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Two-center Slater-Koster integrals may be expressed as linear combinations of simpler polynomials that can
either be factored or are of lower power in the direction cosines. This structure facilitates their tabulation and
manipulation, as illustrated here by providing the complete satfofwo-center integrals in this manner, as
well as values of theim,m’-matrix dot products. The latter provide useful constraints for testing analytic or
coded forms of these functions. These dot products also define a transformed two-center expansion which
provides more convenient treatment of crystal-field tef86163-18208)02032-3

I. INTRODUCTION transformed two-center expansion that greatly facilitates
treatment of site-energy and crystal-field terms.
Two-center Slater-Koster integralare an important com- The two-center Slater-Koster integrals will be denoted by

ponent of tight-binding total-energy representations, whichg,,(Im,| 'm’,R) in this paper, and also referred to more de-

are increasingly used to provide realistic forces forscriptively as geometric functions given their fundamental

molecular-dynamics simulatiodsThey also remain useful structural nature. They are most simply understood in terms
for providing an efficient parametrization of one-electronof a diatomic molecule, where

band structuré.These integrals describe the way that certain

one-electron matrix elements vary as a function of the direc- .

tion between two different sites about which the real atomic  (OIm[H|RI'm")=2> g,(Im,I'm’,R)(0l u[H|RI" u),

orbitals or potentials involved are centered. Slater and Koster " 1)
first tabulated these functions for amd basis* Subse-

quently, Lendi gave tables for thesf, pf, anddf cases;

Sharmé provided selected integrals involvirfgandg orbit- _ A

als; while Takegahara, Aoki, and Yan&sgve the complete —2}} gpu(Im,I"m". Ryt -, (R), 2

set ofIf integrals,|<f, although for a basis of cubic har-
monics rather than the more usual real spherical harmonic‘ﬁ. o , _ 2

: ith «=0,... min, lmn=min(l,I’), and R=|R|, R
[Re(Yim), IM(Yim), m=0] used by Lendi and Sharma. =R/R. Here|0Im) is an atomic orbital centered about one

The values of the two-center integrals can also be calculated - :
. 9 . atom at the origin, characterized by angular momentamd
numerically from general formulas® however, especially

. L o . a magnetic quantum numbar quantized as usual about the
for molecular-dynamics applications, it is essential to have g

- . : : "~ 'z axis; and similarly fofRI’m’) at the other atom &. H is
very efficient evaluation which favors coding of the indi- Lo .
) . i - an operator such as the one-electron Hamiltonian. Equation
vidual polynomial forms for each integral. A difficulty asso-

ciated with adding states to the standasdd tabulatiort is (1) represents an expansi,on of these orbitals in terms of
the fact that the number and complexity of the functionsfm.)mIC orpﬁaliOIH) and|RI”u'), quantized abput the bond
increases significantly axis R. Given axial symmetry{Ol u|H|RI’'x") is nonzero

The purpose of the present paper is to note the internaﬁnly for_,u=,u ' ?hd independent of the sign of. W't_h
structure of the Slater-Koster integrals which facilitates thei@Ppropriate definition of thg,(Im,I'm’,R), the expansion
tabulation and manipulation by expressing them as lineal? Ed. (1) need therefore only involve non-negative values of
combinations of simpler polynomials that can either be fac+. customarily denotegv=o,,6,4, . ... Thematrix ele-
tored or are of lower power in the direction cosines. To il-Mment(0l u[H[RI" u)=t;.,(R) is also a function only of the
lustrate these features, the complete set sff distance between the atoms and not their relative orientation.
two-center integrals are presented in this manner, usinghus Eq.(2) serves to separate structural and material-
the more customary real spherical-harmonic basigPecific dependencies of the matrix elements,
[Re(Ym), IM(Y|m), M=0], which is more apt to be used (OIM|H|RI'm’), into  the  geometric  functions
by band-structure codes than cubic harmonics. Values amg,(Im,I'm’,R) and what in the solid are called hopping
also given for them,m’-matrix dot products between the parameters;,,(R), respectively. The former are products of
Slater-Koster functions which provide important basis-rotation group matrix elements when the two orbitals are
independent constraints that are useful for testing either thdefined in terms of spherical harmonics and the fulange
analytic or coded functions. These dot products also define i@ used. This simple structure is spoiled except for o
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when real orbitals and the non-negatjvaange are desired.  TABLE I. Column vectorsg,(l,s,R)=[g,(Im,s,R)] in terms
This is the case considered by Slater and KCfSEHd is of of the direction Cosineﬁ:(x’y’z), where x2+ y2+ 722=1. Row
interest here. _ ~ vectorsg,(s,|,R) are given by the transpose. Note that the custom-
The_two-center expansion becomes an approximation iy real linear combinations of spherical harmonics are just

the solid, Y, (R) = V2T T D)lamg, (Im.s,R).

(Olm[H|RI'm")~>, g, (Im,I'm" Rty ,(R), (3 ™! 0 1 2 3

M

o . 0 1z 2(32-1) 2(572-3)2
where infinitesimal rotation symmetry about the bond axis is
lost and the orbital§RIm) may be Wannier functions which 1 X V3 xz \/g (522—1) x
are no longer exact eigenfunctions of the angular momentum
about the site aR. A more formal interpretatio** of this 2 y 3yz 2 522-1)y
approximation is provided by noting that the geometric ma-
trices g,(I,I",R)=[g,(ImI'm",R)] for u=o,...lnn g 3o, 3 V15, 3
provide an orthogonal matrix basis fdr(2l+1)x (2’ 2 x*-y 2 (x*=y) 2

+1)]-dimensionalm,m’ matrices. The two-center expan-

sion[Eq. (3)] is then just a decomposition of a givemm’ 4 V3 xy V15 xyz
matrix into components “along” these orthogonal “direc- -
tions,” just as a vector is expressed as a sum of,itg, and 5 \/; (x*=3y?) x
z components. EquatiofB) is an approximation only be-
cause this matrix basis is in general incomplete. Nonetheless,

J P 8 VE@e-y)y

the hopping parametets ,(R) are precisely defined by pro-
jection of (OIm|H|RI'm’) onto the existing basis matrices,

tru(R1=(2=0,0) " X g,(ImI'm',R)

;o _Cyn \
YI,melzT(Ylm"'Ylm , (6)
x{(Olm[H|RI"'m’), (4) 2
where use has been made of the orthogonality reldflons — (=™ .
YI,ZmZW(YIm_YIm
g.(LI",R)-g,(1,I",R) _ _
for 0O=m=I. Except for these three equations, the magnetic
= g, (m,I'm",R)g,(Im,1'm",R) quantum numbem is taken elsewhere in this work over the
m,m larger range &m=2I| to describeY,,, and their associated
eometric functions. In particular thes geometric functions
=(2=8,0)8,,- 5 3o P g
just
In the remainder of this paper, definitions and conventions 2
iated with presentation of the geometric functions M=/ (R
associate g,(Im,s,R)=\/ 5771 Yim(R), Y

gﬂ(lm,l’m’,li) are noted in Sec. Il. Section Il then gives

theses-f functions as linear combinations of simpler poly- as Jisted in Table I. While it has also been customary to write
nomials, denotea;(Im,I 'm’,R), which are tabulated. This the direction cosines as,Mm,n), this creates confusion with
simplification also facilitates calculation of the matrix dot the frequent use dfandm as angular and magnetic quantum
productsg, (1,1 'ﬁl).gv(” 'ﬁz), which are polynomials in numbersAin this work. Therefore, throughout this paper, the
R;-R,, and are given for als-f cases. These dot products notationR=(x,y,z) is used for the direction cosines where
provide powerful constraints which are useful for testingthis triple is normalized to unityx®+y?+z=1.

coded Slater-Koster integrals. They also define a transforma- Tables of the polynomiald;(Im,I’m’,R), used to define
tion of the two-center expansion which offers a more convey (Im,| 'm’,R), are presented here for’, rather than the
nient treatment of site-energy and crystal-field terms. Thisngre standard<!"’ limit, in order to provide a consistent
transformation is given for the-f case in Sec. IV. Finally, a  tapylation while avoiding the need to split up e andd-f
brief summary is given in Sec. V. matrices due to the practical limitations of column and page

width. Note, however, that the matric%(l,l’,ﬁ) and
g.(l",I,R) are transposes of one another in this paper, i.e.,

The usual real linear combinations of spherical harmon-
ics,?,m, are used in this paper,

II. DEFINITIONS AND CONVENTIONS

g,(ImI'm",R)=g,(I'm",Im,R), 8

_ and similarly forA;. The sign change for odd+1’ in the
Yi0=Y0, overall matrix element,
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(OI’m’|H|RIm)=(—1)'*'/<Olm|H|RI’m’), (9) TABI:E I Matri>f dot productsAAi(P,p,FAel)-Aj(p,p,fez) and
gp.(pvlel)'gu(prpvRZ)7 WhereXERl'RZ'

must then come fromy;,,=(—1)' """t ,,, which is consis-

tent with the interpretation ofy,,(R)~(Olu[H|RI"w). It i ] Aj-Aj MmooV 9.9,

may be more convenient in computer codes to include thi% 3 B
~ g o

sign factor as part of thg,(Im,I'm’,R), so as to not worry 5 ,, 1 o 11()(2

about the index order in the hopping parameters. Even SG 5 v . 142

note that the present matrix elemegts(Im,| 'm’,R) for |
<|’, obtained via Eq(8), are in agreement with those of
Slater and Kostet; Lendi? and Ref. 7 and are appropriate of x2+y? generally replaced by 1z2. There was complete

for use witht;,,’'s of customary sign conventions. agreement among all analytic and numerically derived poly-
nomials except for two of Lendi'slf expressions, as noted
. TABULATED GEOMETRIC MATRICES in Ref. 5, which are also inconsistent with Ref. 7. As an

. ~ additional test, the polynomials; tabulated here, as well as
The two-center —Slater-Koster ~geometric matriceéSihe associated geometric functiogs, were coded, and nu-

gM(I,I 'R), n=a, ... Imin May be conveniently given as merical calculations then performed of the matrix dot prod-
linear c'ombln'auons of gn equalrnymber[QTZIJrl)x(Zl’ ucts Ai(l,l’,lfel)A,-(l,I’,liz) andAg,L(l,l’ﬁ})'gv(hl’ﬁz).
+1)]-dimensional matricesy(l,1",R): A random direction was taken fét;, while R, was sampled

lmin over the above-mentioned mesh, and a least-squares fit made
0,1 B) =S c(lINA L _(1,1",R). (10 tothe results as a function &;-R,. These numerical poly-
. = nomials also agreed with the analytically derived dot product

. . , - . functions. As an indication of the power of these dot-product
Here the index=1+1" —2k also indicates the highest power constraints, a single sign error in one of the Slater-Koster

of the diregtion cosines which appears in the matrix eIementﬁ]tegrals can change the root-mean-square deviation of such
of Ai(I,I",R). Furthermore, a fit from machine round-off error, 16°-107%° for the
. . . . workstation used here, ©(10 1), for example.
A (L R)=g,(1,1",R)=g,4(l,5,R) g,(s,1",R); In the remainder of this sectiog,, are defined in terms of
(1) the polynomialsd;, which are tabulated. The method used
that is, here was briefly outlined at the end of the Appendix in Ref.
10 for just thes-d case; however, no polynomials were
Ay (Im,] ’m’,IfQ)EgU(Im,I 'm’,R) tabulateAd. Matrix Adot products are given fo[ both
A . Ai(1L1",Ry)-A|(1LI",Ry)  and g, (l1,1",Ry)-9,(1,1",Ry),
=0,(Im,s,R)g,(s,I'm",R), (12)  which are functions oR;-R,. The latter reduce to the or-
thogonality relationgEq. (5)] for R;=R,. Note that the

noting thatg,(l,1',R) may be factored into the product of abbreviation

the column vectolg,(I,s,R) multiplied by the row vector
g,(s,I',R). Thus, given the simple structure 4f,,,, one XEﬁQl, I522=x1x2+y1y2+ 2,7,, (13

need only tabulate matrice which involve lower powers
of the direction cosines, by 2, 4, and so on. Moreover | for iS used throughout this section, where each direction triplet

=|', one of thel+1 matricesA; is Ay=1, i.e., just the (X,Y,2) is normalized to unity.

identity.
The matricesA(l,1’,R) were calculated analytically in A. |-s matrices
this work using the tabulations of Slater and Kosfdor s-d The two-centei-s geometric matrices are given in Table

states, and those of Refs. 5 and 7 for thecases, with the | yith dot products for different directions given by
last appropriately transformed to correspond to the present

basis. While a recent paper by Kalland Ujfalussy pro- 1, =5
vides aMATHEMATICA (Ref. 129 code for obtaining the poly-

nomial forms of the Slater-Koster integrals, a more crude but . . X I=p
effective approach was used here to obtain the polynomials 9,(1,8,R1)-9,(1,8,Rz) = 1(3y2-1), l=d (14)
A;(1,I",R) in a numerical fashion as a test of the analytic . ) _
derivations. All Slater-Koster geometric functions as well as 2 (5x*=3)x, I=F.

the linear combinations definindy; were numerically calcu-

lated using general formulsson a~ 800-point mesh on the B. p-p matrices

direction cosine surface’+y?+z2=1, and the results fit by
least squares to polynomials iy Z with k<1. The root-
mean-square deviations in these fits were in all cases of the . N
order of the machine round-off error demonstrating the com- 9-(P,P,R)=A2(p,p,R), (15)
pleteness of the representation. The resultant coefficients and ) R R

powers were easily converted to analytic forms, with factors 9-(p,p,R)=—Asx(p,p,R)+Ay(p,p,R),

The two-centeip-p geometric matrices may be written
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TABLE Ill. The matrix A;(d,p,R)=[A,(dm,pm’,R)] in TABLE V. The matrixA,(d,d,R)=[A,(dm,dm’,R)] in terms
terms of the direction cosiné®=(x,y,z), wherex?+y2+z2=1.  of the direction cosineR= (x,y,z), wherex?+y?+z2=1.
Al(p,d,li) is given by the transpose.

m,m’ 0 1 2 3 4
m,m’ 0 1 2
1 1 1 2
0 2-3 —xz —=yz ——=(x*-y) - -—=x
0 i , - i y - i y 3 \/§ \/§y \/§( y ) \/§ y
V3 V3 V3
1 2
1 X z 0 1 —xz -y2 Xy Xz yz
V3
2 y 0 z
3 0 X -y 1 )
4 0 y X 2 ﬁ yz Xy =X -yz Xz
where 3 — i(xz_yz) Xz —yz — 2 0
V3
Az(p,p,R)EgU(p,S,R)go—(S,p,R), (16) 2
R 4 - —=Xy yz Xz 0 -2z
Ao(p.pR)=1. (7 V3
The matrix dot products for different directions are given in
Table II.
where
C. d-p matrices A,(d,d,R)=g,(d,s,R)g,(s,d,R), (21)

The two-cented-p geometric matrices may be written A,(d,d.R) is defined in Table V, and

go’(dlpié):A3(d!p!§)a

(18 Ag(d,d,R)=1. (22)
. 2 . . The matrix dot products for different directions are given in
g')T(d1le):__A3(d1p1R)+Al(d!p1R)v Table VI
V3
where E. f-p matrices
- A A The two-centeif-p geometric matrices may be written
As(d,p,R)=0,(d,5,R)g,(s,p,R), (19 P9 Y

andA,(d,p,R) is defined in Table Ill. The matrix dot prod- 9.(f,p,R)=A4(f,p,R), 23
ucts for different directions are given in Table IV. . . .
0.(1.p.R)=— VEALF.p.R)+ FA(f,p.R),
D. d-d matrices

where
The two-cented-d geometric matrices may be written R R R
. . A4(f,p,R)=0,(f,s,R)g,(s,p.R), (24)
g()’(dvd!R):A4(d!d:R)! L . . .
and A,(f,p,R) is given in Table VII. The matrix dot prod-
A A A A ucts for different directions are given in Table VIII.
g,(d,d,R)=—3%A,(d,d,R)+A,(d,d,R)+Ay(d,d,R),
20 TABLE VI. Dot products A;(d,d,R;)-A;(d,d,R;) and
g5(d,d,R)=1A,(d,d,R)—A,(d,d,R), g,(d,d,R)-g,(d,d,Ry,), wherex=R;R,.
TABLE IV. Dot products Ai(d,p,R;)-Aj(d,p,Ry) and ] Ai-4, mv 9 Gy
9.(d,p,R1)-9,(d,p,Ry), wherex=R;-R;. 00 5 oo 1(3x2-1)?
i A A o v 9.0, 02 -3 oo —-3x4(x*-1)
37.2_1)2
11 X oo P 04 ! 70 1)
2 22 $(21x%-2) w o Ax*—3x%+1
13 — -3 x(x*-1
73X 7T (=) 24 1(38x%-2) ) —x*+1

33 2(3x%—1)x T 2x° 44 3(3x%—1)? P F(x*+6x2+1)
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TABLE VIIl. Dot products A(f,p,Ry)-Ai(f,p,R,) and

9.(f.p.R1)-0,(f,p.Ry), wherex=R;-R,.

TABLE VII. The matrix Ay(f,p,R)=[A,(fm,pm’,R)] in
terms of the direction cosineé®=(x,y,z), wherex?+y2+z2=1.
Az(p,fﬁ) is given by the transpose.

[ j AIA] MmooV g,u.'gv
m,m’ 0 1 2 5 1 5 5
22 7(3x“—1) oo 5(5x°—3)x
° 0 ey e “eyz 24 fleeeny  om o VEee-DetD)
1 4xz 1(522-2x2—-1) —xy 44 1(5x2-3)x2 T F(15¢*—6x2—1)
2 4yz —Xy 3(522—2y?-1)
where
3 VEO—y?) V10 xz -\J10yz
Ag(f,d,R)=g,(f,s,R)g,(s,d,R), (26)
4 J10 xy J10yz V10 xz ) ° J . g
andA;(f,d,R) andA,(f,d,R) are defined in Tables IX and
5 0 _\/1_5()(2_ 2) —{1Bxy X, respectively. The matrix dot products for different direc-
2 y tions are given in Table XI.
G. f-f matrices
2 The two-centerf-f geometric matrices may be written

9.(f,f,R)=Ag(f,,R), (27)

F. f-d matrices g.(F,F,R) = — 2Ag(f,F,R) + $A4(f,f,R)+ 2A,(f,,R)
The two-centerf-d geometric matrices may be written .
+2Aq(f,f,R),
9,(f,d,R)=A¢(f,d,R), . . 3
gs(f,f,R)=2Ag(f,f,R)—A4(f,,R),

94(f.F,R)=— £A6(f,F,R)+ EA4(f,F,R)— §A,(f,f,R)

. .1 .1 .
gw(f,d,R)z—\/5A5(f,d,R)+§A3(f,d,R)+§A1(f,d,R),

1

V5

gs(f,d,R) =

Ag(f,d,R)— \EAL(f,d.R),

(29

where

+3Ao(f,f,R),

A6(f!fvli)Ega'(f:Svli)go-(slfvli);

(28)

TABLE IX. The matrix Ay(f,d,R)=[Az(fm,dm’,R)] in terms of the direction cosineR=(x,y,z),
wherex?+y?+7z2=1. A4(d,f,R) is given by the transpose.

m,m’ 0 1 2 3 4
1
0 S92 V3 x2 V3yZ ~V6 (2-y)z  ~2\Bxyz
1 3 2_ Lix2—5y2 3 5.2 2.2 lie2_ g2
- (327 1)x 3(X“—5y“)z Xyz 222-x2+y)x  3(522—-4x?)y
2 V3 2_ 3 Ly2—py2 (52,922 Lieo2_ a2
- (3Z7-1)y Xyz 2(y°—=5x%)z (322+x2—y?)y  3(5Z°—4y*)x
3 0 VEz2-2yix  —\Bz2-20y  \Ea-222 0
4 0 VEa-2yy  VEa-2x)x 0 VE1-222)2
5 15 15 15
5 £(:«Jyz—x%x £<x2—y2>z —~15xyz 15 £y22
2 2 2 2
5 15 15 15
6 —g(SXZ—yZ)y V15xyz g(xz—yz)z —g 2 _gxzz
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TABLE X. The matrixA,(f,d,R)=[A,(fm,dm’,R)] in terms  the matrix dot products given in Sec. III.
of the direction cosinesR=(x,y,z), where x2+y2+z2=1. To review the motivation for the transformation, consider

A,(d,f,R) is given by the transpose. the intrasite matrix element

<O|m|H|O| ’m,>%8|5”/5mm/

m,m’ 0 1 2 3 4
R#0
3 + 2, g (Im1'm’,R)xi11 .(R),
° 2 z - \/g X - \/g y 0 0 R " g
. . (30)
1 2z 0 -z - . I . .
V3 x 2 X 2¥ whereH is the one-electron Hamiltonians, is a site energy,
2 3y 0 27 iy ~1x and x;-,(R) are crystal-field parameters which arise from
two-center expansion of one-electron potential terms at sites
3 0 JEx By Bz 0 R#0. In contrast to the intersite matrix elements, E2)
involves geometric matrices for different directionR,
4 0 \/gy \/gx 0 \/gz which spoils the orthogonality relatio€q. (5)]. That is,
rojection of (OIm|H|0I’'m’) onto g,(I,I",R) for some
JiE s projection of{Olm|H|0I'm") onto g,(1.I",R) 2
5 0 0 0 X Ty andR will in general still yield terms involving all values of
©. Moreover, forl=1", gﬂ(I,I,FAz) are not orthogonal to
/15 J15 [ Smnr], SO that crystal-field and si.te-energy terms rrjix in a
6 0 0 0 - - X complex manner. Both shortcomings may be rectified by
what is in effect a “rotation” of the set of geometric basis
matrices,g,, u=a, ... Imn, to use the language of the
discussion below Ed3). In thel=1" case, for example, the

transformed two-center expansion based on the rotated ma-
trices exhibits a clean separation between crystal-field terms
which contribute to (OIm|H|0lI’'m’) as coefficients of
Ao(f,f,li)zl. (29) [5mm_,], and those which serve as .coefficients' of orthogonal
matrices. The former are responsible for environmental de-
The matrix dot products for different directions are given in pendence of what are really the effective site energ{ges’

A, (f,f,R) and A,(f,f,R) are defined in Tables XIl and
XIll, respectively, and

Table XIV. plus crystal-field contributions, that are customarily obtained
from fits to band structur&
IV. TRANSFORMED GEOMETRIC MATRICES The transformation is defined by diagonalizing a scaled

: . : . dot-product matrix
A transformation of the geometric matrices and their as- P

sociated two-center expansion greatly simplifies treatment of _ B, ' B
site-energy and crystal-field contributions to the one-electron [(Myul=le,8u (L1 Ry -6, (11T Ra)C, ],
Hamiltonian. This transformation has been given elsewherghere the scaling factomglz(z—&m,)*l’2 are related to the
for ans-d basis, as has a detailed discussion of its ben&fits. normalization of g.,. and serve to make the remain-
Here, it is presented for the extended basis, and related to ing part of the transformation unitary. The dot products
i i 9.(1,1",Ry)-g,(1,1",R,) are the polynomials iy=R;-R;
TABLE XI. Dot products Ai(f,d,R;)-Ai(f,d,R;) and given in Sec. lll. Viewed as functions of, each linearly

9,(f,d,Ry)-g,(f,d,Ry), wherex=R;-R,. independent term in
i] Ai'Aj MoV 9.9 f,uv(X)EC,ug,u,(lal,!él)'gv(lallaﬁzZ)CV
11 By oo 1(5x2—3)(3%— 1)y defines a separage, v matrix, the set of which can be shown

to all mutually commute for a giveh!’. This means that a

13 ; 3 ) ) single fixed unitary transformation can diagonal2d ,, ]
T2X sm _ﬁ(@( “DO=DX for all directionsR, and R,. If the transformed quantities
are indicated by tildes and indicesg in place ofu,v, then
15 ix oo E5()(2*1)2)( ~ ~ -
V2 4 a1l R) =2 U,€,0,(1L1" R), (31)
o
33 (24— 13)x 7 7 3(15¢*—16x%+5)x
ga(I!I,!Rl)‘ng(I!I,!R2)
1 2 5
3B S T 0 e nod- by

Z#EV Uaucﬂg#(lvlrvél)'gv(lvl’1§2)Cvuﬁv o 6aﬁ1
55 i(5X°-3)(3*-1x 98 (Bx*+10-5)x '

(32
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TABLE XII. The matrix A,(f,f,R)=[A,(fm,fm’,R)] in terms of the direction cosineR=(x,y,z),
wherex?+y?+z2=1.

m,m’ 0 1 2
6 6
0 {5247 \/?—(522—2)xz \/?_(522—2)yz
6
1 £(52272)xz —§x°—3(5y°—3x")2’ 2(102-1)xy
6
2 \/?_(522—2)yz (1022 1)xy —2y2_L(5323y?)22
3 ooy —(622-8y> 1z - (622~ 8- 1)y2
° V10 J10
4 2 xyz i(222—8y2+3)yz i(222—8x2+3)xz
° V10 J10
V15
5 VE(3y?—x?)xz T(xz—yz—é x4+ 8 xPy2+yt VE(ay2— 42— 1)xy
V15
6 VEy2-3)yz Viaz2—ax+ 1yxy e e E e s
m,m’ 3 4
0 - \/g(xz_yz)zz - \/% XyZ
1 i(622—8y2—1)xz i(222—8y2+3)yz
V10 J10
2 - i(622—8x2—1)yz i(222—8x2+3)xz
V10 J10
3 (2—32%) 22— 4x3y? 2(x2—y?)xy
4 2(x2—y?)xy —(222— 1)+ 4x%y?
° —Viez-1x Viez-1yz
6 ~B2z2-1)yz 22— 1)xz
m,m’ 5 6
0 VE@y -z VE(y2-3)yz
V15
! — (F=y?= § x4 By y) VE(4z— ax2+ Lyxy
J15
2 VE(ay?- a4z 1)xy SOyt xi- g Xy Ly
3 —\/§(222—1)xz —\/§(222—1)yz
4 Viez-1)yz 22— 1)xz
5 $(2-1)7 0

6 0 3(22-1)22
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TABLE XIIl. The matrix A,(f,f,R)=[A,(fm,fm’,R)] in terms of the direction cosineR=(x,y,z),

wherex?+y?+z2=1.

m,m’ 0 1 2
6 6
0 2(32-1) £xz £yz
5 5
6
1 \/?—xz 5(1—4y2+2%) 2 Xy
2 g yz 2 xy T5(1—4x2+2%)
3 3
3 _\[3(x2_\2 — xz - vz
\/;(X y9) J10 \/F)y
3 3
4 -VE x —yz — Xz
VE xy e =

S 0 &0y Vixy
6 0 ~Vixy —V30e-y)
m,m’ 3 4 5 6
0 —Vioe-y) ~VExy 0 0
3 3
1 Nirai T2 —VEH0oe-y) ~VExy
3 3
2 BN N VExy —VE0e-y?)
3 0 0 \/g XZ \/g yz
4 0 0 - \/§ yz 3 xz
> \/gxz —\/gyz —-3(322-1) 0
6 VEyz V2 xz 0 ~1(322-1)

wherec,=(2-6,,) "*?andU,,,, is the(rea) unitary trans-
formation that insures Eq32). Note that in spite of this
mutual orthogonality forr# B, the matriceg,(I,!’,R;) and
QB(I 17 ,Ifzz) are not in general identical fer= 8. Rather, the
transformation partitions the space of
[(21+1)x (2" +1)]-dimensional matrices into orthogonal
subspaces, in one of which lie all tE@(I ,I’,Ifz) for different
directions,R, and in another all of thee=1 matrices, and so
on.

For I<|’'<f, relation (31) between the transformed and
original geometric functions is

5pp0=(9ppa+9ppﬁ)/\/§, (33

applz (ngpo'_ gpprr)/\/ga

Gpdo= (V3 Gpdo— Gpan)/ 5,

Opar=(20pds+ V3 Gpan)/ V10,

Gddo=(Yddo+ Yddr+ Iaas)/ /5,

Gad1=(69dde— 49ddx T Yaas)/\ 70,
Gud2= (2Qddo+ Gadn— 29uas)/ V14,

apfo: (242 Opfo— V3 gpf'n-)/\/ﬂ,

p11=(V3 Gprot V2 o) V7,

PRB 58
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TABLE XIV. Matrix dot products Ai(f,F,Ry)-Aj(f,f,Ry) and g,(f,f,Ry)-g,(f,f,Ry), where x
=R;-R,.
1] A A, MmooV 9.9,
00 7 oo 1(5x*=3)%*
02 0 o —3(5x*~1)*(x*~1)
04 -3 g8 EX(-1)?
06 1 o ¢ -3(x*-1)°
22 32(3x%-1) T 1=(225¢%—305¢*+ 111y %+ 1)
24 (3x°—1) ™5 —3(9x* -2+ 1)(x*~1)
26 §3x°-1) L RO+ (1)
44 72(220y*— 186y + 25) 56 F(9x°+10y*— 152+ 4)
46 HOGOMS 5 ¢ —F(X*+6x°+1)(x*- 1)
66 i(5x°=3)%x? ¢ ¢ s+ 14+ 1) (x*+1)
Gar0=(2V5 9gro— V10 Qg1+ Gars)/ V42, S G 0m I m Ry o(R)
P
9ar1= (22 Garo+ Garn— V10 gars)/ /30,
=§ g, (Im,1'm"  R)xyr,(R).  (36)

9ar2= (39410t 2V2 Qurn+ V5 ars)/ V35,
Gtr0=(Gtrot Ortxt Grrst+ Grr ) N7,
Or11= (20051, — 15011+ 6Tt 5~ 1)/ 924,
Gtr2= (6Qsro+ Grtn— 79115+ 3G114)/ /154,

Orr3= (4011,+ 39— 59r1,)/ V84,

where we have abbreviated,.,=g,(Im,I’m’,R), and
similarly g,|,MEgM(Im,I’m’,ﬁ{). It is straightforward to
verify the orthogonality of these functions for different di-
rections[Eqg. (32)], using the matrix dot products of Sec. IlI.
For the same direction, these matrices are orthonormal,

9.(Im,1'm",R)-gg(Im,I'm’,R)=68,,. Forl=1", note also
that
Jo(Im,Im’,R) ! Ao(Im,Im’,R) ! 5
m,Im’,R)=——— Ay(Im,Im’",R) =—— S,y
do J2l+1 ° J2r+1 "
(34)

which uniquely identifies those crystal-field parameters, de-

noted below b)Z(”O(R), which contribute to the one-electron
Hamiltonian in the same way as the site enerdfes.

If the transformed crystal-field parameteys ., (R) are

defined as projections onto the new geometric matrices, then

Xiia(R =2 Uy, €8 xiru(R), (35)
“

and the two-center expansion is automatically preserved,

The transformed crystal-field parameters are given by

Xppo=(XppoT 2 Xppr) /3, (37)
Xpp1=(Xpps— Xppm) V213,
Xpdo= (V3 Xpdo—2 Xpdn)/ /5,
;(pdlz(Xpdo+ 3 Xpdﬁ)\/%,

Xddo= (Xddo 2 Xddn+2 Xads)/ V5,
Xdd1= (3 Xddo— 4 Xddnt Xdds) V2/35,
Xdd2= (Xddo+ Xadn— 2 Xaas) V217,
Xp10=(2 Xpio— V6 Xp) 7,

Xo1= (V3 Xprot 212 xpin) N7,
Xato= (V5 Xaro— V10 Xaat Xars) V2121,
Xar1= (V2 Xato+ Xafz— V10 xa15) V2/15,
Xar2=(3 Xato+4V2 XatzT 215 xq15)/ V35,
Xt10= (XttoT 2 Xttat+ 2 Xet5+ 2 X110) T,
Xt11= (10 X1ro— 15 x5t + 6 X115~ X114)/ V231,

Xtt2= (3 Xtto+ Xtt2— T XttoT 3 Xt1)V2/T7,
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;(”3:(ZXfo+3X”W_5X”¢)/\/2—1' !;tlsngf; 8;;?: Slater-Koster integrals in polynomial form for
where we have suppressed fRedependence of these func-  This treatment has also facilitated calculation of the ma-
tions. trix dot products,

While the discussion in this section has focused on the . .
site-energy and crystal-field terms, the transformation pre- gu(L,I",Ry) -9, (11", R2)
sented here also has some relevance to the intersite hoping
terms. In particular, it is interesting to note that ther: 6
ratios among the bare canonical structure constants in the

linear muffin-tin orbital metho are the same as the ratios which are functions Oﬁl' ﬁzz and provide rather strong con-

of coefficients in Eq(33) for one particular value ot or  straints useful for testing tabulated or coded Slater-Koster
another; e.g., in theld case, 6:-4:1 corresponds ta=1.  jntegrals. Moreover, the dependence of these dot products on
The significance of this fact is clear at least ferl’, where  ;, andv points to a transformation of the Slater-Koster inte-
there is a direct mapping of Andersen’s canonical bandyrals and the associated two-center expansion which greatly
theory onto a nonorthogonal tight-binding problem, with thesimplifies the treatment of crystal-field terms in tight-binding
bare canonical structure constant ratios implying similar rarepresentations.

tios of the hopping parametetsThis in turn implies that the Underlying both this and earlier wotk'*is the perspec-

pp anddd hopping parameters in canonical band theory arejve that the matrices, (I,1",R) for u=o, ... |y, are in

of pure =1 character according to the transformation ofgeneral an incomplete, orthogonal basis for the space of
this section. Given the success of canonical band theory, e.g(2l+1)x (21’ + 1)]-dimensionalm,m’ matrices. This per-

for structural trends in the transition meta¥shis raises the spective and the kind of dot products calculated here offer
possibility that the transformation discussed here may morebvious possibilities for improving the two-center approxi-

naturally segregate the hopping parametgrs(R) in terms mation without losing its existing virtues, by simply expand-

of relative importance than is the case for the conventionalnd this basis beyongi=1y;, with matrices orthogonalized
tyr (R). to the existing set. Values for the additional tight-binding

parameters could be easily obtained from projections such as

Eq. (4). The critical question is whether or not such param-

eters would exhibit a useful degree of transferability, which
The two-center Slater-Koster integrals, denoted here bwlong with the choice of the expanded geometric basis ma-

g,(Im,| 'mf,fg), are important components of tight-binding trices is a natural area for future research.

total-energy representations routinely used now wgtd

bases. Extension te-f bases has been hindered in part by ACKNOWLEDGMENTS
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=2 g,(ImI'm" ,Rpg,(Im,I'm’",R,),
m,m’
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