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First-order paramagnetic-to-commensurate phase transition in Cr alloys
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The coexistence of spin- and charge-density waves in pure Cr and its dilute alloys continues to fascinate both
experimentalists and theorists. Using a three-band model, we show that the charge-density wave~CDW! in
incommensurate~I! Cr alloys is governed by the same Coulomb interaction that produces a first-order Ne´el
transition in commensurate~C! alloys. Therefore, we predict that the first-order paramagnetic-to-commensurate
transition observed in CrFe and CrSi alloys is preceded by the growth of a large CDW in the I phase of each
alloy. We also provide a justification for the three-band model in the I phase and show that it reduces to the
correct form in the C limit.@S0163-1829~98!01225-9#
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I. INTRODUCTION

Like superconductivity, spin- and charge-density wav
are collective phenomena that involve large numbers of p
ticles in coherent momentum states. Depending on dop
levels and temperature, the spin-density wave~SDW! that
appears below the Ne´el temperature of Cr alloys may b
either commensurate~C! or incommensurate~I! with its bcc
lattice.1 In addition to being one of the few bulk system
containing a SDW, Cr also supports a charge-density w
~CDW! with twice the wave vector and half the period of th
SDW. In this paper, we show that the same Coulomb in
action that governs the amplitude of the CDW in the I pha
also produces a first-order paramagnetic~P! to C transition.
Therefore, we predict that the first-order PC transiti
observed1 in CrFe and CrSi alloys is preceded by the grow
of a large CDW in the I phase of each alloy.

This prediction is based on a model that uses the rand
phase approximation~RPA! in conjunction with one-electron
band and two hole bands. Although the three-band mo2

may be easily justified in the I phase, its physical sign
cance in the C phase is less clear. As discussed below,
eral objections may be raised to the use of the three-b
model in the C phase of Cr alloys. We show that in the
limit, the three-band model reduces to a two-band mo
with a shifted hole energy. When this energy shift is su
ciently large, the PC transition becomes first order. Rema
ably, the shift of the hole band in the C phase is produced
the same Coulomb interaction that determines the size o
CDW in the I phase.

Only one other theoretical work has addressed the q
tion of the first-order PC transition in some Cr alloys. Unli
the present workers, Nakanishi and Kasuya3 studied the mag-
netostrictive effect of a volume expansion produced by
Fe impurities. This effect is not related to the presence o
CDW in the I phase. The results of Nakanishi and Kasu
will be discussed in the final section of this paper.
PRB 580163-1829/98/58~1!/414~11!/$15.00
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The SDW instability4 in Cr alloys is produced by the
nearly perfect nesting5,6 of its electrona and holeb Fermi
surfaces. As sketched in Fig. 1, both the electron Fermi s
face centered atG and the hole Fermi surface centered at t
zone boundaryH are roughly octahedral in shape. Becau
the electron Fermi surface is slightly smaller than the h
Fermi surface, there are two different nesting wave vect
Q6 that translate four faces of one Fermi surface onto f
faces of the other. TheG andH points are separated byG/2,
whereG is a reciprocal lattice vector with magnitude 4p/a.
Hence, the nesting wave vectorsQ6 lie on either side ofG/2
and may be written asQ65(G/2)(16d), whered'0.05 is
a measure of the size difference between the electron
hole Fermi surfaces. Aside from the nesteda and b Fermi
surfaces, the band structure of Cr also contains two o

FIG. 1. The band structure of Cr alloys with Fermi surfacesa
andb nested by the wave vectorsQ6 . Other Fermi surfaces con
stitute a reservoir band.
414 © 1998 The American Physical Society
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PRB 58 415FIRST-ORDER PARAMAGNETIC-TO-COMMENSURATE . . .
bands: one set is centered at theN points and the other lies
midway between theG and H points.7 These non-nested
Fermi surfaces play an ancillary role in the formation of t
SDW and are often grouped together into an ‘‘electron r
ervoir.’’ The two-spin density of states of the nested a
reservoir bands are given byreh andr r .

While the condensate of a superconductor contains p
of electrons with zero total momentum, the condensate
spin-density wave contains pairs of electrons and holes w
nonzero total momentum that may be related to the per
icity of the SDW. When incommensurate with the bcc la
tice, the SDW of Cr actually contains two condensates
electron-hole pairs: one with pair momentumQ18 5(G/2)(1
1d8) and the other with pair momentumQ28 5(G/2)(1
2d8). Because 0<d8,d, the ordering wave vectorsQ68 of
the SDW lie closer8 to G/2 than the nesting wave vecto
Q6 . Whend850 andQ68 5G/2, the SDW is commensurat
with the lattice. UnlikeQ6 and d, which are fixed by the
band-structure topology,Q68 andd8 are solved by minimiz-
ing the nesting free energyDF and generally depend o
temperature. In units of the lattice constanta, the period of
the SDW is given by 1/d8. For pure Cr just below its Ne´el
temperature,1 d8'0.037 and 1/d8'27 so the SDW is very
close to being commensurate.

The three sets of possible ordering wave vectorsQ68 cor-
respond to the three possible orientations of the nesting w
vectors along the~100!, ~010!, or ~001! directions. When
pure Cr is cooled below the Ne´el temperatureTN'310 K,
six types of domains form.1 In each domain, the spin polar
ization m̂ lies along one of two possible directions perpe
dicular to one of the three sets of wave vectorsQ68 . The
formalism developed in this paper describes one such
main, with a single polarization and one set of ordering wa
vectors.

Heuristically, the difference between the nesting and
dering wave vectors can be easily understood. Imagine
the free-energy differenceDF between the paramagnetic an
ordered states can be separated into contributions from
nesting of the right and left faces of the electron and h
Fermi surfaces. The total free energyDF(q) ~thick curve!
and the individual contributionsDF6(q) ~thin curves! with
minima at Q6 are sketched in Fig. 2. SinceDF18 (Q2),0

FIG. 2. A heuristic picture of the free-energy differen
DF(q)5DF1(q)1DF2(q) between the paramagnetic and order
states of Cr. The total free energy is plotted in the thick solid cu
and the individual free energiesDF6(q) are plotted in the thin solid
curves.
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andDF28 (Q1).0, the total free-energy differenceDF(q) is
not minimized at the nesting wave vectors Q6 but rather at
wave vectors Q68 that lie somewhat closer toG/2. Although
neither DF1(q) nor DF2(q) has a minimum at the com
mensurate wave vectorG/2, the total free energy contain
such a minimum becauseDF18 (q)52DF28 (q) at q5G/2.
As the nesting wave vectors Q6 are brought closer togethe
by doping, the ordering wave vectors Q68 also approachG/2.
When d is sufficiently small, the minimum inDF at q
5G/2 may become deeper than the minima near Q6 . Then,
the transition from the I to the C phase is first order. In th
phase, the location of the minima at Q68 depends on tempera
ture through the shape of the free energiesDF6(q). Unfor-
tunately, this appealing picture does not follow from a mo
precise derivation of the free energyDF within the three-
band model:DF cannot be strictly divided into contribution
DF6 from nesting on one side or the other of the two Fer
surfaces.

As first discussed by Young and Sokoloff,2 who devel-
oped the three-band model, the CDW in Cr may be cons
ered the second harmonic of the SDW. With wave vect
2Q68 , the CDW satellites lie on either side of the reciproc
lattice vectorG. Due to the periodicity of the Bloch wave
functionsu(r ), similar CDW satellites are found on eithe
side of every other reciprocal lattice vector. This has be
verified in a number of x-ray9,10 and neutron-scattering
experiments,11,12 most recently by Hill and co-workers.13

Higher harmonics of the SDW have also been observe1

the third harmonics of the SDW lie at wave vecto
(G/2)(163d8) while the fourth harmonics of the SDW or
equivalently, the second harmonics of the CDW lie at wa
vectorsG(162d8). Evidence1 suggests that the amplitude o
thenth harmonic is proportional to the amplitude of the fu
damental to thenth power. Aside from the CDW, other har
monics are neglected by the three-band model.

Within the three-band model, the hole band is shifted
wave vectorsQ68 while the electron band is kept fixed a
shown in Fig. 3~a!. The electron energyea(k) and hole en-
ergies eb6(k)5eb(k2Q78 ) correspond to three distinc
bands in the I phase. In Figs. 3~b! and 3~c! for the I and C
phases, the linearized, paramagnetic quasiparticle ene
are plotted as dashed lines. We assume that the electron
hole Fermi velocities have the same magnitudevF . Below
the Néel temperature, the hybridized quasiparticle energ
are plotted in the solid curves.

The Coulomb interactionU couples electrons on thea
band with holes on theb6 bands to produce a SDW with
order parameterg.0. Since these quasiparticles differ b
momentaQ68 , the SDW can be written as14

S~r !52
2\

U
Vg~T!m̂uu~r !u2

3$cos~Q18 •r2f1!1cos~Q28 •r2f2!%, ~1!

wherem̂ is the polarization direction andf6 are arbitrary
phases. A CDW with order parameterd,0 is similarly pro-
duced by the Coulomb attractionU8 between electrons an

e



p

n

u

W
o

ave
r-

rve
hase

ing
nd
red
en
ged

rmi
he I
hole

m-

the
ns.
th-
sist-
n-

d
p-
e
ee-
in
PC

dity
u-
in
late

and

ro-
of
be
e-
rt a
-

of
of

nd
nd

ro-

y
the

of

the

y

416 PRB 58R. S. FISHMAN, X. W. JIANG, AND S. H. LIU
holes on theb1 andb2 bands. The momentum difference
between ab1 and b2 quasiparticle isQ18 2Q28 52Q18
2G5G22Q28 . Hence, the CDW is the second harmonic o
the SDW and takes the form

%~r !52
4

U8
Vd~T!uu~r !u2 cos@~Q18 2Q28 !•r2u#. ~2!

In both relations,u(r ) is normalized to 1 in volumeV. Be-
causeu5f12f2 , the spin and charge distributions are in
phase and the electron density%(r ) is largest where the
SDW has an antinode.15

Since the d-band Bloch wave functions are strongly
peaked at the atomic sites, the maximum values of the s
and charge densities in the I phase are

S05
4\g~T!

U

V

N
ucos@~f11f2!/2#u, ~3!

%052
4d~T!

U8

V

N
. ~4!

WhenU8→0, the CDW order parameterd vanishes but the
ratio d/U8 approaches a nonzero value. The CDW%(r ) sur-
vives in theU8→0 limit due to the remnant correlation be-
tween theb1 and b2 quasiparticles induced indirectly
through the SDW. AsU8 increases, the CDW amplitude of
Eq. ~4! also increases. In keeping with the scenario me
tioned above, the ratio%0(T)/S0(T)2 has been observed11 to
be roughly independent of temperature. Within a Landa
Ginzburg expansion2 of the free energy, it is readily shown
that d(T)}g(T)2 and%0(T)}S0(T)2.

As suggested above, the period of the SDW and CD
can be controlled by doping. Adding Mn or Fe impurities t

FIG. 3. ~a! The electron (a) and hole (b) energies translated by
the SDW wave vectorsQ68 . In ~b! and ~c!, we expand the boxed
region near the Fermi energy for the quasiparticle energies abo
~short-dashed! and below~solid! the Néel temperature for the I and
C phases. In all three figures, the chemical potential is denoted b
horizontal dashed line.
f

in

-

-

the Cr host reduces the size differenced between the elec-
tron and hole Fermi surfaces and also decreases the w
vector parameterd8. When the electron and hole Fermi su
faces are sufficiently close in size andd is sufficiently small,
d8→0 and the SDW becomes commensurate. To conse
charge, the CDW must disappear in the commensurate p
so that14 u5p/2. Experimentally,1 Mn is much more effec-
tive than Fe at lowering the chemical potential and render
the SDW commensurate: the triple point where the C, I, a
P phases meet lies at a concentration of 0.3% Mn compa
with 2.4% Fe. The effect of doping on the mismatch betwe
the electron and hole Fermi surfaces is quantitatively gau
by the mismatch energyz05GvFd/A3, which vanishes in
the limit of equally sized Fermi surfaces withQ65G/2 and
d50. For pure Cr, photoemission measurements16 indicate
that z0'500 meV.

The size difference between the electron and hole Fe
surfaces has important physical consequences in both t
and C phases. For either phase, the larger size of the
Fermi surface implies that some of theb holes cannot be
paired witha electrons in the SDW condensate. At zero te
perature, it is easy to show thatrehz0/2 of the holes will be
unpaired whenU850.

Despite its usefulness, the physical significance of
three-band model was questioned by Fenton and Leave17

Their reservations can be summarized as follows. Ma
ematically, the three-band model converts a system con
ing of two Fermi surfaces into one with three different e
ergy bands. In the C phase, the two hole energieseb1(k) and
eb2(k) coincide aboveTN . But as suggested by the soli
curves of Fig. 3~c!, three distinct bands of quasiparticles a
pear below the Ne´el temperature. Viewed as an artifact of th
three-band model in the C limit, this suggests that the thr
band model can only provide physically significant results
the I phase and cannot be used to evaluate the IC or
phase boundaries.

This raises some fundamental questions about the vali
of the three-band model in the study of Cr alloys. In partic
lar, what is the justification for the three-band model even
the I phase? Does the three-band model correctly interpo
between the C and I phases? Since our earlier prediction14 of
a first-order PC transition was based on the three-b
model, can it be trusted?

In this paper, we resolve those questions. First, we p
vide a justification for the three-band model in the I phase
Cr alloys. Section II shows that the three-band model may
derived by ignoring harmonics above the CDW and by n
glecting terms that use the Coulomb interactions to conve
b6 quasiparticle into ab7 quasiparticle. Second, we recon
cile the three-band model with an ‘‘exact’’ RPA treatment
the C phase. In Sec. III, we prove that the three bands
quasiparticles obtained from the C limit of the three-ba
model can be collapsed into two bands, with the hole ba
shifted downwards in energy byd. The free energy of the
three-band model reduces to the ‘‘exact’’ C free energy p
vided that the Coulomb interactionU8 is suitably redefined.
Finally, we clarify the significance of the Coulomb energ
U8 within the C phase. Section IV demonstrates that
energy shift of the hole band is caused by the transfer
electrons from the reservoir bands to the nesteda and b
bands. A Landau-Ginzburg expansion is used to find

ve
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critical value ofU8 that produces a first-order PC transitio
Hence, we argue that the first-order PC transition in C
and CrSi alloys is preceded by the growth of a large CDW
the I phase of those alloys. As discussed in the conclus
this prediction can be tested experimentally. Formal res
are summarized in the three Appendixes.

II. THREE-BAND MODEL FOR COUPLED SPIN-
AND CHARGE-DENSITY WAVES

In the I phase, the three-band model has a rather na
derivation. Our starting point is the Hamiltonian

H5(
k,s

$ea~k!aks
† aks1eb~k!bks

† bks%

1
1

V (
q,k,k8,a,b

U~q!aka
† bk8b

† bk81qbak2qa

1
1

2V (
q,k,k8,a

U8~q!bka
† bk8a

† bk81qabk2qa , ~5!

where U(q) and U8(q) are the Coulomb energies respo
sible for the SDW and CDW, respectively. WhileU acts
between both parallel- and antiparallel-spin electron-h
pairs on thea and b bands,U8 acts between parallel-spi
electron-hole pairs on theb band. These interactions are pi
tured in Fig. 4. For simplicity, we have not included th
Coulomb interaction between electrons and holes on tha
Fermi surface. Such an interaction is not required to obta
CDW and would only complicate our model without chan
ing any of its conclusions. Nor have we explicitly include
the contributions of the reservoir electrons. Except wh
noted, we shall assume that the reservoir is infinite so
the chemical potential is not affected by the formation of
SDW condensate.

FIG. 4. The Coulomb interactions that contribute to the Ham
tonian of Eq.~5!.
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The imaginary time operatorsA(t) are defined in the
usual fashion asA(t)5exp(tH)Aexp(2tH), wheret is re-
stricted between 0 andb51/T. Using the Hamiltonian above
and the fermion commutation relations, we find

daka~t!

dt
52ea~k!aka2

1

V (
q,k8,b

U~q!bk8b
† bk81qbak2qa ,

~6a!

dbka~t!

dt
52eb~k!bka2

1

V (
q,k8,b

U~q!ak8b
† ak81qbbk2qa

2
1

V(
q,k8

U8~q!bk8a
† bk81qabk2qa . ~6b!

Although not explicitly indicated, all operators on the righ
hand sides of these relations are functions oft.

We now formulate the equations of motion for the imag
nary time Green’s functions

G~k,t!ab,aa52^Ttaka~t!akb
† ~0!&, ~7a!

G~k,t!ab,ab652^Ttaka~t!bkb
~6 !†~0!&, ~7b!

G~k,t!ab,b6b652^Ttbka
~6 !~t !bkb

~6 !†~0!&, ~7c!

G~k,t!ab,b6b752^Ttbka
~6 !~t !bkb

~7 !†~0!&, ~7d!

G~k,t!ab,b6a52^Ttbka
~6 !~t !akb

† ~0!&, ~7e!

whereTt is the time-ordering operator and thebka
(6) operators

are defined by

bka
~6 !5bk2Q

78 ,a . ~8!

Despite the experimental evidence for their existenc1

higher harmonics of the spin- and charge-density waves
ignored. For example, we set^Ttaka(t)bk12Q

18 2Q
28 b

†
(0)&

and ^Ttbk22Q
18 a(t)bk22Q

28 b
†

(0)& to zero. These ‘‘off-

diagonal’’ Green’s functions correspond to the third a
fourth harmonics of the SDW, with the latter also corr
sponding to the second harmonic of the CDW.

Using Eqs.~6a! and ~6b! and applying the RPA to the
two-particle correlation functions, we obtain the equations
motion in Appendix A. Theab6 and b6a Green’s func-
tions are chosen18 to have spin symmetrym̂•sab while all
other Green’s functions including theb6b7 components
are proportional to the unit matrixdab in spin space. We also
introduce the self-energies

Dab
~6 !~k!52

1

V
T(

k8,l

U~k2k8!G~k8,in l !ab,ab6 , ~9a!

D̄ab
~6 !~k!52

1

V
T(

k8,l

U~k2k8!G~k8,in l !ab,b6a , ~9b!

Gab
~67 !~k!52

1

V
T(

k8,l

U8~k2k8!G~k8,in l !ab,b6b7 ,

~10!

-
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where the Fourier-transformed Green’s functions are defi
by Eq. ~A2! in Appendix A. Due to the spin symmetrie
of the Green’s functions, we may writeDab

(6)5

D (6)m̂•sab , D̄ab
(6)5D̄ (6)m̂•sab , andGab

(67)5G (67)dab .
Besides neglecting higher harmonics, the three-b

model also requires that we neglect terms like

1

V
T (

k8,l 8
U~k2k81Q18 2Q28 !G~k8,in l8!b2a

3G~k1Q18 2Q28 ,in l !ab2 , ~11!

which enters the equation of motion forG(k,t)b1b1 . By
contrast, the retained term can be written as

1

V
T (

k8,l 8
U~k2k8!G~k8,in l8!b1a3G~k,in l !ab1 . ~12!

These two terms are represented by the Feynman diagram
Fig. 5. Since the momentum of ab6 quasiparticle is shifted
by Q78 , both diagrams carry the same incoming and out
ing momentumk2Q28 .

The neglected term differs from the retained one in t
ways. Equation~11! uses the momentum removed by t
Coulomb energyU to convert an incomingb1 quasiparticle
into an intermediateb2 quasiparticle. As shown in Fig. 3~a!,
the energy of ab1 (b2) quasiparticle lies close to th
chemical potential only on the right-hand~left-hand! side of
the a Fermi surface. So the momentumk2k81Q18 2Q28
removed by the Coulomb interaction must be of order 2kF .
In the retained term of Fig. 5~b!, on the other hand, theb
quasiparticle remains in the same band so that the Coul
interaction carries a much smaller momentum. In Fig. 5~a!,
an intermediatea quasiparticle receives the momentu
transferred by the Coulomb interaction to achieve a fi
momentum ofk1Q18 2Q28 . But if the exitingb2 quasipar-
ticle lies near the Fermi energy, then the intermediatea qua-
siparticle would lie an energyz0'500 meV away. There-
fore, the contribution of Fig. 5~a! is of order T/z0'1/20
times smaller than the contribution of Fig. 5~b!.

FIG. 5. Two terms that contribute to the equation of motion
G(k,t)b1b1 . Within the three-band model, the first term is n
glected and the second is retained.
d

d

in

-

b

l

To complete the three-band model, we expand the C
lomb interactionsU(k2k8) and U8(k2k8) in cubic har-
monics. Only the lowest-order, constant terms are retain
Consequently, the self-energiesD (6) andG (67) are indepen-
dent of momentum. The identityu5f12f2 follows from
the self-consistent relations of Eqs.~9a! and ~10!. With the
definitions D (6)5g exp(if6), D̄(6)5gexp(2if6), and
G (67)5d exp(7iu), the self-consistent relations may be r
written as

g52
U

2V
T(

k,l
g

2in l2eb1~k!2eb2~k!12d

D3~k,in l !
, ~13!

d52
U8

V
T(

k,l

@ in l2ea~k!#d1g2

D3~k,in l !
, ~14!

with denominator

D3~k,in l !5@ in l2ea~k!#@ in l2eb1~k!#@ in l2eb2~k!#

2g2@2in l2eb1~k!2eb2~k!12d#

2d2@ in l2ea~k!#. ~15!

We also define the dimensionless coupling constantsl
5rehU/8 andl85rehU8/8. In both self-consistent relations
the sum overn l must be performed prior to the summatio
overk. Reversing the order of the summations in Eq.~14! for
d would generate a term 2l8d on the right-hand side.

The free-energy differenceDF3 of the three-band mode
is obtained by integrating Eqs.~13! and ~14! with the result

DF3~g,d,d8!5rehH g2

2l
1

d2

4l8
~122l8!

2
2T

Vreh
(
l ,k

lnUD3~g,d,d8,k,in l !

D3~0,0,d8,k,in l !
UJ .

~16!

In order to reverse the summations overn l and k, a term
2rehd

2/2 was added to the free energy. As required, mi
mization ofDF3(g,d,d8) with respect tog andd reproduces
Eqs. ~13! and ~14!. The ordering wave vectorsQ68 are ob-
tained by minimizingDF3(g,d,d8) with respect tod8. De-
spite the utility of such a procedure in Fig. 2, the free ene
DF3 cannot be separated into contributionsDF1 and DF2

from nesting on one side or the other of the two Fermi s
faces. Instead, the energy mismatch on one side of the F
surface directly affects the nesting on the other side.

To evaluate the Green’s functions and self-consist
equations, we must specify the paramagnetic ener
ea(k), eb1(k), and eb2(k). Assuming that the ordering
wave vectorsQ68 lie along thez axis, the quasiparticle ener
gies may be linearized close to each face of the octahe
Fermi surface with normaln̂. The linearized energies ar
given byea(k)5z(k), eb1(k)5z0/22k sgn(kz)2z(k), and
eb2(k)5z0/21k sgn(kz)2z(k), wherez(k)5vF(k•n̂2kF)
and k5z0d8/2d. If the ordering and nesting wave vecto
coincided withd85d, then the mismatch between thea and
b1 (kz,0) or b2 (kz.0) energies at the Fermi momen
tum would equalz0. In the C state withd850, the linearized
eb1(k) andeb2(k) energies are identical.
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The hybridized quasiparticle energiese(k) in Figs. 3~b!
and 3~c! are obtained from the zeroes of the denomina
D3(k,e). In the C phase withd850, this produces three
bands with energies

eab~k!5
z0

4
1

d

2
2A2g21~z2z0/42d/2!2, ~17a!

eba~k!5
z0

4
1

d

2
1A2g21~z2z0/42d/2!2, ~17b!

eb8~k!52z1
z0

2
2d. ~17c!

Both the survival of three bands in the C limit and the a
pearance of a linearb8 band are rather puzzling cons
quences of the three-band model.

To set the stage for future discussion, one additional
rameter must be defined. The self-consistent relation fog
given by Eq.~13! contains a logarithmically divergent inte
gral over the energyz. To regulate this divergence, we im
pose the cutoffe0, which is assumed to be much smaller th
the Fermi energy but much larger than the Ne´el temperature.
This cutoff only appears implicitly in the Ne´el temperature

TN* 5
2g

p
e0e21/2l'100 meV ~18!

of a perfectly nested C alloy withz050. Here, lng'0.577 is
Euler’s constant. WhenU850, the energy mismatch at th
triple point19 is given in units ofTN* by z054.276TN* .

III. TWO- AND THREE-BAND MODELS IN THE C PHASE

The RPA equations of motion for the Green’s functions
the C phase are summarized in Appendix B. Using the d
nitionsD5A2g exp(if), D̄5A2g exp(2if), andD5d, these
coupled equations have the solutions

G~k,in l !aa5
in l2eb1~k!2d

D2~k,in l !
, ~19a!

G~k,in l !ba5
A2ge2 if

D2~k,in l !
, ~19b!

G~k,in l !ab5
A2geif

D2~k,in l !
, ~19c!

G~k,in l !bb5
in l2ea~k!

D2~k,in l !
, ~19d!

with denominator

D2~k,in l !5@ in l2ea~k!#@ in l2eb1~k!2d#22g2.
~20!

The zeroes ofD2(k,e) coincide with the solutionseab(k)
andeba(k) of Eqs.~17a! and~17b!. But unlike the C limit of
the three-band model, only two bands appear in an ‘‘exa
solution of the RPA equations in the C phase and there is
sign of the thirdb8 band. A factor ofA2 was introduced into
r

-

a-

fi-

’’
o

the definition ofD so that the energy gap 2A2g between the
ab andba bands is the same as in the C limit of the thre
band model.

Once again, we expand the Coulomb interactionsU(q)
and U8(q) in terms of cubic harmonics and keep only th
lowest-order, constant term in the self-consistent relati
for g andd given by Eqs.~B2a! and ~B2b! in Appendix B.
Upon integrating these relations, we find that the C free
ergy can be written

DF2~g,d!5rehH g2

2l
1

d2

8l8
2

2T

Vreh

3(
l ,k

F lnUD2~g,d,k,in l !

D2~0,0,k,in l !
U1 d

in l2eb~k!G J .

~21!

Unlike the summations inDF3 for the I phase, thek andn l
sums inDF2 may be interchanged without consequence.

At first sight, the free energiesDF3(g,d,d850) and
DF2(g,d) seem irreconcilable. But the C limit ofDF3 can
be simplified using the factorization

D3~k,in l !5$@ in l2ea~k!#@ in l2eb1~k!2d#22g2%

3@ in l2eb1~k!1d#

5D2~k,in l !@ in l2eb1~k!1d#. ~22!

ThenDF3(g,d,d850) contains the contribution

(
l ,k

lnU in l2eb1~k!1d

in l2eb1~k!
U5(

l ,k
ReH d

in l2eb1~k!

2
1

2S d

in l2eb1~k! D
2

1
1

3S d

in l2eb1~k! D
3

2 . . . J ,

~23!

in which thek sum is performed first. It is easy to show th
every term in this summation vanishes. Hence, we can
write the C free energy of the three-band model as

DF3~g,d,d850!5rehH g2

2l
1

d2

4l8
~122l8!2

2T

Vreh

3(
l ,k

F lnUD2~g,d,k,in l !

D2~0,0,k,in l !
U

1
d

in l2eb~k!G J , ~24!

which is identical toDF2(g,d) except for a change in the
coupling constantl8.

If the coupling constant in the three-band model is d
noted byl38 , then the two- and three-band models for the
phase are equivalent provided that

l285
1

2

l38

122l38
. ~25!
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Within the three-band model,l38 is restricted to the range 0
<l38<

1
2. As l38→ 1

2, the ICDW becomes unstable with a d
vergent amplitude. In an ‘‘exact’’ RPA treatment of the
phase, however, no such instability occurs. We see from
~25! that thel38→ 1

2 limit corresponds to thel28→` limit
within the two-band model. This suggests that the three-b
model compensates for the neglect of higher harmonics
the absence of terms like Eq.~11! by introducing an insta-
bility in l38 . Such an instability should disappear in an ‘‘e
act’’ treatment of the I phase within the RPA. But due to t
different momentum dependences of the Coulomb ener
in Eq. ~11! and Eq.~12!, there is no easy way to retain th
contribution of terms like Eq.~11!.

These results suggest that there are two ways to con
tently apply the three-band model to both the C and I pha
The first is to simply use Eqs.~16! and ~24! with the cou-
pling constantl38 . These two relations guarantee that t
free energy is continuous across a second-order IC p
transition with the same order parametersg and d on both
sides. An alternate method is to use Eq.~25! to introduce the
coupling constantl28 into both Eqs.~16! and ~24!. The
ICDW instability asl38→ 1

2 is then replaced by an instabilit
asl28→`. In these two limits, it can be shown14 that the C
phase obtains a lower free energy than the I phase fo
values of the mismatch energyz0.

Within either the two- or three-band models, it is straig
forward to evaluate the order parametersg andd at T50 in
the C phase. We find that

g~0!5
p

gA2
TN* '1.247TN* , ~26!

d~0!52
l28z0

2~11l28!
,0. ~27!

The last relation implies that the downward shift in theab
and ba bands only occurs when the mismatch energyz0 is
nonzero. Notice from Fig. 3~c! that the midpoint between th
ab and ba bands liesz0/41d/2 above the chemical poten
tial. As l28→`, Eq. ~27! implies thatd(0)→2z0/2 so that
the energy bands lie symmetrically on either side of
chemical potential. The significance of this result will b
discussed in the next section.

IV. FIRST-ORDER PC TRANSITION

Our final task is to clarify the physics of the first-order P
transition produced by the Coulomb interactionU8 in the C
phase of the SDW. The existence of such a first-order tr
sition can be easily demonstrated by performing a Land
Ginzburg expansion of either free energyDF2 or DF3. Ex-
panded in powers ofg andd, DF2(g,d) can be written as

DF2~g,d!

rehTN*
2

5AS g

TN*
D 2

1BS g

TN*
D 4

1CS d

TN*
D

1DS d

TN*
D 2

1ES g

TN*
D 2S d

TN*
D 1 . . . , ~28!
q.

d
nd

es

is-
s.

se

ll

-

e

n-
u-

with coefficients given in Appendix C. To express the fr
energy as a function of a single variable, we require that
derivative ofDF2 with respect tod must vanish. Since the
linear coefficientC vanishes, we find that to lowest order
g/TN* ,

d

TN*
52

E

2DS g

TN*
D 2

. ~29!

Substituting this expression back into Eq.~28! for DF2(g,d),
we obtain the expansion

DF2~g,d!

rehTN*
2

5A8S g

TN*
D 2

1B8S g

TN*
D 4

1 . . . , ~30!

A85A, ~31!

B85B2
E2

4D
5B22l28E

2, ~32!

which uses our resultD51/(8l8).
The phase transition becomes first order when theg2 and

g4 coefficients change sign. So the threshold value ofl28 is
given by

l2c8 5
S3

2

S2
, ~33!

S25 (
n50

`

ImS 1

Xn
2D , ~34a!

S35 (
n50

`

ReS 1

Xn
3D , ~34b!

Xn5n1
1

2
1 i

z0

8pTN
. ~35!

The critical valuel2c8 is plotted versus the normalized energ
mismatchz0 /TN* in Fig. 6. When the Fermi-surface nestin
is perfect withz050, thenS250 so thatl2c8 5` and the PC
transition is always second order. At the triple point,19 how-

FIG. 6. The critical value ofl28 versus the energy mismatc
z0 /TN* in the C phase. The black dot denotes the triple point.
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ever,S350 sol2c8 50. Then the PC transition is first orde
for any nonzero coupling constantl28 .

Our assumption of an infinite electron reservoir impli
that the chemical potential is not depressed by the forma
of the SDW. In order to keep the chemical potential fixe
electrons must transfer from the reservoir bands to the ne
a andb bands belowTN . The change in occupation of thea
andb bands is given by

Draa~T!5
2T

V (
k,l

H G~k,in l !↑↑,aa2
1

in l2ea~k!J , ~36!

Drbb~T!5
2T

V (
k,l

H G~k,in l !↑↑,bb2
1

in l2eb1~k!J .

~37!

Due to their spin symmetries, the contributions of the o
diagonalab and ba matrix elements vanish. The above r
lations imply that

Draa~T!5Drbb~T!52
1

4
reh

d~T!

l28
.0, ~38!

so there is a net transfer of electrons from the reservoir ba
to the nesteda andb bands.

At zero temperature, Eq.~27! implies that the total num-
ber of transferred electrons is given by

Draa~0!1Drbb~0!5
1

4
rehz0

1

11l28
. ~39!

But at T50, the chemical potential lies

z0

4
1

d~0!

2
5

1

2
z0

1

11l28
~40!

above the midpoint between theab and ba bands. Conse-
quently, the electrons transferred from the reservoir exa
balance the excess holes remaining on theb Fermi surface.

The transferred electronsDrbb(T) interact electrostati-
cally with the originalb electrons through theU8 term in the
Hamiltonian of Eq.~5!. Due to the net excess of holes on t
nesteda andb bands, theab andba bands are shifteddown-
ward in energy by the attraction between the transfer
electrons and the excess holes. Indeed, we may write
energy shiftd(T) of the b band as

d~T!52 1
2 U8Drbb~T!, ~41!

where the factor of12 reflects the counting of both spin stat
in Drbb(T) (U8 only couples like spins!. So asl28 increases,
the energy shift also grows. This brings the chemical pot
tial closer to the midpoint between theab and ba bands,
which in turn lowers the number of transferred electro
Drbb(T) from the reservoir bands. We emphasize that
downward shift in energy of theab and ba bands is pro-
duced by thechangein electrostatic energy induced by th
transferred electrons. Such a shift does not occur in a B
superconductor because the number of↑ and↓ electrons is
the same. Hence, the formation of the BCS condensate
not initiate the transfer of electrons from other bands.
n
,
ed

-

ds

ly

d
he

-

s
e

S

es

V. DISCUSSION AND CONCLUSION

This paper has served three different purposes. First,
have justified the three-band model for an I system
coupled spin- and charge-density waves. In addition to
glecting higher harmonics, the three-band model also
glects terms that use the Coulomb interactions to chang
b6 quasiparticle into ab7 quasiparticle. Such terms wer
shown to be of orderT/z0'1/20 compared to the terms tha
are retained.

Our second goal was to show that the three-band mo
reduces to the correct C limit. Due to the approximatio
made within the I phase, the Coulomb interaction const
U8 of the three-band model has an exaggerated effect and
thermodynamics becomes singular asl85rehU8/8→ 1

2. In an
exact treatment of the I phase, the singularity atl85 1

2 would
be replaced by one atl85`. With the substitution ofl38 by
l285l38/@2(122l38)#, the singularity atl385 1

2 is removed
and the three-band model correctly interpolates between
C and I phases.

Finally, we have shown that a first-order PC transition
caused by the redistribution of electrons between the ne
and non-nested bands. The Coulomb attraction between
b-band holes and the electrons transferred from the reser
bands lowers the energy of theb band. This rearrangemen
of electronic charge may be responsible for the tetrago
lattice distortion in g2Mn alloys, which supports a
CSDW.20 When the electron reservoir is infinite and th
chemical potential is fixed, the electrostatic interactionU8
always favors a first-order PC transition in the vicinity of th
triple point.

However, a finite electron reservoir may defeat this fir
order PC transition for smalll8. Qualitatively, this may be
understood as follows. Ifr r is finite, then the reservoir will
not transfer as many electrons to the nested bands.21 Hence,
the shift in theb-band energy becomes smaller as the size
the reservoir decreases. By introducing an additional te
into the Landau-Ginzburg coefficientB8,22 the finite reser-
voir produces a nonzero thresholdl2c8 even at the triple
point.

This competition between the electron reservoir and
electrostatic couplingU8 may explain the absence of a firs
order PC transition in CrMn alloys: the reservoir density-o
statesr r and the coupling constantl8 may be too small to
support a first-order PC transition. By contrast, the relativ
localized Fe electrons may act to enhance the electron re
voir through a magnetostrictive effect.3

As shown by Nakanishi and Kasuya,3 the change in mis-
match energyDz05hDV/V with the volume changeDV
acts to enhance the electron reservoir. Formally, the mag
tostriction 1/a[rehh

2/B (B is the Bulk modulus! plays an
identical role to the coupling constantl28 in the Landau-
Ginzburg coefficientB8 of Eq. ~32!. So magnetostriction also
favors the C phase and drives a first-order transition. Wh
active in other alloys as well, magnetostriction may be p
ticularly important in CrFe alloys due to the extra electro
on each Fe impurity. For any alloy, 1/Aa is predicted to
decrease linearly with the energy mismatchz0. The magne-
tostriction 1/a can be absorbed into an effective reserv
with power
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1

r r11
5

1

r r011
2

1

a
, ~42!

wherer r0 is the reservoir power in the absence of magne
striction.

Although appealing, this explanation has several pr
lems. First, the effective reservoir power of the I phase
comes singular asa passes throughr r011. Even more trou-
bling, the negative electron reservoir witha,r r011 and
r r,0 has no physical interpretation. It seems much m
plausible that magnetostriction works in tandem with t
coupling l28 by enhancing the reservoir power. To ensu
that the effective reservoir powerr r remains positive, the
magnetostrictiona must be restricted to values greater th
r r011. Even a modest magnetostriction would substantia
increase the effective reservoir powerr r . Although magne-
tostriction cannot alone induce a first-order PC transition
does act to diminish the critical valuel2c8 (r r).

In retrospect, the equivalence of the two- and three-b
models in the C phase is not so surprising. The interac
density of statesr(e) derived from the three-band model23 in
the C limit is identical to the density of states obtained fro
a two-band model with a shifted chemical potential. As e
pected, the linearb8 band makes no contribution. When th
IC transition is second order, Fishman and Viswanath23 dem-
onstrated thatr(e) smoothly varies from the I phase~with
two energy gaps associated with three quasiparticle band! to
the C phase~with a single gap associated with two band!,
even in the presence of a CDW. So as proven in Sec. III,
three bands of quasiparticles collapse into two bands in th
limit.

There is no doubt that higher harmonics such as the C
play a crucial role in determining the IC phase boundary
Cr alloys. With no other harmonics present, the CDW des
bilizes the I phase and shifts the IC phase boundary tow
higher values of the energy mismatchz0.14 Kotani24,25 at-
tempted to go beyond the three-band model by includ
both higher harmonics and neglected terms such as in
~11!. In Ref. 24, Kotani neglects harmonics higher than
CDW but includes an infinite hierarchy of terms like E
~11!. In each such term, the Coulomb interactionU(k2k8
1Q18 2Q28 ) is replaced by the same constant as the inte
tion U(k2k8). Unlike the three-band model, which allows
closed form solution, the infinite hierarchy of coupled equ
tions generated by Kotani must be solved numerica
Kotani25 later included the third harmonic of the SDW
within this approach. Like the second harmonic, the th
harmonic was also found to play an important role in det
mining the IC phase boundary.

Nonetheless, a rigorous solution of the RPA equatio
including both the higher harmonics and the other terms
glected by the three-band model, has not yet been fou
Instead of the procedure adopted by Kotani,24 the Coulomb
interaction U(k2k81Q18 2Q28 ) should be separately ex
panded in cubic harmonics and replaced by a differ
lowest-order, constant term thanU(k2k8). Such a rigorous
solution of the RPA equations should eliminate the insta
ity found within the three-band model asl38→ 1

2.
In the most surprising result of our work, we find that t

Coulomb interactionU8 has important physical conse
-
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quences for both the I and C phases. In the I phase, the C
amplitude grows with the size ofU8. In the C phase, theab
andba energies are shifted downwards by the Coulomb
tractionU8 between the excess holes on theb band and the
electrons that transfer to theb band from the reservoir. When
l28.l2c8 , the energy shift is large enough to generate a fi
order PC transition. Since the same Coulomb interaction
responsible for both the size of the ICDW and the first-ord
PC transition, we predict that the first-order PC transitio
observed in CrFe and CrSi alloys are preceded by the gro
of large CDW’s in their I phases.

The growth of the CDW amplitude%0 with the Fe or Si
concentrations should be straighforward to observe.
found in scattering measurements11 and verified by the three
band model,2,14 the ratio%0 /S0

2 is relatively independent o
temperature. But the three-band model also indicates14 that
%0 /S0

2 is proportional to 1/(122l38)5114l28 . So as the
coupling parameterl28(x) increases with the Fe or Si con
centrationx, the ratio%0 /S0

2 should also increase. Howeve
our phenomenological model does not tell us why Fe or
doping should enhance the Coulomb attractionU8 between
electrons and holes on theb Fermi surface. Perhaps, firs
principles calculations shall someday answer this questio

To summarize, we have provided a theoretical justific
tion for the three-band model applied to the coupled sp
and charge-density waves of I Cr alloys. Provided that
Coulomb constantl8 is suitably redefined, the three-ban
model reduces to the correct form in the C limit. We ha
also verified that the same Coulomb interactionU8 that gov-
erns the size of the CDW in the I phase is also respons
for a first-order transition from the P to the C phase. Hop
fully, future measurements of the ICDW in CrFe and Cr
alloys will confirm this prediction.
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APPENDIX A: GREEN’S FUNCTIONS IN THE I PHASE

In imaginary time, the equations of motion for th
Green’s functions are summarized below, assuming that
peated spin indices are summed:

@2]/]t2ea~k!#G~k,t!ab,aa2Dag
~1 !~k!G~k,t!gb,b1a

2Dag
~2 !~k!G~k,t!gb,b2a5dabd~t!, ~A1a!

@2]/]t2ea~k!#G~k,t!ab,ab62Dag
~1 !~k!G~k,t!gb,b1b6

2Dag
~2 !~k!G~k,t!gb,b2b650 ~A1b!

@2]/]t2eb6~k!#G~k,t!ab,b6b62D̄ag
~6 !~k!G~k,t!gb,ab6

2Gag
~67 !~k!G~k,t!gb,b7b65dabd~t!, ~A1c!
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@2]/]t2eb6~k!#G~k,t!ab,b6a2D̄ag
~6 !~k!G~k,t!gb,aa

2Gag
~67 !~k!G~k,t!gb,b7a50 ~A1d!

@2]/]t2eb6~k!#G~k,t!ab,b6b72D̄ag
~6 !~k!G~k,t!gb,ab7

2Gag
~67 !~k!G~k,t!gb,b7b75dabdQ

18 ,Q
28
. ~A1e!

The equations of motion for the 636 matrix G(k,t) can
be easily converted to frequency space using

G~k,in l !5E
0

b

G~k,t!ein lt, ~A2!

wheren l5(2l 11)pT. We now impose18 the spin symme-
tries Gab,aa5dabGaa , Gab,ab65m̂•sabGab6 , Gab,b6a

5m̂•sabGb6a , Gab,b6b65dabGb6b6 , and Gab,b6b7

5dabGb6b7 . These relations imply that Dab
(6)

5m̂•sabD (6), D̄ab
(6)5m̂•sabD̄ (6), and Gab

(67)

5G (67)dab . Consequently, we obtain the band matrix e
ments

G~k,in l !b6a5
1

D3~k,in l !
$D̄~6 !~k!~ in l2eb7~k!

1D̄~7 !~k!G~67 !~k!%, ~A3a!

G~k,in l !aa5
1

D3~k,in l !
$@ in l2eb1~k!#@ in l2eb2~k!#

2G~67 !~k!D ~76 !~k!%, ~A3b!

G~k,in l !ab65
1

D3~k,in l !
$D~6 !~k!@ in l2eb7~k!#

1D~7 !~k!G~76 !~k!%, ~A3c!

G~k,in l !b7b65
1

D3~k,in l !
$G~76 !~k!@ in l2ea~k!#

1D~6 !~k!D̄~7 !~k!%, ~A3d!

G~k,in l !b6b65
1

D3~k,in l !
$@ in l2ea~k!#@ in l2eb7~k!#

2D~7 !~k!D̄~7 !~k!%, ~A3e!

where the denominator is

D3~k,in l !5@ in l2ea~k!#@ in l2eb1~k!#@ in l2eb2~k!#

2D~1 !~k!D̄~1 !~k!@ in l2eb2~k!#

2D~2 !~k!D̄~2 !~k!@ in l2eb1~k!#

2G~12 !~k!G~21 !~k!@ in l2ea~k!#

2D̄~2 !~k!D~1 !~k!G~12 !~k!

2D̄~1 !~k!D~2 !~k!G~21 !~k!. ~A4!
-

APPENDIX B: GREEN’S FUNCTIONS IN THE C PHASE

The Green’s functions in the C phase obey the same s
metry relations as in Appendix A. We can easily obtain t
equations of motion for the Green’s functions so long
double counting is avoided. For example, terms withq5k
2k8 and q5k2k81Q18 2Q28 are only counted once. We
then find

@ in l2ea~k!#G~k,in l !aa2D~k!G~k,in l !ba51, ~B1a!

@ in l2ea~k!#G~k,in l !ab2D~k!G~k,in l !bb50,
~B1b!

@ in l2eb1~k!#G~k,in l !bb2D̄~k!G~k,in l !ab

2G~k!G~k,in l !bb51, ~B1c!

@ in l2eb1~k!#G~k,in l !ba2D̄~k!G~k,in l !aa

2G~k!G~k,in l !ba50, ~B1d!

where Gab15Gab2[Gab , Gb1a5Gb2a[Gba , and
Gb1b15Gb2b25Gb6b7[Gbb . So only four independen
matrix elements remain in the C phase.

The self-energies now obey the self-consistent relation

D~k!52
1

V
T(

l ,k
U~k2k8!G~k8,in l !ab , ~B2a!

D̄~k!52
1

V
T(

l ,k
U~k2k8!G~k8,in l !ba , ~B2b!

G~k!52
1

V
T(

l ,k
U8~k2k8!G~k8,in l !bb . ~B3!

APPENDIX C: LANDAU-GINZBURG EXPANSION

This appendix provides the coefficients in the Landa
Ginzburg expansion of the free energyDF2(g,d) near the
Néel temperatureTN . Starting with the free energy of Eq
~21!, we expand

(
l ,k

lnUD2~g,d,k,in l !

D2~0,0,k,in l !
U

5(
l ,k

lnH 12
2g21d@ in l2ea~k!#

@ in l2ea~k!#@ in l2eb1~k!#J
~C1!

in powers ofg andd up to ordersg4 or d2. The coefficients
in Eq. ~28! are given by

A5 lnS T

TN*
D 2 (

n50

`

ReH 1

Xn
2

1

n11/2J , ~C2a!

B52
1

8p2S TN*

T D 2

(
n50

`

ReS 1

Xn
3D , ~C2b!
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C50, ~C2c!

D5
1

8l8
, ~C2d!
93

ev

ri,

e

c

E52
1

4p

TN*

T (
n50

`

ImS 1

Xn
2D , ~C2e!

whereXn is defined by Eq.~35! in the text.
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