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Two-center s-f Slater-Koster integrals
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~Received 30 January 1998!

Two-center Slater-Koster integrals may be expressed as linear combinations of simpler polynomials that can
either be factored or are of lower power in the direction cosines. This structure facilitates their tabulation and
manipulation, as illustrated here by providing the complete set ofs-f two-center integrals in this manner, as
well as values of theirm,m8-matrix dot products. The latter provide useful constraints for testing analytic or
coded forms of these functions. These dot products also define a transformed two-center expansion which
provides more convenient treatment of crystal-field terms.@S0163-1829~98!02032-3#
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I. INTRODUCTION

Two-center Slater-Koster integrals1 are an important com
ponent of tight-binding total-energy representations, wh
are increasingly used to provide realistic forces
molecular-dynamics simulations.2 They also remain usefu
for providing an efficient parametrization of one-electr
band structure.3 These integrals describe the way that cert
one-electron matrix elements vary as a function of the dir
tion between two different sites about which the real atom
orbitals or potentials involved are centered. Slater and Ko
first tabulated these functions for ans-d basis.1,4 Subse-
quently, Lendi5 gave tables for thes f, p f , and d f cases;
Sharma6 provided selected integrals involvingf andg orbit-
als; while Takegahara, Aoki, and Yanase7 gave the complete
set of l f integrals,l< f , although for a basis of cubic har
monics rather than the more usual real spherical harmo
@Re(Ylm), Im(Ylm), m>0# used by Lendi and Sharma
The values of the two-center integrals can also be calcul
numerically from general formulas;5–9 however, especially
for molecular-dynamics applications, it is essential to hav
very efficient evaluation which favors coding of the ind
vidual polynomial forms for each integral. A difficulty asso
ciated with addingf states to the standards-d tabulation1,4 is
the fact that the number and complexity of the functio
increases significantly.

The purpose of the present paper is to note the inte
structure of the Slater-Koster integrals which facilitates th
tabulation and manipulation by expressing them as lin
combinations of simpler polynomials that can either be f
tored or are of lower power in the direction cosines. To
lustrate these features, the complete set ofs-f
two-center integrals are presented in this manner, us
the more customary real spherical-harmonic ba
@Re(Ylm), Im(Ylm), m>0#, which is more apt to be use
by band-structure codes than cubic harmonics. Values
also given for them,m8-matrix dot products between th
Slater-Koster functions which provide important bas
independent constraints that are useful for testing either
analytic or coded functions. These dot products also defin
PRB 580163-1829/98/58~8!/4293~11!/$15.00
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transformed two-center expansion that greatly facilita
treatment of site-energy and crystal-field terms.

The two-center Slater-Koster integrals will be denoted
gm( lm,l 8m8,R̂) in this paper, and also referred to more d
scriptively as geometric functions given their fundamen
structural nature. They are most simply understood in te
of a diatomic molecule, where

^0lmuHuRl 8m8&5(
m

gm~ lm,l 8m8,R̂!^0lmuHuRl 8m&,

~1!

5(
m

gm~ lm,l 8m8,R̂!t l l 8m~R!, ~2!

with m50, . . . ,l min , l min[min(l ,l 8), and R[uRu, R̂
[R/R. Here u0lm& is an atomic orbital centered about on
atom at the origin, characterized by angular momentuml and
a magnetic quantum numberm quantized as usual about th
z axis; and similarly foruRl 8m8& at the other atom atR. H is
an operator such as the one-electron Hamiltonian. Equa
~1! represents an expansion of these orbitals in terms
atomic orbitalsu0lm& anduRl 8m8&, quantized about the bon
axis R. Given axial symmetry,̂ 0lmuHuRl 8m8& is nonzero
only for m5m8, and independent of the sign ofm. With
appropriate definition of thegm( lm,l 8m8,R̂), the expansion
in Eq. ~1! need therefore only involve non-negative values
m, customarily denotedm5s,p,d,f, . . . . Thematrix ele-
ment^0lmuHuRl 8m&5t l l 8m(R) is also a function only of the
distance between the atoms and not their relative orientat
Thus Eq. ~2! serves to separate structural and mater
specific dependencies of the matrix elemen
^0lmuHuRl 8m8&, into the geometric functions
gm( lm,l 8m8,R̂) and what in the solid are called hoppin
parameterst l l 8m(R), respectively. The former are products
rotation group matrix elements when the two orbitals a
defined in terms of spherical harmonics and the fullm range
is used. This simple structure is spoiled except form5s
4293 © 1998 The American Physical Society
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4294 PRB 58A. K. McMAHAN
when real orbitals and the non-negativem range are desired
This is the case considered by Slater and Koster,1 and is of
interest here.

The two-center expansion becomes an approximation
the solid,

^0lmuHuRl 8m8&'(
m

gm~ lm,l 8m8,R̂!t l l 8m~R!, ~3!

where infinitesimal rotation symmetry about the bond axis
lost and the orbitalsuRlm& may be Wannier functions which
are no longer exact eigenfunctions of the angular momen
about the site atR. A more formal interpretation10,11 of this
approximation is provided by noting that the geometric m
trices gm( l ,l 8,R̂)[@gm( lm,l 8m8,R̂)# for m5s, . . . ,l min
provide an orthogonal matrix basis for@(2l 11)3(2l 8
11)#-dimensionalm,m8 matrices. The two-center expan
sion @Eq. ~3!# is then just a decomposition of a givenm,m8
matrix into components ‘‘along’’ these orthogonal ‘‘direc
tions,’’ just as a vector is expressed as a sum of itsx, y, and
z components. Equation~3! is an approximation only be
cause this matrix basis is in general incomplete. Nonethe
the hopping parameterst l l 8m(R) are precisely defined by pro
jection of ^0lmuHuRl 8m8& onto the existing basis matrices

t l l 8m~R!5~22dms!21 (
m,m8

gm~ lm,l 8m8,R̂!

3^0lmuHuRl 8m8&, ~4!

where use has been made of the orthogonality relations10

gm~ l ,l 8,R̂!•gn~ l ,l 8,R̂!

[ (
m,m8

gm~ lm,l 8m8,R̂!gn~ lm,l 8m8,R̂!

5~22dms!dmn . ~5!

In the remainder of this paper, definitions and conventio
associated with presentation of the geometric functi
gm( lm,l 8m8,R̂) are noted in Sec. II. Section III then give
theses-f functions as linear combinations of simpler pol
nomials, denotedD i( lm,l 8m8,R̂), which are tabulated. This
simplification also facilitates calculation of the matrix d
products,gm( l ,l 8,R̂1)•gn( l ,l 8,R̂2), which are polynomials in
R̂1•R̂2 , and are given for alls-f cases. These dot produc
provide powerful constraints which are useful for testi
coded Slater-Koster integrals. They also define a transfor
tion of the two-center expansion which offers a more con
nient treatment of site-energy and crystal-field terms. T
transformation is given for thes-f case in Sec. IV. Finally, a
brief summary is given in Sec. V.

II. DEFINITIONS AND CONVENTIONS

The usual real linear combinations of spherical harm

ics, Ȳlm , are used in this paper,

Ȳl05Yl0 ,
in

s

m

-

s,

s
s

a-
-

is

-

Ȳl ,2m215
~21!m

A2
~Ylm1Ylm* !, ~6!

Ȳl ,2m5
~21!m

iA2
~Ylm2Ylm* !

for 0<m< l . Except for these three equations, the magne
quantum numberm is taken elsewhere in this work over th

larger range 0<m<2l to describeȲlm and their associated
geometric functions. In particular thel -s geometric functions
are just

gs~ lm,s,R̂!5A 4p

2l 11
Ȳlm~R̂!, ~7!

as listed in Table I. While it has also been customary to w
the direction cosines as (l ,m,n), this creates confusion with
the frequent use ofl andm as angular and magnetic quantu
numbers in this work. Therefore, throughout this paper,
notationR̂5(x,y,z) is used for the direction cosines whe
this triple is normalized to unity,x21y21z251.

Tables of the polynomialsD i( lm,l 8m8,R̂), used to define
gm( lm,l 8m8,R̂), are presented here forl> l 8, rather than the
more standardl< l 8 limit, in order to provide a consisten
tabulation while avoiding the need to split up thep-f andd-f
matrices due to the practical limitations of column and pa
width. Note, however, that the matricesgm( l ,l 8,R̂) and
gm( l 8,l ,R̂) are transposes of one another in this paper, i.

gm~ lm,l 8m8,R̂!5gm~ l 8m8,lm,R̂!, ~8!

and similarly forD i . The sign change for oddl 1 l 8 in the
overall matrix element,

TABLE I. Column vectorsgs( l ,s,R̂)[@gs( lm,s,R̂)# in terms

of the direction cosinesR̂5(x,y,z), where x21y21z251. Row

vectorsgs(s,l ,R̂) are given by the transpose. Note that the custo
ary real linear combinations of spherical harmonics are j

Ȳlm(R̂)5A(2l 11)/4pgs( lm,s,R̂).

m,l 0 1 2 3

0 1 z 1
2~3z221! 1

2~5z223! z

1 x A3 xz A 3
8 ~5z221! x

2 y A3 yz A 3
8 ~5z221! y

3
A3

2
~x22y2!

A15

2
~x22y2! z

4 A3 xy A15 xyz

5 A 5
8 ~x223y2! x

6 A 5
8 ~3x22y2! y
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^0l 8m8uHuRlm&5~21! l 1 l 8^0lmuHuRl 8m8&, ~9!

must then come fromt l 8 lm5(21)l 1 l 8t l l 8m , which is consis-
tent with the interpretation oft l l 8m(R);^0lmuHuRl 8m&. It
may be more convenient in computer codes to include
sign factor as part of thegm( lm,l 8m8,R̂), so as to not worry
about the index order in the hopping parameters. Even
note that the present matrix elementsgm( lm,l 8m8,R̂) for l
< l 8, obtained via Eq.~8!, are in agreement with those o
Slater and Koster,1,4 Lendi,5 and Ref. 7 and are appropria
for use witht l l 8m’s of customary sign conventions.

III. TABULATED GEOMETRIC MATRICES

The two-center Slater-Koster geometric matric
gm( l ,l 8,R̂), m5s, . . . ,l min may be conveniently given a
linear combinations of an equal number of@(2l 11)3(2l 8
11)#-dimensional matrices,Di( l ,l 8,R̂):

gm~ l ,l 8,R̂!5 (
k50

l min

cmk~ l ,l 8!Dl 1 l 822k~ l ,l 8,R̂!. ~10!

Here the indexi 5 l 1 l 822k also indicates the highest powe
of the direction cosines which appears in the matrix eleme
of Di( l ,l 8,R̂). Furthermore,

Dl 1 l 8~ l ,l 8,R̂![gs~ l ,l 8,R̂!5gs~ l ,s,R̂! gs~s,l 8,R̂!;
~11!

that is,

D l 1 l 8~ lm,l 8m8,R̂![gs~ lm,l 8m8,R̂!

5gs~ lm,s,R̂!gs~s,l 8m8,R̂!, ~12!

noting thatgs( l ,l 8,R̂) may be factored into the product o
the column vectorgs( l ,s,R̂) multiplied by the row vector
gs(s,l 8,R̂). Thus, given the simple structure ofDl 1 l 8 , one
need only tabulate matricesDi which involve lower powers
of the direction cosines, by 2, 4, and so on. Moreover, fol
5 l 8, one of thel 11 matricesDi is D051, i.e., just the
identity.

The matricesD i( l ,l 8,R̂) were calculated analytically in
this work using the tabulations of Slater and Koster1,4 for s-d
states, and those of Refs. 5 and 7 for thel f cases, with the
last appropriately transformed to correspond to the pre
basis. While a recent paper by Kolla´r and Ujfalussy9 pro-
vides aMATHEMATICA ~Ref. 12! code for obtaining the poly-
nomial forms of the Slater-Koster integrals, a more crude
effective approach was used here to obtain the polynom
D i( l ,l 8,R̂) in a numerical fashion as a test of the analy
derivations. All Slater-Koster geometric functions as well
the linear combinations definingD i were numerically calcu-
lated using general formulas13 on a;800-point mesh on the
direction cosine surfacex21y21z251, and the results fit by
least squares to polynomials inxiyjzk with k<1. The root-
mean-square deviations in these fits were in all cases o
order of the machine round-off error demonstrating the co
pleteness of the representation. The resultant coefficients
powers were easily converted to analytic forms, with fact
is

o,

s

ts

nt

t
ls

s

he
-
nd
s

of x21y2 generally replaced by 12z2. There was complete
agreement among all analytic and numerically derived po
nomials except for two of Lendi’sd f expressions, as note
in Ref. 5, which are also inconsistent with Ref. 7. As
additional test, the polynomialsD i tabulated here, as well a
the associated geometric functionsgm , were coded, and nu
merical calculations then performed of the matrix dot pro
ucts Di( l ,l 8,R̂1)•Dj ( l ,l 8,R̂2) and gm( l ,l 8,R̂1)•gn( l ,l 8,R̂2).
A random direction was taken forR̂1 , while R̂2 was sampled
over the above-mentioned mesh, and a least-squares fit m
to the results as a function ofR̂1•R̂2 . These numerical poly-
nomials also agreed with the analytically derived dot prod
functions. As an indication of the power of these dot-prod
constraints, a single sign error in one of the Slater-Kos
integrals can change the root-mean-square deviation of s
a fit from machine round-off error, 10213–10215 for the
workstation used here, toO(1021), for example.

In the remainder of this section,gm are defined in terms o
the polynomialsDi , which are tabulated. The method us
here was briefly outlined at the end of the Appendix in R
10 for just the s-d case; however, no polynomials wer
tabulated. Matrix dot products are given for bo
Di( l ,l 8,R̂1)•Dj ( l ,l 8,R̂2) and gm( l ,l 8,R̂1)•gn( l ,l 8,R̂2),
which are functions ofR̂1•R̂2 . The latter reduce to the or
thogonality relations@Eq. ~5!# for R̂15R̂2 . Note that the
abbreviation

x[R̂1•R̂25x1x21y1y21z1z2 , ~13!

is used throughout this section, where each direction trip
(x,y,z) is normalized to unity.

A. l -s matrices

The two-centerl -s geometric matrices are given in Tab
I, with dot products for different directions given by

gs~ l ,s,R̂1!•gs~ l ,s,R̂2!55
1, l 5s

x, l 5p

1
2 ~3x221!, l 5d

1
2 ~5x223!x, l 5 f .

~14!

B. p-p matrices

The two-centerp-p geometric matrices may be written

gs~p,p,R̂!5D2~p,p,R̂!,
~15!

gp~p,p,R̂!52D2~p,p,R̂!1D0~p,p,R̂!,

TABLE II. Matrix dot productsDi(p,p,R̂1)•Dj (p,p,R̂2) and

gm(p,p,R̂1)•gn(p,p,R̂2), wherex[R̂1•R̂2 .

i j Di•Dj m n gm•gn

0 0 3 s s x2

0 2 1 s p 12x2

2 2 x2 p p 11x2
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where

D2~p,p,R̂![gs~p,s,R̂!gs~s,p,R̂!, ~16!

D0~p,p,R̂![1. ~17!

The matrix dot products for different directions are given
Table II.

C. d-p matrices

The two-centerd-p geometric matrices may be written

gs~d,p,R̂!5D3~d,p,R̂!,
~18!

gp~d,p,R̂!52
2

A3
D3~d,p,R̂!1D1~d,p,R̂!,

where

D3~d,p,R̂![gs~d,s,R̂!gs~s,p,R̂!, ~19!

andD1(d,p,R̂) is defined in Table III. The matrix dot prod
ucts for different directions are given in Table IV.

D. d-d matrices

The two-centerd-d geometric matrices may be written

gs~d,d,R̂!5D4~d,d,R̂!,

gp~d,d,R̂!52 4
3 D4~d,d,R̂!1D2~d,d,R̂!1D0~d,d,R̂!,

~20!

gd~d,d,R̂!5 1
3 D4~d,d,R̂!2D2~d,d,R̂!,

TABLE III. The matrix D1(d,p,R̂)[@D1(dm,pm8,R̂)# in

terms of the direction cosinesR̂5(x,y,z), wherex21y21z251.

D1(p,d,R̂) is given by the transpose.

m,m8 0 1 2

0
2

A3
z 2

1

A3
x 2

1

A3
y

1 x z 0

2 y 0 z

3 0 x 2y

4 0 y x

TABLE IV. Dot products Di(d,p,R̂1)•Dj (d,p,R̂2) and

gm(d,p,R̂1)•gn(d,p,R̂2), wherex[R̂1•R̂2 .

i j Di•Dj m n gm•gn

1 1 10
3 x s s 1

2x~3x221!

1 3
2

A3
x s p 2A3 x~x221!

3 3 1
2 (3x221)x p p 2x3
where

D4~d,d,R̂![gs~d,s,R̂!gs~s,d,R̂!, ~21!

D2(d,d,R̂) is defined in Table V, and

D0~d,d,R̂![1. ~22!

The matrix dot products for different directions are given
Table VI.

E. f -p matrices

The two-centerf -p geometric matrices may be written

gs~ f ,p,R̂!5D4~ f ,p,R̂!,
~23!

gp~ f ,p,R̂!52A3
2 D4~ f ,p,R̂!1 1

2 D2~ f ,p,R̂!,

where

D4~ f ,p,R̂![gs~ f ,s,R̂!gs~s,p,R̂!, ~24!

andD2( f ,p,R̂) is given in Table VII. The matrix dot prod-
ucts for different directions are given in Table VIII.

TABLE V. The matrixD2(d,d,R̂)[@D2(dm,dm8,R̂)# in terms

of the direction cosinesR̂5(x,y,z), wherex21y21z251.

m,m8 0 1 2 3 4

0 z22
2
3

1

A3
xz

1

A3
yz 2

1

A3
~x22y2! 2

2

A3
xy

1
1

A3
xz 2y2 xy xz yz

2
1

A3
yz xy 2x2 2yz xz

3 2
1

A3
~x22y2! xz 2yz 2z2 0

4 2
2

A3
xy yz xz 0 2z2

TABLE VI. Dot products Di(d,d,R̂1)•Dj (d,d,R̂2) and

gm(d,d,R̂1)•gn(d,d,R̂2), wherex[R̂1•R̂2 .

i j Di•Dj m n gm•gn

0 0 5 s s 1
4 (3x221)2

0 2 2
5
3 s p 23x2(x221)

0 4 1 s d 3
4 (x221)2

2 2 1
9 (21x222) p p 4x423x211

2 4 1
3 (3x222) p d 2x411

4 4 1
4 (3x221)2 d d 1

4 (x416x211)
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F. f -d matrices

The two-centerf -d geometric matrices may be written

gs~ f ,d,R̂!5D5~ f ,d,R̂!,

gp~ f ,d,R̂!52A2 D5~ f ,d,R̂!1
1

2
D3~ f ,d,R̂!1

1

2
D1~ f ,d,R̂!,

~25!

gd~ f ,d,R̂!5
1

A5
D5~ f ,d,R̂!2A2

5 D3~ f ,d,R̂!,

TABLE VII. The matrix D2( f ,p,R̂)[@D2( f m,pm8,R̂)# in

terms of the direction cosinesR̂5(x,y,z), wherex21y21z251.

D2(p, f ,R̂) is given by the transpose.

m,m8 0 1 2

0 A 3
2 ~3z221! 2A6 xz 2A6 yz

1 4xz 1
2 ~5z222x221! 2xy

2 4yz 2xy 1
2 ~5z222y221!

3 A 5
2 ~x22y2! A10 xz 2A10 yz

4 A10 xy A10 yz A10 xz

5 0
A15

2
~x22y2! 2A15 xy

6 0 A15 xy
A15

2
~x22y2!
where

D5~ f ,d,R̂![gs~ f ,s,R̂!gs~s,d,R̂!, ~26!

andD3( f ,d,R̂) andD1( f ,d,R̂) are defined in Tables IX and
X, respectively. The matrix dot products for different dire
tions are given in Table XI.

G. f -f matrices

The two-centerf -f geometric matrices may be written

gs~ f , f ,R̂!5D6~ f , f ,R̂!, ~27!

gp~ f , f ,R̂!52 3
2 D6~ f , f ,R̂!1 5

8 D4~ f , f ,R̂!1 5
8 D2~ f , f ,R̂!

1 5
8 D0~ f , f ,R̂!,

gd~ f , f ,R̂!5 3
5 D6~ f , f ,R̂!2D4~ f , f ,R̂!,

gf~ f , f ,R̂!52 1
10 D6~ f , f ,R̂!1 3

8 D4~ f , f ,R̂!2 5
8 D2~ f , f ,R̂!

1 3
8 D0~ f , f ,R̂!,

where

D6~ f , f ,R̂![gs~ f ,s,R̂!gs~s, f ,R̂!; ~28!

TABLE VIII. Dot products Di( f ,p,R̂1)•Dj ( f ,p,R̂2) and

gm( f ,p,R̂1)•gn( f ,p,R̂2), wherex[R̂1•R̂2 .

i j Di•Dj m n gm•gn

2 2 7(3x221) s s 1
2 (5x223)x2

2 4 A 3
2 (3x221) s p 2A 3

8 (5x221)(x221)

4 4 1
2 (5x223)x2 p p 1

4 (15x426x221)
TABLE IX. The matrix D3( f ,d,R̂)[@D3( f m,dm8,R̂)# in terms of the direction cosinesR̂5(x,y,z),

wherex21y21z251. D3(d, f ,R̂) is given by the transpose.

m,m8 0 1 2 3 4

0
1

A2
~4z223!z A 3

2 xz2 A 3
2 yz2 2A6 ~x22y2!z 22A6 xyz

1
A3

2
~3z221!x

1
2 ~x225y2!z 3xyz ~

5
2 z22x21y2!x

1
2 ~5z224x2!y

2
A3

2
~3z221!y 3xyz 1

2 ~y225x2!z 2~
5
2 z21x22y2!y

1
2 ~5z224y2!x

3 0 A 5
2 ~z222y2!x 2A5

2 ~z222x2!y A 5
2 ~122z2!z 0

4 0 A 5
2 ~122y2!y A 5

2 ~122x2!x 0 A 5
2 ~122z2!z

5
A5

2
~3y22x2!x

A15

2
~x22y2!z 2A15 xyz 2

A15

2
xz2

A15

2
yz2

6 2
A5
2

(3x22y2)y A15 xyz
A15
2

(x22y2)z 2
A15
2

yz2 2
A15
2

xz2



in

as
t
ro
e

ts

er

m
ites

f

a
by
is
e

ma-
rms

nal
de-

ed

led

-
ts

n

4298 PRB 58A. K. McMAHAN
D4( f , f ,R̂) and D2( f , f ,R̂) are defined in Tables XII and
XIII, respectively, and

D0~ f , f ,R̂![1. ~29!

The matrix dot products for different directions are given
Table XIV.

IV. TRANSFORMED GEOMETRIC MATRICES

A transformation of the geometric matrices and their
sociated two-center expansion greatly simplifies treatmen
site-energy and crystal-field contributions to the one-elect
Hamiltonian. This transformation has been given elsewh
for ans-d basis, as has a detailed discussion of its benefi10

Here, it is presented for the extendeds-f basis, and related to

TABLE X. The matrixD1( f ,d,R̂)[@D1( f m,dm8,R̂)# in terms

of the direction cosinesR̂5(x,y,z), where x21y21z251.

D1(d, f ,R̂) is given by the transpose.

m,m8 0 1 2 3 4

0
3

A2
z 2A 3

2 x 2A3
2 y 0 0

1 A3 x 2z 0 2
1
2 x 2

1
2 y

2 A3 y 0 2z 1
2 y 2

1
2 x

3 0 A 5
2 x 2A5

2 y A 5
2 z 0

4 0 A 5
2 y A 5

2 x 0 A 5
2 z

5 0 0 0
A15

2
x 2

A15

2
y

6 0 0 0
A15

2
y

A15

2
x

TABLE XI. Dot products Di( f ,d,R̂1)•Dj ( f ,d,R̂2) and

gm( f ,d,R̂1)•gn( f ,d,R̂2), wherex[R̂1•R̂2 .

i j Di•Dj m n gm•gn

1 1 35
2 x s s 1

4~5x223!~3x221!x

1 3 2
7
2 x s p 2

3

A8
~5x221!~x221!x

1 5
3

A2
x s d

A45

4
~x221!2x

3 3 1
2 ~24x2213!x p p 1

2 ~15x4216x215!x

3 5
1

A2
~4x223!x p d 2A5

8 ~3x211!~x221!x

5 5 1
4 (5x223)(3x221)x d d 1

4 (3x4110x225)x
-
of
n
re
.

the matrix dot products given in Sec. III.
To review the motivation for the transformation, consid

the intrasite matrix element

^0lmuHu0l 8m8&'« ld l l 8dmm8

1 (
R,m

RÞ0

gm~ lm,l 8m8,R̂!x l l 8m~R!,

~30!

whereH is the one-electron Hamiltonian,« l is a site energy,
and x l l 8m(R) are crystal-field parameters which arise fro
two-center expansion of one-electron potential terms at s
RÞ0. In contrast to the intersite matrix elements, Eq.~30!

involves geometric matrices for different directions,R̂,
which spoils the orthogonality relations@Eq. ~5!#. That is,
projection of ^0lmuHu0l 8m8& onto gm( l ,l 8,R̂) for somem

andR̂ will in general still yield terms involving all values o
m. Moreover, for l 5 l 8, gm( l ,l ,R̂) are not orthogonal to
@dmm8#, so that crystal-field and site-energy terms mix in
complex manner. Both shortcomings may be rectified
what is in effect a ‘‘rotation’’ of the set of geometric bas
matrices,gm , m5s, . . . ,l min , to use the language of th
discussion below Eq.~3!. In the l 5 l 8 case, for example, the
transformed two-center expansion based on the rotated
trices exhibits a clean separation between crystal-field te
which contribute to ^0lmuHu0l 8m8& as coefficients of
@dmm8#, and those which serve as coefficients of orthogo
matrices. The former are responsible for environmental
pendence of what are really the effective site energies,« l
plus crystal-field contributions, that are customarily obtain
from fits to band structure.10

The transformation is defined by diagonalizing a sca
dot-product matrix

@Mmn#[@cmgm~ l ,l 8,R̂1!•gn~ l ,l 8,R̂2!cn#,

where the scaling factorscm[(22dms)21/2 are related to the
normalization of gm , and serve to make the remain
ing part of the transformation unitary. The dot produc
gm( l ,l 8,R̂1)•gn( l ,l 8,R̂2) are the polynomials inx[R̂1•R̂2
given in Sec. III. Viewed as functions ofx, each linearly
independent term in

f mn~x![cmgm~ l ,l 8,R̂1!•gn~ l ,l 8,R̂2!cn

defines a separatem,n matrix, the set of which can be show
to all mutually commute for a givenl ,l 8. This means that a
single fixed unitary transformation can diagonalize@Mmn#

for all directionsR̂1 and R̂2 . If the transformed quantities
are indicated by tildes and indicesa,b in place ofm,n, then

g̃a~ l ,l 8,R̂!5(
m

Uamcmgm~ l ,l 8,R̂!, ~31!

g̃a~ l ,l 8,R̂1!•g̃b~ l ,l 8,R̂2!

5(
m,n

Uamcmgm~ l ,l 8,R̂1!•gn~ l ,l 8,R̂2!cnUbn } dab,

~32!
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TABLE XII. The matrix D4( f , f ,R̂)[@D4( f m, f m8,R̂)# in terms of the direction cosinesR̂5(x,y,z),
wherex21y21z251.

m,m8 0 1 2

0 3
5~5z224!z2

A6

5
~5z222!xz

A6

5
~5z222!yz

1
A6

5
~5z222!xz 2

2
5 x22

1
2 ~5y223x2!z2 2

5 ~10z221!xy

2
A6

5
~5z222!yz

2
5 ~10z221!xy 2

2
5 y22

1
2 ~5x223y2!z2

3 2A3
5 ~x22y2!z2

1

A10
~6z228y221!xz 2

1

A10
~6z228x221!yz

4 2A 12
5 xyz2

1

A10
~2z228y213!yz

1

A10
~2z228x213!xz

5 A 18
5 ~3y22x2!xz

A15

2
~x22y22

7
5 x41

6
5 x2y21y4! A 3

5 ~4y224z221!xy

6 A 18
5 ~y223x2!yz A 3

5 ~4z224x211!xy
A15

2
~x22y22x42

6
5 x2y21

7
5 y4!

m,m8 3 4

0 2A3
5 ~x22y2!z2 2A12

5 xyz2

1
1

A10
~6z228y221!xz

1

A10
~2z228y213!yz

2 2
1

A10
~6z228x221!yz

1

A10
~2z228x213!xz

3 ~223z2!z224x2y2 2~x22y2!xy

4 2~x22y2!xy 2~2z221!214x2y2

5 2A 3
2 ~2z221!xz A 3

2 ~2z221!yz

6 2A 3
2 ~2z221!yz 2A 3

2 ~2z221!xz

m,m8 5 6

0 A 18
5 ~3y22x2!xz A 18

5 ~y223x2!yz

1
A15

2
~x22y22

7
5 x41

6
5 x2y21y4! A 3

5 ~4z224x211!xy

2 A 3
5 ~4y224z221!xy

A15

2
~x22y22x42

6
5 x2y21

7
5 y4!

3 2A 3
2 ~2z221!xz 2A3

2 ~2z221!yz

4 A 3
2 ~2z221!yz 2A 3

2 ~2z221!xz

5 3
2 ~z221!z2 0

6 0
3
2 ~z221!z2
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TABLE XIII. The matrix D2( f , f ,R̂)[@D2( f m, f m8,R̂)# in terms of the direction cosinesR̂5(x,y,z),
wherex21y21z251.

m,m8 0 1 2

0 2
5~3z221!

A6

5
xz

A6

5
yz

1
A6

5
xz

3
10~124y21z2! 6

5 xy

2
A6

5
yz

6
5 xy 3

10~124x21z2!

3 2A 3
5 ~x22y2!

3

A10
xz 2

3

A10
yz

4 2A12
5 xy

3

A10
yz

3

A10
xz

5 0 2A 3
20~x22y2! A 3

5 xy

6 0 2A3
5 xy 2A 3

20~x22y2!

m,m8 3 4 5 6

0 2A3
5 ~x22y2! 2A12

5 xy 0 0

1
3

A10
xz

3

A10
yz 2A 3

20~x22y2! 2A 3
5 xy

2 2
3

A10
yz

3

A10
xz A 3

5 xy 2A 3
20~x22y2!

3 0 0 A 3
2 xz A 3

2 yz

4 0 0 2A3
2 yz A 3

2 xz

5 A 3
2 xz 2A 3

2 yz 2
1
2 ~3z221! 0

6 A 3
2 yz A 3

2 xz 0 2
1
2 ~3z221!
of
al

d

wherecm[(22dms)21/2 andUam is the~real! unitary trans-
formation that insures Eq.~32!. Note that in spite of this
mutual orthogonality foraÞb, the matricesg̃a( l ,l 8,R̂1) and
g̃b( l ,l 8,R̂2) are not in general identical fora5b. Rather, the
transformation partitions the space
@(2l 11)3(2l 811)#-dimensional matrices into orthogon
subspaces, in one of which lie all theg̃0( l ,l 8,R̂) for different
directions,R, and in another all of thea51 matrices, and so
on.

For l< l 8< f , relation ~31! between the transformed an
original geometric functions is

g̃pp05~gpps1gppp!/A3, ~33!

g̃pp15~2gpps2gppp!/A6,
g̃pd05~A3 gpds2gpdp!/A5,

g̃pd15~2gpds1A3 gpdp!/A10,

g̃dd05~gdds1gddp1gddd!/A5,

g̃dd15~6gdds24gddp1gddd!/A70,

g̃dd25~2gdds1gddp22gddd!/A14,

g̃p f05~2A2 gp fs2A3 gp fp!/A14,

g̃p f15~A3 gp fs1A2 gp fp!/A7,
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TABLE XIV. Matrix dot products Di( f , f ,R̂1)•Dj ( f , f ,R̂2) and gm( f , f ,R̂1)•gn( f , f ,R̂2), where x

[R̂1•R̂2.

i j Di•Dj m n gm•gn

0 0 7 s s 1
4 (5x223)2x2

0 2 0 s p 2
3
8 (5x221)2(x221)

0 4 2
7
5 s d 15

4 x2(x221)2

0 6 1 s f 2
5
8 (x221)3

2 2 42
25(3x221) p p 1

16(225x62305x41111x211)

2 4 6
25(3x221) p d 2

5
8 (9x422x211)(x221)

2 6 2
5 (3x221) p f 15

16(x211)(x221)2

4 4 1
25(220x42186x2125) d d 1

4 (9x6110x4215x214)

4 6 3
5 (5x224)x2 d f 2

3
8 (x416x211)(x221)

6 6 1
4 (5x223)2x2 f f 1

16(x4114x211)(x211)
i-
I.
al

de
n

th

,

g̃d f05~2A5 gd fs2A10 gd fp1gd fd!/A42,

g̃d f15~2A2 gd fs1gd fp2A10 gd fd!/A30,

g̃d f25~3gd fs12A2 gd fp1A5 gd fd!/A35,

g̃f f 05~gf f s1gf f p1gf f d1gf f f!/A7,

g̃f f 15~20gf f s215gf f p16gf f d2gf f f!/A924,

g̃f f 25~6gf f s1gf f p27gf f d13gf f f!/A154,

g̃f f 35~4gf f s13gf f p25gf f f!/A84,

where we have abbreviatedg̃l l 8a[g̃a( lm,l 8m8,R̂), and
similarly gll 8m[gm( lm,l 8m8,R̂). It is straightforward to
verify the orthogonality of these functions for different d
rections@Eq. ~32!#, using the matrix dot products of Sec. II
For the same direction, these matrices are orthonorm
g̃a( lm,l 8m8,R̂)•g̃b( lm,l 8m8,R̂)5dab . For l 5 l 8, note also
that

g̃0~ lm,lm8,R̂!5
1

A2l 11
D0~ lm,lm8,R̂!5

1

A2l 11
dmm8 ,

~34!

which uniquely identifies those crystal-field parameters,
noted below byx̃ l l 0(R), which contribute to the one-electro
Hamiltonian in the same way as the site energies.10,11

If the transformed crystal-field parametersx̃ l l 8a(R) are
defined as projections onto the new geometric matrices,

x̃ l l 8a~R!5(
m

Uam cm
21 x l l 8m~R!, ~35!

and the two-center expansion is automatically preserved
,

-

en

(
a

g̃a~ lm,l 8m8,R̂!x̃ l l 8a~R!

5(
m

gm~ lm,l 8m8,R̂!x l l 8m~R!. ~36!

The transformed crystal-field parameters are given by

x̃pp05~xpps12 xppp!/A3, ~37!

x̃pp15~xpps2xppp!A2/3,

x̃pd05~A3 xpds22 xpdp!/A5,

x̃pd15~xpds1A3 xpdp!A2/5,

x̃dd05~xdds12 xddp12 xddd!/A5,

x̃dd15~3 xdds24 xddp1xddd!A2/35,

x̃dd25~xdds1xddp22 xddd!A2/7,

x̃p f05~2 xp fs2A6 xp fp!/A7,

x̃p f15~A3 xp fs12A2 xp fp!/A7,

x̃d f05~A5 xd fs2A10 xd fp1xd fd!A2/21,

x̃d f15~A2 xd fs1xd fp2A10 xd fd!A2/15,

x̃d f25~3 xd fs14A2 xd fp12A5 xd fd!/A35,

x̃ f f 05~x f f s12 x f f p12 x f f d12 x f f f!/A7,

x̃ f f 15~10x f f s215x f f p16 x f f d2x f f f!/A231,

x̃ f f 25~3 x f f s1x f f p27 x f f d13 x f f f!A2/77,
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x̃ f f 35~2 x f f s13 x f f p25 x f f f!/A21,

where we have suppressed theR dependence of these func
tions.

While the discussion in this section has focused on
site-energy and crystal-field terms, the transformation p
sented here also has some relevance to the intersite ho
terms. In particular, it is interesting to note that thes:p:d
ratios among the bare canonical structure constants in
linear muffin-tin orbital method14 are the same as the ratio
of coefficients in Eq.~33! for one particular value ofa or
another; e.g., in thedd case, 6:24:1 corresponds toa51.
The significance of this fact is clear at least forl 5 l 8, where
there is a direct mapping of Andersen’s canonical ba
theory onto a nonorthogonal tight-binding problem, with t
bare canonical structure constant ratios implying similar
tios of the hopping parameters.11 This in turn implies that the
pp anddd hopping parameters in canonical band theory
of pure a51 character according to the transformation
this section. Given the success of canonical band theory,
for structural trends in the transition metals,15 this raises the
possibility that the transformation discussed here may m
naturally segregate the hopping parameterst̃ l l 8a(R) in terms
of relative importance than is the case for the conventio
t l l 8m(R).

V. SUMMARY

The two-center Slater-Koster integrals, denoted here
gm( lm,l 8m8,R̂), are important components of tight-bindin
total-energy representations routinely used now withs-d
bases. Extension tos-f bases has been hindered in part
the increased number and complexity of the resultant a
lytic functions of the directionR̂. This paper has shown tha
these and all of thes-f integrals may be represented as line
combinations of simpler and more manageable polynom
in the direction cosines, and by this means provided a
V

f

s

f

e
-

ing

he

d

-

e
f
g.,

re

al

y

a-

r
ls
ll

listing of the Slater-Koster integrals in polynomial form fo
an s-f basis.

This treatment has also facilitated calculation of the m
trix dot products,

gm~ l ,l 8,R̂1!•gn~ l ,l 8,R̂2!

5 (
m,m8

gm~ lm,l 8m8,R̂1!gn~ lm,l 8m8,R̂2!,

which are functions ofR̂1•R̂2 and provide rather strong con
straints useful for testing tabulated or coded Slater-Kos
integrals. Moreover, the dependence of these dot product
m andn points to a transformation of the Slater-Koster int
grals and the associated two-center expansion which gre
simplifies the treatment of crystal-field terms in tight-bindin
representations.

Underlying both this and earlier work10,11 is the perspec-
tive that the matricesgm( l ,l 8,R̂) for m5s, . . . ,l min are in
general an incomplete, orthogonal basis for the space
@(2l 11)3(2l 811)#-dimensionalm,m8 matrices. This per-
spective and the kind of dot products calculated here o
obvious possibilities for improving the two-center approx
mation without losing its existing virtues, by simply expan
ing this basis beyondm5 l min with matrices orthogonalized
to the existing set. Values for the additional tight-bindin
parameters could be easily obtained from projections suc
Eq. ~4!. The critical question is whether or not such para
eters would exhibit a useful degree of transferability, whi
along with the choice of the expanded geometric basis
trices is a natural area for future research.
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