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Network model for a two-dimensional disordered electron system with spin-orbit scattering

Rainer Merkt, Martin Janssen, and Bodo Huckestein
Institut für Theoretische Physik, Universita¨t zu Köln, Zülpicher Strasse 77, 50937 Ko¨ln, Germany

~Received 20 March 1998!

We introduce a network model to describe two-dimensional disordered electron systems with spin-orbit
scattering. The network model is defined by a discrete unitary time-evolution operator. We establish by
numerical transfer matrix calculations that the model exhibits a localization-delocalization transition. We
determine the corresponding phase diagram in the parameter space of disorder scattering strength and spin-
orbit scattering strength. Near the critical point we determine by statistical analysis a one-parameter scaling
function and the critical exponent of the localization length to ben52.5160.18. Based on a conformal
mapping we also calculate the scaling exponent of the typical local density of statesa052.17460.003.
@S0163-1829~98!06732-0#
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I. INTRODUCTION

Recently, localization-delocalization~LD! transitions in
two-dimensional~2D! disordered electron systems in the a
sence of a magnetic field were observed by sev
groups.1–7 These results are in contrast with the scali
theory for noninteracting electrons,8 which predicts that all
states are localized in two dimensions and in the absenc
spin-orbit interaction~SOI!. Now, a new discussion ha
started on this topic with the emphasis on the effects
electron-electron interaction and spin-orbit interaction.9–13

It is known that both types of interactions could be r
sponsible for the existence of a LD transition. In the case
SOI, general arguments14 and perturbation theoretical calcu
lations in the weakly disordered regime15,16 yield a positive
correction to the conductance. This quantum interference
fect requiring time-reversal invariance is known as weak
tilocalization. In the present work we focus on the detai
examination of a 2D noninteracting electron system w
SOI. For these purposes we formulate a scattering theore
network model for such a system.

In a recent paper17 it was shown that scattering theoretic
network models~NWM’s! are well suited to describe meso
scopic disordered electron system. In general such a NW
can represent any system of coherent waves propaga
through disordered media. It consists of a network of unit
scatterers connected by bonds. The arrangement of scatt
and bonds defines the topology of the NWM, which can
described by a connectivity matrix. In our work we ha
chosen a simple case, where the scatterers are located o
sites of a quadratic grid, so each of them has four nea
neighbors. Each bond consists of 2n links, n for each direc-
tion, wheren51 for waves without andn.1 for waves with
internal degrees of freedom~cf. Fig. 1!. In the case of elec-
tron waves a complex number is attached to each link re
senting the probability amplitude at this position. The set
all amplitudes defines the quantum-mechanical stateC(t) at
time t. One step of time evolution is then given by a unita
operatorU,

C~ t11!5UC~ t !. ~1!
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This time evolution operator is determined by all the scatt
ers in the NWM. Each scatterer maps 4n incoming channels
to 4n outgoing channels conserving the current and is the
fore represented by a unitary 4n34n matrix. The disorder is
in general simulated in two ways: first by multiplying th
amplitude on each link with a complex random phase fac
eif with f randomly chosen from@0,2p@ simulating the
random distances between the scatterers and secondly by
ing random values for the parameters that parametrize
matrix representation of the scatterers simulating the rand
strengths of the scatterers. Of course, both random cho
have to be compatible with the symmetry properties of
system. We distinguish 2D electron systems with tim
reversal symmetry~O2NC! and without time-reversal sym
metry ~U2NC!, both without spin degrees of freedom, an
systems with time-reversal symmetry and spin degrees
freedom~S2NC!. The ‘‘2’’ refers to the space dimension, th
‘‘O,’’ ‘‘U,’’ and ‘‘S’’ mean ‘‘orthogonal,’’ ‘‘unitary,’’ and
‘‘symplectic,’’ which refers to the corresponding universali
classes of random matrix theory and the letters ‘‘NC’’ ind
cate that all these systems are ‘‘nonchiral,’’ which mea
that no orientation is preferred as would be in presence
strong magnetic field.

The two former models have been examined extensiv
in Ref. 18. In this work a reflection, a transmission, and
deflection coefficient were introduced, which parametrize
scattering matrices. Furthermore an elastic mean free

FIG. 1. Topology of a general network model. Squares are s
terers and lines are bonds.
4394 © 1998 The American Physical Society
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was defined in terms of these coefficients. It was conclu
that all states are localized in the O2NC-/U2NC-NWM.

In the present work we investigate the S2NC-NWM. W
find a parametrization for the matrix representation of
spin scatterers and introduce a spin scattering strength.
calculation of the localization length by the transfer mat
method allows us to detect the LD transition and to de
mine the scaling function. In order to quantify the scali
exponentn of the correlation length we use a fit procedure19

We fit the scaling function and the critical exponent in tw
steps respecting the correlations of the data. Additionally,
apply ax2 test to estimate the confidence of the fits. Det
mining the critical value of the localization length we fin
the scaling exponenta0 of the typical local density of state
using a conformal mapping.20

This paper is organized as follows: In Sec. II we introdu
the network model by explicitly constructing the scatteri
matrices. Section III contains the transformation to the tra
fer matrices and summarizes general aspects of LD tra
tions. A detailed description of the methods of data eval
tion forms the content of Sec. IV. The discussion of t
results is presented in Sec. V followed by a short summar
Sec. VI.

II. NETWORK MODEL

A. Topology

There are two different types of scatterers in the S2N
NWM: potential scatterers~PS’s! changing only the elec
tron’s direction andspin scatterers~SS’s! changing only the
electron’s spin. The network consists of a regular 2D q
dratic grid of potential scatterers, each of them connecte
the four next neighbors by bonds. On each bond a spin s
terer is placed leaving the electron’s direction unchanged~cf.
Fig. 2!.

B. Potential scatterers

There are four channels orlinks within each bond, two of
them for incoming and two of them for outgoing states w
spin up and spin down, respectively. The electronic stat
represented by complex numbers~amplitudes! on each link.
Consequently, each PS maps eight incoming channelsI i

s to

FIG. 2. Topology of the S2NC-network. The potential scatter
~white! change the direction, the spin scatterers~grey! the spin of
the electrons.
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eight outgoing channelsOi
s(sP$1,2%, i P$1,2,3,4%) and

thus can be represented by an 838 matrix Spot. With the
definition of the geometrical arrangement of the chann
shown in Fig. 3 this mapping is defined as follows:

O5SpotI , with I5S I 1
1

I 1
2

A

I 4
1

I 4
2

D , O5S O1
1

O1
2

A

O4
1

O4
2

D . ~2!

Due to conservation of current density,

(
i ,s

uI i
su25(

i ,s
uOi

su2, ~3!

each scattering matrix has to be unitary,

Spot•Spot
† 518 , ~4!

where18 denotes the 838 identity matrix. Additionally, the
scatterers are time-reversal invariant. Both properties y
the matrix to be symmetric,

Spot5Spot
T , ~5!

where T denotes the transpose.
For convenience we choose the potential scatterers to

isotropic, i.e., they are invariant under rotations by multip
angles ofp/2. With these restrictions each scattering mat
Spot can be parametrized in the following way:18

Spot5FS̃potF, ~6!

with

S̃pot5S reifr d d teif t

d reifr teif t d

d teif t reifr d

teif t d d reifr
D ^ 12 ~7!

and

F5S eif1 0 0 0

0 eif2 0 0

0 0 eif3 0

0 0 0 eif4
D ^ 12 . ~8!

s

FIG. 3. Potential scatterer: The eight incoming channelsI i
s are

mapped to the eight outgoing channelsOi
s .
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Here12 denotes the 232 identity matrix and̂ is the tensor
product. The real parametersr ,t,d denote thereflection,
transmission, anddeflection~right and left scattering! coeffi-
cient, respectively~cf. Fig. 4!. If we chooser and t as inde-
pendent parameters forSpot, the real phasesf r ,f t and the
deflection coefficientd are related to them due to unitarit
and time-reversal symmetry,

ur u212udu21utu251, ~9a!

ur uuducosf r52utuuducosf t , ~9b!

ur uutucos~f r2f t!5udu2. ~9c!

Furthermore, two restrictions follow from these equations

r 21t2<1, ~10a!

r 1t>1. ~10b!

The four real phasesf1 , . . . ,f4 , which are randomly
chosen from the interval@0,2p@ model the spatial disorder
They can be interpreted as phase factorseif i for freely
propagating electron waves. Consequently, there are six
dependent parameters. But onlyr and t govern the macro-
scopic properties of the system. For convenience we cho
them to be equal for all PS’s in the network, whereas
phases are randomly taken for each scatterer.

C. Spin scatterers

The spin scatterers located between the potential sca
ers have two incoming and two outgoing channels on the
and on the right, respectively, as is shown in Fig. 5. They
be represented by 434 matricesSsp:

O5SspI , with I5S I 1

I 2

Ĩ 1

Ĩ 2

D , O5S O1

O2

Õ1

Õ2

D . ~11!

FIG. 4. Definition of the reflection coefficientr , the transmis-
sion coefficientt, and the deflection coefficientd.

FIG. 5. Spin scatterer: The four incoming channelsI s, Ĩ s are

mapped to the eight outgoing channelsOs,Õs.
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Unitarity and time-reversal symmetry result in

Ssp5DTSsp
T D ~12!

and

Ssp5DTKSsp
21KD5DT~Ssp

21!* D, ~13!

respectively. Here the asterisk denotes complex conjuga
andKD is the time-reversal operator with complex conjug
tion operatorK and

D5S 2t2 0

0 2t2
D 5S J 0

0 JD , ~14!

where t2 is one of the basis quaternions (t0 ,t)
5(t0 ,t1 ,t2 ,t3) given by

t0512 and t52 i s ~15!

with Pauli matricess5(sx ,sy ,sz). The matrix

J5S 0 1

21 0D ~16!

is the symplectic unit matrix. The symmetries~12! and ~13!
suggest the following parametrization of the spin scatter
matrix,

Ssp5S 0 eiwq

eiwq̄ 0 D ~17!

with the quaternion realmatrix

q5 (
k50

3

qktk5S q02 iq3 2q22 iq1

q22 iq1 q01 iq3
D PSU~2!, ~18!

where the real coefficientsqi are restricted by(k50
3 qk

251

due to unitarity andq̄ denotes the quaternion conjugation21

Thus, three independent parameters remain that are
domly and homogeneously taken from the unit sphere
each SS. The phasew is randomly taken from@0,2p@ . In
random matrix theory the symmetries~12! and ~13! corre-
spond to an ensemble of quaternion real Hamiltonians, wh
can be diagonalized by symplectic transformations. Beca
of this, we also refer to this symmetry as symplectic symm
try.

We now define thespin scattering strengthby

s5A12q05Aq1
21q2

21q3
2. ~19!

This quantity takes values in the interval@0,1#, wheres50
means no spin scattering ands51 full spin scattering, result-
ing in full spin relaxation after one scattering event. T
parameters is fixed for the whole network.

D. Parameter space

In conclusion there are three independent quantities bu
ing up the three-dimensional parameter space~or phase
space! of the S2NC-NWM. With the restrictions~10b! and
sP@0,1# the possible values (r ,t,s) are located in a certain
volume inR3. Figure 6 shows a cross section of this volum
at some fixed value ofs. The gray area contains the allowe
values. If the time-reversal symmetry is omitted, i.e., switc
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ing to the U2NC-NWM, the phase space~at some fixeds) is
the entire quarter of the circle.

There are three exceptional points in the phase space
r 50 andt51 we have the delocalized fixed point, where t
electron waves propagate freely. If we taker 51 and t50,
we have the localized fixed point, where transport stops.
r 5t50 the network is at the Chalker-Coddington fixe
point,22 where only left and right scattering exists. On t
line r 21t251 the deflection coefficient is zero. Thus, th
system splits into independent 1D subsystems, which alw
show localization. All of these properties are independen
the value ofs.

In Ref. 18 an elastic mean free path is defined by

l e :5
1

2

t21d2

r 21d2
. ~20!

The factor 1/2 is a consequence of the diagonal arrangem
which is shown in Fig. 7. The unit ofl e is a lattice constant
Analogously, we define a spin scattering length by

l SO:5
1

2

12s2

s2
. ~21!

This length scale takes values from 0 for maximal spin sc
tering to` in the case of the absence of spin scattering.

III. FINITE-SIZE SCALING

A. Transfer matrix method

In order to investigate the scaling behavior of the mode
system we need some scaling variable. Although the cond
tance is the natural choice for a scaling variable in this c
text, therenormalized localization length~RLL! L5j/M is,
as a self-averaging quantity, much more convenient. Hej
is the localization length of a quasi-1D system of widthM
and can be calculated by the transfer matrix method.23,24This
method yields a sequence of Lyapunov exponents in decr

FIG. 6. Cross section of the parameter space at some fixeds.
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ing order, where~due to conservation of current densit!
each value has a partner with opposite sign. Beyond this
the presence of SOI each value appears twice, becaus
time-reversal symmetry~Kramers degeneracy!. The smallest
positive Lyapunov exponent determines the quasi-1D loc
ization length. It is always finite due to the finite width of th
system.

In order to be able to apply the transfer matrix method
have to convert our scattering matricesSpot andSsp into the
corresponding transfer matricesTpot and Tsp, which map
channels on the left to channels on the right. In contras
the scattering matrices the transfer matrices are multipl
tive, which means the following: The total system is divid
into a sequence of elementary subsystems, each of them
responding to a single transfer step. The transfer matrix
the total system is then given by the product of the trans
matrices of the subsystems~‘‘strip transfer matrices’’!.

B. Transfer matrices in the network model

With the channel orientation of Figs. 3 and 5 the trans
matrices of the S2NC-NWM are defined by

1
O3

1

O3
2

I 3
1

I 3
2

O4
1

O4
2

I 4
1

I 4
2

2 5Tpot1
I 1

1

I 1
2

O1
1

O1
2

I 2
1

I 2
2

O2
1

O2
2

2 ~22!

and

FIG. 7. Definition of the strip transfer matrix forM52. The
arrows indicate the periodic boundary conditions.
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S Õ1

Õ2

Ĩ 1

Ĩ 2

D 5TspS I 1

I 2

O1

O2

D , ~23!

respectively. From this definition a diagonal arrangemen
the whole network results, as is shown in Fig. 7. The arro
at the top and the bottom of the figure indicate the perio
boundary conditions that we have chosen. The natural w
unit in this arrangement is apair of diagonally neighbored
transfer matrices, which corresponds to a channel numbe
Nc54. Therefore the bold printed part of the picture rep
sents a strip transfer matrix of widthM52, channel number
Nc58, and unit lengthL51 ~horizontal direction!.

In the language of transfer matrices the conservation
current density writes aspseudo-unitarity:

TpotSzTpot
† 5Sz ~24!

with

Sz5S 14 0

0 214
D , ~25!

and

TspSz8Tsp
† 5Sz8 ~26!

with

Sz85S 12 0

0 212
D , ~27!

respectively. On the other hand, time-reversal invariance
quires

Tpot5S 0 D

D 0 D T

Tpot* S 0 D

D 0 D ~28!

and

Tsp5DTTsp* D, ~29!

with D as given in Eq.~14!. A parametrization ofTpot com-
patible with these restrictions is given by18

Tpot5S a* g b* d

2g a 2d b

b* d a* g

2d b 2g a
D ^ 12 ~30!

with

a5
d

D
, b52

teif t

D
, g5

~reifr2teif t!d

D
,

d5
d22reifr teif t

D
, D5d22~ teif t!2. ~31!

For Tsp we find
f
s
c
th

of
-

f

e-

Tsp5S eiwq̄ 0

0 e2 iwq̄
D ~32!

with q̄ as in Eq.~18!. We omitted the four phase factors i
Tpot because they can be combined with those ofTsp to a
resulting phase factorw in Tsp.

C. Localization-delocalization transition

The scaling behavior of the RLLL determines whethe
the system is localized or delocalized. IfL shrinks with in-
creasing system widthM the system behaves like an insul
tor, if it grows, the system is metallic. At the LD transitio
the RLL is independent of the system width. To ensure t
L is in fact a scaling variable one has to find a scali
function that is a function of only theratio of the correlation
lengthjc andM ,

L~M !5 f̃ S jc

M D , ~33!

or logarithmically

ln L~M !5 f ~ ln M2 ln jc!. ~34!

Equivalent to the existence of a scaling function is the f
mulation of a flow equation with ab function that is a func-
tion of ln L only,

b~ ln L!5
d ln L

d ln M
. ~35!

Figure 8 shows a qualitative picture of theb function in
different dimensions. Due to Ohm’s law the limiting value
b for large conductance~or L) is d22. Without SOI there is
a negative correction to the conductance caused by w
localization.25 The b function is always negative in 2D an
therefore all states are localized. In the presence of SOI
correction to the metallic conductance changes the sign
to weak antilocalization.14–16Consequently, in 2D and in the
large conductance limit theb function converges to zero
from above. Since in the strongly disordered regime all sta
are exponentially localized, the existence of a LD transit
in the 2D symplectic case follows from simple scaling arg

FIG. 8. Qualitative picture of theb function ford51,2,3. In the
2D case there can be a transition due to weak antilocalization~solid
line!.
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ments. At the critical point, where theb function is zero, the
correlation length shows power-law scaling with the critic
exponentn,

jc~r !5jc
0ur 2r * u2n, ~36!

wherer is a system parameter, e.g., the reflection coeffic
of the NWM, andr * is its critical value. Here the correlatio
length is the fictitious system width up to which the system
in the critical regime. In the localized regime this is just t
quasi-1D localization length obtained by the transfer ma
method in the thermodynamic limit,

jc5 lim
M→`

j~M !5j` . ~37!

In Ref. 20 it was shown that thetypical local density of
states~LDOS! is an appropriate choice for the order para
eter of the LD transition,

r typ :5e^ ln r~E,r!&}ur 2r * ubr, ~38!

with r(r)5uc(E,r)u2/D(E), energyE and local level spac-
ing D(E). ^•••& denotes disorder average andbr is the criti-
cal exponent of the order parameter. Furthermore,r typ shows
power-law scaling at the critical point with exponentd
2a0 ,

r typ}Ld2a0, ~39!

whereLd is the volume of ad-dimensional cube anda0 is a
scaling exponent, which is known from multifractal analys
of critical wave functions. In 2D, i.e., for a square syste
this scaling exponent is linked to the critical value of t
quasi-1D RLL by a conformal mapping argument,20

L* 5
1

p~a022!
. ~40!

With the knowledge ofn anda0 the critical exponent of the
LDOS is given by

br5n~a022!. ~41!

IV. METHODS OF EVALUATION

A. Fit procedure for the scaling function

In our work we follow the method introduced in Ref. 1
which not only fits the scaling function to the data of t
RLL’s but also uses ax2 test to check the confidence of th
fit.

According to Eq.~34! we want to fit the scaling function
f to the logarithms of the RLL’s, which depend on thenM
system widths$M1 , . . . ,MnM

% and thenr system parameter

$r 1 , . . . ,r nr
%. So we have nL5nM•nr data points

$L1 , . . . ,LnL
%. For abbreviation we now introduce the fo

lowing vectors,

Y:5S ln L1

A

ln LnL

D , X̃:5S ln M12 ln jc~r 1!

A

ln MnM
2 ln jc~r nr

!
D ~42!

and
l

t

s

x

-

,

E:5S D ln L1

A

D ln LnL

D , ~43!

the latter being the vector containing the errors of the av
age obtained by the transfer matrix method. Assuming
data to be statistically independent the corresponding co
lation matrixCL given by

~CL! i j :5^EiEj& ~44!

is diagonal. Herê•••& denotes the mean value.
Following the procedure in Ref. 19 we make an ansatz

the scaling function by a linear combination of Chebysh
polynomials,

F~xi !5
c0

2
1 (

k51

N

ckTk~Xi !, ~45!

which gives a polynomial of degreeN. Omitting the tilde
over the Xi indicates the argument being rescaled
@21,1#. In this interval the Chebyshev polynomials are o
thogonal and have simple behavior at the edges.

The smallest of the parameters lnjc is fixed by requiring
ln jc(r1)[0 for the delocalized branch and lnjc(rnr

)[0 for

the localized branch, respectively. So we have thenQ5nr
1N parameters

Q:5S ln jc~r 1!

A

ln jc~r nr21!

c0

A

cN

D ~46!

for the localized and

Q:5S ln jc~r 2!

A

ln jc~r nr
!

c0

A

cN

D ~47!

for the delocalized branch, respectively. These parame
have to be fitted with respect to the dataY. Hence, thenL

values of the fit function can be written as

F~X;Q!:5S F~X1 ;Q!

A

F~XnL
;Q!

D . ~48!

We use the method of the least-squares fit, i.e., we hav
minimize the sumSQ of the weighted quadratic deviations
which means solving
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]SQ

]Q
50 ~49!

with

SQ5@Y2F~X;Q!#TCL
21@Y2F~X;Q!#. ~50!

SinceF is nonlinear in the parametersQ this procedure
leads to a system ofnQ coupled nonlinear equations. Ther
fore SQ is minimized directly by a numerical method. Sta
ing with some estimated initial values for the logarithms
the correlation lengths we successively optimize theci and
the lnjc(ri). If the data are compatible we will have conve
gence, and thus we can stop when a chosen accurac
reached. The result then is a set of coefficientsci , which
defines the fit function and a set of optimized values for
correlation lengths.

According to Ref. 26 the correlation matrix of the param
eters is given by

CQ5~FQ
T CL

21FQ!21, ~51!

whereFQ is the Jacobian ofF with respect toQ,

FQ :5
]F

]Q
. ~52!

Usually, as errors of the parameters one takes the diag
elements of the error matrixE, which is defined by

EQ5
SQ

nL2nQ
CQ . ~53!

B. Testing the fit of the scaling function

A converging fit procedure does not guarantee that
errors of the numerical data are actually compatible with
obtained fit function. Therefore, in addition to this fit proc
dure we apply ax2 test to estimate the confidence of the fi
We make the essential assumption that the datayi are nor-
mally distributed aboutf (xi ;Q) with variancesei

2 . Conse-
quently the quantitySQ has to be distributed asx2 with nL

2nQ degrees of freedom. This distribution has the estima
valuenL2nQ and the variance 2(nL2nQ). A suitable mea-
sure for the confidence of the fit then is the normalized
viation of S from the estimated value

DQ5
SQ2~nL2nQ!

A2~nL2nQ!
. ~54!

If uDQu&1 it is safe to assume that the fit is trustworthy. B
if uDQu takes values much larger than 1 it is very unlike
that the dataYi are normally distributed aboutF(Xi ;Q),
which indicates systematic errors. In this case the fit
failed, we have to give up the assumption of one-param
scaling and further calculations, e.g., of the critical expone
do not make much sense.

It should be noticed that rescaling of the variance ma
S by a factorb,S̃5b•S, results in the reciprocal rescaling o
SQ ,S̃Q5b21SQ . SinceDQ depends sensitively onSQ , es-
pecially if nL is small, one should carefully consider how
determine the errors of the raw data.
f
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C. Fitting the critical exponent n and r * and testing the fit

In order to determine the critical exponent of the corre
tion length we apply the same idea as before with respec
Eq. ~36!. Particularly, we simultaneously deal with bo
branches of the scaling function, i.e., we assume the crit
value r * and the critical exponentn to be the same in the
localized and the delocalized regime. Only the prefactor
take different values, which will be denoted asjc

0,loc and
jc

0,deloc for the localized and the delocalized regime, resp
tively. Taking the logarithm Eq.~36! is written as

ln jc~r i !5 ln jc
0,loc2n lnur i2r * u ~55a!

and

ln jc~r i !5 ln jc
0,deloc2n lnur i2r * u ~55b!

for r i in the localized and delocalized regime, respective
The nr values lnjc(ri) are the results of the foregoin

optimization, the arguments are the values lnuri2r* u, and the
four parameters that have to be optimized arejc

0,loc,
jc

0,deloc, n, andr * . Introducing the vectors

y:5S ln jc~r 1!

A

ln jc~r nr
!
D , x:5S lnur 12r * u

A

lnur nr
2r * u

D ~56a!

u:5S ln jc
0,loc

ln jc
0,deloc

n

r *
D , ũ:5S ln jc

0,loc

ln jc
0,deloc

n
D ~56b!

and comparing them with Eq.~55a! the fit function can be
written as

f~x;u!5W~x!ũ, ~57!

with

W:5S 1 0 2 lnur 12r * u

A A A

1 0 2 lnur nr , loc
2r * u

0 1 2ur nr , loc112r * u

A A A

0 1 2 lnur nr
2r * u

D . ~58!

Here nr , loc is the number of valuesr i that belong to the
localized regime.

The correlation matrixCjc
of the datayi is the upper left

nr3nr submatrix ofCQ @Eq. ~51!# obtained by the fit of the
scaling function. Thus, the sum of the quadratic deviation

Su5@y2f~x;u!#TCjc

21@y2f~x;u!#. ~59!

Since the fit function is alinear function in the argumentx,
we can analytically solve the minimization problem
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]Su

]ũ
50, ~60!

which leads to

ũ5~WTCjc

21W!21WTCjc

21y. ~61!

In contrast to that the parameterr * has to be optimized nu
merically since it appears nonlinearly in Eq.~55!. Giving
some starting value forr * one iteration step consists of su
cessively optimizingũ and r * .

The 434 correlation matrix of the four parameters
given by

Cu5~Fu
TCjc

21Fu!21, ~62!

where

Fu :5
]f

]u
. ~63!

Finally we get the error matrix

Eu5
Su

nr24
Cu . ~64!

As in Eq. ~54! we use the quantity

Du5
Su2~nr24!

A2~nr24!
~65!

to test the confidence of the fit.uDuu should take values o
about 1 or smaller to verify the assumption that the valueyi
are normally distributed about the fit function, which is
straight line in this case. Note that it is important to take
correlations between thejc(r i) introduced by the previous fi
procedure into account in the present analysis. Thus
simple linear regression will not give the correct results.

D. Determination of L*

The fit procedures introduced in Secs. IV A and IV C a
not the most direct way to determinen from the raw data.
Instead, one can fit the RLL’s as functions ofur 2r * u with a
width-dependent scaling factorM1/n

L~M ;r !5h~M1/nur 2r * u!, ~66!

which is a consequence of Eqs.~33! and~36!. This procedure
leads to a continuous curve, because there is no splittin
two branches as in the logarithmic case. Fitting the sca
function in this manner allows a direct evaluation ofL* .
Since atr 5r * the argument ofh is zero, one only has to
calculate the function value:

L* 5h~0!. ~67!

Following the law of propagation of errors we get for th
error

DL* 5DLur 5r* 5M1/nDh8~0!r * , ~68!

whereh8 denotes the first derivative ofh with respect to the
argument.
e

a

in
g

V. RESULTS AND DISCUSSIONS

A. Localization lengths

We calculated quasi-1D localization lengths for syste
lengths up toL523105 and widths fromM52 up to M
532, which corresponds to channel numbers fromNc58 to
Nc5128. The corresponding errorsDL are the errors of the
average, which vanish forL→`. We have chosen such sys
tem lengthsL that the relative errorsDL/L take values of
about 0.1% to 1%.

Figure 9 shows the renormalized localization lengths
r 50.8 andt50.4 decreasing with increasing system wid
for the whole range of the spin scattering strength. So
system is in the deeply localized regime. This matches w
the fact that the mean free path@see Eq.~20!# takes a value of
l e.0.35 in units of the lattice constant. So the reflection
too strong to allow extended states at all.

Contrary to this, the next example exhibits a LD transiti
at s.0.3, which can be seen in Fig. 10. Withr 50.55 and

FIG. 9. Renormalized localization length for strong disorderr
50.8, t50.4, which corresponds tol e.0.35, depending on the spi
scattering strengths and the the system widthM .

FIG. 10. Renormalized localization length forr 50.55, t50.6,
which corresponds tol e.1.1, depending on the spin scatterin
strengths and the system widthM .
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t50.6 corresponding tol e.1.1 the effect of weak anti-
localization causes the existence of extended states, ifs is
strong enough. The intersection of the curves clearly in
cates the LD transition. However, their slope is rather sm
compared to the error bars preventing an accurate sca
analysis close to the critical point.

The third example shown in Fig. 11 belongs to the valu
t50.8 ands50.4, wherer varies fromr 50.48 tor 50.56. It
exhibits another kind of problem. Although curves for diffe
ent system widthsM intersect, the points of intersection sy
tematically depend on the width. The largerM is the closer
are the points of intersection for curves of neighboring v
ues of M . It is obvious that there exists a limiting poin
which would be the true critical point. The observed dev
tions are the consequence of finite-size effects, which va
in the thermodynamic limit. By investigatingL at a lot of
different points in parameter space we have seen that
deviations due to finite-size effects are larger for more de
calized systems. Actually, there is only a small area in
rameter space that is suitable for a quantitative analysi
the LD transition.

B. Phase diagram

We determined a phase diagram for the LD transition
using the scaling behavior of the RLL. More precisely, w
calculatedL(M154) andL(M258) for a lot of pairs (r ,t)
with s50.01, 0.02, 0.05, 0.1, 0.4 and 1. In order to get
critical line in the (r ,t) subspace with fixeds we decided the
point (r ,t,s) to be in the localized and delocalized regime,

L~M1!2DL~M1!.L~M2!1DL~M2! ~69!

and

L~M2!2DL~M2!.L~M1!1DL~M1!, ~70!

respectively. In the case that both conditions failed, we c
sidered the point in the parameter space to be critical. By
procedure we got a criticalregion, i.e., the separating line

FIG. 11. Renormalized localization length in the vicinity of th
localization-delocalization transition,t50.8,s50.6, which corre-
sponds tol e.2, depending on the reflection coefficientr and the
the system widthM . The arrows mark the section of curves corr
sponding to neighbored values ofM .
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had some finite width. Figure 12 shows the resulting ph
diagrams for some intersections of the parameter space a
above declared fixed values ofs. The white area marks the
localized phase and the gray one the delocalized phase.
drawn critical line is the optical interpolated center line
the critical region.

The region of the metallic phase shrinks with decreas
spin scattering strength. This is due to the fact that the w
antilocalization then becomes less effective in prevent
Anderson localization. Ats50 the system changes unive
sality class from symplectic to orthogonal symmetry, a fa
that could be verified by comparing the values of the loc
ization lengths with those in Ref. 18. On the other hand e
a very small value ofs gives rise to a certain delocalize
phase, ifr is small andt is large enough. Of course, th
larger l e , i.e., the largert and smallerr , the more easily
extended states occur. But even in the presence of full s
scattering only about half of the area of the parameter sp
belongs to the metallic phase. This is due to the fact t
parameter values (r ,t) belonging to the localized phase co
respond to too strong disorder resulting in too strong loc
ization to be broken by weak antilocalization.

It should be noticed that fort*0.6 the shape of the phas
boundary is influenced by finite-size effects. So the ph
diagram can only serve as a qualitative picture of the
transition. In order to improve on the phase diagram, one
to consider much larger systems, which is very compu
time consuming, taking such a large number of data po

FIG. 12. Phase diagrams for the localization-delocalization tr
sition for cross sections ats51, 0.4, 0.1, 0.05, 0.02, 0.01. The gra
area shows the delocalized, the white the localized regime.
dotted line corresponds tor 5t.
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into account. Nevertheless, the lower part of the bound
i.e., the region close to the liner 5t ~dotted line in the fig-
ure!, is suitable for quantitative investigations, as will b
shown in the following.

C. Scaling function

We determined the scaling function by the fitting proc
dure described in Sec. IV A fort50.6, s50.4, and r
P@0.52,0.62#. In this small region of the phase space t
corresponding curvesL(M ;r ) ~see Fig. 13! are very well
suitable for a quantitative analysis, because of their stronr
dependence and the absence of noticeable finite-size ef
( l e.1).

Figure 14 shows the scaling function with the upp
branch belonging to the metallic and the lower branch
longing to the localized regime. The curves represent
fitted Chebyshev polynomials. The data points are the
data shifted by the fitted values ofjc(r ). We omitted the
data withM52 in the localized andM52 andM54 in the
delocalized regime, because these values showed syste
deviations due to finite-size effects. Also data that are

FIG. 13. Renormalized localization length fort50.6, s50.4,
which corresponds tol e.1, depending on the reflection coefficie
r and the the system widthM .

FIG. 14. Scaling function for the localization-delocalizatio
transition. The upper branch corresponds to the delocalized an
lower to the localized phase.
y,
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close to the critical point were omitted. For the remaini
data the confidence test of the fit givesDQ520.30 and
DQ50.27 for the localized and delocalized branch, resp
tively. So the assumption of one-parameter scaling is v
well confirmed.

Fixing the fit parameters lnjc by setting lnjc(r50.52)
50 for the delocalized and lnjc(r50.62)50 for the local-
ized branch~circles in Fig. 14! the procedure has converge
with an accuracy of 0.1% after about 50 iterations. The st
ing values have a radius of convergence of about 5. S
rough estimate is sufficient for convergence.

The Chebyshev polynomials used are of fourth ord
With a lower order it is impossible to fit the curves~as indi-
cated by the figure of meritDQ), whereas with an orde
higher than 6 the fitted curves start to follow the fluctuatio
of the data points, which results in a nonphysical behavio
the scaling function. With an order between four and
there is no significant difference in the results.

A feature of the metal-insulator transition observed in 2
is the exponential dependence of the conductivity on the
tance from the transition.6 This behavior is expected if the
logarithm of the conductance—and not the conducta
itself—is the proper scaling quantity that can be linearized
the critical point.9 In our calculations we find that bothL and
ln L are linear inur 2r * u over roughly the same interval.

D. Critical exponent n and critical RLL L*

In order to determine the critical exponentn of the corre-
lation length we used the fit procedure presented in S
IV C. With a starting valuer * P@0.53,0.59# the procedure
converges. After about 10 iterations the corrections
smaller than 1%. The results of the fit are

n52.5160.18 and r * 50.57160.002. ~71!

The prefactors take the values

ln jc
0,loc527.5560.42 ~72a!

and

ln jc
0,deloc527.50260.43. ~72b!

The confidence test of the fit givesDu520.47, showing its
high quality. It is very important to stress that the give
errors@Eq. ~64!# are not independent. They have to be inte
preted considering the correlation matrix

Cu5S 0.0310 20.0737 20.0739 20.0004

20.0737 0.1782 0.1766 0.0009

20.0739 0.1766 0.1853 0.0009

20.0004 0.0009 0.0009 5.531026

D ,

~73!

which shows that the different values are highly correlate
Several reference values forn have been published in

recent years.27–30 The most recent calculations yiel
n52.7560.1,31 n52.560.3,32 andn52.3260.14.33 Within
the errors our value agrees with these. We note thatn is very
sensitive to slight variations ofr * . This is seen by fittingn
for fixed values ofr * . As is shown in Fig. 15n changes by
30% if r * changes by about 3%. The difficulties in obtainin

the
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a credible value forn were the reasons to employ the iter
tive fit procedure of Sec. IV C.

In order to determine the critical RLL we used Eqs.~66!
and ~67!. The result is

L* 51.8360.03. ~74!

Finally, Eq.~40! yields the value for the scaling exponent
the typical LDOS

a052.17460.003. ~75!

This value agrees well with the result of Schweitzer,34 a0
52.1960.03 obtained for a Hamiltonian model.

FIG. 15. Dependence ofn on the assumed value ofr * . The best
estimate is found forr * 50.571.
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VI. SUMMARY

In this work we found the S2NC-network model to be
new model to describe mesoscopic disordered electron
tems with symplectic symmetry. We constructed the top
ogy of the model and the scattering matrices representing
potential and spin scatterers. Three independent param
were needed to characterize the scatterers. The reflection
efficient r and the transmission coefficientt represent the
strength of the spatial disorder by defining the mean f
path of the network model~in the absence of SOI!. The
coefficients represents the strength of the spin-orbit scatt
ing and defines a corresponding spin scattering length.
have shown that our model exhibits a localizatio
delocalization transition. In order to investigate this tran
tion we calculated renormalized localization lengt
L(r ,t,s) by the transfer matrix method and obtained t
scaling function by an iterative fit procedure. The quality
the fit was checked by ax2 test, which confirmed the as
sumption of one-parameter scaling. We constructed a ph
diagram for the system showing a metallic phase for ans
.0, if r is small andt is large enough. The critical exponen
of the correlation length was obtained to ben52.5160.18.
This value agrees with previously published results with
the errors. We pointed out that in determining the errors i
essential to take the correlations into account. The crit
renormalized localization length was found to beL* 51.83
60.03. By a conformal mapping argument this correspo
to a valuea052.17460.003 for the scaling exponent of th
typical local density of states.
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