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Network model for a two-dimensional disordered electron system with spin-orbit scattering
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We introduce a network model to describe two-dimensional disordered electron systems with spin-orbit
scattering. The network model is defined by a discrete unitary time-evolution operator. We establish by
numerical transfer matrix calculations that the model exhibits a localization-delocalization transition. We
determine the corresponding phase diagram in the parameter space of disorder scattering strength and spin-
orbit scattering strength. Near the critical point we determine by statistical analysis a one-parameter scaling
function and the critical exponent of the localization length toi3e2.51+0.18. Based on a conformal
mapping we also calculate the scaling exponent of the typical local density of atates 174+ 0.003.
[S0163-18298)06732-0

[. INTRODUCTION This time evolution operator is determined by all the scatter-
ers in the NWM. Each scatterer maps thcoming channels
Recently, localization-delocalizatioLD) transitions in  to 4n outgoing channels conserving the current and is there-
two-dimensional2D) disordered electron systems in the ab-fore represented by a unitarym& 4n matrix. The disorder is
sence of a magnetic field were observed by severah general simulated in two ways: first by multiplying the
groupst~’ These results are in contrast with the scalingamplitude on each link with a complex random phase factor
theory for noninteracting electrofisyhich predicts that all €'¢ with ¢ randomly chosen fronj0,2#[ simulating the
states are localized in two dimensions and in the absence oandom distances between the scatterers and secondly by tak-
spin-orbit interaction(SOI). Now, a new discussion has ing random values for the parameters that parametrize the
started on this topic with the emphasis on the effects ofmatrix representation of the scatterers simulating the random
electron-electron interaction and spin-orbit interactiol?. strengths of the scatterers. Of course, both random choices
It is known that both types of interactions could be re-have to be compatible with the symmetry properties of the
sponsible for the existence of a LD transition. In the case ofystem. We distinguish 2D electron systems with time-
SOlI, general argumerifsand perturbation theoretical calcu- reversal symmetryO2NC) and without time-reversal sym-
lations in the weakly disordered regifig®yield a positive  metry (U2NC), both without spin degrees of freedom, and
correction to the conductance. This quantum interference ekystems with time-reversal symmetry and spin degrees of
fect requiring time-reversal invariance is known as weak anfreedom(S2NQ. The “2” refers to the space dimension, the
tilocalization. In the present work we focus on the detailed*O,” “U,” and “S” mean “orthogonal,” “unitary,” and
examination of a 2D noninteracting electron system with“symplectic,” which refers to the corresponding universality
SOIl. For these purposes we formulate a scattering theoreticalasses of random matrix theory and the letters “NC” indi-
network model for such a system. cate that all these systems are “nonchiral,” which means
In a recent papéf it was shown that scattering theoretical that no orientation is preferred as would be in presence of a
network modelNWM'’s) are well suited to describe meso- strong magnetic field.
scopic disordered electron system. In general such a NWM The two former models have been examined extensively
can represent any system of coherent waves propagatirig Ref. 18. In this work a reflection, a transmission, and a
through disordered media. It consists of a network of unitarydeflection coefficient were introduced, which parametrize the
scatterers connected by bonds. The arrangement of scattersattering matrices. Furthermore an elastic mean free path
and bonds defines the topology of the NWM, which can be
described by a connectivity matrix. In our work we have
chosen a simple case, where the scatterers are located on th
sites of a quadratic grid, so each of them has four nearest
neighbors. Each bond consists af finks, n for each direc-
tion, wheren=1 for waves without and>1 for waves with
internal degrees of freedoief. Fig. 1). In the case of elec-
tron waves a complex number is attached to each link repre-
senting the probability amplitude at this position. The set of
all amplitudes defines the quantum-mechanical stafe at
timet. One step of time evolution is then given by a unitary
operator/,

FIG. 1. Topology of a general network model. Squares are scat-
V(t+1)=Uv(t). (1) terers and lines are bonds.
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FIG. 3. Potential scatterer: The eight incoming chanhglare
mapped to the eight outgoing chann€éls.

eight outgoing channel®{(ce{+,-},1€{1,2,3,4) and

thus can be represented by ax8 matrix Sy, With the
FIG. 2. Topology of the S2NC-network. The potential scatterersdefinition of the geometrical arrangement of the channels

(white) change the direction, the spin scatter@geey) the spin of ~ shown in Fig. 3 this mapping is defined as follows:

the electrons.

By Oy
was defined in terms of these coefficients. It was concluded Iy o;
that all states are localized in the O2NC-/U2NC-NWM.
In the present work we investigate the S2NC-NWM. We O=Spad, with I=| |, O=| * |. (2
find a parametrization for the matrix representation of the Iy o,
spin scatterers and introduce a spin scattering strength. The _ _
calculation of the localization length by the transfer matrix 4 Oy

method allows us to detect the LD transition and to deter-
mine the scaling function. In order to quantify the scaling
exponentv of the correlation length we use a fit procedtite.
We fit the scaling function and the critical exponent in two 2 I712=2 0712, 3
steps respecting the correlations of the data. Additionally, we b e

apply ax? test to estimate the confidence of the fits. Deter-each scattering matrix has to be unitary,

mining the critical value of the localization length we find "

the scaling exponent, of the typical local density of states Spot' Spot= 18 4

using a conformal mappirfg. wherelg denotes the 88 identity matrix. Additionally, the

This paper is organized e}s_follows: In Sgc. Il we introdl_Jcescatterers are time-reversal invariant. Both properties yield
the network model by explicitly constructing the scatteringine matrix to be symmetric

matrices. Section Ill contains the transformation to the trans-

fer matrices and summarizes general aspects of LD transi- Spot= Sgot' (5)
tions. A detailed description of the methods of data evalua-

tion forms the content of Sec. IV. The discussion of theWhere T denotes the transpose.

results is presented in Sec. V followed by a short summary in FOr convenience we choose the potential scatterers to be
Sec. VI. isotropic, i.e., they are invariant under rotations by multiple

angles ofm/2. With these restrictions each scattering matrix
Spot CaN be parametrized in the following way:

Due to conservation of current density,

Il. NETWORK MODEL
A. Topology Spot= @épo@, (6)

There are two different types of scatterers in the S2NCwith
NWM: potential scattererdPS’9 changing only the elec-

tron’s direction andspin scatterergSS’s changing only the re’ d d te”
electron’s spin. The network consists of a regular 2D qua- d reldr teldt  d
dratic grid of potential scatterers, each of them connected to 8= d it i g |®L )
the four next neighbors by bonds. On each bond a spin scat- pe _ € re _
terer is placed leaving the electron’s direction unchar(géd te' %t d d re'¢r
Fig. 2.
and

B. Potential scatterers

There are four channels tnks within each bond, two of
them for incoming and two of them for outgoing states with
spin up and spin down, respectively. The electronic state is d=| o 0 €% o |®lb. (8)
represented by complex numbedenplitude$ on each link. 0 0 0
Consequently, each PS maps eight incoming charltiete
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d ' Unitarity and time-reversal symmetry result in
Y
. t Se=D'S] (12)
> S > and
—— - - - — —
B : Sep=D'KS'KD=D'(S;)*D, (13
A *d respectively. Here the asterisk denotes complex conjugation
: andKD is the time-reversal operator with complex conjuga-

_— . . , tion operatorK and
FIG. 4. Definition of the reflection coefficiemt, the transmis-

sion coefficientt, and the deflection coefficient - 0 J 0

oo e sk
Herel, denotes the X2 identity matrix and® is the tensor 0 - 0 J
product. The real parameterst,d denote thereflection  where 7, is one of the basis quaternionszy(7)
transmissionpanddeflection(right and left scatteringcoeffi- = (r,,7,,7,,73) given by
cient respectively(cf. Fig. 4. If we chooser andt as inde-
pendent parameters f&,, the real phasesg, ¢, and the =1 and 7=-io (15

deflection coefficient are related to them due to unitarity

; with Pauli matriceso= (0,0 ,0,). The matrix
and time-reversal symmetry,

0 1
[r?+2d?+[t2=1, (93 = _, 0) (16
[r||d|cos ¢, = —|t||d|cos ¢, (9b) is the symplectic unit matrix. The symmetrigk?) and(13)
suggest the following parametrization of the spin scattering
|rl[t|cos ¢ — B =|d|%. (99  matrix,
Furthermore, two restrictions follow from these equations, ( 0 ei¢q>
=  _ a7
r24t2<1, (103 * leg 0
with the quaternion realmatrix
r+t=1. (10b)
3 . .
Qo—1ds —02—1Iq
The four real phase#,,...,¢,, which are randomly qzz Qka=( ° . s ? . 1) eSU(2), (18
k=0 02—101  Jotliqs

chosen from the intervdl0,27=[ model the spatial disorder.
They can be interpreted as phase factet$ for freely  \here the real coefficients; are restricted bye?_,q2=1

propagating electron waves. Consequently, there are six irHue to unitarity ancadenotes the quaternion conjugatdn.
dependent parameters. But onfyandt govern the macro- Thus, three independent parameters remain that are ran-

scopic properties of the system. For convenience we Choostfomly and homogeneously taken from the unit sphere for

them to be equal for all PS’s in the network, whereas the :
phases are randomly taken for each scatterer. each SS. The phase is randomly taken from0,2al. In

random matrix theory the symmetri¢$2) and (13) corre-
) spond to an ensemble of quaternion real Hamiltonians, which
C. Spin scatterers can be diagonalized by symplectic transformations. Because
The spin scatterers located between the potential scattepf this, we also refer to this symmetry as symplectic symme-
ers have two incoming and two outgoing channels on the lefty-
and on the right, respectively, as is shown in Fig. 5. They can We now define thespin scattering strengtby
be represented by>44 matricesSgy,:

s=1-go= i +a3+03. (19
I 0" This quantity takes values in the intervdl,1], wheres=0
(i o~ means no spin scattering asd 1 full spin scattering, result-
0=SgJ, with I=|~, |, O=| x, (11 ing in full spin relaxation after one scattering event. The
' o parametes is fixed for the whole network.
T (o}
D. Parameter space

= | N In conclusion there are three independent quantities build-
I —=— S %—Q; ing up the three-dimensional parameter sp#&oe phase
O—=— <1 space of the S2NC-NWM. With the restriction€10b) and
0 = =—1 se[0,1] the possible valuesr (t,s) are located in a certain

~ volume inR3. Figure 6 shows a cross section of this volume
FIG. 5. Spin scatterer: The four incoming channkisl” are  at some fixed value of. The gray area contains the allowed
mapped to the eight outgoing chann€l§, 0. values. If the time-reversal symmetry is omitted, i.e., switch-
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FIG. 6. Cross section of the parameter space at some sixed FIG. 7. Definition of the strip transfer matrix fdvi=2. The
arrows indicate the periodic boundary conditions.
ing to the U2NC-NWM, the phase spa@ some fixed) is
the entire quarter of the circle. ing order, where(due to conservation of current dengity
There are three exceptional points in the phase space: Feach value has a partner with opposite sign. Beyond this, in
r=0 andt=1 we have the delocalized fixed point, where thethe presence of SOl each value appears twice, because of
electron waves propagate freely. If we takel andt=0, time-reversal symmetrgKramers degeneragyThe smallest
we have the localized fixed point, where transport stops. Fopositive Lyapunov exponent determines the quasi-1D local-
r=t=0 the network is at the Chalker-Coddington fixed ization length. It is always finite due to the finite width of the
point?? where only left and right scattering exists. On the system.
line r2+t?=1 the deflection coefficient is zero. Thus, the In order to be able to apply the transfer matrix method we
system splits into independent 1D subsystems, which alwayisave to convert our scattering matric8g, and S, into the
show localization. All of these properties are independent otorresponding transfer matricés,,; and Tg,, which map

the value ofs. channels on the left to channels on the right. In contrast to
In Ref. 18 an elastic mean free path is defined by the scattering matrices the transfer matrices are multiplica-
tive, which means the following: The total system is divided
1 t2+d? into a sequence of elementary subsystems, each of them cor-
le:= 2 m (20 responding to a single transfer step. The transfer matrix of

the total system is then given by the product of the transfer
The factor 1/2 is a consequence of the diagonal arrangemenatrices of the subsystenisstrip transfer matrices).
which is shown in Fig. 7. The unit df, is a lattice constant.
Analogously, we define a spin scattering length by o
B. Transfer matrices in the network model
11-¢° With the channel orientation of Figs. 3 and 5 the transfer
lso:= 2 2 (22) matrices of the S2NC-NWM are defined by

This length scale takes values from 0 for maximal spin scat-

+ +
tering toee in the case of the absence of spin scattering. Os 1
O3 Iy
Ill. FINITE-SIZE SCALING |+ or
3 1
A. Transfer matrix method I3 0;

In order to investigate the scaling behavior of the modeled o = Thot |+ (22)
system we need some scaling variable. Although the conduc- ‘i f
tance is the natural choice for a scaling variable in this con- O, P
text, therenormalized localization lengttRLL) A =&/M s, I o3
as a self-averaging quantity, much more convenient. Here N B
is the localization length of a quasi-1D system of widith 14 0,

and can be calculated by the transfer matrix metfiddThis
method yields a sequence of Lyapunov exponents in decreaand
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o |+ B A
6_ 1~ -~
T+ =Tgy ot |’ (23 R
~_ O* /' }
! = 3
respectively. From this definition a diagonal arrangement of
the whole network results, as is shown in Fig. 7. The arrows =1
at the top and the bottom of the figure indicate the periodic R
boundary conditions that we have chosen. The natural width £ .’
unit in this arrangement is pair of diagonally neighbored R
transfer matrices, which corresponds to a channel nhumber of .
N.=4. Therefore the bold printed part of the picture repre-

InA

FIG. 8. Qualitative picture of th@ function ford=1,2,3. In the

sents a strip transfer matrix of widti =2, channel number

N.=8, and unit lengtiL=1 (horizontal direction

2D case there can be a transition due to weak antilocalizé& it

. . I1jne).
In the language of transfer matrices the conservation o

current density writes agseudo-unitarity

Top= ewa ° 32
sp— 0 e,i(Pa ( )

with aas in Eq.(18). We omitted the four phase factors in
Tpot because they can be combined with thoseTgfto a
resulting phase factap in Ty,

C. Localization-delocalization transition

The scaling behavior of the RLA determines whether
the system is localized or delocalized.Af shrinks with in-
creasing system widtM the system behaves like an insula-
tor, if it grows, the system is metallic. At the LD transition
the RLL is independent of the system width. To ensure that
A is in fact a scaling variable one has to find a scaling
function that is a function of only theatio of the correlation

~[ &c
A(M)=f(m), (33
or logarithmically
In A(M)=f(In M—In &,). (34

Tpotz zTgot: 3, (24)
with
s 2
z— 0 _14 1 ( 5)
and
T2, TL=3, (26)
with
s I, O
z— O _12 1 (27)
respectively. On the other hand, time-reversal invariance regngth ¢, andM,
quires
0 D\"_ (0 D
Tpot: D 0 Tpot D 0O (28
and
Tsp=D'TD, (29

with D as given in Eq(14). A parametrization off,,; com-

patible with these restrictions is giveny

a y B* 6
-~y a -6 B
Tpot: B & a* vy ®l, (30
-6 B —v «a
with
_d _ te _ (re'?r—te'?nd
a=x BT YT i
d?—re'drte' %t .
b= ————— A=d-(te')?. (31)

For Tg, we find

Equivalent to the existence of a scaling function is the for-
mulation of a flow equation with @ function that is a func-
tion of In A only,

din A

Figure 8 shows a qualitative picture of thg function in
different dimensions. Due to Ohm'’s law the limiting value of

B for large conductancer A) is d— 2. Without SOl there is

a negative correction to the conductance caused by weak
localization?® The B function is always negative in 2D and
therefore all states are localized. In the presence of SOI the
correction to the metallic conductance changes the sign due
to weak antilocalizatiod*~*® Consequently, in 2D and in the
large conductance limit thg function converges to zero
from above. Since in the strongly disordered regime all states
are exponentially localized, the existence of a LD transition
in the 2D symplectic case follows from simple scaling argu-
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ments. At the critical point, where the function is zero, the AlnA,
correlation length shows power-law scaling with the critical .
exponenty, Er= ’ ) (43
A ln An\
E(n)=gJr—r*|7, (36) '

Ithe latter being the vector containing the errors of the aver-
age obtained by the transfer matrix method. Assuming the

. i " .
of the NWM, an_d_r IS its C”t'cal. value. Here_the correlatlon_ data to be statistically independent the corresponding corre-
length is the fictitious system width up to which the system IS ation matrixC given by

A

in the critical regime. In the localized regime this is just the
quasi-1D localization length obtained by the transfer matrix T
method in the thermodynamic limit, (Ca)ij - =(EE) (44

wherer is a system parameter, e.g., the reflection coefficien

is diagonal. Herég - - -) denotes the mean value.
Following the procedure in Ref. 19 we make an ansatz for
the scaling function by a linear combination of Chebyshev
In Ref. 20 it was shown that thigpical local density of polynomials,
states(LDOS) is an appropriate choice for the order param-
eter of the LD transition,

&= lim EM)=&,,. (37

M— o

N

Co
F(Xi)=3+2 CkT(X)), (45)
Ptyp::e<In PEDoc|r —r* By, (38) -

with p(r):|¢(E,r)|2/A(E)' energyE and local level spac- which giveS a pOlynomlal of degrdﬁ. Omlttlng the tilde
ing A(E). (- - -) denotes disorder average gglis the criti- ~ OVer the X; _|n_d|cates the argument being r_escaled to
cal exponent of the order parameter. Furthermpgg,shows [ —1,1]. In this interval the Chebyshev polynomials are or-

power-law scaling at the critical point with exponedt thogonal and have simple behavior at the edges.
The smallest of the parametersénis fixed by requiring

In &(r)=0 for the delocalized branch and gg(rnr)zo for
Ptyp“'-d_aoi (39  the localized branch, respectively. So we have nlge=n,
+ N parameters

—ag,

whereLY is the volume of al-dimensional cube and, is a
scaling exponent, which is known from multifractal analysis
of critical wave functions. In 2D, i.e., for a square system, In &c(ry)
this scaling exponent is linked to the critical value of the :

quasi-1D RLL by a conformal mapping arguméfi, '
In &e(rn —1)

0= (46)
A* :; (40) Co
m(ap—2) . :
With the knowledge ol and « the critical exponent of the Cn
LDOS is given by
for the localized and
Bpy=v(ag—2). (41)
In &(r2)
IV. METHODS OF EVALUATION :
A. Fit procedure for the scaling function In &(rp)
. r
In our work we follow the method introduced in Ref. 19, 0:= Co (47)

which not only fits the scaling function to the data of the
RLL’s but also uses &?2 test to check the confidence of the
fit. c

According to Eq.(34) we want to fit the scaling function N
f to the logarithms of the RLL’s, which depend on thg for the delocalized branch, respectively. These parameters

system widthgMy, ... .M, } and then, system parameters have to be fitted with respect to the dafaHence, then,
{ri,...rn}. So we haven,=ny-n, data points values of the fit function can be written as
{Al', ca ,AnA}. For abbreviation we now introduce the fol- F(X,:0)
lowing vectors, .
F(X;0):= : . (48)
In Ay In My—In &.(rq) F(XnA§®)
Y:= : , Xi= : (42
In A In M, —In &(r,) We use the method of the least-squares fit, i.e., we have to
nA nM C nr

minimize the sunSg of the weighted quadratic deviations,
and which means solving
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3Se C. Fitting the critical exponent » and r* and testing the fit

W_O (49) In order to determine the critical exponent of the correla-

tion length we apply the same idea as before with respect to
Eq. (36). Particularly, we simultaneously deal with both
_Ty_ 1T 1rv_ ) branches of the scaling function, i.e., we assume the critical
So=[Y=FXO)JCLTY-F(X0)]. (50 valuer* and the critical exponent to be the same in the
SinceF is nonlinear in the paramete® this procedure localized and the delocalized regime. Only the prefactor can

leads to a system af, coupled nonlinear equations. There- t%ﬁel different valugs, which will be dgnoted §%’°° and
fore S is minimized directly by a numerical method. Start- & for the localized and the delocalized regime, respec-
ing with some estimated initial values for the logarithms oftively. Taking the logarithm Eq(36) is written as

the correlation lengths we successively optimize ¢hand

the In&(r)). If the data are compatible we will have conver- In &(r)=In £~ v In|r;—r*| (559
gence, and thus we can stop when a chosen accuracy is
reached. The result then is a set of coefficierjtswhich and
defines the fit function and a set of optimized values for the
correlation lengths.

According to Ref. 26 the correlation matrix of the param-¢,; i the localized and delocalized regime, respectively.
eters is given by The n, values Ing(r;) are the results of the foregoing

with

In &(r)=In &9 5 In|r,—r*| (55b)

c

Lo "
Co=(FTCilFy) 1. 57 ~ Optimization, the arguments are the valuqsifrr |, and the
0=(FoCy"Fo) (52) four parameters that have to be optimized &,
whereFg is the Jacobian of with respect to®, Odeloc " andr*. Introducing the vectors
F@:Z%. (52) In &e(rq) Infry—r*|
d . .
Y. = : , Xi= : (569
Usually, as errors of the parameters one takes the diagonal In &(r, ) In|r, —r*|
elements of the error matri&, which is defined by o i
S@ In gg’IOC 0,loc
E@=n n Ceo - (53 I 0deloc In &
A (C] n gc ~ 0,deloc
0. = , 0= Ing& (56b
14
B. Testing the fit of the scaling function (* v

A converging fit procedure does not guarantee that the
errors of the numerical data are actually compatible with theand comparing them with Eq5539 the fit function can be
obtained fit function. Therefore, in addition to this fit proce- written as
dure we apply a? test to estimate the confidence of the fit.
We make the essential assumption that the gatare nor- f(x; 0) =W(x) ¥, (57)
mally distributed abouf (x; ;®) with varianceseiz. Conse-
quently the quantitySe has to be distributed ag? with n, ~ With
—ng degrees of freedom. This distribution has the estimated
valuen, —ng and the variance 2, —ng). A suitable mea- 1 0  —Infry—r*|
sure for the confidence of the fit then is the normalized de- R :
viation of S from the estimated value

10 —In|rnrvloc—r*|
_ — W:= . 58
AQZ. (54) 0 1 _|rnr,|oc+l_r*| (58)
V2(ny—ng) : :
If |Ag|=1 it is safe to assume that the fit is trustworthy. But 0 1 —Injr,—r*|
if |[Ag| takes values much larger than 1 it is very unlikely '
that the datay; are normally distributed abot®(X;;®),  Heren, o is the number of values; that belong to the

which indicates systematic errors. In this case the fit hasocalized regime.
failed, we have to give up the assumption of one-parameter The correlation matrixC,_of the datay; is the upper left
scaling and further calculations, e.g., of the critical exponenty, 5y submatrix ofCe [Eq. (51)] obtained by the fit of the

do not make much sense. , , _scaling function. Thus, the sum of the quadratic deviations is
It should be noticed that rescaling of the variance matrix
S by a factorb,S=b- S, results in the reciprocal rescaling of S,=[y—f(x; 0)]TC§_1[y_f(X; 0]. (59)

Se,S=b"1Sg. SinceAy depends sensitively 08, es-
pecially if n, is small, one should carefully consider how to Since the fit function is dinear function in the argument,
determine the errors of the raw data. we can analytically solve the minimization problem
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P _g (60)
90
which leads to
0=(WTCg'w)~twTc, ty. (61)

In contrast to that the parametet has to be optimized nu-
merically since it appears nonlinearly in E5). Giving
some starting value far* one iteration step consists of suc-
cessively optimizingd andr*.
The 4X4 correlation matrix of the four parameters is
given by
T~—1 \—
Co=(FpCs_Fop) L (62
where

of
Fg:z (7_0

Finally we get the error matrix

(63

Sp

Egzan4

C,. (64)

As in Eq. (54) we use the quantity

Sy—(n,—4)
\/2(”,-_4)

to test the confidence of the fitA ;| should take values of

A, (65
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FIG. 9. Renormalized localization length for strong disorder,
=0.8,t=0.4, which corresponds 1g=0.35, depending on the spin
scattering strengtb and the the system widthl.

V. RESULTS AND DISCUSSIONS
A. Localization lengths

We calculated quasi-1D localization lengths for system
lengths up toL=2x10° and widths fromM =2 up to M
=32, which corresponds to channel humbers fidps 8 to
N.=128. The corresponding errofsA are the errors of the
average, which vanish fdr—«. We have chosen such sys-
tem lengthsL that the relative errord A/A take values of
about 0.1% to 1%.

Figure 9 shows the renormalized localization lengths for

about 1 or smaller to verify the assumption that the vajyes - g andt=0.4 decreasing with increasing system width
are normally distributed about the fit function, which is afor the whole range of the spin scattering strength. So the
straight line in this case. Note that it is important to take thegystem is in the deeply localized regime. This matches with
correlations between thig(r;) introduced by the previous fit  the fact that the mean free pdtee Eq(20)] takes a value of
p_rocedu_re intoaccount in the present analysis. Thus, R=0.35 in units of the lattice constant. So the reflection is
simple linear regression will not give the correct results. g strong to allow extended states at all.

Contrary to this, the next example exhibits a LD transition

D. Determination of A* at s=0.3, which can be seen in Fig. 10. With=0.55 and

The fit procedures introduced in Secs. IV A and IV C are
not the most direct way to determinefrom the raw data.
Instead, one can fit the RLL's as functions|of-r*| with a
width-dependent scaling factdd >

4.0 T T T

AM;r)=h(M¥|r —r*]), (66) sor
which is a consequence of E¢83) and(36). This procedure
leads to a continuous curve, because there is no splitting in®
two branches as in the logarithmic case. Fitting the scaling § 20 1
function in this manner allows a direct evaluation Af .
Since atr=r* the argument oh is zero, one only has to
calculate the function value:

1.0
A*=h(0). (67)
Following the law of propagation of errors we get for the
error o0 02 04 06 08 1.0
AA*=AA|,_x=MYAR’(0)r*, (68) ’

) o ) FIG. 10. Renormalized localization length for0.55,t=0.6,
whereh’ denotes the first derivative &f with respect to the  which corresponds td.=1.1, depending on the spin scattering
argument. strengths and the system widtM.
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FIG. 11. Renormalized localization length in the vicinity of the S0 ——uzr U7 U5 U8 ooz Uz us s
. . . i oy . r r
localization-delocalization transitiobs=0.8,s= 0.6, which corre- 1 '
sponds td =2, depending on the reflection coefficianaand the ° s=0.02 $=001
the system widtiM. The arrows mark the section of curves corre-  °® o8
sponding to neighbored values f. 06 s
t oL t L
t=0.6 corresponding td.=1.1 the effect of weak anti- 04 04
localization causes the existence of extended statesjsif u
strong enough. The intersection of the curves clearly indi-
cates the LD transition. However, thglr slope is rather smgll N Y
compared to the error bars preventing an accurate scaling r r

analysis close to the critical point. . o o

The third example shown in Fig. 11 belongs to the values FIG. 12. Phase diagrams for the localization-delocalization tran-
t=0.8 ands=0.4. where varies fromr =0.48 tor=0.56. |t  Sition for cross sections at=1, 0.4, 0.1, 0.05, 0.02, 0.01. The gray
exhibits another kind of problem. Although curves for differ- "2 shows the delocalized, the white the localized regime. The
ent system width$/ intersect, the points of intersection sys- dotted line corresponds to=t.

tematically depend on the width. The larddris the closer pa4 some finite width. Figure 12 shows the resulting phase
are the points of intersection for curves of neighboring val-giagrams for some intersections of the parameter space at the
ues of M. It is obvious that there exists a limiting point, apove declared fixed values sf The white area marks the

which would be the true critical point. The observed devia-jocalized phase and the gray one the delocalized phase. The
tions are the consequence of finite-size effects, which vanisgrawn critical line is the optical interpolated center line of

in the thermodynamic limit. By investigating at a lot of e critical region.

different points in parameter space we have seen that the The region of the metallic phase shrinks with decreasing

deviations due to finite-size effects are larger for more delogpin scattering strength. This is due to the fact that the weak

calized systems. Actually, there is only a small area in payntijlocalization then becomes less effective in preventing
rameter space that is suitable for a quantitative analysis ofnqerson localization. AE=0 the system changes univer-

the LD transition. sality class from symplectic to orthogonal symmetry, a fact

. that could be verified by comparing the values of the local-

B. Phase diagram ization lengths with those in Ref. 18. On the other hand even

We determined a phase diagram for the LD transition by2 Very small value ok gives rise to a certain delocalized
using the scaling behavior of the RLL. More precisely, wePhase, ifr is small andt is large enough. Of course, the
calculatedA (M, =4) andA (M,=8) for a lot of pairs ¢,t) larger |, i.e., the largert and smallerr, the more easily
with s=0.01, 0.02, 0.05, 0.1, 0.4 and 1. In order to get theextended states occur. But even in the presence of full spin
critical line in the §,t) subspace with fixed we decided the ~Scattering only about half of the area of the parameter space

point (r,t,s) to be in the localized and delocalized regime, if élongs to the metallic phase. This is due to the fact that
parameter values (t) belonging to the localized phase cor-

AM)—=AAM)>A(My)+AA(M,) (69  respond to too strong disorder resulting in too strong local-
ization to be broken by weak antilocalization.
It should be noticed that far=0.6 the shape of the phase
AM) —AA(M)>A(My)+AA(M,), (70) b_oundary is influenced by finite—siz_e gffect_s. So the phase
diagram can only serve as a qualitative picture of the LD
respectively. In the case that both conditions failed, we contransition. In order to improve on the phase diagram, one has
sidered the point in the parameter space to be critical. By thab consider much larger systems, which is very computer
procedure we got a criticalegion i.e., the separating line time consuming, taking such a large number of data points

and
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30 . close to the critical point were omitted. For the remaining
data the confidence test of the fit givag,=—0.30 and
Ag=0.27 for the localized and delocalized branch, respec-
tively. So the assumption of one-parameter scaling is very
well confirmed.

SO Fixing the fit parameters 1§ by setting Iné(r=0.52)

=0 for the delocalized and I&(r=0.62)=0 for the local-
ized branch(circles in Fig. 14 the procedure has converged
with an accuracy of 0.1% after about 50 iterations. The start-
ing values have a radius of convergence of about 5. So a
rough estimate is sufficient for convergence.

The Chebyshev polynomials used are of fourth order.
With a lower order it is impossible to fit the curvéass indi-
cated by the figure of meri\g), whereas with an order

| higher than 6 the fitted curves start to follow the fluctuations
Q 52 054 056 ™ 058 0.60 of the data points, which results in a nonphysical behavior of
r the scaling function. With an order between four and six
there is no significant difference in the results.

A feature of the metal-insulator transition observed in 2D
is the exponential dependence of the conductivity on the dis-
tance from the transitioh This behavior is expected if the

. N hel he | f the bound logarithm of the conductance—and not the conductance
Into account. Nevertheless, the lower part of the boundary,ceit s the proper scaling quantity that can be linearized at
i.e., the region close to the lime=t (dotted line in the fig-

. ; oo N ; the critical point In our calculations we find that both and
ure), is suitable for quantitative investigations, as will be In A are linear inr —r*| over roughly the same interval
shown in the following. '

1

FIG. 13. Renormalized localization length for 0.6, s=0.4,
which corresponds th,=1, depending on the reflection coefficient
r and the the system widthl.

D. Critical exponent » and critical RLL A*

C. Scaling function In order to determine the critical exponentf the corre-

We determined the scaling function by the fitting proce-lation length we used the fit procedure presented in Sec.
dure described in Sec. IVA fot=0.6, s=0.4, andr |V C. With a starting valuer* €[0.53,0.59 the procedure
€[0.52,0.63. In this small region of the phase space theconverges. After about 10 iterations the corrections are
corresponding curved (M;r) (see Fig. 13 are very well  smaller than 1%. The results of the fit are
suitable for a quantitative analysis, because of their strong

dependence and the absence of noticeable finite-size effects v=251*0.18 and r*=0.571£0.002. (71
(le=1). The prefactors take the values

Figure 14 shows the scaling function with the upper P val
branch belonging to the metallic and the lower branch be- In ggvlocz —7.55+0.42 (729

longing to the localized regime. The curves represent the

fitted Chebyshev polynomials. The data points are the rav@nd

data shifted by the fitted values @f(r). We omitted the 0.del

data withM =2 in the localized and1 =2 andM =4 in the In £:°€°% —7.50-+0.43. (72b

delocalized regime, because these values showed systemafige confidence test of the fit givels,= —0.47, showing its

deviations due to finite-size effects. Also data that are togygh quality. It is very important to stress that the given
errors[Eq. (64)] are not independent. They have to be inter-

' ' ' ' ' preted considering the correlation matrix
— fit function (deloc.)
tor e 0.0310 —0.0737 —0.0739 —0.0004
08 | Aot | -00737 01782 01766 0000
x r=0.545 =
§ ©r=085 v —0.0739 0.1766 0.1853 0.0009’
S 06 - %1’=0.5§5
E - fitfamion (o) —0.0004 0.0009  0.0009 5&10°°
04l <>r=g.ggs (73
0zl 4r=08 which shows that the different values are highly correlated.
' . Or=0615 Several reference values for have been published in
00 e or=08 recent year$’3® The most recent calculations yield
20 -10 00 10 20 30 40 »=2.75+0.13 v=2.5+0.33 and »=2.32+0.14% Within

]nM—-ln . .
= the errors our value agrees with these. We note#hatvery

FIG. 14. Scaling function for the localization-delocalization Sensitive to slight variations of*. This is seen by fitting
transition. The upper branch corresponds to the delocalized and tHer fixed values off *. As is shown in Fig. 15 changes by
lower to the localized phase. 30% if r* changes by about 3%. The difficulties in obtaining
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286 . VI. SUMMARY

In this work we found the S2NC-network model to be a
new model to describe mesoscopic disordered electron sys-
tems with symplectic symmetry. We constructed the topol-
ogy of the model and the scattering matrices representing the
potential and spin scatterers. Three independent parameters
were needed to characterize the scatterers. The reflection co-
efficient r and the transmission coefficientrepresent the
strength of the spatial disorder by defining the mean free
path of the network mode{in the absence of SQI The
coefficients represents the strength of the spin-orbit scatter-
ing and defines a corresponding spin scattering length. We
have shown that our model exhibits a localization-
delocalization transition. In order to investigate this transi-
tion we calculated renormalized localization lengths

23 Il 1 Il
0.560 0.565 0.570 0575 0.580 A(r,t,s) by the transfer matrix method and obtained the

re

scaling function by an iterative fit procedure. The quality of
the fit was checked by &2 test, which confirmed the as-
sumption of one-parameter scaling. We constructed a phase
diagram for the system showing a metallic phase for any
>0, if r is small ana is large enough. The critical exponent
of the correlation length was obtained to e 2.51+0.18.
This value agrees with previously published results within
tive fit procedure of Sec. IV C. the errors. We pointed out tha_t in dgtermining the errors i.t is

In order to determine the critical RLL we used E¢86) essenual_to take t_he _correlatlons into account. The critical
and (67). The result is renormalized localization length was found to h& =1.83
+0.03. By a conformal mapping argument this corresponds
to a valueay=2.174*+0.003 for the scaling exponent of the
typical local density of states.

FIG. 15. Dependence of on the assumed value of. The best
estimate is found for* =0.571.

a credible value fow were the reasons to employ the itera-

A*=1.83+0.03. (74)

Finally, Eq.(40) yields the value for the scaling exponent of

the typical LDOS
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