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Roughening transitions and surface tension in an hcp lattice with higher neighbor interactions
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We report on Ising lattice-gas simulations of surfaces of a hexagonal-close-gackedrystal as a function
of temperature and higher neighbor interactions using sample sizes up ¥011830X 40 sites. The hcp lattice
represents*He on which three roughening transitions have been observed experimentally. Most previous
simulation studies on roughening transitions were performed for other lattices where fewer experimental data
are available. We calculated roughening temperatures for these three surfaces as a function of higher neighbor
interactions of both signs. We also calculated the surface tension of the three facets. In most cases good
qualitative (and reasonable quantitativagreement with experiment was found with appropriate values of
interactions, confirming the basic validity of the model as applied to surface roughening.
[S0163-182698)03831-4

I. INTRODUCTION cause equilibrium between the solid and superfluid at the
interface is achieved on the time scale of seconds or minutes
The roughening transitiofRT) is a phase transition that for crystals that are large enough to be observed with suitable
corresponds to a morphological change in the interface besptical techniques. To date three roughening transitions on
tween a crystal and its fluid or vapor in thermal equilibrium. hcp “He have been seen: The first two facets app&arthe
At the temperature€lg at which the RT occurs there is a (0001) orc direction atTg(c) =1.28 K. The six facets in the
singularity in the interfacial tension. We can define an intrin-directions equivalent to (D) or a, start emerging at
sic width d,, associated with the interface; this is the thick- 1 (a)~1.0 K. Finally, 12 (1_91) ors facets have been ob-
ness of a surface layer over which the local physical propergeryed during growthat aboutT(s)~0.35 K. A set of pic-

ties change from those of fluid to solid. Thermal excitationsyres of the roughening of thefacet from Ref. 10 is shown
cause local interface fluctuations, so the interface may wanp Fig, 1.

der over a characteristic lengih. If w~d,, the interface is In Table I, both experimental and computational measure-
called “smooth™ but if w— o in the strict thermodynamic ments for the hcp lattice roughening temperatures are given.
limit, the interface is called “rough. Despite the fact that the best RT data were measured on an

The concept of the RT arose in the context of an abstragicp crystal most analytic and numerical work continued to
crystal-growth model put forward by Burton, Cabrera andpe carried out on cubic crystals without further neighbors.
Frank (BCF) in 1951. They made an analogy between aan exception was the study of Touzani and WJrtErW),
crystalffluid interface and a lattice populated by up and dowRyho developed exact and mean-field results for hcp models
spins. I.n the analogy, one direction co'rresponds'to a}toms ot the BCF type. When comparing ratios of th@ig values
the solid, and the other to a vacant site, or a site filled by e experimental ratios, problems are observed with the
fluid. The interface in &@=3 Ising model between two re- 1 ot the s facet(see Table)l While the ratio ofT for the
gions of spins mostly up and mostly down approximates & facet with T for the a facet is within less than 20% of the
d=2 surface at low temperature. In the BCF model thepeasyred ratio, ratios including thefacet are more than
growing layer is described by @=2 Ising model withTr 5004, off, Given the uncertainty in theands measurements,
~To(d=2)~ 3 T(d=3). The basic model of BCF, though 20% is not too bad, but 50% is obviously excessive. Several
naive, gives surprisingly good numerical estimatesTgf, reasons for this discrepancy were proposed, including
and in fact can be shown to provide a rigorous lower boundack of further neighbor interactionsii) lack of quantum
to Tr.2 But the RT and the phase transition of e 2 Ising  effects,(iii ) problems with the BCF-type approximatidiv)
model are, of course, of a completely different nature angroblems with the basic idea of lattice models for RT’s, or
therefore a more appropriate model for the study of a crystalv) experimental problems associated with equilibration in
in equilibrium with its fluid or vapor is the=3 Ising model, Ref. 9.
again with up and down spins corresponding to fluid and We began a comprehensive program to develop models
solid sites. Also appropriate are solid-on-sdi803 models on hcp lattices in an attempt to understand whether the dis-
that are within the universality class of the Kosterlitz- agreement between tlefacet experiments and simulations
Thouless(KT) transition?® they resemble Ising interfaces ex- is fundamental or resulted from inadequate computational or
cept that no holes or overhangs are present and give simil@xperimental techniques. We started by developing a SOS
critical results for cubic systends. model that maps to a 12-vertex model for thtacet. Unfor-

About 17 years ago the first equilibrium roughening tran-tunately, this model does not appear to have an exact solu-
sition on “He crystals was experimentally confirm®de-  tion. In general, however, a full three-dimensional Ising spin
lium is especially suited to experimental work on RT’s be-system was found to be easier to simulate than SOS models

0163-1829/98/5¢)/412010)/$15.00 PRB 58 4120 © 1998 The American Physical Society



PRB 58

ROUGHENING TRANSITIONS AND SURFACE TENSION ... 4121

for the hcp system, since to change facets we merely needed
to change the appropriate boundary conditions rather than
the model details. We report here on simulations of rough-
ening transitions in an hcp crystal with “ferromagnetic”
(IJnn>0) nearest neighbaNN) and both “ferromagnetic”
(Innn=>0) and “antiferromagnetic” §yyn<0) next nearest
neighbor (NNN) interactions, wherelyy and Jyyn are the
“exchange” coefficients for the NN and NNN interactions,
respectively. The Hamiltonian is

H=—2> JwSS— > JnnSS (1.0
(NN) (NNN)

A discussion of earlier calculations for the case of positive
NNN interactions {Jynn), @s well as quantum-mechanical
estimates showing that zero point motion may lead to effec-
tive negative NNN interactions was given in Ref. 12. Posi-
tive higher neighbor interactions led to the prediction of ad-
ditional and fascinating facets that have never been observed,
and did not improve the agreement with the experiment.

While we were carrying out the negative NNN hcp study,
experimental resultd on body-centred-cubitbco He were
published. Simulatiort§ for bcc *He with NNN interactions
in a BCF type of approximation were made and the results
were consistent with the measurements, greatly strengthen-
ing the idea that lattice models and even BCF-type approxi-
mations are reasonable and that reagonar (v) above must
be the cause of the discrepancy.

We have also calculated the interface tension as a func-
tion of temperature. The results of the Monte Carlo calcula-
tion of the interface tension were compared directly to the
experimental measuremefités a by-product we measured
the bulk order parameter and estimated the critical tempera-
ture of thed=3 hcp Ising model to bdy/KgT~0.10.

Il. MODEL AND METHODS

We studied a three-dimension@D) Ising model on an
hcp lattice with sample dimensions biX L XH whereH is
perpendicular to the interface. An interface in the desired
direction was imposed either via the use of antiperiodic
boundary conditiondAPBC), or fixed boundary conditions
(FBC). In the former case the uppermost plane was regarded
as the lower neighbor of the lowermost plane after all its
spins were reversed. In the latter case, the neighbors of the
uppermost plane were fixed to point down, while the neigh-
bors of the lowermost plane were fixed to point up. Each up
spin (S= +1) is regarded as a site occupied by a solid atom,
and each down spin§=—1) as a site occupied by an atom
that belongs to the fluid phase. Periodic boundary conditions
were applied in the other directions. We sectioned the hcp
lattice in thec, a, ands directions. See Fig. 2. In order to
ascertain that the crystals had been correctly cut, visualiza-
tions of the samples were made. The types of boundary con-

FIG. 1. The history of a (120) hexagonal crystal of helium in dition errors that occasionally plague development of simu-
a superfluid helium environment warmed very slowly. Each photodations for cubic systems with higher-neighbor interactions
graph was taken after 10 min equilibration. The two “eyes” in the are far more likely to occur in a non-Bravais lattice, and
upper left are artifacts. The roughening transition occurs betweedlirect visualization proved to be helpful in eliminating these.
frames(g) and(h). This series of photographs was taken by YoashTo facilitate this, and other projects of the Computational
Carmi and S. G. Lipson and has not previously been publishedphysics group at the Technion, a system of visualization for

Details of the experiments can be found in Ref. 10.

crystal structures in OpenGL/mesa was developed by Adler
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TABLE I. Summary and comparison for the valuesTgf calculated from the simulations on the 3D Ising
model with theJyyy interaction, the TW calculationdRef. 11, and those measured by experiments. The

results forJynn=

—0.8 are obtained via extrapolation of daee text The results for positive NNN

interaction are after Ref. 12. The temperature units for the simulatidgy$Kg .

Our results
Facet Expt. TW  Jynn=0.0  JIynn=0.234  Jyyv=-04  Jynn=-0.8
c 1.28+0.03 K 3.641 4.160.01 4.28-0.03 3.770.02 3.44
a ~1.0 K 3.39 3.96:0.02 4.15-0.03 3.62:0.03 3.28
ratio a/c 0.78 0.93 0.96 0.97 0.96 0.95
S ~0.37 K 2.8 3.270.02 3.85:0.01 2.06:0.02 0.98
ratio s/c 0.29 0.77 0.80 0.90 0.53 0.29

and co-workers® The facets in Fig. 2 of théHe crystal
were drawn with this system.

A. Roughening temperatures

In SOS models the interface width is defined as the ther-

modynamic limit of the height-height correlation function

w2=lim G(r) = lim {(h, — hg)?),

r—o

2.1

r—o

whereh, denotes the height of the surface at the sjtand

below the roughening transition temperatiigeand diverges
logarithmically with sample sizé& above, with the critical
behaviot®

w(L) 1
- _ 1/2
D)~ 2 +c(T—Tg) for T>Tg,

(2.3
w2(L)=cCo+(Tg—T) Y2 for T<Tg,

where c; and ¢, are constants. The width is measured in
units of the number of layer@.e., the number of layers that

hg is the height at some fixed site. In computer simulationsfake part in the interfagenot the absolute geometric height

where sample sizes are finite, the followitgguivalent in
the thermodynamic limjtquantity is calculated instead

2(L)=((h,—h)?),

where the average is over all lattice silesAccording to KT
theory, the squared width of the interface in E2}2) is finite

(2.2

(@) (b)
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FIG. 2. (a) The geometry of the faceté) thec facet as viewed
from thec direction,(c) the s facet viewed from the direction, and

(d) the a facet viewed from the direction. The darker atoms in

of the interface, since the lattice spacing is different in the
directions perpendicular to the different interfaces.

In the 3D Ising model, with both types of boundary con-
ditions, the resulting interface contains overhangs and
bubbles. It is not pinned by the boundary conditions to a
certain equilibrium position but can wander in the sample
and is translationally invariant in the direction perpendicular
to itself. Because of the overhangs and bubbles, there is no
way to define a measure for the interface width unambigu-
ously. However, a generalization of EQ.2) (known as the
Gibbs method) for the 3D case consists of assigning a local
heighth, to each column perpendicular to the interface by
moving all up spins to one end of the column and all down
spins to the other end, i.e., the height is equal to the number
of solid occupied sites in the column, no matter if they be-
long to the dense phase, an overhang or a droplet. Then Eq.
(2.2) can be applied. The roughening transition is located by
fitting the interface widthw? in the vicinity of the roughen-
ing temperaturd i to Eq. (2.3).

B. Surface tension

At zero temperature, the interfacial tension is the excess
energy per unit area and is easily calculated for crystal lat-
tices for any direction by enumeration of broken bonds
across an interface normal to the surface; a visualization of
this is for the case of NNN interactions given in Fig. 3. At
finite T the free energy of the interface must be calculated.
The interfacial excess free ener§y is defined as the free
energy difference between two systems with and without an
interface, in which the bulk contributions are identical. This
is done by simulating the same system twice, once with an-

each plane are displaced in the normal direction to the facet, for théiperiodic (APBC) or fixed (FBC) boundary conditions to

sfacet by\2/123, and for thea facet by+/(3)/6a, wherea is the
lattice parameter.

produce an interface, and the other with periodic boundary
conditions in all directions, which removes the interface. The
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surface tensioryg is then obtained by normalizinigg by the

appropriate cross section of area. FIG. 4. The interface width squares as a function of tem-
In a lattice-gas Monte Carlo simulation one does not haveperatureT. Data points are from simulations for thlefacet, on

a direct access to the free energy that includes entropy cogamples oft. =10 and 20 andi=10 with several negativiyyn

tributions at finite temperaturds Instead, the free energy is Values.

calculated by an integration of the thermodynamic relation

measure of the interface width, was calculated by averaging

(Eg)= I(BFy) , (2.4) over 1d measurements of it, taken at intervals of 25 MCSPS
B in order to assure the samples are statistically uncorrelated.
(Each run was repeated several times for different sets of

where (Eg) is the thermodynamic average of the interna _ : :
energy of the interface, ani=1/T. ThenFs is given by random numbers and starting configurations. Both APBC
and FBC were used. The results fof were equivalent, but

B there was less statistical noise for the APBC case. Figure 4
BFs(B)= Jo dB'Es(B')- (2.9 shows the resultant interface variangé plotted as a func-
tion of temperaturd (in units of Jy\/KgT), for thec facet
For a sample of size XL XH the surface tension is given in with different Jy\y values. At a fixedT, w? increases as
the thermodynamic limit by Junn becomes more negative. This is because next-nearest
neighbors tend to be antiparallel, hence “softening” the in-
teraction and increasing the interface width.

In the second set of calculations, we performed simula-
tions on thes facet withH =20, andL =6, 10, 20, and 40.
Due to the larger samples used, more effort was required to
produce data with an accuracy comparable to that of the

A. The roughening temperature T smaller samples, hence far=40 the number of MCSPS

The heightH of an LXLXH sample must be large needed to equilibrate the system was BY, and the num-

enough so as not to affect the evolution of the long-ber Of MCSPS between two samplesvof was 50 MCSPS.

wavelength transverse excitations occurring at and abov@dain the meaw? was calculated over fGamples. Figure
Tk. In simulations on simple cubic latticedt is usually 5 showsw? vs InL for Jyyy=— 0.4, with some typical error
found that a height oH =10 is large enough. We have cho- bars. The logarithmic behavior is evident from the good lin-
sen the following three sets of sample sizégi=10, L ear fits in the figure, and enables the calculation of
=10,20, {H=20, L=6,10,20,409, and {H=40, L dw?/d In L.
=40,80, The roughening transition temperaturg is estimated by
160}. assuming KT theory, and calculatirdy?/d In L, and then

In the first set of calculations, we performed simulationsextrapolating to the critical value af~2=0.101 according
on the three facets, a, ands, with values of the antiferro- to Eq.(2.3). Or equivalently, as shown in Fig. 6, the quantity
magnetic next-nearest-neighbor interactigny in the range  Kg(T)=(dw?/d In L—7 %2 may be extrapolated to zero,
[—0.4+0.2]. The reason for choosing negative values forwhich in this case give$g(Jynn= —0.4)=2.00+0.05. Fig-
Junn Was discussed in Ref. 12 where it was shown that thisire 7 shows the slopdw?/d InL as a function ofT for
may be an implication of quantum interactions. We used aeveral values odyy for the s facet, while the solid lines
simple spin-flip Metropolis algorithrf with each simulation  are the asymptotic fits based on KT theory according to Eq.
consisting of 2 10* equilibration Monte Carlo steps per site (2.3). The good fits reinforce the assumption that the rough-
(MCSPS. The interface variance? [Eq. (2.2)], which is a  ening transition is of a KT nature.

1
v(B)=lim FFS. (2.9

L—o

Ill. CALCULATIONS
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FIG. 5. The interface width squared as a function of IrL for FIG. 7. The slopelw?/d In L plotted as a function of, from a

different temperatures, from a simulation for théacet on samples simulation for thes facet on samples df =6, 10, 20, and 40 and
of L=6, 10, 20, and 40 and =20 with Jyyn= —0.4. Some typical H =20 with Jyyn=—0.4. The lines are fits according to KT theory.
error bars are shown.

communications between the nodes, in our algorithm on

We found no substantial difference in estimatifg for = 8-16 nodes with sequential spin updates; see details in the
the s facet from the simulations withl =10, and from those Appendix. Each run, depending on the size of the sample,
with H=20. However, in order to check the effect of finite was composed of 30 000—60 000 initial MCSPS to equili-
size samples further, we have performed additional simulabrate the system. The statistical correlation length for these
tions with Jyyn=0.0 for the ¢ facet with {H=20, L  systems with sequential spin updates is larg&00 MCSPS,
=10,2¢, where again, as shown in Table I, the results forbut for practical reasons the distance between two samples
Tr are equivalent to those of the smaller system with was 5 MCSPS where the autocorrelation function dropped to
=10 within reasonable error bounds, despite the factwfat ~0.5. The widthw? was calculated by averaging over 4000
is consistently larger in thel =20 system. samples. The results from these simulations are shown in

We further performed a large-scale simulation of sample$rigs. 8 and 9. As predicted by the KT equati@h3), for T
of size {H=40L=40,80,160 on the ¢ facet with Jyyy  <Tr, W? is independent of the size, and diverges with.
=0.0. These simulations were run on the SP2 parallel maaboveTg. This can be seen from the curve separation in Fig.
chine, using a parallel code. Each system was cut into horit8), and in the change in the slope in F{g). The evaluation
zontal slices parallel to the facet direction, each slice bein@f Ty is also made by extrapolating the slope to the critical
of dimensionLXLXx(H/N) where N is the number of value as before, and is equivalent to that obtained from the
nodes. We have achieved an efficiency factor~e80%, smaller systems within an error bound of 5%.
which means that only 10% of CPU time was lost in the The results for the roughening temperatiizgas a func-

tion of the various NNN interactions are summarized in

0008 . . : Table | and plotted in Fig(10). The results for the andc
facets are from the first set of simulations wih=10, and
those for thes facet from the second set witi=20. The

0.005 —

TABLE Il. A comparison ofa(T)= dw?/d In L from two simu-
000t |- * Jaw=—04 i lations of thec facet withH=10 andH =20, and with NN inter-
action only. From this we determirie;=4.1+0.05.

Gooer 1 T a(T;H=20) a(T;H=10)
3.5000 0.0117 0.0009

0002 |- i ] 3.6000 0.0053 0.0100
3.7000 0.0058 0.0197

oot 1 | 3.8000 0.0223 0.0342
3.9000 0.0401 0.0483

4.0000 0.0691 0.0550

o5 1 25 ) 26 4.1000 0.1075 0.1018

T 4.2000 0.1150 0.1316

FIG. 6. The quantitKz(T)=(dw?/d In L — 1/x?)? plotted as a 4.3000 0.1101 0.1213
function of T, from a simulation for thes facet on samples df 4.4000 0.0974 0.1362
=6, 10, 20, and 40 an#i =20 with Jyyn=—0.4. The line is a 4.5000 0.1418 0.1575

linear fit to the data points.
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FIG. 8. The interface widtkw?) as a function of temperatufe

for threec facet with heightH =40 where the width. of each are  check whether a stable interface configuration exists under

given in the figure. Some typical error bars are shown. such a relatively large NNN repulsive interaction, we per-
formed preliminary runs up tdyyn=—1.0. In all cases
stable interfaces were observed.

<5% error bound o, which includes the effect of the
size of the system, as well as statistical errors, is shown in
the figure. These data are sufficiently precise to clearly show For the computation of the interface tension in each of the
the behavior ofTg vs Jynn- facet directions, a, ands, we evaluated the excess surface
As shown in Fig. 10 a good linear fit betwedip and  energyEg(T,L) as a function of temperatuig, and system
Junn is obtained. The roughening temperatliedecreases sizeL, and substituted in Eqg$2.5) and (2.6). In addition,
with Jynn; the negativelyyy both increases the range and the mean bulk order parameter of each samigIgT,L),
softens the interaction, which makes it easier to roughen thehich by assigning a spir-1 to a solid occupied site, and
interface at a giveif. Albeit the change i for thesfacet  spin —1 to a fluid site, becomes equivalent to the magneti-
is faster than in the other directions, this is attributed to thezation for a magnetic system, was measured “for free.” The
larger number of NNN bonds across the interface in thigemperature was raised in steps of 0.5 in the range
direction. The correspondence between experimental arfd.5,15.0. Each sample was composed loKL XL spins,
calculated ratios of 5 gets better adyy decreases. Assum- where for the c-facet samples{L=8,10,20,30,6p were
ing a linear fit, and by extrapolating, it is possible to obtainused; for thea facet{L=4,6,8,10 was used, and for the
an excellent fit atlyyny=—0.8. We have not calculatebl; ~ facet, a single system witfl. =10} was used. The statistical
from direct simulations with this value dfy. However, to  fluctuations in the energy and bulk-order parameter are sub-
stantially smaller than those of the interface width, and so a

B. The interfacial tension

1.0 - - - smaller number of Monte Carlo steps was needed, each data
T point being obtained by sampling over at least 10 000 inde-
L= 40, 80,160 4.360 pendent configurations with an error estimate~dd.01.

Each system was simulated twice, once with PBC and
once with APBC, with the total enerd¥g. (1.1)] measured
4.180 in each case. TheRg(T,L) was estimated from the differ-
ence in the energies of the two systemS;=Ejpgc

W o L / 4.080 | —Epge, Where Eppgc is the energy of the system with
APBC, andEppgc of the PBC system. In all the simulations

3.980 of this part of the calculations, only NN models were taken,

/ i.e.,Jynn=0. Figure 11 shows the results for the energy for

04 | 3.880 - systems withL. =30 in thec direction under both APBC and

4.280

1 I s 3780 _PBC. As expected at lowW, the energy of the_ APBC system
T I = is larger, and the excess energy due to the interface is shown
3.080 in the inset. AsT increases, the energy of the interface de-
02,5 20 25 50 55 creases, and the bulk correlation length of the 3D Ising
In(L) model increases, until it diverges at the bulk critical tempera-

ture T of the hcp Ising lattice, and smears out any evidence

FIG. 9. (w?) as a function of IrL for the c facet. For lowT the of the existence of the interface. The two systems now have
slopedw?/d In L is approximately zero, but for high, (w?) di- the same energy arik drops to zerd? The integration over
verges logarithmically with system site Some typical error bars Eg as a function of inverse temperatyse- 1/KgT, as in Eq.

are shown. (2.5 was carried out by the simple trapezoidal method, start-
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FIG. 11. Energy per site of a system of sizeX380x 30, with

periodic boundary condition$PBC), and antiperiodic boundary FIG. 13. Comparison of the interface tension for the three facets

conditions(APBC), in the direction of thec facet as a function of s a function of temperatufe.

temperaturel. The statistical errors of each sample point, in the

units of the energy axis, are 0.01, which is less than the size of

the symbols. The inset showss, the excess energy due to the

interface. Energy is given in units dfy . measurements of the interface tensidsy transforming the
units of the simulations. In the simulation, the units of the
temperature are given bydyn/Kg], with the Boltzmann

ing from the highesT down toT=0.5. The dependence of constant being<g~1.38x 10"*° erg/K. In these units, the
Fs on system size squardd® was in good agreement with calcullated rqughenln% lgerrjperature of tloe facet W_lth
Eq. (2.6) as can be seen from Fig. 12 for théacet. Hence, NN !nteract|or71 only®*? is Tr=4.10\N/Kg, while
the data are fit according to the asymptotic behaviofXPerimentallf’” Te=128 K. A direct comparison then
Fs(B,L)=const- y(B)L2, with the interface tension in the 9/VeS
thermodynamic limit given by the slope. The calculated sur-
face tension for the anda facets, as well as the results for
th_es facet fr_om one sample with1=L=_10, are shown in TS NN:4_1O‘]N_N21_28 K@M=0.3121 K. (3.1)
Fig. 13. The interface free energyBt 0 is equivalent to the ’ Ks Kg
interface excess free energy and can be calculated exactly
from the ground state of each system, and its value turns o
to be in good agreement with that calculatedTat0.5, as
can be seen in Fig. 13.

The results of our Monte Carlo calculations for the inter-
face tension may be directly compared to the experiment

%n the other hand, the unit of the interface tension in the

simulations is given bylyy/a?, wherea is the NN distance.

For solid helium on the coexistence line B&1.0 K, and
ressure 25 atm, the measured spacira=8.7 AL Hence,

y using the value oflyy from Eg. (3.1, we obtain the
calculated interface tension in terms of the physical units
erg/ent. In Fig. 14 the computed interface tension for the
facet is plotted together with experimental measurements of
Ref. 6. We can see that despite the simplicity of the model, a
fairly good agreement is achieved, although the computed
surface tension is consistently larger than the measured one,
. which can possibly be attributed to the neglect of various
relaxational effects on the surface that lead to the reduction
of the surface tension. Clearly negative NNN interactions
would reduce the calculated surface tension and also im-
prove the fit.

10000 T T T

8000 -

6000

4000 -

2000
C. The “magnetization” and T of the hcp Ising model

, Although in most of our simulations we were primarily
3000 " 4000 interested in the temperature region n€ar, the simulations
of the interfacial energy extended up to the bulk critical tem-
FIG. 12. The interfacial excess free enelfgly as a function of ~ PeratureT ¢ of the 3D Ising system. During these simulations
L2 for various temperatures as indicated. This enables extraction df addition to calculating the energy as a function of tem-
the normalized surface tension, given by the slopes of the lineperature and system size, we have also calcul&téat
[from Eq. (2.6)]. free”) the bulk order parameter, or simply the magnetization

.
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FIG. 14. Comparison between experimefRRef. 6 and simula- facets. The angle is approximatefy-27.93, (see text

tions of the interface tension for thefacet with NN interaction
only. The size of the system is X0X 10, and the integration
starts afT=0 K. D. Thermal faceting?

As mentioned in the Introduction, one of the motivations

in a magnetic systemM(L,T)=23,;S;/(L%), which is the for this work was the large observed discrepancy between
average spin at a site. A look Bt(L,T) plotted in Fig. 15 as experiments and simulations of lattice models concerning the
a function of temperature for thefacet reveals an interest- roughening temperature of trefacet. An explanation that
ing behavior forM in the APBC system during roughening. can be discussed in terms of the calculations is that there is
For the system with PBOM behaves as expected starting an effective large negative NNN interaction between the at-
from unity and going down to zero &— T, while in the  oms, but although we have considerea quantum origin for
APBC system, folT<Tg, M=0 because of the interface, this interaction, recent investigatic?ﬁsdo not support this
but close to the roughening region, large fluctuations appeasonjecture. It is therefore worthwhile looking for an alterna-
that are due to the surface being delocalized and hence céine explanation.
wander to either side of the sample during the simulation, Computing the equilibrium crystal shape of an hcp lattice
introducing large fluctuations to the bulk order parameter. with NN interaction only afT=0 K (Ref. 12 showed that

At T itself, as we have mentioned earlier, the effect ofthere are only three cusps in the Wulff plot corresponding to
the boundary conditions is lost and the bulk order parametethe three known facets, namely, ¢, ands. As temperature
is zero. From these bulk order parameter results we estimatecreases, these cusps weaken, and eventually fade out at
the location ofT for the 3D Ising model on an hcp lattice to their corresponding roughening temperatures. It is reasonable
beJyn/KgTc~0.10, compared tdyn/KgTc=~0.221 659 of to assume that these cusps remain the only shape-decisive
the simple cubic Ising modéf and 0.08 for 12 neighbors in features, since a§ increases the surface tends to roughen,
mean-field theory. Our data are not accurate enough in thignd cusps fade away, hence no new cusps are likley to
region to enable a good check of the universality of the criti-emerge aT >0, if they are not evident already &t=0. Thus

cal exponent of the magnetization. the calculation of the surface tension of the three facets pro-
vides a picture of the evolution of the equilibrium crystal
e—facet. shape as a function of temperature. The three fagetsand
AN A et e A M A A A s lie in the same crystallographic zofiee., have normals in
0.95 - 00 L=60,PBC 1 the same planeand it is possible that one of thef®in our
if:gg::ﬁgg cas@ may not appear on the equilibrium crystal shape if the
. 075 | &8 L=20, APBC 7 total surface energy can be reduced by replacing it by the
g other two (a and c¢). A flat surface(not a facek in the s
g 0% direction would then appear microscopically to have alternat-
% ing facets in thea and c directions; this is called “thermal
g 0%y faceting” and has been discussed by Rottman and
s b Wortis 2% On the Wulff plot, this seems to be energetically
' favorable if the plane representing thécet lies outside the
Cnan ] SN0t rectangle of planes representing thand c facets(Fig. 16
2005 Ere b b Lot ) .
01 2 3 45 6 7 8 9 10111213 1415 and we denote the required value f for this to occur by

T Y% . Sincey., va, andys are functions ofT, it is possible

FIG. 15. The bulk order parameter calculated from the PBC andhat this condition arises at some temperafiiyéoelow the
the APBC systems in the facet direction. roughening temperature of thefacet, and so thes facet
would only appear below,. This temperature would there-
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10.0 ' - ' ' of different strengths and signs could sum to an effective
‘ value of 0.8 while each was more reasonable in magnitude.
However, such a study would be somewhat involved without
adding much to our general conclusions, and therefore was
not pursued at this stage.

Let us now review the list of reasons given in the Intro-
duction to explain the disagreement between theory and ex-
periment regarding i and see which have been overcome.
70 b . By including both positive and negative higher neighbor in-
teractions we have shown théd lack of higher-neighbor
interactions was definitely a problem. The next poiiit)
lack of quantum effects by TW, is also relevant from the
viewpoint? that Geminterret al1* show that a likely result

, , , of quantum effects is the negative NNN interaction. The
5.0 AT . S .
0.0 1.0 20 3.0 4.0 5.0 point (iii ), problems with the BCF approximation, is less
Temperature, T relevant as the results of the full model and the BCF ones

FIG. 17. Surface tensions of the s facet obtained from the where a!valiable for comparison are not so different nume_ri-
simulations with NN interactions, and the threshold valugs cally. Given the overall success for both the surface tension
above which thes facet becomes unstable. and T measurements here and in Ref. 14 we suggest that

any corrections obtained by removing the lattice constraint,
point (iv) in the list, will be a higher-order effect.
However, since we do need the very large NNN interac-

fore be identified erroneously as the roughening temperaturéons to provide agreement with experiment, iter lack of
of the s facet in an experiment. For the hcp geometry, thisequilibration in the experiments during faceting of the

8.0 4

Interface Tension [Jy,/a’]

60 O—oOf, .

condition translates to facet, is still a possibility. There were earlier claims that the
measured value may be strongly influenced by the nonequi-
V9yc+32y, librium conditions under which the experiments were made.
S Y= ——————. (3.2 We think that future progress on this problem must come in
Va1 the experimental context.

In Fig. 17, the value ofyf as a function ofT, calculated
from the values ofy, and y, according to Eq(3.2), is plot-
ted along with the calculategl;. Obviously, there is no in-

dication of thermal faceting, so the question remains open. ACKNOWLEDGMENTS
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is quite close to the reality, although there is still room for
improvement of some details. Qualitative agreement between
experiment and simulation is found in the case ofdlsndc
facets forTg (as was also found by TWThis was not the
case for ratios involving the-facet in TW. However, once
the NNN interactions are included, in particular, the negative To parallelize the calculations for the SP2, the sample was
ones as reported in Table I, we see thatIgrn/Iyn=0.4  divided into slices parallel to the interface. Each slice was
reasonable agreement for thés ratio is obtained. It is pos- handed to a single processor or node, were it would then be
sible to obtain a “best fit” between the calculations and treated separately. The initial condition was set to the ground
experiments forJyyn/Jnn= —0.8 (see Table )l However state of each system: all ur down spins for PBC and
we are not certain thatyyn/JIyn @s high as 0.8 is entirely upper half up/lower half down of the APBC cases. Spins
reasonable, although it does indeed provide a good fit. Thugere updated sequentially, starting from the lower layer of
we can clear up the discrepancy between theory and expespins in each node. Since the lower layer of nodethe NN
ment only at a price we are uncertain whether it is reasonabliyer of the top layer of node- 1, the spins from this layer
to pay. should be copied to the bottom layer, with spin inversion for
The large value of the higher neighbor interaction sug-the uppermost and lowermost slices in the APBC case. Care
gests that perhaps we should have carried out calculations fanust be taken in updating the boundary conditions, so as not
third and even higher neighbor interactions. There are # update a layer in a certain step before its neighbors from
number of ways that third and higher-neighbor interactionsanother node were copied in tiamestep.

APPENDIX: PARALLEL ALGORITHM
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