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We propose a generalization of the quantum Monte Carlo loop algorithm ta 3hmodel by a mapping to
three coupled six-vertex models. The autocorrelation times are reduced by orders of magnitude compared to
the conventional local algorithms. The method is completely ergodic and can be formulated directly in con-
tinuous time. We introduce improved estimators for simulations with a local sign problem. Some first results
of finite-temperature simulations are presented forJachain, a frustrated Heisenberg chain, andl ladder
models.[S0163-18208)08331-3

[. INTRODUCTION smaller energy scal@=4t?/U<U. To investigate the low-
energy properties it is thus of advantage to simulate the ef-
Quantum Monte CarlgQMC) methods are a powerful fective low energy Hamiltonian, thé-J model. Previous
tool for the investigation of strongly interacting systems.finite-temperature simulations for theJ model have been
They are easy to generalize and can therefore be applied tarried out both in a determinantal formulattoin two di-
almost any model. In addition, they can be used for larganensions, which suffered from serious sign problems and
systems and give unbiased results that are exact within givemetastability, and in the worldline formulation in one dimen-
statistical errors. They are thus an ideal tool for numericakion, with standard MC updaté$As we will show explic-
simulations of complex systems. A major problem, howeverijtly later, such standard MC simulations suffer from strong
is that the results are not useful if the statistical errors beautocorrelations, which seriously limit the accessible system
come too large. This happens in many interesting casesizes and temperatures. They are also nonergodic, and like
Classical local update Monte CarlMC) simulations near the determinantal simulations have to be extrapolated to con-
second-order phase transitions suffer from “critical slowingtinuous imaginary time.
down:” the autocorrelation time and with it the statistical In the present paper we present a loop algorithm for the
errors diverge at the critical point. This problem has beert-J model (for any dimensiojy which overcomes these au-
solved for many classical spin systems by cluster algorithmgpcorrelation problems and has additional advantages such as
which construct global updates of large clusters instead ofomplete ergodicity, the existence of improved estimators,
performing local spin flips. which further reduce the error of measured quantities by im-
Recently a generalization of these cluster methods tlicitly averaging over many configurations, and the possi-
guantum spin systems, the loop algorithm, has beemility of directly taking the continuous time limit. Some of
developed®For a review see Ref. 9. This method can solveour results have already been presented in Refs. 23 and 24.
the problem of critical slowing down also for QMC simula- The loop updating method has also been used for the simu-
tions. It has made it possible to investigate phase transitionation of the two-dimensiondRD) t-J model in the low hole
in quantum spin systent$;?°far beyond the possibilities of density and small/t limit in Ref. 25. However, this paper
previous MC techniques. uses a different representation of thd model and unfortu-
The loop algorithm can be generalized to particle modelsnately they do not explain the technical details of their algo-
The original loop methatf can be applied directly to hard rithm.
core bosons and to spinless fermiéms Hubbard model can Quantum Monte Carlo simulations of fermionic models or
be simulated by coupling two spinless fermion systé®se  of frustrated spin systems nearly always suffer from the
problem in QMC simulations of the Hubbard model is that“negative sign problem.” In order to perform QMC simula-
its dominant energy scale is the Coulomb repulsidet, tions we first have to map the quantum system to a classical
while the interesting low-lying excitations are at a muchone. This mapping can introduce negative weights, which
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cause cancellation effects. The statistical error for a given >
amount of computational effort can then increase exponen- liom > == up spins
tially with system size and inverse temperature. This se- o1 > = = down spins

verely restricts simulations of higher-dimensional fermionic
models. By combining loop updates with improved estima-
tors we can reduce the variance of the observables and thus ¥
lessen the sign problem.

This paper is organized as follows. First we review the
worldline QMC algorithm and the standard loop algorithm
for a Heisenberg chain. In Sec. Il we describe the loop al-
gorithm for thet-J model. The use of improved estimators is
discussed in Sec. IV. Finally in Sec. V we discuss the per-
formance of the new algorithm and show some first results
obtained for a-J chain, a frustrated Heisenberg chain, and  FIG. 1. Example of a world line configuration of the Heisenberg
t-J ladder models. In the Appendix we discuss the continumodel with the checkerboard decomposition. The imaginary time

application of
e—ArH“)

ig >

lig >

imaginary time

lig>

—
space direction

ous time version of our method. runs along the vertical axis, and the real space direction along the
horizontal axis. The solid lines represent up-spins, the dashed lines
II. BACKGROUND MATERIALS down spins. The shaded plaquettes show the applicatieﬁ‘ﬁf*(').

To establish notation and formal background we brieflyThe |00p algorithm can also be formulated directly in the
describe the worldline representation and the standard 100gyntinuous time limitA 7— 0 6 This will be discussed in

algorithm. We refer to the literature for more detailed de-appendix A.

scriptions of the worldline representatfinand the loop  "The decomposition of the Hamiltonian has to be chosen
algorithm:*"“As an example, we take the 1D Heisenbergaccording to the problem. For our 1D system with only
antiferromagnet. The Hamiltonian is defined by nearest-neighbor  interacton  we  take Heyenjodd

. . = evenioadd ", leading to a checkerboard structure as
_ (i)— & & shown in Fig. 1. The Hamiltonian acts only on the shaded
Hi 21 H ,21 IS-Sie1 (1) plaquetteg in Fig. 1, each of which contributes a factay,
to the matrix elements in Eq2), i.e.,
Where§i denotes a spin-1/2 operator on site]>0 for the

anilfe_rromagnet, and the periodic boundary condit®n ; z= 2 I1 szz W(C). 3)
=S, is adopted. i1, dom P {c

For the Heisenberg model we expand the stéi{gsin an

& eigenbase. Each(V=S-S |, conserves magnetization.
Therefore there are only six nonvanishing matrix elements
for each shaded plaquette, which can be represented by solid
and dashed lines connecting up and down spins, respectively,
as shown in Fig. 2. Thus the sum in E®) is taken over
configurationsC={|i\)} of continuous worldlinesOne ex-

A. Worldline representation

We use the Trotter-Suzuki decomposifibrand a path-
integral formulation in imaginary time. The Hamiltoni&h
is decomposed into two termd=Hg,tHogq, €ach of
which is easy to diagonalize. Then

Z=Tr e P= lim Tr[ (e~ &7MevenHoad)M] ample is shown in Fig. 1. Note thdtcan be identified with
M= a set of binary variableS’= = 1/2, each defined on a site in
=Tr[ (e” A™Mevere= 2 Hoad) M]+ O(A 72) the checkerboard, with the restriction due to the magnetiza-
tion conservation. It is convenient to defidg as the local
_ E (e A Heveri 50,) state of a given shaded plaguefie namely, a set of four
i1, oM binary variables at its four corners. The configuratiis

X(igm|e” A oddizy 1) - - (igle” A Heveri,)

X(i5|e2Hoadi )+ O(A ), @ o | BF [ I vl XK X

whereAr=B/M, andM is called the Trotter number. The
summation with respect td,) is taken over complete ortho- w(Cy) €
normal sets of states.

Wer mf"‘y_cons_'der E_q(2) as the evolu_tlon_ of the |n|t_|al FIG. 2. The six allowed plaquette states of the Heisenberg
state|i;) in imaginary time with one application of the time ,,qe| that fulfill the magnetization-conservation condition. The
evolution operator within a time stepr. The partition func-  second row shows the weights of the plaquettes for the Hamiltonian
tion Z in Eq. (2) is also formally the partition function of a (gq. ). The solid lines connect two sites occupied by up spins, and
(d+1)-dimensional classical system. The systematic error ofhe dashed ones connect down spiiie have assumed a bipartite
order A7? due to the finite time step approximation can belattice and rotated the spin-operatogsY— — S*Y to make the
extrapolated taA 72—0 by fitting to a polynomial inA72.  weight of the last two plaguettes positive.

—Ari/4 eATch(ATJ/2) [eATsh(AT T [2)
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then identified with the union of the plaquette states. Accord- _ _ 1N _
ingly, w, in Eq. (3) can be written asv(Cy). (0)=1limO, 0= NZ o). (7
Thermal averages of observabl@scan be written in a N—e :

similar way as In cases with a sign problem the averages in(Bare done

separately for the numerator and for the denominator:

1
(0)=32 W), (@) LN
S (sign-O)fy
whereO(C) is the value of the observable in the configura- O= =1 ®)
tion C. 18
If the weight of a configuratioW(C) can take negative Ni;\l (S|gn)|(\|/\)/\

values, one has to use its absolute valw#C)| to construct

the probabilities for the Markov chain of a MC procedure |, gtandard local algorithms an update from one configu-
(see below, since these probabilities need to be PositiVe..ation ¢ to the next one is done by proposing a new configu-

Expectation values are then given by ration C' that differs fromC by a smalllocal change of the
worldlines. The candidaté’ is accepted with a probability
; that satisfies detailed balance, e.g., the Metropolis
2 WO0(©0) 2 [W(O)| signte)O(C) orobability®
W(C)| signC ) [ W(CT)
> W(C)] signc)oO(C) or the heatbath probability
{c
W(C")
> [w) . P(C—C) = (10
_ I} _ (sign- O)w 5 W(C)+W(C")
S IW(C)| sign(C) (signw otherwise the configuratio@ is kept.
{c There are two major problems with local updates: First,

consecutive configurations are strongly correlated. It takes
EC: Iw(e) on average a number of updates to arrive at a statistically
& independent configuration. Thiautocorrelation time 7,

where sign() stands for the sign oWW(C), and (- - - ) which depends on the _measur_ed quanﬁly typically in-
denotes expectation values with respect to the absolute valggeases quadratically with spatial correlation lengtiand
of the weightW. inverse energy gaph ! (respectively, system size and

In many cases, a “sign problem” now stems from the factinverse temperaturd whené>L or A~*>B). To achieve a
that the average sigr(sign)y, may decay exponentially desired statistical accuracy, the MC simulation has to be
with increasing system size and inverse temperagur€or  lengthened by a factor, which can easily reach orders of

fixed computational effort this then leads to an exponentiall0® and larger in practical cases.
blow up of the errors. Secondly, in contrast to classical MC simulations, local

updates ar@ot ergodicfor world-line algorithms in general,
since local updates only cannot change the number of world-
lines nor their winding numbers in the simulation. For ex-
The thermal averages, EqeL5), can be taken by MC ample, when applied to the Heisenberg model, the total mag-
importance sampling. One constructs a sequeidakov  netization and the spatial winding number remain constant.
chain of configurationsC”) such that in the limit of infi- Many quantities of physical interest, like the superfluid den-
nitely many configurations their distribution agrees with thesity, are then very difficult to estimate. In addition, it was

B. Local worldline algorithms

correct Boltzmann distributiop(C ") =w(c")/z. pointed out that a complicated quantity exists that does not
This can be achieved by satisfying two conditions: ergodwvary in conventional local updates for the€Y Z model. To
icity of the Markov chain, and detailed balance make the conventional algorithm ergodic, therefore, we usu-
ally have to include somad hocglobal updates, which tends
p(C—C) W(C) to make the resulting code rather cumbersome. Also, the ac-
- = W(0) (6) ceptance rate of suchd hoc global updates is often very
p(C’'—0) small, which is another cause of long autocorrelation times.

wherep(C—C') is the probability of choosing the configu-
ration C' as the next configuration in the Markov chain,
when the current configuration @& Both kinds of difficulties are overcome in the loop algo-
Then the thermal expectation value Ed) of an observ-  rithm, which achieves large nonlocal configuration changes
able O can be estimated by averaging the value of the obin one stochastic update. Autocorrelation times for the loop
servable in the configuratior&®: algorithm are found to be orders of magnitude smaller than

C. Loop algorithm for the Heisenberg model
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(a) (b) (c)
FIG. 4. Plaquette configuratiord§ and graphss, for the anti-

FIG. 3. Example of a loop-update step for the Heisenberg modeierromagnetic Heisenberg model. The upper part of the figure speci-
(anisotropic case, which has finite probability for diagonal graphfies the graph<$s, and one solutiorv(Gp) of Eq. (12) for their
Segment)s On the left(a) we show an initial configuratiod of up weights. There is a free parametein this solution. Ife is chosen
spins(dashed linesand down spingsolid lineg which is mapped to be zero, no freezing and no diagonal graph segments will occur.
to a configuratiorG of loops in the middle figuréb). Some of these ~ The third row shows the continuous time limit o{G;) (see Ap-
loops are selecte@vith probability 1/2 to be flipped, i.e., the spins Pendix A. The lower part of the figure shows the spin configura-
along these loops change direction. We denote the loops that will béonsC, and their weights, and the functid(G,,C,), which speci-
flipped by dashed lines, the unchanged loops by solid lines. Théies whether a configuratiod}, and a graptG,, are compatible.
figure on the right(c) shows the spin configuration after the loop
flips.

only certain graph&, are possible, namely, those for which

those for the conventional algorithm. In addition, it does not! update anr_lg cor_mec/:teq points ,Ieads to anothgr allowed
laquette configuratiorC; [i.e., w(Cp)#0]. We define a

suffer from the above-mentioned ergodicity problems, and’'aqu - .
can be formulated directly in continuous tirtte. function A(Gp,Cp) so that it takes the value 1 whe, is

In the loop algorithm, each update consists of two steps/lowed for a giverC, and the value 0 otherwise. It is shown
both stochastic. In the first step, the current worldline conN Fig- 4. Each spin belongs to two interacting plaquettes. It

figuration C is mapped with a probabilitp(C—G) to a belongs to one Ioop_ segment on eaqh of these plaquettes,
graph configuratiol®. G={G,} consists of local graph seg- except for the “freezing” graph, in which all four sites are

ments G, defined on the plaquettgs, which combine to connected. Specifyin@, on each interacting plaquette indi-

form a set of closed loops. In the second step, the Comcigu\gidually will thus automatically lead to an overall configura-

ration of loops is mapped with a probabilig(G—C’) to a tion of p!qsed loops. Therefore, we ,only need 'Fo spec!fy the
new worldline configuratiort’. probab|I|t|e_sp(C_p—>Gp) andp(Gp—_>_Cp) for each interacting
Let us explain the simple case of the Heisenberg modePlaquette individually. If we additionally have “freezing”
Two observations are importarit) Since the worldlines are 9raphsG, on some of the plaquettes, then the loops passing
continuous, the difference between two arbitrary worldlinethrough these plaquettes have to be flipped together. They
configurations(in the sense of an exclusivepi.e., thelo- ~ are “frozen” into one loop cluster. This freezing is problem-
cation of spin flipsn any allowed update of a configuration atic if it occurs too often since thgn the whole lattice might
is located on a set of closed loops. These are the loops wSt “freeze” and no change of weight is done by the update.
will construct. Flipping all the spins on a closed loop will be Thus we want to avoid unnecessary freezing.
called a loop flip. In Fig. 3 we show an example for a loop- W& may construct loop algorithms such that loops are
update step for the Heisenberg mode). Since the Hamil-  flipped with probability 1/2 when there is no symmetry
tonian acts locally, the partition functiod in Eq. (3) is a  Preaking field, as is the case with gene¥ad Z quantum spin
product of plaguette terms. We can therefore fulfill detailedSyStéms Wwithout magnetic field. To include a symmetry
balance separately for each plaguette, provided the g|0bgqreaklng field, we factorize the local Boltzmann weight in
constraint of closed loops is satisfied. the form
By inspecting the six allowed local state%, on a
plaquette(Fig. 2), we see that for each plaquette, spin flips
must occur orpairs of sites, not on single spins, in order to [W(Cp)| = Wo(Cp)Wasymn{ Cp) 11
arrive at another allowed local state. We connect the pairs of

sites on which spins are to be flipped together by solid lines;

these are loop segments. Since there are several possi vxherewo(cp) is used for defining the probability of choos-
- op segm ' . L anp li’% Gy, Whereasw,s,mn(Cp) is taken into account in terms
pairings of sites, the lines can, in principle, run horizontally,

. ; . . of the flipping probability of the loop. The weighty(Cp)
v_ertlcally, or dlag_onally. .AISO.’ all four S't.es. can be flipped needs to be invariahtunder flip of all four spins at the
simultaneously without violating the restriction. The symbol ; : - .

: plaguette p. Using this factorization, the probability

G,, stands for the two loop segments on plaquptt&/e will : X

P ; p(C,—G,) is constructed as follows. First wehoose
speak of G, as the graph on plaquetie. The unionG WeiphtSvp(G ) for all graphsG,, such that
=U,G, constitutes a complete graph configuratién We 9 P grap p
call the graphG, in which all four spins are grouped to-
gether the “freezing” graph, sincgvithout symmetry break-
ing field) the flip of all four spins will leave the plaquette 2 v(Gp)A(Gy,Cp) =Wo(Cp). (12)
weight w,, invariant. For a given plaquette configuratiGp Gp
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One solution to this set of equations is shown in Fig(The

solution is in general not unique; depending ldn it may w(C) G

also not exis). Then, detailed balance for the overall update 1 )i [
Cc—C' is fulfilled by rinaarsr) | [
p<cpﬂep>=—”(6"v)v§<(cf—f =¥ —et (AT [2)
ch(ATt) D D [l D
IT Wagymnf Cp)A (G Cp) sar) | A BN

P
p(G—C')= ,
1;[ wasymn(cp>+1;[ Wasymnf Cp)

(13
FIG. 5. The 15 different plaquett€y with nonvanishing weight
w(Cp) for thet-J model. Up spins are denoted by a solid line, down

. , spins by a broken line. The sign wf(C,) will be taken into account
as can be checked easily. In gene@G—C') needs to according to Eq(8).

satisfy detailed balance with respect to the weight
T Wasymnf Cp) A(Gp ,Cp). Here we have chosen a heatbath . _ .
probability like Eq.(10). wheren,eis the number of permutations of fermion world-

The construction of the loops can be performed in a mullinés, be=+1 for periodic andb.=—1 for antiperiodic
ticluster scheme. In this case, a graph is chosen on all boundary conditions, andyung is the number of particles
plaquettes, and we obtain a unique partitioning of the lat- NoPPINg across the boundary. For constructing loops we will
tice into ny loops |;. Then we attempt to flip all loop ~ USe the absolute value of the weight, EHl). The sign will
according to Eq.(13). We can also use a single-cluster be taken into account in the MC simulation according to Eq.
variant?® We can think of this variant as picking a single (8)- It will also play a role for the improved estimators
clusterl; of the above partitioning with a probabilify(|l;])  reated in Sec. IV.

according to the size of the lodh|= = ge ()< 1. 1. This loop In the last section, we ha_lve seen howia loop algorithm is
e constructed for a model with binary variables. In order to

is then flipped with respect to weighte=1II, .| Wasymn{Cp)  construct a loop algorithm for thieJ model we now reduce
and Eq.(9), which means that we will always flip that loop if the problem with trivariate variables into three subproblems
w=1 for all plaquettes. In an implementation of this algo- with binary variables. To this end, we divide a MC step into
rithm we construct this single loop by picking randomly any three substeps. In substep |, variables with the value O,
site of the lattice and building a single loop by choosingnhamely, holes, are left unaffectéthactive) while attempts

graphsG,, only on the plaquettes along the path. Hence weare made to flip all the variables with valuesl and —1

need an effort only proportional to the length.

Ill. LOOP ALGORITHM FOR THE t-J MODEL

Thet-J model is defined by the Hamiltonian

H= _tE 2 [(l_ nj,*o’)CJT,g-Ci,O'(l_ ni,*o’)+ HC]
(ij) o
+2, (SS—inny). (14
1]

WherecIU creates a spin-1/2 fermion with component of
spin o at sitei, n; ,=c! ¢; , andn;=3,n; , and H.c. the
Hermitian conjugate. The projection operators—(; )
prohibit double occupancy of a site. The brackgtg) de-
note nearest neighbor pairs. Thel model can be repre-
sented in a worldline formulatiGAin terms of variables that
take three possible values, 8,1, and —1, representing a

(active variables Similarly, in the second and the third sub-
steps, we keep variables with the value$ and— 1, respec-
tively, unaffected. Therefore, we deal with a binary problem
in each substep. To each of these binary problems, we apply
the idea of the loop algorithm. We denote as “active
plaquettes” those on which all four variables are active. On
the active plaquettes, the resulting algorithm for substep I is
identical to the loop algorithm for th&=1/2 antiferromag-
netic Heisenberg model, while the algorithm for substeps Il
and Il turns out to be the loop algorithm for tise=1/2 XY
model (which is the same as that for free fermignas we

will see below. The flipping probabilities of the loops are of
course affected by the inactive plaquettes.

Since we have three different binary problems, we need to
construct three loop algorithms with the second and the third
ones being transformable into one another simply by inter-
changing the roles of the valuesl and —1. The detailed
balance condition holds for each of the three substeps,
whereas ergodicity is achieved by the combination of them.

hole, an up spin, and a down spin, respectively. The matri¥Ve have ample freedom in choosing a set of graphs and
elements for the 15 different plaquettes with nonzero weighgraph weights. It is, however, advantageous for computa-
are given in Fig. 5. There are several sources of negativéional simplicity and the reduction of autocorrelation times to
signs in the overall weightV(C) =|W(C)|sign(C) of a con-  choose a scheme such that the resulting loops may be flipped
figuration. For thet-J model they all stem from anticom- independently in a multicluster variatfor a different choice
mutation of fermion operators. One example is the sign irse€e Ref. 2) Therefore, we must have weightggm,:(Cy,)

the third line of Fig. 5. The overall sign can be decomposed=1 on the active plaquettes, i.e., those where two loops may
as be flipped. This can be achieved by letting the loop updates
deal only with the active plaquettes. The weights of the other
plaquettes are put into the global weight functiwgyy,m:

Sign(C) = (—1)"erm( ) Mhound (15
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w(Cp) if all four variables on the plaquette are active
WO(Cp) =

1 otherwise,

1 if all four variables on the plaguette are active
Wasymn(cp) = - (16)
w(C,) otherwise.
In this case we can flip all loops independently with the flipping probability for a lppp
I WagmCy)
peloopl;
Prip(li) = (17)
b 1;!) I Wasymn(cp)+ H Wasymn(c
|
whereCé denotes the plaquette state after the flipping. the antiferromagnetic Heisenberg model. Again, a unique

Let us consider now in detail the probabilities in the al- graph is assigned to each plaquette with inactive variables
gorithm for substep | in which variables with the value 0 such that any active variables are connected. The graph
(holes are inactive and kept unaffected. The algorithm isweightsv(G,) are shown in Fig. 7. Contrary to substep I, we
equivalent to the one for th8=1/2 antiferromagnetic iso- have to calculate the flipping probabilities of the loops ac-
tropic Heisenberg model as far as the plaquettes with onlyording to Eq(17), since there is no symmetry similar to the
active variables are concerned. As for the plaquettes witRpin-inversion symmetry in the first algorithm.
inactive variables, a unique graph is assigned to each of them |n contrast to the conventional local-update worldline al-
such that active variables, if any, are connected to each othgorithm, simulations can be performed in either the canoni-
(see lower part of Fig. 6 It is easy to verify that the graph cal or the grand canonical ensemble, with either constant or
weightsv(G,) shown in Fig. 6 satisfy the weight equation variable magnetization in the present method. A change in
(12). In this algorithm, the weight®v,s,m:(Cp) remain un-  the particle number or the magnetization results from loops
changed upon flipping of a loop because of the spinthat wrap around the lattice in temporal direction one or
inversion symmetry of the Hamiltonian. Thus we obtain amore times. If the particle number or the magnetization
loop flipping probability of 1/2. should be fixed, we can simply disallow flipping these loops

Next, we consider the algorithm for substeddr equiva-  without violating the detailed balance condition. Since the
lently substep IIJ, where all down spins are kept unchanged.loop algorithm is no longer restricted to the subspace of a
This time, the algorithm on the active plaquettes is equivaconstant spatial winding number, a negative sign may appear
lent to the one for thes=1/2 XY model (since that is the also for the 10t-J model. However, here the sign problem is
same as the algorithm for free fermiShsather than that for not really a difficulty because it becomes less significant as
the system size becomes larger. It can also be avoided if one

ol || — Xl 1/ . chooses the subspace of constant winding number.
(G| 1 (A7 —1)/2 0 || 1 |1 |1
lima,—ar v(Gyp)|[ 1 (J/2)dr 0 1 1 1 — < e T
GP
Co wo(Cp) Wasymm(Cp) A(G,,Cp) l ] — f< I . / ..
o(Gy)[[(1 + ey 2|(e2 = 1)/2|(1—e2)/2| 1 | 1 | 1
N 1 1 1 0 1ffofofo -
lima, 4, v(G)) 1 (t/2)dr (t/2)dr 1 1 1
[ AmIlch(ATf2)| 1 1 1 oo oo G | wlC) | taymnlCy) A(Gp,Gy)
X X eA1%h(AT[2) 1 0 1 1ofo]o Il L L 1 0 1 0o lolo
[ 5 EE 1 ch(Ari) || 0 0 o ryoqo [ [ |ebcars) 1 1 1 0 0ololo
Z BN 1 sh(Art) || 0 0 ofjoj1yo 7 N |sh(ary 1 0 1 1 ololo
[ | 1 1 0 0 0 oo |1 [ Dl 1 [erranansre) 0 0 0 11olo
] ) 5({ | 1 ch(Art) 0 0 0 1{0]0
_ FIG_. 6. Plaque_tte configuratiot and graphss, for substep | XD 1 |errmsnanss) 0 0 0 0|10
(flip spin up<« spin down of thet-J model. The upper part of the N
. p . . (D 1 sh(Art) 0 0 0 0110
figure specifies the grapl@, and the freezingless solutiar(G,) i
of Eq. (12). The lower part of the figure shows the spin configura- | ! ! 0 0 0 S

tionsC, and their weights, and the functian(G,,C,), which speci-

fies whether a configuratiaf}, and a graptG, are compatible. The FIG. 7. Plaquette configuratiort}, and graphss, for substep
first six configuration€, and the solution (G,) restricted to these Il (flip spin up«+ hole) of thet-J model. The solution for substep
configurations correspond to the case of the antiferromagnetid is equivalent. The upper part of the figure specifies the gréghs
Heisenberg model. The open circles in the diagrams in the top rovand the freezingless solutiar(G,) of Eq. (12). The first six con-
represent active variables whereas solid circles stand for inactivBgurationsC, and the solution)(G,) restricted to these configura-
ones. (For the plaquette configuratiort}, in brackets, the corre- tions correspond to th¥Y model(free hardcore bosopsSee also
sponding graplG, given in the figure has to be flipped spatiglly. Fig. 6.
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IV. IMPROVED ESTIMATORS A. Simulations without sign problem

Let us now discuss “improved estimators®'They re- Let us show two examples of improved estimators for the
duce the error of measured quantities by implicitly averagingsimple case of substep | of theJ algorithm (or for the
over many configurations. In a MC simulation we construct,Heisenberg antiferromagnetWe provide a more detailed
with the loop algorithm, a series of=1, ... N configura-  discussion in Appendix B. From Eq$18) and (B4), the
tions C(') In the first Step of each |00p update we define aimproved estlmato(’multlphed by 4 fOI’ ConvenienOéor the
graphG(" that consists of a set ) of n() loops. From this spin-correlation function at momentum is

graph we can reach any member of aB&t of 2" world-

line configurations by flipping a subset of the loops. The OimprE‘l(Sf,rSf',T')impr

probability p(C’) for each of the configurationd’ e I'” is 0 if the spins are on different loops
determined by the loop flip probabilitigs;, . In the second = _ ) 21)
step one configuratiod*1) will then be chosen randomly 1 ifthe spins are on the same loop.

according to these probabilities. )
An improved estimatoiO;,, for the expectation value Rema_rkabl_y, the Iocatlons of_the loops thus_ corre_sponds
Eq. (7) can be constructed by averaging over the value irfO the spin-spin correlation function. The potential gain from

each of the 2" statesC’ e 'V that can be reached from the USINd IMproved estimators is easy to see in this clgy
takes only the values 0 and 1. Yet it has the same expectation

i) i . .
(s?tda)t.ec , instead of measuring only the value in one statevalue as the unimproved estimatmE4Sf’TSf,,T,= v
' When (O) is small[e.g.,(O)~exp(-r/¢) at larger], then
the variance ofD is
(O)=(Oimpds  Ompr= 2, O(C)P(C"),
impr. impr o ((92>—<(’)>2=1—<O>2~1, (22

1 N whereas the variance @, is
ampr:_z Oimpr: (18
Ni=1 <Oﬁnpr> - <Oimpr>2:<0impr> - <Oimpr>2%<0impr>5<o><l-

(23)
where the probabilityp(C") of the configurationC’ can be

calculated as a product of the loop flip probabilitieg, . For a given distance, the gain from using the improved
(Actually, we can choose some probabiliu)fﬁp here that is estimator appears largest at small correlation length
different from the flip probability used in the MC updates; it whereas the gain from reducing autocorrelations with the
just needs to satisfy the same detailed balance requirement l@op algorithm is largest at largé Using the improved es-
Prip - Thus there is actually a large variety of improved esti-timator_ can ther_efore reduc_e the variance, and thus the com-
mators available. puter time required for a given accuracy, by a large factor.
To really gain an improvement we need to calculate theThe nonimproved estimator may, however, have a sizeable
average over B states in a time comparable to the time amount of self-averaging frqm sqmming over all lattice sites,
needed for a single measurement. Fortunately that is pod¢hich can cancel part of this gain. _
sible. Particularly simple improved estimators can often be AN €specially simple estimator can also be den;/eg for the
found in the case thaty,=3 for all loops. In that case the uniform magnetic susceptibility  (x)=g°ugB/
above estimate simplifies to V((1DMZ, ;S ))%) by using

1 1 1
, Sl = g == w),
o, (19 27 DMEr T (Ioozpsl) [(r%nl] DM "7 2I002psl ()

¢'er® (24

as all of the states i’ now have the same probability \hich gives(x) = Ximpr) SIMply as the the sum of the square
o-n® of the temporal winding numbenss,(I) of the loopsl:

Even if the loop flip probabilities are not all equal, we can
still choose apy;, such that some loops hayg,= 3, while g’usB )
the other loops are fixed in a certain state. There are many Ximpr:TIOOEpSI w(1)“. (29
possibilities to do that. We have chosen to fix the state of a

loop with a probability of HereV is the number of spins in the latticB, is the number
of terms in the Trotter decompositio& 2 for a nearest-
Pix=|2Psip— 1| (200  neighbor chainandM is the number of Trotter time slices.
Thus VDM is the total number of spins in the classicdl (
If pap<3, the loop is fixed with probabilityy, in the old  +1)-dimensional lattice. In the single cluster variant, the
state and ifpﬂip>% in the flipped state. The spins on the sum over the loops in Eq25) is also calculated stochasti-
fixed loops are treated just as the inactive spins. The remaireally. Since there we pick a single lobpvith a probability
ing set7 ) of n’M<n loops can then be flipped with new |I|//(VDM) proportional to its sizél|, we have to compen-

probabilitiespg, = 3. sate for this extra factor and obtain

)

o N
Oimpr= 21 2
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TABLE I. Assignment of signscp,Gp(p) for substep | of theé-J model(or for the Heisenberg
model, when the bipartite transformation is not dorhe values ofscp ,Gp(p) for the plaquettes
not in the table are all equal to 1.

Cp Gp Scpygp(l) $C,.Gp (T) SCP«GP(Z) $Cp.Gp (j)
: 1 1 1 -1

1

2 1 1 1 1

I
1| Iz 1 1 1 1

MBB or to (possibly frustrated spin models on any lattice, for
xX)=—3 < i el > (26)  which
i =(— Nne
The improved estimators for more general spin and charge sign(C) =(—1)"rea (28)

correlations are derived in Appendix B. Here b,=+1 for periodic andb,=—1 for antiperiodic

boundary conditiond\, is the total particle numben, de-
B. Simulations with a sign problem notes the number of particles hopping across the boundary
In the case of simulations with a negative sign problem andNpeq are '_[he number of plaquettes with negative V\_/eight.
: ; In the canonical ensemble, we can decompose the sign as
expectation values have to be computed according t¢gxq.
Improved estimators can again help here, as they reduce the
variance, and thus the error of the sign. signo)= [l s(cy), (29
Let us restrict ourselves to the case of th& model on a plaquette
single chain, for which where the product extends over all plaquettes of the lattice.

Whenb,(—1)Nwt1=—1, the sign of a plaquette is defined
Sign(C) = (be) ™[ (— 1)Net™ 1x(— 1)Nneg (27 as

—1 ifforthet—J model eithem(C,) <0 or a particle hops across the border, but not both,
s(Cp)=1 —1 ifforaspin modelv(C,)<0
1 otherwise

(30

to satisfy Eq(29). [Whenb,(—1)Ntwt"1=1 it can be defined of the plaquette is assigned to that loop. The only nontrivial

similarly.] case is where two loops thread a plaquette. We denote these
Improved estimators can be formulated for the sign if weloops by “1” and “2.” In that case the sign of the plagquette

can express it as a product of signs of the loops: s(Cp,) has to be divided into two partss(Cp)
=S¢ ¢.(1)-S¢c ¢ (2), depending on the grapG, chosen
signc)=s, H sign(l), (31)  for t?]e ?:)Iaque{)te.pThis must be done in such a way that if one
te or both of the Iloops are flipped, the products
wheresy is the sign of the plaquettes that contain only inac- Sc, .G (1) Se (2) Sc,.G (1)-sc ¢ (2) and

tive spins. We consider only the case where the flippin .
probabilities are allpg,=1/2, since especially simple im- Cp~Gp(1) SCp’Gp(z) are equal to the sign of the plaquette

proved estimators are available there: with the spins on the corresponding loops flipp€the bars
denote flipped spins on that part of the plaqugtie Table |
we show a solution fos (p) for substep I. In the grand
sign(c” =gy 27" sign(1) + sign(| Cp:Cp
LSIGNCT) Jimpr=So- ,El;lu [signt1)+sign)]. canonical ensemble we get additional sign changes from

(32)  changes oN,y in Eq.(27). They can be assigned to the loop
This estimator is zero if at least one loop changes its sigh'hose flip causeBl, to change. Overall, an assignment like
when it is flipped. Again this is a very simple estimator. ~ EQ. (32) is possible for all three steps of the loop algorithm
The signs of the loops are constructed in the followingfor the 1D t-J model. For frustrated spin problems, signs
way: If a plaquette contains only inactive spins, its sign con-appear only in single-plaquette weights and can therefore
tributes tos;. If only one loop threads the plaquette, the signalways be assigned similar to Table I.



4312 BEAT AMMON et al. PRB 58

If we consider different geometries for theJ model, (OO 0y (Ot V. (O (to))
such as ladder systems or higher dimensional lattices, then ri)= AN 0 T (36)
sign(C) gets additional contributions from winding of fer- (0TOT)—(01)-(0')

mion worldlines inside the boundaries. In this case we ca

still use the improved estimators constructed above for the

updates of substep I, since the corresponding spin flips do ]

not change the fermion winding number. In substeps Il and Ti(zt:%_" 2 L'(t). (37)

[l more complicated improved estimators can be con- t=1

structed, at least for summing measurements over some of

the possible loop flips. However, it is probably sufficient to  In the MC simulation, we have calculatefj, by grouping

have an improved estimator for one of the substeps, in orddhe N measurements into bins of lengthl =N/n and com-

to already obtain most of the possible reduction in variancesputing the bin averagesOy(l)=11 El-b':(b,l),ﬂ(’)(l), b
In a similar way we can also measure equal time particle=1, ... n. Then we have calculated the variance of these

particle and spin-spin correlations, the magnetic susceptibilayeragesd, (1) of bin lengths!:

ity and other observables. As an example we present the

improved estimator for the uniform susceptibility in substep 1 _
| of the algorithm (or for pure spin modejs If no loop a(I)ZIEZ [O(1)—0O]? (38
changes the sign of configurati@” upon flipping, then we b=1
have and the autocorrelation time can be estimatet as
o gPub 2
(SigN ) mer=—, - SIOMCD) X wy(h2 (33) 2= 170 (39
loopsl e £ (1) int 20(1)2’

If exactly two loops kndI” change the sign, itis the expectation value of which becomes equat;tp given

g2’ by Eq.(37) in the limit of | - . As a function of increasing

(Sign X) o= :\? signC)wy(w(1”), (34  bin lengthl, 7i(1) is generally a nondecreasing function.
When statistical independence is approached, the increase

and it is zero if one or more than two loops change the signceases and the expectation valuerg{!) approaches a con-

As this improved estimator requires one to know the sigrstant value(Note that with a finite numbeN of measure-

change of a set of looggll those whose flip is considered in ments, the estimate fcnf?,t will fluctuate increasingly wheh

constructing the improved estimatpa multi cluster algo- is increased. The asymptotic constant value was our esti-

rithm is advantageous. The improved estimators for morenate forri,. We have taken bin lengtHs=1,2,4,8 . . ..

general correlation functions are derived in Appendix B. For a comparison of the autocorrelation timés we also
need to give our definitions of “one MC step” for both
V. RESULTS algorithms. In the conventional plaquette flip algorithm, the

) _ lattice is subdivided into four sublattices, which allow the
_ We will now discuss the performance of the new algo-gimytaneous modification of all sites of the sublattice. In a
rithm by comparing the errors and autocorrelation times Ofjngle MC step we sequentially attempted to update all sites
the local update method and the loop update with and withyt 5 syplattice, which is generally called one “sweep” over
out improved estimators. We will consider four examples: &g |attice. For one sweep with the loop-algorithm, we chose
singlet-J chain, two coupled-J chains, and three coupled one of the three steps |, II, and Iil at random and chose
t-J cha?ns(these are the first MC simulations for coupled graphsG, for all plaquettes. This results in a complete de-
t-J chaing, and a frustrated Heisenberg model on a single;omposition of the lattice into loops. We then attempted to
chain. flip each loop. All our simulations were done in the canoni-
cal ensemble. In general we have perfornde- 2.5x 10°
A. Autocorrelation times MC steps for the loop algorithm antl=30x10° to 70
We have determined the integrated autocorrelation times¢10° MC steps for the plaquette flip algorithm. Despite
79, of our new algorithm applied to &J chain. Let us first these very long simulation times we found casesly for
give the details on how we have calculated these times. L€ conventional algorithin where 7i(1) keeps increasing
0 be the estimate of the observalgiein the ith step of asa function of the bin sizk In these cases we toolﬁt(l)
our MC procedure. It can be either the simple estimator o@s & lower bound for Eq37) with the largestl where a
the improved estimator. As usual, we estimate the value oftatistically reliable estimate is still possible.
an observabl® by Eq.(7) as an average over thellemea- Since the value of{;, depends strongly on the observable
surements[We do the same for the nominator or denomina-O, we have calculated, for the internal energy, the static
tor of Eq.(8).] The error of the estimate is//N— 1, where ~ charge-charge correlations

L

25 0 n2_ 2 1 i
o ZTlnt(O 09). (35) Sc(k)zt% elk(j m)<(nj,1+nj,1)(nm,T+nm,L)>v (40)
The autocorrelation time, is given by the autocorrelation .

functionI"(t), and the spin-spin correlations



PRB 58 QUANTUM MONTE CARLO LOOP ALGORITHM FOR THE ... 4313

10000

(a) O L=16, J/t=1
1000 OL=16, J/=2
FQAA AL=64, JA=1
O L=64, J/t=2

100 E—f

)
l_SE
10000 T T T 100000
(b) O L=16, Jit=1 (c) 0 L=16, Jfi=1
O L=16, J/t=2 0O L=16, Ji=2
1000 f % » E 10000 |
A L=64, J1=1 A L=64, JA=1
gﬁ O L=64, J/t=2 © L=64, JA=2
— 100 ] — 1000 | )
' '
< <
) 2}
PE 10 I_—! l-iE 100
. —
0 . . . : : : :
0 10 20 30 0 10 20 30
Bt Bt

FIG. 8. Integrated autocorrelation timesg, for the one-dimensionatJ model at quarter-band filling on a lattice bf=16 sites with
A7t=0.25, and. =64 sites withA 7t =0.125. The results of the plaquette flip algorithm is shown with open symbols, the results of the loop
algorithm with filled symbols. For the loop algorithm we took antiperiodic boundary conditions, for the plaquette flip algorithm we used the
zero-winding boundary conditioa) showsr;,; for the internal energy(p) for charge-charge correlatios atk= kg = 7/4 and(c) spin-spin
correlationsS; at k=kg . The arrows denote measurements wheges only a lower bound, see text for details. The loop algorithm gains
orders of magnitude in computational effort over the traditional plaquette flip algorithm, with increasing gains at low temperatures and for
large systems.

L cessfully, saving orders of magnitude in computational
Ss(k)=f2 elki=m(srsr ) (41)  effort
Lim y=ms ’

B. Improved estimators

In Fig. 8 we showr(; as a function of the inverse tem-  Next we show some results and the effect of improved
peratureg for a singlet-J chain. We have performed simu- estimators for the-J chain, obtained with the multicluster
lations on a smaller lattice, with=16 sites and\7t=0.25  algorithm. The results of the measurements can be seen in
and on a larger lattice with =64 sites and\ 7t=0.125. Al Table IIl. We have considered different correlation functions,
measurements have been performed at quarter-band fillingich as the spin-spin and charge-charge correlations. For all
and for ratios ofJ/t=1 and 2. observed quantities, the variance is reduced with the appli-

For the loop algorithm we obtained valuesmf between  cation of improved estimators. The variance of the improved
one and 15 for all observables and all parameter values. Esneasurements is up to a factor of 1.7 smaller than without
pecially, there is no significant increase gf; with increas-  the use of improved measurements. Note that in the unim-
ing B. This is in contrast to the conventional algorithm, proved measurements, we have measured the correlation
where 7 is between 100 and 1000 for the internal energy,functions from each lattice site. Thus here we can have large
but even larger than 10 000 for the spin-spin correlationsself-averaging when summing the correlation measurements
We have to point out here that the valuesrgffor the larger  over the large lattice, which cancels part of the gain from
lattice with the conventional algorithm are most likely poor improved estimators.
lower bounds of the real autocorrelation timeg, since we In order to investigate the improved estimators for simu-
have not been able to reach a plateau #pg(l) in these lations with a sign problem, we have simulated a simple
cases. Obviously the loop algorithm is especially effective infrustrated spin system, namely, the Heisenberg chain with
reducing the autocorrelation times for the spin-spin correlanearest- and next-nearest-neighbor interactions. With the no-
tions. Thus our new algorithm for thteJ model works suc- tations of Eqg.(1) the Hamiltonian reads
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TABLE Il. Results for thet-J chain: Comparison of improved ) and unimproved ) measurements for the single chaid model.
The measured quantities are the internal enerdiie charge-charge correlatioBg k= w/4), the spin-spin correlatiorg(k= 7/4), and the
real-space spin-spin correlationsratL/8 andr=L/4. We have considered a system with periodic boundary conditions and 64Jsites,
=t, BJ=16, A7t=0.125. The number of particles, are 32 and 48. For comparison, we show in the last two rows the results for the
Heisenberg chain of the same lenglib), at 3J=16. We performed 100 000 updates for each simulation.

Model Alg. e Error S| k= %) Error Ss(k: %) Error (SiSH(L,g)) Error <Sisi+(L/4)> Error

n,=32 U -0.75295 0.000292 0.28284 0.00053 0.78092  0.00202 0.00533 0.00015 0.00088 0.00011
n,=32 | -0.75254 0.000277 0.28238 0.00045 0.78012 0.00161 0.00535 0.00012 0.00086 0.00008
n,=48 U -0.81528 0.000322 0.23708 0.00066  0.71221  0.00096 0.01046 0.00029 0.00220 0.00021
n,=48 | -0.81563 0.000288 0.23636 0.00056  0.71135 0.00072 0.01078 0.00022 0.00230 0.00016
hb U -1.38017 0.00046 0.67635  0.00151 0.04659 0.00064 0.00761 0.00054
hb | -1.37965 0.00037 0.67480 0.00105 0.04739 0.00053 0.00797 0.00044

. . C. Two-legt-J ladder
Hyy=2 (3§-S:1+3'S-S 2. (42)
I

As an example of the loop algorithm for thlieJ model
beyond a single chain, we show the results of a calculation

. . _ _ for the magnetic susceptibility of theJ ladder®? In Fig. 9,
We have implemented this model by the continuous tim&, e show a graphical representation.

Iokglg?talg?rltrljm. For |th|s mr(])del we htave LO. l;sg alfmlte ?rqtb— These are the first QMC calculations feld ladder sys-
aré;ngﬁlitorfolriggggng(rsage E?gr;_egtsémi; tlhn;palle?)r?thlrw €tems. For the Trotter-Suzuki breakup, we have split the
P y g% 9 Hamiltonian into bond terms, so that again we obtained a

's not ergodic(and no negative sign will appgarThe sign odel on a checkerboardlikdaquettelattice, and our loop

problem is very severe here. Even with a relatively wea . .
frustrating coupling ofJ=100' we have obtainedsign) algorithm could be applied unchanged. We have performed

=0.0054+0.0007 forgJ=0.1 on 20 sites. Note that we are Simulations with two holes and’ =t'=4J=4t, whereJ’

able to reliably measure a sign this small. In Table 1l we@ndt’ are the interactions on each rung, ahandt are those
show the results for improved and unimproved measure@/ong the legs. This parameter regime is dominated by the
ments of the sign, for different values of the freezing faetor Strong coupling limit)’>J,t. In this limit, we have a simple
and temperatures af/J=0.1 andT/J=0.2. The errors and and intuitive picture, following Refs. 33,34. The undoped
the improvement due to the improved estimators depends dadder consists of weakly coupled singlet pairs formed on the
the value of the freezing factar, in this case the optimal rungs[Fig. 10a)]. A single hole doped in such a ladder will
value ise~0.2. The improved estimators perform better asstay in either a bonding or antibonding orbital on a rung,
the sign decreases, and the ratio of the errors of the improvewhile the rest of the system will remain unchandgédg.

and the conventional measurements increases as the tempeté&b)]. The energy of the lower-lying bonding orbital is
ture is lowered. Note that the factor of the improvement ofgiven to first order by the cost of breaking a baidand a
1.75 leads to a reduction of a factor three in CPU time.  kinetic energy gain ot’ along the rung and along the

TABLE lll. Results for the frustrated Heisenberg chain. Improved and unimproved measurements of the
sign for theJ-J’ Heisenberg model on 20 sites fdr= 101" for different values of the freezing rati® and
BJ=0.1 andBJ=0.2. In the last column, we show the ratio of the errors between the improved and the
unimproved errors.

T/J € Improved sign Error Unimproved sign Error Ratio

0.1 0.1 0.00587 0.00109 0.00651 0.00162 1.48622
0.1 0.2 0.00535 0.00075 0.00570 0.00133 1.76066
0.1 0.3 0.00581 0.00084 0.00536 0.00146 1.74388
0.1 0.4 0.00479 0.00084 0.00379 0.00134 1.60041
0.1 0.5 0.00444 0.00105 0.00390 0.00148 1.41069
0.1 0.7 0.00614 0.00223 0.00638 0.00263 1.17623
0.2 0.1 0.08953 0.00201 0.08985 0.00243 1.20779
0.2 0.2 0.08681 0.00151 0.08632 0.00195 1.29734
0.2 0.3 0.08933 0.00152 0.08886 0.00202 1.32511
0.2 0.4 0.08387 0.00166 0.08250 0.00222 1.33664
0.2 0.5 0.08564 0.00219 0.08465 0.00256 1.16866

0.2 0.7 0.08290 0.00372 0.08259 0.00400 1.07410
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FIG. 9. Schematic picture of thteJ ladder with two legs andl > ~ Y Y
rungs. The couplings along the rung dreandt’, those along the
ladder direction ard andt. 7?7?4’;%?:;*”%?7?7?7?k
(c)
ladder direction. Two holes on the same rung also break one —i—i—i—i—i—u—i—i—i—i—
bondJ’, but their kinetic energy gain is only of the order of
4t2/3' [Fig. 100)]. e A N~
Hence the total energy of two unpaired holes in the ladder —yHAHHAR YA Y HGHY A
is of the order ofE(0)+2J' —2t' — 2t [Fig. 10d)], while (d) _*_$_4_$_*_$_*_+_*_$_
two holes bound on a single rung have an energ¥ @) VEVAVEAVEVEAVEVEVEVEVY

+J’ in first order, whereE(0) is the energy of the corre- i _ _

sponding Heisenberg ladder. We can therefore expect that FIG. 10._ Graphical represehtathn _o/f the low-lying states of the

the two holes in the parameter region considered in thid-J ladder in the strong coupling limid’>J,t. (a) The undoped

simulation remain unpaired and thus two of the rungs willcaS€ With a ground-state energy0). (b) A single hole goes either

stay in a doublet state. The low-temperature Curie law idnto the bon.d'ng or a.m'bonq'ng.orb'tal’ fhe ,ener.gy .Of the ladder
. — . with a hole in a bonding orbital i&(0)+J’'—t'—t in first order.

then given byx=2[s(s+1)/3T]. In Fig. 11 we show our X . R,

. - . ) Two holes on a single rung, witB(0)+J’ in first order.(d)
r_es_ults, whlch_ are in excellent agre_ement with the expecte wo holes on different rungs, with an ener@(0)+2J’ —2t’
limit of 4T x/site=1/16 for two unpaired holes and 16 rungs _,,
asT—0. A more physically realistic parameter regionlis
=J=t/3=1t'/3. Then two holes form a bound state in their the two even-parity channet8.At small doping, all holes
ground statdFig. 10(d)]. Unfortunately the sign problem is enter the Luttinger liquid and repel each other, while the spin
much worse in this region. liquid remains undoped.

The energy gapr between the odd-parity channel and the
even-parity spin liquid states have been calculated by exact
diagonalization of very small ladders of onlyx® sites in

Several studies show that the ladders with an even nunRef. 36. Using the QMC loop algorithm we are able to esti-
ber of legs behave completely differently than those with armate the energy gap between odd and even-parity chan-
odd number of legd®35%n this paragraph we will concen- nels for much larger ladders. We have considered three-leg
trate on the three-leg-J-ladder. The couplings along the t-J ladders of 3<40 sites doped with one hole. We have
legs (t, J) and the couplings perpendicular to tt (J') are  assumed periodic boundary conditions along the ladder and
assumed to be equak=t" andJ=J’. setJ/t=0.5. With this choice of parameters, we reach tem-

At low hole doping, the three-leg ladder consists of twoperatures down t@t=7. Below this temperature the sign is
components: a conducting Luttinger liquid in the channelsmaller than 0.01. Note that the sign of the MC simulations
with odd parity under reflection about the center leg, coexof theset-J ladders is not sensitive to the length of the lad-
isting with an insulatindi.e., undopegspin liquid phase in  der, but only to their width, the number of doped holes, and

D. Three-legt-J ladder

. 1.00
t-J ladder, L=16, J'=t =4J=4t
06 |
204 A
K 5 010 }
= 7
~r
02
t-J ladder, L=16, J’=t'=4J=4t
-
0.0 = . 0.01 L L L
0.0 0.5 1.0 0 5 10 15 20
TIt Bt

FIG. 11.t-J ladder:(a) Magnetic susceptibility of the-J ladder withd’ =t’ =4J=4t and two holes on 16 rungs, for temperatures down
to T=t'/16 compared to the undoped casg < 32). (b) average sign for the doped case.
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two-band model also in the case of a long ladder. Therefore,
considering the density of states, the expectation value of
. Neenter legC@N be calculated as a function of the temperaiure
and compared to the MC results. From this one can get an
estimate of the gap between the odd and even parity band
in a long ladder:

] A~0.255)t=0.51)J (J/t=0.5). (43)

< ncenterleg >
o
w
T

This fit is shown in Fig. 12 and is reasonable at low tempera-
JA=0.5 tures only. At higher temperatures other bands have to be
considered too. For this fit of the low-energy model results to
the MC data all other parameters®%,, n&" and the
bandwidths of the two ban@i@re assumed to be equal to
T/t those of a X8 ladder. But even if these paramaters are
FIG. 12. Temperature dependence of the probability of the holé/aned in a physically regsonable range, Fhe _mﬂnardly
to be located on the center legeneregOf @ three-legt-J ladder changes. The value Obta'neq far[Eq. 43] is blgger t_har?
doped with one hole. The filled circles are the QMC loop data for athat of th9363>< 6 ladder, obtained by exact diagonalization
3x 40 cluster and the zero-temperature valdmond is calcu- (A =0.18).”” This difference may result either from strong
lated for a 3<8 cluster using exact diagonalizatioRef. 37. The finite-size effects in the small clusters or from the fact that
dashed line shows the fit calculated by a low-energy two-bandhe low-energy model described above is not so precise in
model. the temperature range where it was used for fitting the MC
results.

0.2

o
-
N
w

the fractionJ/t. In the temperature range considered, finite-

size effects folL. =40 are negligible. VI. CONCLUSIONS
Figure 12 shows the probabilitficener g Of the single . . .

hole to be located on the center leg of the three-leg ladder. At In this paper we have introduced a loop algorithm for

high temperatures the hole is uniformly distributed over the>mulations oft-J type models and discussed the use of im-

ladder. Therefore the densitie e, oS equal to 1/3. At zero proved estimators, especially the use of improved estimators
. enter leg .

ey’ for models with a sign problem.
temperature, however, the hole is in the lowest state of the We found many significant improvements for the loop

odd-parity channel and is dominantly on one of the outer : . : )
legs. The densitcener iegAt T =0 S ONly Noeryer 6=0.2 for @ algorithm compared to previous local updating MC algo

3% 8 ladder’ rithms. The loop algorithm is fully ergodic for any geometry
At a el : but finite t ¢ ther stat ith th of the lattice, without the introduction of any additional up-
very low, but finite temperatures other states with T edating procedure. With the loop algorithm it is possible to

hole in the odd-parity channel also have nonvanishin

. . rform simulations in the canonical or grand canonical en-
weight in the thermal average. As these states all have Ogé:mble, with fixedconstant winding numbgor free mag-
parity, the densitynenier 1giS SUPPressed and clearly smaller

. ) netization in a natural way.
than 1/3. F'gl.”e 12 shows that ?t .h|gher temperatuTes, The most important improvement of the loop algorithm is
>1/7, Neenter 1eglS larger than 1/3. This is caused by admixture

. . . ?ertainly the great reduction of the autocorrelation time
of higher-lying even-parity channel states. _The sharp drop Hve have shown examples in Sec. V, where for the param-
Neenter Iegpelo‘ﬁ’T/t:IO-5 shows tlhe dec&e.:;lr?]lng weight cg the oters studied, the reduction is up to four orders of magnitude.
even-parity channel states &ss lowered. The gap canbe g gain will increase further for larger systems and lower

estimated from the MC data using a simple two-band 10w+ heratures. This huge reduction of the autocorrelation

energy model. times allows to stud i
. . y much bigger systems at much lower
The two lowest-lying bands of a>88 ladder doped with o heratures than before with the same amount of computer
one hole are shown in Fig. 5 of Ref. 36. The states belonging o
to the lowest-(second-lowestlying band are of oddeven The loop algorithm for thet-J model can also be ex-
parity. These two bands approximately have cosine form§

. dd . . . .
wave functions dyans and dyang in a first approximation.  of the |oops. For some new terms it might be favorable to
Then the probability of the hole to be located on the Ce”teEhange the weights (G,). The loop algorithm is easily
leg for all states in the oddeven parity band is constant 5qapted to other lattice geometries. This can be done simply

Sggepengeennt of the wave vecté) and equiljdto(ze\x}alue by changing the underlying geometry of the lattice in the

center (Ncente) Which is determined only bybyans (dyand-  simulation and introducing corresponding additional terms in

From the exact diagonalization of ax®8 ladder one sees the Trotter decomposition.

that the approximation of & independenn®%d_ (n2") is With the loop algorithm it is also possible to perform

valid within 10%, and one gets an estimands%.~0.2 and  simulations in the continuous time limkr—0 (see Appen-
nven ~0.45% Since this situation is not supposed to changedix A). Therefore, we can eliminate the errors due to the
gualitatively as the length of the ladder gets longer, the low{inite time step\ 7 without making simulations for different

temperature behavior afener egCan be described by this values ofA7 and extrapolating ta 7=0 afterwards. Again
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we can save a large amount of computer time compared tsituation is therefore equivalent to a radioactive decay pro-
discrete time simulations. cess with “decay constantX. This decay constant depends
The use of improved estimators further reduces the varien the spin configuration and can change only at the time
ance of measured quantities. The introduction of improvedtepsr, where there is a change in the configuration. We
estimators also for models with a sign problem allows thehave listed the decay constants in Figs. 4, 6, and 7 together
investigation of many new systems with this method, e.g.with the probabilities for finiteA 7.
frustrated spin problems. We have presentddladders and Instead of deciding at each infinitesimal time step d
a frustrated Heisenberg model as examples. The reduction @fhether or not the loop “decays(i.e., jumps to another
the variance by the improved estimators depends very muckite with probability d we calculate a “decay time” after
on the model and the observable under consideration. For thehich the loop “decays” to a neighboring site. As the decay
systems we have studied here, the improved estimatorsrocesses to the various neighbors of a site are independent
helped to reduce the variance of the observables by abowute can calculate independent decay times for each of these
one-third. “decay channels.” A special case is the finite number of
Although we can simulate much bigger systems muchime points where a world line jumps to a neighbor. These
faster than before with these new techniques, the sign prolare treated like in the discrete time algorithm. There the loop
lem still remains and limits the application of the loop algo- has to jump to the neighboring site. This is called a “forced
rithm to systems where the negative sign problem is not toaecay” in Ref. 16.
severe. We have shown examplestaf ladder systems in The loop flip probabilities also have a well-defined con-
Sec. V. Despite this drawback for higher-dimensional fer-tinuous time limit. In substep | they are always 1/2, which
mion systems, many new problems that are far beyond thkolds even in the continuous time case. The only nontrivial
scope of previous local MC techniques can be tackled due tprobabilities are in steps Il and Ill. There are two contribu-
the advantages of these new simulation techniques. tions from the weightsv,qmn{C,). The forced decays con-
tribute ratios such as
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APPENDIX A: LOOP ALGORITHM i (72 ]-T—l-[B) c L B A2
IN CONTINUOUS IMAGINARY TIME fim L Wasymn) Col it iz ][ (A2)

In this appendix we briefly review the main idea behind
the continuous time formulation of the loop algoritfhand
how it can be used for thed model. The continuous time (19— 11 1B)M

. . . 2771
version depends on the fact that the loop algorithm is well lim 11 ch(tﬁ) —1 (A3)
defined even in the limiA 7—0. All the probabilities for Mo 120 M
choosing graph&, have well-defined values in this limit.

Note that forA 7— 0 the frequency of a worldline hopping (1971 1AM
from one S|_te to :_:mother tends tofiaite limit, becau;e the lim H eJ(ﬁ/ZM)Ch<J£) =l 2 (A4)
number of time slices where such a hop can occur is propor- Moo =0 M
tional toA 71, and the hopping probabilities are of the order
O(A 7). In the continuous time formulation a configuration is Thus the forced decays contribute terms lik2t or 2t/J and
therefore best specified through the time valagat which  the straight pieces just contribute the classical Ising weights
the spin configuration changes, as well as the initial configuef the worldline segments.
ration at the timer=0. This way of specifying the configu- While this continuous time algorithm is more complex to
ration reduces the memory requirements by about an order @fnplement than the discrete time version, it has two signifi-
magnitude compared to a discrete time implementation at aant advantages. One advantage, mentioned already above, is
typical value ofA . that the memory requirements are reduced by up to an order

We now describe the continuous time limit of the loop of magnitude, depending on the implementation. This is cru-
construction. In the discrete time implementation we loopcial if one wants to simulate huge systems, where memory
over all time slices and decide the graph segments for eaatonstraints become the restricting factor.
plaquette on this time slice. The main advantage is, however, that in the continuous

In the continuous time limit we need a new procedure.time algorithm there is no systematic error associated with a
We note that the probability for having a graph segment thafinite time stepA 7. In the discrete time algorithm this sys-
forces the loop to “jump” to another site is proportional to tematic error could be controlled by simulating for several
the infinitesimal time stepd p=\dr. The probability for  values of the time step 7 and then extrapolating tA7=0.
continuing straight on is 2 O(dr), on the other hand. The In our experience this need to run several simulations makes

In particular
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TABLE IV. Improved estimators fospin correlationsin the t-J model and in pure spin models, for simulations with a sign problem,
from Egs.(B6,B7) in the casgy,=1/2.

Only loop| changes sign Both loops change sign Any other loop changes sign
Step | or pure spin models
Both spins active
Spins on different loops 0 sigbfo o’ 0
Spins on same loop 0 — 0
One or both spins inactive 0 — 0
Step Il and 11l
Both spins active
Spins on different loops +3signC)(o* 1) signC)(c+3)(o' = 3) 0
Spins on same loop signC)[+% (o+0')— 3] —
Spin g’ inactive *signC)(o* 5)o’ —

the discrete algorithm about a factor 4—8 slower, dependind@he equation for the cases where one or both spins have been

on the hardware platform and implementation. fixed, either because they are inactive in th& model algo-
rithm or because the loop has been fixed, are straightforward.
APPENDIX B: IMPROVED ESTIMATORS ) Let us nfow make the aboyle e_snmatc:jr; mortt)a specm;:. rI]n
FOR CORRELATION EUNCTIONS the case of a pure spin Hamiltonian and in substep | of the

. ) . ) t-J algorithm we havepﬂip=% ando=—o. In this case the
In thIS appendlx we ShOW |mpr0Ved estimators fOI’ Charge'improved estimators are Very Simp|e, name'y,
and spin-correlation functions. First we consider the spin-
correlation functior(Sf’TSf,’T) between two spins at sites
andr’ and at imaginary times and 7', respectively. The (S Tsf/ impr=
improved estimator is o

0 if the spins are on different loops
oo’ ifthe spins are on the same loop.

(B4)
> S A0S, .(O)p(C). (B1)  [Moreover, for the Heisenberg antiferromagnet, we have
cer® =+(—)o’ when the spins are located on the sa(uliéfer-

As each spin can be on one loop only, this sum can b&NY sublatticés).] For substeps Il and Ill of the algorithm the
simplified substantially. If the two spins are afifferent estimators are shghtly_dlfferent. There the flipping probabili-
loops it is ties are not equal, and=*+ 1 — o, as we change umown)
spins into holes and vice versa. In this case the improved
(B2) estimators Eqs(B2,B3) look more complex but can be sim-
plified by fixing some loops so that the remaining flipping
probabilities are alpg,=1/2. The spins on the fixed loops
are treated just as inactive spins.
S Similar improved estimators can be used for charge-
charge correlations

[(1— prip) o+ Pripor ][ (1— Pfip) o’ + pf’Iip;,]a

whereo is the value of theS/ _ in the original state€ "), and

o the value in a state where the loop containing the spin i
flipped. The flip probability of this loop is given by, .
Similarly the primed symbols refer to the other spin. If both
spins are on theameloop it is

— > nA0n . (C)p(0) (B5)
[(1=Pphip) oo’ +Ppgipoa’] (B3) cer®

TABLE V. Improved estimators focharge correlationsn substeps Il and 1l of thé-J model algorithm,
for simulations with a sign problem, from Eq®6,B7), for the casepy,=1/2. (The improved estimators are
trivial for substep

Only loop| changes sign Both loops change sign Any other loop changes sign

Both spins active
Spins on different loops  sign(¢) 2 (n— 3) signC)(n— 3)(n'— %) 0
Spins on same loop signC) 3 (n+n’—1) — 0

Spinn’ inactive signC)(n— 3)n’ - 0
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with a suitable reassignment of¢.” They are trivial for [(1 prip(1)signl) o+ pf||p(|)SI9r(|)U]
substep | or pure spin models, since then only spin degrees
of freedom are changed For steps Il and Ill the occupation<[(1— Prip(1"))sign(1”) o’ + pgip(1’ )S|gr(I Yo']
numbemn changes to=1—n, because these steps exchange
a hole with an up or down spin. We see that the calculatio — . (i) ]sian(i (i) sion(i)
of improved estimators of correlation functions can be perr—l)<S megg.,.r e Prip(1) 181N+ P (1) sigN(l )
formed with effort similar to that for the nonimproved esti-
mators.
For simulations with a sign problem similar improved es-
timators can be derived. For the two-site spin or chargein simulations with a sign problem it is of advantage to have
correlation functions two different cases have to be distin-all flipping probabilitiespy(i) = 1/2. Then the last term in
guished: Both spins are on the same Idopr they are on the Eqgs.(B6) and (B7), the productlli{[ 1— pgp(i) Isign()
two different 'Ioopsl,_ I". If they are on the same loop, the +prip(i)sign(i)}, vanishes if one of the loops changes its
improved estimator is sign, which makes the estimators simple. If no loops flip
) , o their sign, the improved estimators are equivalent to the
{[1—Ppup(D]signl) oo’ +pep(h)signl) oo’} X s above onegEgs. (B2,B3)]. The only other two cases with
nonzero improved estimators occur if one or both of the
X H {{[1- pﬂ,p(|)]S|gr(|)+pﬂ,p(|)3|gr(|)} (B6) loops going through the spins under consideration change

(B7)

loopsi #1 their sign. These improved estimators are presented in Tables

In the second case it is IV and V.
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