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First-order paramagnetic-to-commensurate phase transition in Cr alloys
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The coexistence of spin- and charge-density waves in pure Cr and its dilute alloys continues to fascinate both
experimentalists and theorists. Using a three-band model, we show that the charge-densi(CD\fen
incommensuratgl) Cr alloys is governed by the same Coulomb interaction that produces a first-order Ne
transition in commensurat€) alloys. Therefore, we predict that the first-order paramagnetic-to-commensurate
transition observed in CrFe and CrSi alloys is preceded by the growth of a large CDW in the | phase of each
alloy. We also provide a justification for the three-band model in the | phase and show that it reduces to the
correct form in the C limit[S0163-182608)01225-9

I. INTRODUCTION The SDW instability in Cr alloys is produced by the
nearly perfect nesting of its electrona and holeb Fermi

Like superconductivity, spin- and charge-density wavessurfaces. As sketched in Fig. 1, both the electron Fermi sur-
are collective phenomena that involve large numbers of parface centered dt and the hole Fermi surface centered at the
ticles in coherent momentum states. Depending on dopingone boundanH are roughly octahedral in shape. Because
levels and temperature, the Spin_density WMV\I) that the electron Fermi surface is S|Ight|y smaller than the hole
appears below the ¢ temperature of Cr alloys may be Fermi surface, there are two different nesting wave vectors
either commensurat€) or incommensuraté) with its bee Q. that translate four faces of one Fermi surface onto four
lattice! In addition to being one of the few bulk systems faces of the other. ThE andH points are separated I%/2,
containing a SDW, Cr also supports a charge-density wavwhereG is a rec_lprocal lattice vector with magnituder/a.
(CDW) with twice the wave vector and half the period of the Hence, the nesting wave vectdps. lie on either side of5/2
SDW. In this paper, we show that the same Coulomb interand may be written aQ. =(G/2)(1+ 6), where§~0.05 is
action that governs the amplitude of the CDW in the | phaseéd measure of the size difference between the electron and
also produces a first-order paramagnéBgto C transition. hole Fermi surfaces. Aside from the nestedndb Fermi
Therefore, we predict that the first-order PC transitionsurfaces, the band structure of Cr also contains two other
observedin CrFe and CrSi alloys is preceded by the growth
of a large CDW in the | phase of each alloy.

This prediction is based on a model that uses the random-
phase approximatio(RPA) in conjunction with one-electron
band and two hole bands. Although the three-band nfodel
may be easily justified in the | phase, its physical signifi-
cance in the C phase is less clear. As discussed below, sev-
eral objections may be raised to the use of the three-band
model in the C phase of Cr alloys. We show that in the C
limit, the three-band model reduces to a two-band model
with a shifted hole energy. When this energy shift is suffi-
ciently large, the PC transition becomes first order. Remark-
ably, the shift of the hole band in the C phase is produced by
the same Coulomb interaction that determines the size of the
CDW in the | phase.

Only one other theoretical work has addressed the ques-
tion of the first-order PC transition in some Cr alloys. Unlike
the present workers, Nakanishi and Kaslstadied the mag-
netostrictive effect of a volume expansion produced by the
Fe impurities. This effect is not related to the presence of a FIG. 1. The band structure of Cr alloys with Fermi surfages
CDW in the | phase. The results of Nakanishi and Kasuyandb nested by the wave vecto€. . Other Fermi surfaces con-
will be discussed in the final section of this paper. stitute a reservoir band.
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1 AF andAF’ (Q,)>0, the total free-energy differendeF(q) is
Q_Q. 2n/a QyQy 9 not minimized at the nesting wave vectors ®ut rather at
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wave vectors Q that lie somewhat closer 16/2. Although
neither AF, (g) nor AF_(qg) has a minimum at the com-
mensurate wave vectds/2, the total free energy contains
such a minimum becauskF', (q)=—AF’ (q) at q=G/2.
As the nesting wave vectors.Qare brought closer together
by doping, the ordering wave vectors @lIso approacie/2.
When ¢ is sufficiently small, the minimum imMAF at g
I ) incommensurate bl =G/2 may become deeper than the minima near. §hen,
the transition from the | to the C phase is first order. In the |
phase, the location of the minima at @epends on tempera-
FIG. 2. A heuristic picture of the free-energy difference ture through the shape of the free energids. (q). Unfor-
AF(q)=AF.(q)+AF_(q) between the paramagnetic and orderedtunately, this appealing picture does not follow from a more
states of Cr. The total free energy is plotted in the thick solid curveprecise derivation of the free energyF within the three-
and the individual free energi@s- . (q) are plotted in the thin solid band modelAF cannot be strictly divided into contributions
curves. AF .. from nesting on one side or the other of the two Fermi
surfaces.
As first discussed by Young and Sokol8ffyho devel-

commensurate

bands: one set is centered at thgoints and the other lies

midway between thd” and H points! These non-nested oped the three-band model, the CDW in Cr may be consid-
Fermi surfaces play an ancillary role in the forTatlon of theg oq the second harmonic of the SDW. With wave vectors
SDW ﬁn_lqhare often_gr(()jupeq to%ether mtofa?] electrodn reZ'ZQ’i , the CDW satellites lie on either side of the reciprocal

(rae:\s/glr:}oir b:nggogglgivein;téy :n ds;ates of the nested an Iatticc_a vectorG. _Du_e to the period_icity of the Bloch wave
While the condensate of ah superrc.onductor contains pairfunctlonsu(r), similar C.DW satell_ltes are found_ on either
Side of every other reciprocal lattice vector. This has been

of electrons with zero total momentum, the condensate of Serified in a number of x-réy1® and neutron-scattering

spin-density wave contains pairs of electrons and holes Wit}%xperimentél'lz most recently by Hill and co-worker?

ir::?tnzg][ci;gtgd[)rc\?mvmg:nirtggtmrpnae{l:jr;;aﬁ?ht?h;h%C%elr;fj' Higher harmonics of the SDW have also been obsetved:
Y ; }he third harmonics of the SDW lie at wave vectors

tice, the SDW O.f cr actuglly C(_)ntains two condensates O(G/2)(1i 346") while the fourth harmonics of the SDW or,
eIe(?tron-hoIe pairs: oneIW|th pair moment@z(G/Z)(l equivalently, the second harmonics of the CDW lie at wave
+¢’) and the other with pair m.omentu@,z(G/Z,)(l vectorsG(1=24'). Evidencé suggests that the amplitude of
—6'). Because & &' <4, the ordering wave vectoQ’. of  thenth harmonic is proportional to the amplitude of the fun-
the SDW lie closétto G/2 than the nesting wave vectors damental to theth power. Aside from the CDW, other har-
Q- . Whené' =0 andQ’ =G/2, the SDW is commensurate monics are neglected by the three-band model.
with the lattice. UnlikeQ.. and &, which are fixed by the Within the three-band model, the hole band is shifted by
band-structure topologyQ’. and é” are solved by minimiz-  wave vectorsQ’, while the electron band is kept fixed as
ing the nesting free energkF and generally depend on shown in Fig. 8a). The electron energy,(k) and hole en-
temperature. In units of the lattice constantthe period of ergies e, (k)=e,(k— Q%) correspond to three distinct
the SDW s given by 4’. For pure Cr just below its N#  pands in the | phase. In Figs(t8 and 3c) for the | and C
temperaturé, 5’ ~0.037 and 18’ ~27 so the SDW is very phases, the linearized, paramagnetic quasiparticle energies
close to being commensurate. are plotted as dashed lines. We assume that the electron and
The three sets of possible ordering wave vec®fscor-  hole Fermi velocities have the same magnituge Below
respond to the three possible orientations of the nesting wau@e Neel temperature, the hybridized quasiparticle energies
vectors along thg100), (010),, or (001 directions. When gre plotted in the solid curves.
pure Cr is cooled below the Teétemperaturel =310 K, The Coulomb interactiod couples electrons on the
six types of domains formIn each domain, the spin polar- band with holes on thé+ bands to produce a SDW with
ization m lies along one of two possible directions perpen-order parameteg>0. Since these quasiparticles differ by
dicular to one of the three sets of wave vect@s. The momentaQ’. , the SDW can be written &5
formalism developed in this paper describes one such do-
main, with a single polarization and one set of ordering wave

vectors. - )
Heuristically, the difference between the nesting and or- S(n=— 4 VaMmmlu(r)|
dering wave vectors can be easily understood. Imagine that
the free-energy differenckF between the paramagnetic and x{cogQ} -r—¢,)+cogQ_-r—¢ )}, @

ordered states can be separated into contributions from the

nesting of the right and left faces of the electron and hole

Fermi surfaces. The total free enerdyF(q) (thick curveé  wherem is the polarization direction aneg. are arbitrary
and the individual contributionAF .. (q) (thin curve$ with phases. A CDW with order parame@ 0 is similarly pro-
minima at Q are sketched in Fig. 2. Sina&F’ (Q_)<0 duced by the Coulomb attractid’ between electrons and
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' the Cr host reduces the size differengdetween the elec-
tron and hole Fermi surfaces and also decreases the wave
vector parameted’. When the electron and hole Fermi sur-
faces are sufficiently close in size afAds sufficiently small,
6'—0 and the SDW becomes commensurate. To conserve
charge, the CDW must disappear in the commensurate phase
so that* 6= n/2. Experimentally, Mn is much more effec-

tive than Fe at lowering the chemical potential and rendering
the SDW commensurate: the triple point where the C, I, and
P phases meet lies at a concentration of 0.3% Mn compared
with 2.4% Fe. The effect of doping on the mismatch between
the electron and hole Fermi surfaces is quantitatively gauged
by the mismatch energy,=Gurd/+/3, which vanishes in

the limit of equally sized Fermi surfaces wi@.. = G/2 and
5=0. For pure Cr, photoemission measurem®nitsdicate

that z,~500 meV.

The size difference between the electron and hole Fermi
surfaces has important physical consequences in both the |
and C phases. For either phase, the larger size of the hole
Fermi surface implies that some of tleeholes cannot be
paired witha electrons in the SDW condensate. At zero tem-
perature, it is easy to show thagze/2 of the holes will be
vanpaired wher'=0.

FIG. 3. (a) The electron &) and hole b) energies translated by
the SDW wave vector®'. . In (b) and (c), we expand the boxed
region near the Fermi energy for the quasiparticle energies abo L . Cn
(short-dashedand below(solid) the Neel temperature for the | and Despite its usefulness, the physical significance O7f the
C phases. In all three figures, the chemical potential is denoted by {iré€-band model was questioned by Fenton and LedVens.
horizontal dashed line. Their reservations can be summarized as follows. Math-

ematically, the three-band model converts a system consist-

holes on théb+ andb— bands. The momentum difference Ing of two Fermi surfaces into one with three different en-
between ab+ and b— quasiparticle isQ, —Q’ =2Q/,  ergy bands. In the C phase, the two hole energiek) and
—G=G-2Q" . Hence, the CDW is the second harmonic of €b-(K) coincide aboveTy. But as suggested by the solid
the SDW and takes the form curves of Fig. 39), three distinct bands of quasiparticles ap-
pear below the Nal temperature. Viewed as an artifact of the
4 three-band model in the C limit, this suggests that the three-
o(r)=- WVd(T)|U(f)|2 cog(Q.—Q.)-r—#]. (2  band model can only provide physically significant results in
the | phase and cannot be used to evaluate the IC or PC
In both relationsu(r) is normalized to 1 in volum&. Be-  phase boundaries.
causefd= ¢, — ¢_, the spin and charge distributions are in  This raises some fundamental questions about the validity
phase and the electron densig(r) is largest where the of the three-band model in the study of Cr alloys. In particu-
SDW has an antinode. lar, what is the justification for the three-band model even in
Since thed-band Bloch wave functions are strongly the | phase? Does the three-band model correctly interpolate
peaked at the atomic sites, the maximum values of the spihetween the C and | phases? Since our earlier prediétidn
and charge densities in the | phase are a first-order PC transition was based on the three-band
model, can it be trusted?

4h9(T) V In this paper, we resolve those questions. First, we pro-
U N'Coi(¢*+ ¢-)12]], ®) vide a justification for the three-band model in the | phase of
Cr alloys. Section Il shows that the three-band model may be

4d(T) V derived by ignoring harmonics above the CDW and by ne-

Q0= — U N 4) glecting terms that use the Coulomb interactions to convert a

b+ quasiparticle into &+ quasiparticle. Second, we recon-
WhenU'—0, the CDW order parameter vanishes but the cile the three-band model with an “exact” RPA treatment of
ratiod/U’ approaches a nonzero value. The CIp\M() sur-  the C phase. In Sec. lll, we prove that the three bands of
vives in theU’—0 limit due to the remnant correlation be- quasiparticles obtained from the C limit of the three-band
tween theb+ and b— quasiparticles induced indirectly model can be collapsed into two bands, with the hole band
through the SDW. AdJ’ increases, the CDW amplitude of shifted downwards in energy by. The free energy of the
Eq. (4) also increases. In keeping with the scenario menthree-band model reduces to the “exact” C free energy pro-
tioned above, the ratig,(T)/Sy(T)? has been observEtto  vided that the Coulomb interactidd’ is suitably redefined.
be roughly independent of temperature. Within a LandauFinally, we clarify the significance of the Coulomb energy
Ginzburg expansidnof the free energy, it is readily shown U’ within the C phase. Section IV demonstrates that the
thatd(T)ocg(T)? and @o(T) < So(T)?. energy shift of the hole band is caused by the transfer of

As suggested above, the period of the SDW and CDWelectrons from the reservoir bands to the nestednd b

can be controlled by doping. Adding Mn or Fe impurities to bands. A Landau-Ginzburg expansion is used to find the
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k,o k-q,0. The imaginary time operator8(r) are defined in the
a a usual fashion a#\(7)=exp(H)Aexp(—m™H), wherer is re-
stricted between 0 ang= 1/T. Using the Hamiltonian above
| and the fermion commutation relations, we find
Y
ql . da,(7)

i €k, quEBum)bk, bic + qp@k- g
(62

dbka( T) _
dr __Eb(k)bka quE’B U(q)ak’ k’+q/3bk qa

- —E U’ (@)by oDk + qabk—qa (6b)
q k'
Although not explicitly indicated, all operators on the right-
hand sides of these relations are functiong of
We now formulate the equations of motion for the imagi-
nary time Green’s functions

G(K,7) apaa= —(T-aka( Daks(0)), (73

K'+q,0 K,

— _ (£)T
FIG. 4. The Coulomb interactions that contribute to the Hamil- G(K,7) apabs = —{T,aka(T)by5 ' (0)), (7o)

tonian of Eq.(5). G(K, T apbrbe=—(T, b~ (7-)b(+)Jr (0)), (70

critical value ofU’ that produces a first-order PC transition.

Hence, we argue that the first-order PC transition in CrFe G(K, T)app=br = —(T.bi (NbiE'T(0),  (7d)
and CrSi alloys is preceded by the growth of a large CDW in
the | phase of those alloys. As discussed in the conclusion, G(K, T app=a= —(T.bis (1)al4(0)), (7¢)

this prediction can be tested experimentally. Formal results

)
are summarized in the three Appendixes. whereT . is the time-ordering operator and tb&r operators

are deflned by

Il. THREE-BAND MODEL FOR COUPLED SPIN- b{*)=p (8)
ka k—-Q. ,a-
AND CHARGE-DENSITY WAVES *
fJ]Hespite the experimental evidence for their existénce,
igher harmonics of the spin- and charge density waves are

ignored. For example, we s&fr . aka(r)b

In the | phase, the three-band model has a rather natur
derivation. Our starting point is the Hamiltonian
k+2Q —Q" /3(0)>

H=> {e (K)al ax,+ ep(K)D{ byo} and (TTbk,zQ;a(r)bkszLﬁ(O» to zero. These “off-
ko diagonal” Green’s functions correspond to the third and
1 A fourth harmonics of the SDW, with the latter also corre-
+ty 2 U(a)a.by: bk + gk ga sponding to the second harmonic of the CDW.
kK" Using Egs.(6a) and (6b) and applying the RPA to the

: two-particle correlation functions, we obtain the equations of
v 2 U’ (a)by by b +qebk—qe: () motion in Appendix A. Theab+ andb*a Green's func-

Gk a tions are choséfi to have spin symmetryAn-oaB while all
whereU(qg) andU’(q) are the Coulomb energies respon- other Green's functions including the+b¥ components
sible for the SDW and CDW, respectively. Whilg acts  are proportional to the unit matri&, ; in spin space. We also
between both parallel- and antiparallel-spin electron-holéntroduce the self-energies
pairs on thea andb bands,U’ acts between parallel-spin
electron-hole pairs on the band. These interactions are pic-
tured in Fig. 4. For simplicity, we have not included the
Coulomb interaction between electrons and holes onathe
Fermi surface. Such an interaction is not required to obtaina ~ __ 1
CDW and would only complicate our model without chang- AL ()=~ vTE Uk—k")G(K',iv)uppra, (9D)
ing any of its conclusions. Nor have we explicitly included Kl
the contributions of the reservoir electrons. Except where
noted, we shall assume that the reservoir is infinite so that (++) _Z '
the chemical potential is not affected by the formation of the (k)= TE U k=kDGK i) ap oz
SDW condensate. (10

AL >(k)———T2 Uk—K)G(K",iv) apaps (98)
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(ad To complete the three-band model, we expand the Cou-
k-k'+Q,-Q! lomb interactionsU(k—k’) and U’(k—k") in cubic har-
= monics. Only the lowest-order, constant terms are retained.

e o Consequently, the self-energia§™) andI'= ") are indepen-
b+ / b- a\ a b- dent of momentum. The identit§= ¢, — ¢_ follows from
> L > A > the self-consistent relations of_EqQ.a) and (10). With the
k K k+Q-Q! definitions  A)=gexp(e.), A)=gexp(-i¢.), and
I'*¥)=dexp(Fi6), the self-consistent relations may be re-
written as
(b /—_k-\k'\ g:—iTE gZiV|_6b+(k)_Eb_(k)+2d 13
// \\ 2V k.1 D3(k,iV|) '

b / N a b

AN y 4 N U’ [in—ea(k)]d+g?

/7 /7 4 d=—-—T - , (14
k K k Vo Ds(k,ivy)

FIG. 5. Two terms that contribute to the equation of motion forWith denominator
O e e e 1 TS 9 1) =[0I~ e (K10~ e (K0
—g%[2i v~ €54 (k) — €5 (k) +2d]
where the Fourier-transformed Green’s functions are defined

by Eg. (A2) in Appendix A. Due to the spin symmetries — A7y~ (K], (15
of the Green's functions, we may writeAfﬁ)= We also define the dimensionless coupling constants
A®Sm. Tup K(a%)zg(:)ﬁq. Tap andl“gf):l“(i :)5aﬁ. =pepJ/8 and\' = pg U’ /8. In both self-consistent relations,
Besides neglecting higher harmonics, the three-band1€ Sum ovemw; must be performed prior to the summation
model also requires that we neglect terms like overk. Reversing the order of the summations in Egg) for
d would generate a terma2d on the right-hand side.
1 The free-energy differenc&F; of the three-band model
VT /E/ Uk—k'+QL—QL)G(k",iv,")p_a is obtained by integrating Eq§13) and (14) with the result
< ’ o g d?
XG(k+Q}—QL,iv)ap-, (13) AFg(g,d,é’)=peh[ﬁ+W(l—Z)\’)
which enters the equation of motion f@&(k,7)p.p+ . By
contrast, the retained term can be written as 2T

In

D3(g!d;5,1k!i V|)‘
Vperfk | D4(0,08 ki) ||

T2 Uk=K)GK i1 )p1aX G(K,iv)aps - (12) (16
K In order to reverse the summations ougrandk, a term

These two terms are represented by the Feynman diagrams inperd’/2 was added to the free energy. As required, mini-
Fig. 5. Since the momentum ofte- quasiparticle is shifted Mization ofAF5(g,d, 8") with respect tqy andd reproduces
by Q_, both diagrams carry the same incoming and outgoEds. (13) and (14). The ordering wave vector®. are ob-
ing momentumrk—Q’_. taiped by m!nimizingAFg(g,d,é’) W!th rgspect tod’. De-

The neglected term differs from the retained one in twoSPite the utility of such a procedure in Fig. 2, the free energy
ways. Equation(11) uses the momentum removed by the AF3 cannot be separated into contributiohs . and AF_
Coulomb energyJ to convert an incoming+ quasiparticle from nesting on one side or .the other of the two Fermi sur-
into an intermediaté — quasiparticle. As shown in Fig(3), faces. Ins_tead, the energy mlsm_atch on one side (_)f the Fermi
the energy of ab+ (b—) quasiparticle lies close to the surface directly affects the 1nest|ng on the other side.
chemical potential only on the right-hariéft-hand side of To_ evaluate the Greeng functions and self-con5|ste_nt
the a Fermi surface. So the momentukn-k’ +Q’, — Q" equations, we must specify the paramagnetic energies

removed by the Coulomb interaction must be of ordeg 2 €a(K), €v-(K), ,and ep—(K). Assuming that the ordering
In the retained term of Fig.(B), on the other hand, th wave vectors;)_t I|e_along thez axis, the quasiparticle ener-
quasiparticle remains in the same band so that the Coulon@€S May be linearized close to each face of the octahedral
interaction carries a much smaller momentum. In Fig),5 Fermi surface with normah. The linearized energies are
an intermediatea quasiparticle receives the momentum given by e, (k) =z(k), e (K) =2¢/2— k sgnk,) —z(k), and
transferred by the Coulomb interaction to achieve a final,_(k)=z/2+ k sgn(,) — z(k), wherez(k)=vg(k-n—kg)
momentum ok + Q. — Q” . But if the exitingb— quasipar- and k=z,6"/25. If the ordering and nesting wave vectors
ticle lies near the Fermi energy, then the intermediatpia-  coincided withd’ = 8, then the mismatch between theand
siparticle would lie an energg,~500 meV away. There- b+ (k,<0) or b— (k,>0) energies at the Fermi momen-
fore, the contribution of Fig. @) is of orderT/zg=1/20  tum would equaky. In the C state with$’ =0, the linearized
times smaller than the contribution of Figb. ep+ (k) ande,_(k) energies are identical.

1
v
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The hybridized quasiparticle energieék) in Figs. 3b)  the definition ofA so that the energy gapy2g between the
and 3c) are obtained from the zeroes of the denominatorab andba bands is the same as in the C limit of the three-
Dj(k,€). In the C phase withs’ =0, this produces three band model.
bands with energies Once again, we expand the Coulomb interactibh{s])

andU’'(q) in terms of cubic harmonics and keep only the
(178 Iowest-order,. constant term in the self-qonsistent .relations

for g andd given by Egs.(B2a) and (B2b) in Appendix B.
Upon integrating these relations, we find that the C free en-
ergy can be written

€an(k)= +——\/292—|—(z Zo/4—d/2)?,

€pa(K)= + +\/292+(z 20/4—d/2)?,  (17b

AFz(gad):Peh[g—2Jr d_zf_ 2L

Z 2% 8N Vpan

e (K)=—2+ 5 —d. (179 Aadkin) |

Both the survival of three bands in the C limit and the ap- XE [ D,(0,0K,iv)) | i —fb(k)“'

pearance of a lineab’ band are rather puzzling conse- 21)
guences of the three-band model.

To set the stage for future discussion, one additional paUnlike the summations iAF3 for the | phase, th& and v
rameter must be defined. The self-consistent relationgfor sums inAF, may be interchanged without consequence.
given by Eq.(13) contains a logarithmically divergent inte- At first sight, the free energieaF;(g,d,é'=0) and
gral over the energy. To regulate this divergence, we im- AF,(g,d) seem irreconcilable. But the C limit &&F; can
pose the cutofk,, which is assumed to be much smaller thanbe simplified using the factorization
the Fermi energy but much larger than theeNemperature.

This cutoff only appears implicitly in the N& temperature Da(k,iv)={[iv—€a(k)][i v~ €n (k) —d] - 297}
X[iv— ey (k)+d]
15 =2 c.e V2~ 100 meV (18)
N T €0 :Dz(k,iV|)[iV|_€b+(k)+d]- (22)

of a perfectly nested C alloy withy=0. Here, In~0.577is  ThenAF;(g,d,5’=0) contains the contribution
Euler's constant. Whekt)' =0, the energy mismatch at the

: T . . iv— ey (k)+d d
triple point® is given in units ofT¥ by z,=4.276T%. Inl— b T F Re[.—
§ ° " IEI; v~ €p+(K) Izl; i1~ €p (K)
Ill. TWO- AND THREE-BAND MODELS IN THE C PHASE 1 d 2
The RPA equations of motion for the Green'’s functions in a 5( iy — eb+(k))
the C phase are summirized in Appendix B. Using the defi- 1 q 3
nitions A = \2g exp(¢), A=2g exp(~i¢), andD =d, these + —(—) - ... ] ,
coupled equations have the solutions 3livi—epi (k)
(23
— e (k) — . . . ' .
G(K,iv)aa= T (1939 in which thek sum is performed first. It is easy to show that
Da(kiim every term in this summation vanishes. Hence, we can re-
i write the C free energy of the three-band model as
V2ge '?
G(k,i Vl)ba:m: (19b oo @ o oT
- 3(9’ ’ - )_Peh 2)\ 4)\/( ) Vpeh
. V2ge? -
G(k,lm)ab:m, (190 Xz { D,(g,d,k,iv)
DZ(O,Ok,i V|)
| v~ €a(K)
G(k, _— 19 d
(o= B i (19 | 24
v — €p(K)
with denominator S . .
which is identical toAF,(g,d) except for a change in the
D,(k,iv)=[iv,— ex(K)[iv,— eps (k) —d]—2g2. coupling constank’.
? ! Lo Lo (20) If the coupling constant in the three-band model is de-

o ) ) noted by\ 3, then the two- and three-band models for the C
The zeroes oD,(k,e) coincide with the solutiong (k) phase are equivalent provided that

ande, (k) of Egs.(173@ and(17b). But unlike the C limit of

the three-band model, only two bands appear in an “exact” 1
solution of the RPA equations in the C phase and there is no No==
sign of the thirdb’ band. A factor of\2 was introduced into 21

)\3
1-2\4

(25
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Within the three-band model; is restricted to the range 0 SOr A
<\3=<3. As \;— 3, the ICDW becomes unstable with a di- i ]
vergent amplitude. In an “exact” RPA treatment of the C 401 _"
phase, however, no such instability occurs. We see from Eq. 1
(25) that the\;— 3 limit corresponds to thex,—oo limit i ]
within the two-band model. This suggests that the three-band 80 [ ]
model compensates for the neglect of higher harmonics and -§ ]
the absence of terms like E¢L1) by introducing an insta- 200 a
bility in A§. Such an instability should disappear in an “ex- ]
act” treatment of the | phase within the RPA. But due to the ]
different momentum dependences of the Coulomb energies 100 7]
in Eq. (11 and Eq.(12), there is no easy way to retain the i ]
contribution of terms like Eq(11). ol -
These results suggest that there are two ways to consis- 0 5

tently apply the three-band model to both the C and | phases.
The first is to simply use Eqg16) and (24) with the cou-
pling constant\;. These two relations guarantee that the
free energy is continuous across a second-order IC pha§é
transition with the same order parametgrandd on both
sides. An alternate method is to use E2p) to introduce the

FIG. 6. The critical value of\;, versus the energy mismatch
[T}, in the C phase. The black dot denotes the triple point.

with coefficients given in Appendix C. To express the free
energy as a function of a single variable, we require that the

coupling constant\; into both Egs.(16) and (24). The
ICDW instability ask;— 3 is then replaced by an instability
as\,—o. In these two limits, it can be showhthat the C

phase obtains a lower free energy than the | phase for a

values of the mismatch energy.

Within either the two- or three-band models, it is straight-
forward to evaluate the order parametgrandd at T=0 in
the C phase. We find that

derivative of AF, with respect tod must vanish. Since the
linear coefficientC vanishes, we find that to lowest order in

*
N
) 2
Substituting this expression back into EB8) for AF,(g,d),
we obtain the expansion

d E

Ty, 2D

g

= (29

™ 2 4
9(0)= —=T{~1.247TF, (26) AF,(g,d) ( g (9
> — 22 A =] +B =] +..., (30
72 patiz AT TR 0
\3Z0 A=A (30)
0)=—-—22 <0, 2 ’
dO="57p~° @7 ,
E
r_ _ re2
The last relation implies that the downward shift in the B'=B— 75 =B~ 2A:E" (32)

andba bands only occurs when the mismatch enezgys
nonzero. Notice from Fig.(8) that the midpoint between the
ab andba bands lieszp/4+d/2 above the chemical poten-
tial. As Ay—, Eq. (27) implies thatd(0)— —zy/2 so that

which uses our resulD=1/(8\").
The phase transition becomes first order whengthand
g* coefficients change sign. So the threshold valua pfs

the energy bands lie symmetrically on either side of thediven by

chemical potential. The significance of this result will be

discussed in the next section. AL _S (33)
2c ’
S
IV. FIRST-ORDER PC TRANSITION %
1
Our final task is to clarify the physics of the first-order PC 522,120 Im X_ ' (343
transition produced by the Coulomb interactidn in the C "
phase of the SDW. The existence of such a first-order tran- o 1
sit_ion can be eas_ily dem_onstrated by performing a Landau- S,= >R =, (34b)
Ginzburg expansion of either free enerd¥, or AF;. Ex- n=0 X5
panded in powers af andd, AF,(g,d) can be written as
1 Z
Xp=n+ s +i—. 35
AF(g,d) A( 917, (91, ¢ ) N S T Ty (39
penTr? LY LY LY The critical value\ ;. is plotted versus the normalized energy
2 2/ 4 mismatchz, /Ty, in Fig. 6. When the Fermi-surface nesting
+D| = | +E %) (_* + ..., (28 Isperfect withzy=0, thenS,=0 so that ;.= and the PC
N Tn) Ty transition is always second order. At the triple pdihbow-
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ever,S;=0 so\,.=0. Then the PC transition is first order V. DISCUSSION AND CONCLUSION
for any nonzero coupling constant .

Our assumption of an infinite electron reservoir implies
that the chemical potential is not depressed by the formatio
of the SDW. In order to keep the chemical potential fixed,
electrons must transfer from the reservoir bands to the nest
a andb bands belowl . The change in occupation of tiae
andb bands is given by

This paper has served three different purposes. First, we
have justified the three-band model for an | system of
eoupled spin- and charge-density waves. In addition to ne-

ecting higher harmonics, the three-band model also ne-
glects terms that use the Coulomb interactions to change a
b+ quasiparticle into @&+ quasiparticle. Such terms were
shown to be of ordef/zy~1/20 compared to the terms that

oT 1 are retained.
Apaa(T)= 72 |G(k,i V1)11,aa= m] (36) Our second goal was to show that the three-band model
Kl I "a reduces to the correct C limit. Due to the approximations
oT 1 made within the | phase, the Coulomb interaction constant
Appy(T)= [G(k,i V)11bb— —] ) U’ of the three-band model has an exaggerated effect and the
VT ’ iy~ € (K) thermodynamics becomes singulainds= pU’/8— 3. In an
37 exact treatment of the | phase, the singularity &t 3 would
Due to their spin symmetries, the contributions of the off-be replaced by one at’=cc. With the substitution o 3 by

diagonalab and ba matrix elements vanish. The above re- \;=\3/[2(1—2\3)], the singularity at\j=3 is removed

lations imply that and the three-band model correctly interpolates between the
C and | phases.
d(T) Finally, we have shown that a first-order PC transition is
Apaa(T)=Appp(T) =~ 4 Peny7 >0, (38) caused by the redistribution of electrons between the nested

2
and non-nested bands. The Coulomb attraction between the

so there is a net transfer of electrons from the reservoir bands.pand holes and the electrons transferred from the reservoir
to the nestedh andb bands. bands lowers the energy of tibeband. This rearrangement
At zero temperature, Ed27) implies that the total num- ¢ ejectronic charge may be responsible for the tetragonal
ber of transferred electrons is given by lattice distortion in y—Mn alloys, which supports a
CSDW?° When the electron reservoir is infinite and the

1 1 . e S
Apas(0)+Appy(0)= = porzo — (399  chemical potential is fixed, the electrostatic interactioh
e o 476014\ always favors a first-order PC transition in the vicinity of the
triple point.

But atT=0, the chemical potential lies However, a finite electron reservoir may defeat this first-

order PC transition for smal’. Qualitatively, this may be
=—zy—— (40) understood as follows. I, is finite, then the reservoir will
4 2 271+) not transfer as many electrons to the nested bahHence,
the shift in theb-band energy becomes smaller as the size of
the reservoir decreases. By introducing an additional term
Yhto the Landau-Ginzburg coefficie®’ 22 the finite reser-
voir produces a nonzero threshold,. even at the triple
point.
This competition between the electron reservoir and the

z, dOo) 1 1

above the midpoint between ttab and ba bands. Conse-
guently, the electrons transferred from the reservoir exactl
balance the excess holes remaining onliHéermi surface.
The transferred electrondp,,(T) interact electrostati-
cally with the originalb electrons through thg’ term in the
Hamiltonian of Eq(5). Due to the net excess of holes on the . S ) .
nesteda andb bands, theb andba bands are shiftedown- electrostatic co_u'pllngJ may explain the absenc;e of a'f|rst-
ward in energy by the attraction between the transferreoorder PC transition in CrMn alloys: the reservoir density-of-

electrons and the excess holes. Indeed, we may write thatespr anld the coupling C°".‘$ta’“ may be too small to
energy shiftd(T) of the b band as support a first-order PC transition. By contrast, the relatively

localized Fe electrons may act to eer;thance the electron reser-
_ 1y voir through a magnetostrictive effett.

d(T)==2U"Rpoe(T), “1 As shogvn by Ngakanishi and Kasuyahe change in mis-
where the factor of reflects the counting of both spin states match energyAzo= »AV/V with the volume change\V
in Apyp(T) (U’ only couples like spins So as\, increases, acts to enhance the electron reservoir. Formally, the magne-
the energy shift also grows. This brings the chemical potentostriction 14=pey7*/B (B is the Bulk modulus plays an
tial closer to the midpoint between theb and ba bands, identical role to the coupling constant, in the Landau-
which in turn lowers the number of transferred electronsGinzburg coefficienB’ of Eq.(32). So magnetostriction also
Appp(T) from the reservoir bands. We emphasize that thdavors the C phase and drives a first-order transition. While
downward shift in energy of thab andba bands is pro- active in other alloys as well, magnetostriction may be par-
duced by thechangein electrostatic energy induced by the ticularly important in CrFe alloys due to the extra electrons
transferred electrons. Such a shift does not occur in a BC8n each Fe impurity. For any alloy, i@ is predicted to
superconductor because the number aind | electrons is decrease linearly with the energy mismaigh The magne-
the same. Hence, the formation of the BCS condensate doésstriction 14 can be absorbed into an effective reservoir
not initiate the transfer of electrons from other bands. with power
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1 1 1 quences for both the | and C phases. In the | phase, the CDW
Tl potl @’ (42 amplitude grows with the size &f'. In the C phase, thab
' ro andba energies are shifted downwards by the Coulomb at-
) ) ) tractionU’ between the excess holes on théand and the
‘é‘;ﬂi:ﬁ)ﬂro is the reservoir power in the absence of magnetog|ectrons that transfer to tieband from the reservoir. When
' . . . N5>N\5c, the energy shift is large enough to generate a first-
Although appealing, this explanation has several probyiyer ‘B¢ transition. Since the same Coulomb interaction is
lems. First, the effective reservoir power of the | phase beieqnqnsiple for both the size of the ICDW and the first-order
comes singular aa passes through,o+ 1. Even more rou- - pc yransition, we predict that the first-order PC transitions

bling, the negative electron reservoir with<p,o+1 and  gpserved in CrFe and CrSi alloys are preceded by the growth
pr<0 has no physical interpretation. It seems much more¢ large CDW's in their | phases.

plausible that magnetostriction works in tandem with the 1,4 growth of the CDW amplitude,, with the Fe or Si

coupling A, by enhancing the reservoir power. To ensureconcentrations should be straighforward to observe. As
that the effective reservoir powgr, remains positive, the found in scattering measuremetitand verified by the three-
magnetostrictiora must be restricted to values greater thanpysnd model the ratiog,/S; is relatively independent of

prot 1. Even a modest magnetostriction would SUbSta”tia”Memperature. But the three-band model also indi¢Atmt
increase the effective reservoir powgt. Although magne- 00/S2 is proportional to 1/(+2\5)=1+4)\}. So as the

;OStr'Ct'otnt caér_mc_)t_a:]o?he md_ij_cela f:rst-order PC transition, Itcoupling parametek(x) increases with the Fe or Si con-
O?r? ?e(;rog e'g'rj[lhse e iiszlg::cgi;%(éptxé- and three-ban@entrationx’ the ratiog,/S3 should also increase. However,
pect, 9 ur phenomenological model does not tell us why Fe or Si

models in the C phase is not so surprising. The interactin% : :
; . ; oping should enhance the Coulomb attractidh between
density of statep( ) derived from the three-band modiéin eIeF::trgns and holes on the Fermi surface. Perhaps, first-

??\N%_Iggg (;Sré%zgtllﬁltﬁogiii?g&sgeor;isgglti)sog::ﬁg_eisﬁg?_principles calcglations shall somgday answer this q_ues_ti_on.
pected, the lineab’ band makes no contribution. When the _. To summarize, we have prowde_d a theoretical JUSth.a'
IC transition is second order, Fishman and Viswafidem- Lo for the three-band model applied to the coupled spin-
R : and charge-density waves of | Cr alloys. Provided that the
onstrated thap(e) smoothly varies from the | phadgith Coulomb constanh’ is suitably redefined, the three-band
two energy 9aps asspciated with thre_e quasiparticle bands model reduces to the correct form in the 1C limit. We have
telq\/eer?ir?ltqk?s%\iv;shesczg%lg g%ﬁ’,vasss‘gcgztggo\\;\g:‘irgwgegaﬁ?sth also verified that the same Coulomb interactidhthat gov-
o . . Lo rns the size of the CDW in the | phase is also responsible
;t_hr_ete bands of quasipariicles collapse into two bands in the %or a first-order transition from the P to the C phase. Hope-
imit. ) i
There is no doubt that higher harmonics such as the CD\/f%'l':ggsfl;\t/ﬁlrecorgﬁ?:]utrhei;ng?etzigtfigge ICDW in CrFe and CrSi
play a crucial role in determining the IC phase boundary o '
Cr alloys. With no other harmonics present, the CDW desta-
bilizes the | phase and shifts the IC phase boundary towards ACKNOWLEDGMENTS
higher values of the energy mismateh.* Kotan?*?° at-
tempted to go beyond the three-band model by including One of us(R.F) would like to acknowledge support from
both higher harmonics and neglected terms such as in Ede U.S. Department of Energy under Contract No. DE-
(11). In Ref. 24, Kotani neglects harmonics higher than theAC05860R22464 with Lockheed Martin Energy Research
CDW but includes an infinite hierarchy of terms like Eq. Corp.
(112). In each such term, the Coulomb interactioifk — k'
+Q’, — Q") is replaced by the same constant as the interac-
tion U(k—k'). Unlike the three-band model, which allows a
closed form solution, the infinite hierarchy of coupled equa- |n imaginary time, the equations of motion for the
tions generated by Kotani must be solved numericallyGreen’s functions are summarized below, assuming that re-
Kotan?® later included the third harmonic of the SDW peated spin indices are summed:
within this approach. Like the second harmonic, the third
harmonic was also found to play an important role in deter-
mining the IC phase boundary. [—alor— ea(k)]G(k-T)as,aa_Ag)(k)G(k'T) yB.b+a
Nonetheless, a rigorous solution of the RPA equations, _ _
including both the higher harmonics and the other terms ne- —A4, (G, 7) y5.p-a= upd(7), (Ala)
glected by the three-band model, has not yet been found.
Instead of the procedure adopted by Kot4nihe Coulomb [ aldr— e (K)]G(K,7) —A(+)(k)G(k -
interaction U(k—k’+Q’, — Q") should be separately ex- é Papabs - Say » B brb
panded in cubic harmonics and replaced by a different —A ) (K)G(K,7) g p-p==0 (Alb)
lowest-order, constant term thah(k—k'). Such a rigorous
solution of the RPA equations should eliminate the instabil- .
ity found within the three-band model ag— 3. [—aloT— ebi(k)]G(k,r)aB,bibi—A(jy)(k)G(k,r) v8,ab=
In the most surprising result of our work, we find that the (£7)
Coulomb interactionU’ has important physical conse- T (KG(K, 7) y,b7b+ = 8apd(7), (Alo)

APPENDIX A: GREEN'S FUNCTIONS IN THE | PHASE
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[—9l97— €+ (K)1G(K, T) uppra— ALY (K)G(K, 7) 15 a0

I (0GK,7) g pa=0 (Ald)

[— 0107 €= (K)1G(K, ) appcbz — AL (K)G(K, 7) a0

TS (KG(K D)y brbs = Oapbor - (AlE)

The equations of motion for the>66 matrix G(k,r) can
be easily converted to frequency space using”

E(k,im):JOBE(k,r)eiV”, (A2)

where v,= (2| +1)#T. We now impos¥ the spin symme-

tries
=M-0,5Gp=a; Gagprpr= 5a,8_Gbibt . and Gaﬁ,bi(bf)
'Lh?se R relatl_ons imply that Agiﬁ
=m-o,AL), ALD=m g, A, and  T(;”

Gaﬁ,aa: é\aﬂGaav Gaﬁ,abt =m- UaBGab: ) GaB,bta

= 5aﬁthbI-

=T(*%)s,,. Consequently, we obtain the band matrix ele-

ments

1 _
G(k,i yl)bia:mm(i)(k)(i v~ €p=(K)

+ AP )T ED (k) (A3a)

1
G(kii Vl)aa:m{[i v~ € (K) ][~ € (K) ]

~TEI DD (K, (A3b)
. 1 . .
G(k,i Vl)abi:m{A(_)(k)[l V|~ €pz(K)]
+AF )T (k)Y, (A3c)

1 _
G(k,i Vl)bibi:m{r(+i)(k)[i v~ €5(K)]

+A® AT (K)}, (A3d)

1
G(k,i Vl)btbt:m{[i vi—€(K) ][y, — ep=(K) ]

A (AT (K)}, (A3e)

where the denominator is
D3(K,iv)=[iv— ex(K) 1[i v, — € (K) I[i v~ €n_(K)]
=AM AD (K[~ ey (K)]
AR A K[y~ €1 (K)]
—TH )T K[ v— €a(K)]
AT (KAD (KT (k)

—AMK)AC T (K). (A4)
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APPENDIX B: GREEN’'S FUNCTIONS IN THE C PHASE

The Green’s functions in the C phase obey the same sym-
metry relations as in Appendix A. We can easily obtain the
equations of motion for the Green’s functions so long as
double counting is avoided. For example, terms vgthk
-k’ andg=k—-k’+Q/.— QL are only counted once. We
then find

[1v)— €a(K)IG(K,iv)aa— A(K)G(K,i7))pa=1, (Bla)

[ivi—ea(K)IG(K,iv)ap— A(K)G(K,iv))pp=0,

(B1b)
[ 11— € (K)IG(K,i 1) pp— A(K)G(K,i 1) ap
_F(k)G(k,iV|)bb:1, (BlC)
(19— €+ (K)IG(K,i 1) pa— A(K)G(K,i 1) aa
—TI'(k)G(k,iv)),a=0, (B1d)

where  Gapi =Gap-=Gap, Gp+a=GCp-a=Gpa, and
Gpibr=Gp_p-=Gp+pz=GCGpp- So only four independent
matrix elements remain in the C phase.

The self-energies now obey the self-consistent relations

1 .
A(k):—vT% Uk—k)G(K,iv)ap, (B2a
— 1 _
A(k)=—vT% Uk—k)G(K ,iv)pa, (B2b)

1 )
F(k)z—vT% U'(k—=k)G(K,iv)p,. (B3

APPENDIX C: LANDAU-GINZBURG EXPANSION

This appendix provides the coefficients in the Landau-
Ginzburg expansion of the free energy-,(g,d) near the
Neel temperatureTl . Starting with the free energy of Eq.
(21), we expand

D,(g,d,k,iv))

2 M5 0.0K )
3 B 292+d[iv|—6a(k)] ]
=2 '”(1 (11— ea(K) 11 71— €ns (K]

(CD

in powers ofg andd up to ordersy* or d?. The coefficients
in Eq. (28) are given by

A=in| — i Rel - — - _ c2

ERLETS PR D77
1 (T2 1

B:—W(?> n§=)o Re(x—ns , (C2b)
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C=0, (C20
D= ! C2
- 8)\, [} ( d)
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ee_ LTS

47 T n=0 (Cze

o2

whereX,, is defined by Eq(35) in the text.

"Present address: Schindler Elevator Corporation, P. O. Box 19358The spin degrees of freedom of the Green’s functions arise natu-
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