
transformation and due to performing the calculations to
higher order. Figure 2 shows a plot of the overlap as a func-
tion of the linear coupling constant fé¢,= —K;=0.01K.
These values for the quadratic coupling constants ensure that
the D54 wells remain minima. It can be seen that both effects
are of similar orders of magnitude. The scale transformation
is particularly important at strong couplings; this is to be
expected as it is in this region that the shape of the well and
hence the anisotropic effects are the largest. Conversely, the
perturbation effects are largest at weak couplings. This is
again to be expected as the states used were derived using a
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oS, ' ' ] B. Results for D34 wells
°or 1 For D34 wells, the calculation can be performed in a simi-
oL ] lar way using the prope® matrices found using group theory
& orr 1 in conjunction with the @ik and Pryce method. As in the
3 " 1 equivalent zeroth-order calculatibrthere are found to be
2 °°r 1 two different overlaps between wells for this system. Al-
E il ] though the calculations have been performed to second or-
= osr ] der, the results are again very complex so the analytical
0z ] forms are only given here to first order. Thus,
01} S 4

0.0 L
0

2
| am=fdxxn1—fﬂxA)—fxxxnem{—6%vi£i)},
FIG. 2. A plot of the overlags,g for D5y wells obtained includ- @
ing the shift transformation onlysolid line), the shift transforma- (4.10
tion and perturbation correctiorifong-dashed ling and the shift
and scale transformations plus perturbation correctistsort-

dashed ling The results are plotted fdt,= —K3=0.01K, . Sac=foX, ML= F1(x, M) = F2(x,\)]

2
— 244202 2L
strong-coupling model. It is only because the combined Xexp{ 24y v, (hw) ]
states reproduce the correct weak coupling limit that the re-
sults in this region are valid at all. It is not surprising that

perturbation effects are relatively large here. where
|
(X*+ 1)\ ah 16N ze }1”
Vo= ’
27 N 1o 262+ 1) + A peh (X — 1) 2+ N\ 1o(X+ 1)2
. (X°+ 1)Nah ek ze vz
V2T N a2 X+ 1) F Aok g (2= X+ 1)+ AN 1oh g X2+ 1) |
f (X )\)_ 3(X2+ 1)1/21/3 (4 11)
O\ - y .
\/()\Ze"_)\lexz)()\le"—)\Zexz)
12(x%+ 1) vhv}
fo(x,\)= 22

VN 2e(XZH X+ 1)+ N 1o(X2= X+ 1) T[N 1e(X2+ X+ 1)+ N po(X2—Xx+1)]

4‘/21}%’)/ Kl ? ! ! -1 ! AV AV
fi(X,N) = Nhpchag | {(X=D)Nyepp[a;+ y(aVo+azVy)]— (Xx+1)N e as+ y(ayVo+agVy)l},
€ (53
\/1—07’52?’ Ky)|?
fﬂxm)—hlszw<ga)KXW“2J§+DARM4+waﬂﬁ+%V9}%X¢4+2J§—Dhﬂﬁi+ﬂa96+a§&ﬂh
e e
5 1+X2 Kl 2 2 ! ! 2 -2 ’ 1AV IN/I\12
fz(X,)\)ng 7o) MaedTart v(@;VotasVa) "~ Nied [ar+ y(aVat+agVy) ],
le/r2e~3d
|
and where Figure 3 shows a plot of the overlafg, andS,. as a func-
tion of the linear coupling strength using the full results cor-
(X?+ 1)N 16N e 12 rect to second order. Quadratic coupling parameters have
V3= Mo+ 1)+ A go(X— 1) 2+ Npo(x+ 1)2| been chosen to ensure tbg, wells are minima. As for the

(4.12  Dsgq wells (Fig. 2), it can be seen that the additional correc-

tions due to taking the calculations to second-order and to
including the scale transformation are of similar orders of
magnitude.

(X®+1)N 1eh e 2

ANG(X%+ 1)+ N o(X2H X+ 1)+ N pe(X2—Xx+1)

-
V3=
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Phonon Overlaps

FIG. 3. A plot of the overlaps fob 34 wells obtained including
the shift transformation onlysolid lines, the shift transformation
and perturbation correctioni®ong-dashed lings and the shift and
scale transformations plus perturbation correctigsisort-dashed
lines). The results are plotted fd¢,= —K;=—0.01K;. The upper
curves are foiS,, and the lower curves fd8,.

V. TUNNELING SPLITTINGS
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FIG. 5. A plot of the zeroth-order tunneling splittings D4
wells for K,= —K3;=—0.01K; obtained usingi) the shift transfor-
mation only(long-dashed linkg (ii) the simplified scale transforma-
tion to incorporate the fik-Pryce frequencietshort-dashed line
and (iii ) the full scale transformation procedusmlid line). Results
are shown for both th&,, and G, tunneling levels.

The states associated with the wells are only good eigerfi"d between thél,, ground state and the,, excited state
states of the system as a whole in infinite coupling. For finite?S @ function of the linear coupling strength for tbegy
couplings, the system will tunnel between equivalent wellsVe!lS- The graph gives the results @f Ref. 6 using the shift
It is therefore necessary to construct symmetry-adapted conf-ansformation only(ii) Ref. 12, in which a simplified scale

binations of the well states. This has been performed usin

projection operators for the zeroth-order states. The forms

gansformation procedure was used to incorporate thik-O
ryce frequencies into the problem, afiid) the current cal-

of the symmetry-adapted states, their energies, and the ty/ulation, in which the scale transformation is included prop-

nelling splittings between them will all be affected by inclu-
sion of the scale transformation operator.

For both types of wells, the ground state is a tripleTgf
symmetry, derived from an original orbital stateTof, sym-
metry. ForDs4 wells, there is a tunneling state 5, sym-

erly. Figure 5 shows a similar plot for th&,, and G,
tunneling states foD54 wells. It can be seen that methods
(i) and (iii) coincide in strong coupling, which is to be ex-
pected as the current results coincide with thgikaPryce
results in this regime. However, metho@$ and (iii) coin-

metry, and for theDsy wells, there are tunneling states of cide in the weak coupling. Ii_mit. This is becausg both the
T,, andG, symmetries. Explicit expressions for these state<Urrent method and the original method of a shift transfor-

in terms of the zeroth-order states associated with the weligation alone predict the correct frequencies in this limit,

were given in Ref. 6(We note that in this reference, the
labels|GP.) and|GP,) were inadvertently inverted. Also, the
sign of|GEa) should be changed in order to make the phas
factor of the components of tH@ state consistent.

Figure 4 shows a plot of the zeroth-order tunneling split-

(iii)

Tunneling Splitting

FIG. 4. A plot of the zeroth-order tunneling splitting f@rsy
wells for K,=—K3;=0.01K; obtained usingdi) the shift transfor-
mation only(long-dashed ling (ii) the simplified scale transforma-
tion to incorporate the fk-Pryce frequenciesshort-dashed line
and (iii) the full scale transformation proceduislid line).

e

whereas the @ik-Pryce method does not. Hence we can see
that the current method has incorporated the most important
features of both strong and weak coupling. In particular, it
femoves the problem of the result including the scale trans-
formation to zeroth ordéf tending to infinity in weak cou-
pling, which is obviously physically incorrect.

As expressions for the phonon overlap have been obtained
correct to second order, it would obviously be desirable to
obtain an expression for the inversion splitting correct to
second order also. However, the first- and second-order cor-
rections to the well states include one-phonon excitations. If
these revised states are substituted into the expressions for
the symmetry-adapted states obtained previously, it is found
that the correct symmetries are broken. A full calculation of
new symmetry-adapted states and their energies would there-
fore be required, which becomes prohibitively complicated.
They would be patrticularly involved for this system as it is
necessary to include two quadratic couplings in order to en-
sure the existence of wells. However, as an approximation, it
is possible to calculate revised energies neglecting the
symmetry-breaking first-order contributions to the otherwise
symmetrized states, both with and without the scale transfor-
mation. It is found that the second-order results converge
with the corresponding zeroth-order results in strong cou-
pling, with the former being lower than the latter for all
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coupling strengths. However, in weak coupling, the secondpling. However, these results predict tunnelling splittings
order results both tend to a limit considerably less than thé¢hat tend to infinity in weak coupling, which is obviously
expectediw. The limits with the scale transformation are all physically incorrect. Our results obtained using the scale
correct in zeroth order, and the limits attained in second ortransformation procedure have been shown to exhibit the
der are the same both with and without the scale transformaame behavior in strong coupling as obtained using {hi&-O
tion. We can therefore conclude that the effect arises due tBryce method. However, they also exhibit the correct limit-
the perturbation corrections rather than the scale transformang behavior in weak coupling.
tion itself. Unfortunately, calculations of the energies correct to sec-
ond order are prohibitively complicated because the correct
VI]. CONCLUSION well states to this order in perturbation theory include one-
o ] ] phonon excitations, which means that new symmetry-
The main aim of this paper has been to incorporate thggapted states must be derived. The construction of
effects of anisotropy into an analytical model for the qua-symmetry-adapted states and subsequent calculations using
draticT,,®hg JT system in a manner that is not restricted tothem are much more complicated for icosahedral systems
the strong coupling limit. Although anisotropy must alwaysthan for cubic systems. In cubic symmetry, a set of well
be present in real systems, this has not been attempted prémtes can be written down such that when one state is acted
viously. Expresslions for the overlaps between different Wellsupon by any of the group operations, it is transformed into
have been obtained for both tiil;y and D3y cases. These gne of the other states in the $et into itself. In icosahedral
results differ from results obtained previously in two re- symmetry, this is not possible because the transformation of
spects. Firstly, a scale transformation method has been dg-set of phonon states from one well to another always cre-
veloped that incorporates anisotropic effects into the problemtes a new set of phonon states that is a linear combination of
without restricting the calculations to the strong couplingthe original phonon states. This means that the results are
limit. Secondly, the calculations have been carried out tqneyitably immensely complicated. Currently, work is under
second order in perturbation theory. Plots of the overlaps\,ay in which different combinations o, &, 4, 5, and 6 are
show that both factors result in corrections to the simpleysed to define the excited states in each well. However, this
isptropic result of similar ord_ers of mag_nitude. In weak cou-is 3 far from trivial task and cannot be attempted in this
pling, the scale transformation corrections are smallest, b&aper. Also, until energy expressions correct to second-order
cause the anisotropic variations in the frequencies are smalave been obtained, the calculation of further properties such

est in this regime. Conversely, in strong coupling theas first-order reduction factors can only be undertaken in a
changes introduced by the scale transformation dominatgimpjified manner.

Therefore, it is indeed necessary to incorporate both addi-
tional features in our model.

The energies of the ground and first excited states for the
T1u®hy JT system have previously been calculated for both
D34 andDs4 wells to zeroth order by incorporating frequen-  One of us(Q.C.Q) would like to thank the U.K. commit-
cies obtained using the pik-Pryce method for strong cou- tee of Vice-Chancellors and Principals for support.
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