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Auger recombination in semiconductor quantum wells
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The principal mechanisms of Auger recombination of nonequilibrium carriers in semiconductor heterostruc-
tures with quantum well§QW's) are investigated. It is shown that there exist three fundamentally different
Auger recombination mechanisms (©f thresholdlessiii) quasithreshold, andii ) threshold types. The rate of
the thresholdless Auger process depends on temperature only slightly. The threshold energy of the quasithresh-
old process essentially varies with QW width and is close to zero for narrow QW’s. It is shown that the
thresholdless and the quasithreshold Auger processes dominate in narrow QW’s, while the threshold and the
quasithreshold processes prevail in wide QW’s. The limiting case of a three-dimen@bhaluger process
is reached for infinitely wide QW’s. The critical QW width is found at which the quasithreshold and threshold
Auger processes merge into a single 3D Auger process. Also studied is phonon-assisted Auger recombination
in QW’s. It is shown that for narrow QW'’s the act of phonon emission becomes resonant, which in turn
increases substantially the coefficient of phonon-assisted Auger recombii&0d:63-18208)00628-4

[. INTRODUCTION appearance in heterostructures of new thresholdless channels
of Auger recombinatioff. The rate of the thresholdless AR
Two recombination processes are predominant in semiprocess is a power function of temperature. A direct experi-
conductors at high excitation levels: radiative and nonradiament aimed at observing the thresholdless AR channel at
tive Auger recombinatiofAR). For homogeneous semicon- T=77 K was reported in Ref. 12.
ductors, mechanisms of AR have been extensively A detailed analysis of the threshold and thresholdless AR
studied*™ In narrow gap semiconductors there occur ARmechanisms has been performed for a single heterobérrier.
processes involving two electrons and a heavy {6lCC  Conditions were studied under which the thresholdless chan-
Auger processor an electron and two heavy holes, with nel dominates the threshold one. For QW's no such detailed
transition of one of the holes to the spin-orbit split-6&O) analysis has been done. Taykitral® considered the possi-
band(CHHS Auger proce3s*°Both of these processes are bility of threshold for AR in QW’s being eliminated upon
of threshold nature, and the rate of Auger recombinatioriransition of excited carriers to the continuous part of the
changes with temperature exponentidlfyThe only excep- spectrum. However, no microscopic theory of the threshold-
tions are semiconductors in which the spin-orbit splitting isless process was given in this work, and no theoretical analy-
close to the energy gaiGaSh and InAs Under certain con- sis performed of the competition between different AR
ditions the rate of the CHHS process in these semiconductorsechanisms at various temperatures and QW widths. Only
depends on temperature only slightiyt is commonly be- the thresholdless AR channel, corresponding to small mo-
lieved that the phonon-assisted AR process dominates theenta transferred in the Coulomb interaction of particles, for
direct one at low temperatufé. Because of the large mo- the CHCC process with spin-orbit interaction neglected, was
mentum transferred to a phonon, the threshold is eliminatedonsidered in Refs. 14 and 15.
and the rate of phonon-assisted Auger process becomes aThe aim of the present work is to investigate theoretically
power-law function of temperature. However, the carrier-the principal mechanisms of AR for nonequilibrium carriers
carrier scattering can also cause large momentum transfer to semiconductor QW's. It will be shown that there exist
the electron-hole subsystem and thus eliminate the threshottiree fundamentally different AR mechanisng:threshold
conditions. The problem of the predominant AR mechanismmechanism similar to the Auger process in a homogeneous
in bulk semiconductors needs further consideration. semiconductor(ii) quasithreshold mechanism with a thresh-
Single semiconductor heterostructures, quantum wellsld energy strongly depending on the QW width, &id)
(QW’s), quantum wires, and quantum dots are spatially inthresholdless mechanism inoperative in a homogeneous
homogeneous owing to the existence of barriers. The presemiconductor. All three processes will be shown to have
ence of a heteroboundary affects not only the energy andifferent dependences on temperature and QW parameters.
wave functions of carriers, but also the macroscopic properRates of the processes corresponding to these AR mecha-
ties of heterostructuredlt is commonly believed that the AR nisms at different temperatures and QW parameters will be
mechanism in QW’s is similar to that in homogeneouscompared. Conditions will be found under which the qua-
semiconductors®~1! Nevertheless, the heteroboundary lifts sithreshold and threshold Auger processes merge to form a
restrictions imposed on the electron-electron interaction prosingle three-dimension&BD) AR process. Also, the phonon-
cess by the energy and momentum conservation lawsssisted AR in QW's will be studied. The act of phonon
Namely, the conservation of quasimomentum perpendiculaemission will be shown to become resonant for sufficiently
to the heteroboundary breaks down. In turn, this leads to thearrow quantum wells.
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The paper is organized as follows. In Sec. Il wave func-glectron mass, and= (o, ,ay,0,) are the Pauli spin matri-
tions and the energy spectrum of electrons and holes in ges. If, instead of using the Luttinger parameters, the heavy-
QW are investigated, using Kane's model. In Sec. Il thehole mass describing the interaction with higher bands is
matrix element of Auger transition is calculated. Section IVintroduced phenomenologically, then H@) is transformed
is concerned with investigation of AR coefficients for threeinto equations derived by Suri§lt is easy to verify that Eq.
different mechanisms existing in a QW. In Sec. V the(2) is identical to those commonly usét!®=?!In the first

phonon-assisted AR mechanism in a QW is considered. Seequation in the systerf?) we neglect the term with the free-
tion VI summarizes the results of the paper. electron mass.

II. PRINCIPAL EQUATIONS 1. Hole states

To analyze the AR mechanisms and find the rate of the_ TN€ expression fol’s can be found from the first equa-
Auger process, wave functions of charge carriers are to bEON of the system(2). Substitution of¥ into the second
known. As already established for bulk Auger processes, thduation gives
wave functions of electrons and holes must be calculated 2 2

using the multiband approximatidnVe will use four-band  — g+ h_v(vxp) - h_vx[vxq;]+ i o] X W]=0,
Kane’'s model, the most adequate describing the wave func- 2m, 2my,
tions and energy spectrum of carriers in narrow-ggBy 3
semiconductors® where
. . . - 2y° s ~
A. Wave functions in a homogeneous semiconductor m, 1_ Er o E +m Y Y1+ 47,),

For mostA, By semiconductors, wave functions of elec-
trons and holes in the center of the Brillouin zone are de-
scribed by thd"¢ representation for the conduction band and o _ _
by thel'; andI'y representations for the valence band. ofHere m, coincides with the heavy-hole mass, amd with
these the first two and the last are doubly and fourfold dethe light-hole mass in the case of zero constant of spin-orbit
generate, respectively. The corresponding equations fdpteraction;Eq=E.—E, is the semiconductor band gap. For
wave functions may be written in differential form. Com- the sake of convenience, it is assumed thgt=6. This
monly, the basis wave functions of the conduction and vachoice is due to an increase in the heavy-hole and light-hole
lence bands are taken in form of eigenfunctions of the angu€nergies at thé’ point by é and a decrease in the SO hole
lar momentunt®!” However, another representation of the €Nergy by & under the action of spin-orbital interactipfg.

my, ' =m~ (- 27,).

basis functions is more appropriate for our purposes: (8)] Equation(3) can be Slmp|lfled by introducing new func-
tions

S 1 S 1 X ) X ) 1 1 Z 1 Z 7 -

B . "

where|s) and|x), |y), |z) are the Bloch functions of and After taking the divergence and rotor of E§) multiplied

p type with angular momenta of 0 and 1, respectively. Theby o, itis transformed into a system of two differential equa-
former describe the state of the conduction band and th&ons
latter the state of the valence band at fheoint. Arrows

denote the direction of spin. The wave function of carrigrs

can be written in the form

ﬁZ
—Eop+ 2_m|A¢+ i6n=0,
)
Y=V s)+W¥|p), %2
sIs) 1 —(E+8)p+ =—A7n—2i6¢4=0.
whereWV and W are spinors. In the vicinity of th& point 2my,
the equations fol' ¢ andW envelopes written in the spheri-

__ i Fourier transform of these equations gives hole spectra for
cal approximation are as follows:

a homogeneous semiconductor

(Ec—E)W —ifiyVW=0, 42
@ Et o k2 i5 ¢
ﬁ2 _ _ 2m| B
(B, = 0-E)W—ihyV¥ s+ o (11147 V(VW) 52 =0. (6)
m -2i6 E+-—Kk*+58|\ 7
2my,
B _
" om (11T 27) VX VX W]+ X W]=0. The characteristic equation has two roots
Here, v is Kane's matrix element having dimension of ve- £ 5 hkK? 1o
locity, 7, and y,=7v; are the generalized Luttinger 1=~ 5T (M Amy )

parameters! 5=A,/3, A, is the spin-orbit splitting,E, — ,
andE. are the energies of the lower edge of the conduction N \/252+ f_ A7k -1_ -1
band and the upper edge of the valence bamds the free- - 2 4 '
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It should be noted thatn, depends on energjsee Eg. 2. Electron states

(3)] At the I point (k=0) we have the root&,=¢ and In principle, the conventional equations for electrons have
Ep=—26. The positive solution corresponds to light holes, fhe same form as those for holes. Since thpoint in the
and that with a negative sign, to SO holes. conduction band is only doubly degenerate and the crystal

In the vicinity of thel" point the energied; , can be fig|q causes no additional splitting, there is no need to retain
expanded into a series in terms of a wave vector to relate th,[ee rms with the parameters . Moreover. the presence of
effective masses of light and SO holeg,, mg,, and the P - ' b

Luttinger parameters: these terms in the equations for electrons gives a far too
gerp ’ exact model. Thus, a simplified set of equations will be used
for electrons

h2k? h2K?
Ei~6——, E,=—26— , 8 .
. 2my, 2 2mg, ® (Ec—E)¥¢—ihyVW=0, 13
where (E,— 6—E)W—ifiyVW +i 5 oX W]=0.
42 (et 5.2 ~ The electron energies can be conveniently reckoned from the
mot=—t M moi-_ <Y 1N lower edge of the conduction band{=0). This energy
3E, m 50 3(Eg+39) m will be denoted by¢, so that it would not be confused with

. . . the full energy of electrore, reckoned from the same level
An approximate light-hole spectrum can be obtained by,g the hole energy. Introducing into Ha3) the functionsg
means of a widely used>4 Hamiltonian:" However, the

. ) 2R ! and » in the same form as in Eq4), we have
range of its applicability is rather narrow, since commonly

m;~0.1m;, and the expansiori8) is only valid whenE h2y? _

< (m,/my) Ag,. Moreover, such a model cannot describe ~(Bgt 0+ 8+ ——Ag+idn=0,

Auger transitions at all, since the basis states of carriers in (14
different bands are orthogonal. The same applies to the spec- —(Eg+E+28) n—2i5¢=0.

trum of the SO band.
The Fourier amplitudes of the wave functions of bothPassing to the Fourier transform, we find the electron disper-

light and SO holes can be presented in the form sion law

i5 _ & EP+8(2E4+30)+(Egt30)Ey 15

\P=kf+w[k><o-f], 722 Eg+&+26 '

E+ 6+ 2my, © If £<E4 then the energy is quadratic in wave vector,
£.2k? E,+26

ﬁ'ykz(E) — -1_ 2 =99

‘I’s,:—E +5—Ef’ & m, where m; =2y (E,+30)Ey (16)
¢]

_ _ ) ) ) The Fourier amplitude of the wave function is given by
wheref is an arbitrary spinor related to the previously intro-

duced functiong by ¢=k?(E)f. £ i6
'_I'h_e third solut_ion of_Eq.(3) pertaining to heavy holes We=f, W= hyk3(E) Kt =+ E+ Eg+25[k><(a-f i
satisfies the relations d¥=0 (as a consequenc¥,=0) (17)

and o rot ¥=0. This follows from Eq.(5), since, if =0, ) ] ]
then =0 and vice versa. It can be readily seen thatwheref is an arbitrary spinofsee Eq(9)].
XW,]=—iw,. Th he di ion | ibing th

%gavy-rf]]]ole Slpegtrumlilcs)’c)liselilfelSperS|on aw describing the 3. Probability flux and the equations near the heteroboundary
An expression for the probability flux density can be de-

h2k2 rived from Eq.(2) by substitutingE— —i#% d/dt and then
En=0— 55 (100 using a procedure similar to that employed in quantum

n mechanic€? It can also be derived by tHe p method in the
tsecond-order perturbation theory. As a result, the following

Th mponents of the heavy hole wave function m g . )
e components of the heavy hole wave functio USexpressmn is obtained in the case of holes:

satisfy the equations

W, = (¥ +iV,,) ' Eg+5_E[x1f W* 4+ YA
z| = xp Ty o =% L¥s s
‘I’zT:(—‘I’xﬁi\Pyi)@[UX\P]_ o ad 2myy
i%
kz\I’zT+ kx\PxT"' ky\ny =0 — _th (WXrot W* —W* Xrot W). (19

div ¥=0. (12)
KW, + KWy +k, W, =07

R For electrons in the conduction band this expression takes a
By solving these equations, one may obtain explicit expressimpler form,

sions for the wave functions. For a QW they are given in _ . .
Appendix A. je= ANV W +V W] (19
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The exact procedure for deriving the boundary conditions for The functionsW¥(x,y,z) and D¥(—x,y,z) satisfy the
wave functions still remains to be devised. However, somesame equation. For this reason the eigenfunctions of the
approximate methods for solving this problem have been deHamiltonian may be sought as eigenfunctions of the operator
veloped in recent years. Usually infg, By, semiconductor D.

heterostructure Kane’s parameter varies only slightly;

hence continuity ofy is often supposedsee, for example W(x,y,z2)=vD¥(—X,y,z) where v==+1. (24)

Ref. 17. The discrepancy of the parametgin a QW and

barrier region results in a small change of the Auger coeffiThe valuesy= +1 correspond to carrier states with different
cient (see Sec. IY. Following the method elaborated by symmetry. With the wave functions chosen in such a way,
Burt™ and assuming the contunuity of Kane’s parameter, Wehe houndary conditions can be satisfied at one heterobound-
derive from the systen2) equations that can be integrated ary only, since at the other they will be fulfilled automati-
across the heterobarrier: cally. Solving Eq.(24) we find the necessary conditions for

_ various components of the symmetrized wave function.
(Eg+ 6—E)¥—ihyVW=0,

(20)
B2 Ve (x,y,2)= Vg (—X,Y,2),
—EW—ifiyV W+ 5 _V[67,V¥] -
Wy (XY, 2)=+ Wy (—X,y,2),
w29 - - 9 _
+m(9—Xk(’yl—2’yZ) (?_X|(\I’+I5[0-X\I’]:O. \I,yT(X,y,Z):i‘Pyl(_X,y,Z),

Using these equations and the probability flux density con-
servation law the boundary conditions for the wave-function
envelopes will be derived.

\I,ZT(nyaZ): tqui(_xlyyz)a

where the sign %" corresponds tov=1, and “~" to v=

—1 for thes, y, z components and vice versa for the

component. The corresponding expressions for the compo-
The wave functions of carriers in a QW can be foundnents of electron and hole-wave functions are given in Ap-

using the symmetry properties of the Hamiltonian. The spinpendix A.

less HamiltoniarfH, is invariant with respect to the substi-

tution x— —x. Consider an operatdR such that

B. Carrier states in a quantum well

1. MATRIX ELEMENT OF AUGER RECOMBINATION
R:(X,Y,Z —X,Y,2), R=IC,y, . . .
(xy.2)=( y:2) ™ (21) The differential rate of AR can be calculated in terms of
the first-order perturbation theory in electron-electron inter-

HoR=RHo, action:

whereZ is the inversion operator, and,, is the operator of
rotation by an angler around thex axis perpendicular to the
plane of the QW.

With the account of the spin-orbit interaction the Hamil-

2
Wiﬂf:7|Mfi|25(8f_8i)v (25

tonian can be written in the form where
2
= [ X e
H=Ho+ 4m202[VV plo, @2 Mfi:<‘l’f(r1,r2,V1-Vz) T
Kol 1= 12|
where p is the momentum operator and is the potential 5
energy of an electron in the crystal. The last term does not +®(rq,ry) \Ifi(rl,rz,vl,vz)> (26)

commute withR. Therefore, the symmetry operatbr may
be sought as a product of the operaf®rand some spin
matrix S to be found:D=R®S. Since inversion leaves un-
changed the sign of the vector product, the ma8ixust
satisfy the relations

is the matrix element of electron-electron interactionand
r, are the carrier coordinates; and v, are spin variables
[see Eq.(24)], e is the electron chargeg, is the dielectric

constant of the intrinsic semiconductor, a®dr;,r,) is the

Soy=0,S, additional potential arising because of the difference between
the QW and barrier region dielectric constants. An explicit
So,=—0,S, (23 expression fob(ry,r5) is given in Appendix B.
Y Y With an account of the antisymmetrized form of the wave
So.= — .S functions, the matrix element of the Auger transition is the
z— z

following:

Obviously, a Pauli spin matrix, may be taken for the ma-
trix S: SZ(TX. Mfi:M|_M“, (27)
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e? tion into a localized or a free state leads to the existence of
M ={ Wa(ry,v1)Wy(rz,va) Ralli=Tal different AR mechanisms in QW's.
~ A. Calculation of the matrix element for a transition
+O(ry,r2) \Ifl(rl’yl)\PZ(rZ’VZ)>’ (28) of an excited particle into the continuous spectrum
an expression foM,, can be derived from E¢28) by inter- For evaluating the matrix element we use the approxima-

changing indices 1 and 2 in the wave functiohg and¥,.  tionVe,V,<Eg, whereV. andV, are the barrier heights for
Hereafter the indices | and Il in the expressions for the mag!ectrons and holes, rtzespectwely. Obviously, this approxima-
trix elements will be omitted. tion also implies thakj+ q’>k?, i.e., the total momentum

We shall consider two AR processes, CHCC and CHHsOf an excited electron, is much larger than that of a localized
since in fact only these two determine the rate of Augerone. The integral over thg, coordinate can be found by
recombination. Strictly speaking, such a terminology is inapintegrating by parts. Thath antiderivative of the function
plicable to carriers in a QW, since there exists mixing be-y.e~ s
tween heavy-hole, light-hole, and SO-hole subbands. How- ax -
ever, the mixing of SO holes with heavy and light holes is F(q x)=(—1)”[e Ya(x)] e 20x
negligible atA,,>T. The last condition is fulfilled for the am (k47+ q?)" '
majority of A;;;By, semiconductors. For this reason we may
rely on the above terminology.

Procedures for evaluating matrix elements for the CHC
and CHHS Auger processes are similar. For the sake of sim- M~M®D +M®@ (30)
plicity, mainly the matrix element of the CHCC Auger tran- '
sition will be discussed further in this section. In the follow- where
ing section approximate expressions for the Auger
coefficient will be given for both the CHCC and the CHHS M= _ Ame
processes.  ko(gP+ k42)

The matrix element of an electron-electron Coulomb in-
teraction can be most conveniently calculated using a Fourier
transform. We take into account that the wave functions of
carriers in a QW are plane waves propagating along the lat-
eral direction: Here

Wi(r) = (X, q)expligp), 3V 4V, Ko—zc,)

— Qa2 *
whereq and p are, respectively, the lateral wave vector and Hal2)=e Vas(al2) l’//lS(a/Z)( g Ko+ Ko
coordinate of carriers. Then (32)

Then an approximate expression for the matrix eleniMnt
ccan be obtained:

2 al2
Fal2) f_a/zeqxwé (X2) ra(X2)d X,

a2
—F(—al2) f _alze—qlep; (X2) wz(Xz)dXz) . (3D

_ 4me? 1 The indexs in ¥, and ¢, implies that only thes compo-

el al2
* * —q|x1— X2 ~
Ko 20 f,oof,a,zllj“(xl)%(XZ)[e nents of the wave functions are takes, is the dielectric
constant in the barrier region. Ft(?) we have,

+ Xy, X2, @) Ph1(X0) P2(X2) Xy A%, , (29)

2 a2

g=|d;—0q4/=|93— 0| is the momentum transferred in the M<2):4727—ik2 f W (X) 5 (X) ra(X) e (X)X
plane of the QW in the Coulomb interactioa,is the QW Ko(A°+Ky) J-an (33
width, and¢, for which an expression is given in Appendix )
B, corresponds to the potentid. Integration overx, is  Note that since the wave functions are spinors, the compo-
limited to within the QW owing to the fact that heavy holes Nents ofy should be multiplied by components ¢f, and,
are usually strongly localized inside the well because of thei¥ice versa, the components ¢f should be multiplied by
relatively large mass. Hereafter,and p denote the coordi- those ofi,.
nates orthogonal and parallel to the QW plane respectigely,  In this way it appears that the matrix element of Auger
andk are the lateral anst quasimomentum components of transition splits into two parts. The first is related to the
particles. presence of heteroboundaries and the second corresponds to

As seen from Eq(29), Auger scattering occurs on a one- the short-range Coulomb scattering. The latter can be easily
dimensional exponentially decaying potential that dependgnderstood since during Auger transition a large energy is
on the transferred lateral momentum. The state of an excitediansmitted and this is possible only if the scattering particles
particle may lie in either continuous or discrete spectrumfind themselves very close to each other. Note that btth
with the latter situation occurring when the longitudinal mo-and M) are in fact thresholdless matrix elements. Indeed,
mentum of the particle much exceeds the transverse momethey are not subject to any restrictions imposed on the initial
tum. [We assume that, as is commonly the cadg,, (V,) momenta of carriersky, k,, andks;. However, the mecha-
<Eg.] In determining the rate of AR, both localized and nisms responsible for the momentum nonconservation
delocalized states must be considered as final states of tifl; + k,#ks+k,) in M) andM @ are different. IlM®) the
excited particle. The possibility of an electr@imole) transi-  latter is related to carrier scattering at the heteroboundary,
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and the same mechanism gives rise to a thresholdless Augegsponding tavlY) andM ) will be referred to as threshold-
process in scattering on a single heterobarri€he reason less and quasi-threshold processes, respectively. Note that in
why the conservation law breaks down figr?) is that the  this work the matrix element for transition into continuous
volume of integration with respect to is restricted to the spectrum M) is split into M) andM(?) in a different way
QW region, which results in the appearance of a function othan in our previous work® to make the corresponding ex-
the type sinka/2)k instead of5(k). Substituting Eq.(32)  pressions more clear.
into Eq. (31) and integrating ovex,, we obtain

B. Calculation of the matrix element of Auger recombination

2 3V +V, Ko_;0> for a transition of an excited particle

8me

Ko(0?+K3) (% +k3)

into the discrete spectrum

4E x . - -
g Ko Ko We now turn our attention to analyzing the matrix ele-

<[ ™ (a/2 2 * (a2 2)7'(1+e-9a) ~ ment of an Auger transition in which the high-energy particle
(V2 (@/2)yn(al2)] L¢3 (3/2) go(@/2) " (1 e ) ¢, remains in the bound state. This case corresponds to the
(34) condition g,>k,. The matrix element can be calculated

imi (2) -
The sign in the last pair of parentheses is chosen according fmiiarly to M= above:
the parity of the product} (x) ¢»(x): “ +” corresponds to 4re? a2
an even product and “” to an odd one. In the case M<3)%ﬁf (W5 ) (5 p)dx.  (37)
Ko(g +k4) —-al2

ga >1 the exponent may be omitted and the matrix element
M@ corresponds to independent scattering at two hetero-

boun(zllarlezs. \A2/hen evaluating E@4), we took into account o 5| tormula is rather cumbersome and will not be presented
thatk3+q“>k3, which reflects the fact that the average mo- e We shall only make an estimate Mf, valid in the

mentum of holes is larger than that of electrons. The teMyaqe when bound carriers are in the ground quantum state.

(ko= ko)l (ko + Kp) in Eq. (34) arises from taking into con- Then we have

sideration the additional potentid(r,,r,) [see Eq.(28)].

Note that the matrix elemei is zero if the parities of the M3 ~ 1 eiéﬁla

productsys; (X) o(x) and ¢ (x) ¥1(x) are different. 9°+k; ~ 2Z
Let us now analyz&/ (). The integral inM ) is propor-

tional to the sum

This integral can be readily calculated; however, the gen-

AgAfAh @QcgnSin ¢, 3, (39

where ¢, 3 is the angle between the lateral quasimomentum
components of an electron and a heavy hole, ani$ a

a sin(k,—k)a/2 coefficient of order unity, resulting from integrating the
f P (X) 7 (X) hy(X) ,/,Z(X)dxocz i“—, product of the envelopes of the carrier wave functions over
0 ks—k the quantum well:
(35
/2
where k runs through eight different valuds= *k;*k, fa f1fofaf,dx=aal2, (39
0

+ky. Of all terms in the sum from E(35), the largest is

that for whichk=k; +k,+ks. (The reason is that this term \yheref,=coskx, andi numerates the initial and final states
has the lowest threshold energy. By the threshold energy wWgr particles taking part in the AR process.

understand the mean energy of a heavy hole taking part in an
Auger transition. The contributions to the sum from other
terms are less significant and will be neglected for the sake
of simplicity. Then the expression for the matrix element To calculate the rate of AR, the probabilities of Auger

IV. AUGER RECOMBINATION COEFFICIENT

M @) takes the following form: transition (25) should be summed over all initial and final
) states of carriers with appropriate weights-occupation num-
e iy 1+2/3a bers.
(D "= i 2
W @+ KD € B, 1ra Nt .

. G=— M2 fo(1—fa)(1—f

sin(k;— Koy — keo— ki) a/2 - kl’k§3’k4< Mafa(1—f3)(1—1,)
Ki—Ke1—Keo—k
ffel Tez Th X 8(Eg+E4—E;—E,). (40)

ip =
Onkee 3+ Gckn, - Vo= vy (36) Herefy, f; are the occupancies of the initial states dgd

dcOn SiN ¢p3,  Ve=F V. f, are those of the final states,
Here § is an insignificant phase coefficier; denotes the
.. L . 2\ 2
normalizing constanty. and vy, are the spin indexes intro- (M= 2 Mgl
duced according to Eq24), and ¢, 5 is the angle between 123
the lateral momenta of the electron and the hole. As followsds a sum of squared Auger matrix elements over spins of the
from Eq. (36), in the limit a—o the matrix elementv(? initial and final states. It is more convenient to choose elec-

becomes proportional t8(k; —k;—k,—k;,) and hence tends trons and holes as carriers for the CHCC and CHHS pro-
to the bulk matrix element. On the contraht*) exhibits no  cesses, respectively. For high-excited states the distribution
extremum in the same limit. Therefore, Auger processes corfunction f, may be set to zero. Note that instead of fls,
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FIG. 1. Auger transition probabilitiess; (q) andw,(q), corresponding to the thresholdless and quasithreshold matrix eleMeraad
M, as functions of the longitudinal momentum of heavy hole3 at300 K for different QW widthg(a) a=50 A, (b) a=100A, (c) a
=200 A, and(d) a=500 A].

we may writef;, wheref; is the distribution function for ~approach each other, and the region of overlapping between
carriers of the opposite sign: holes for the CHCC process anthese matrix elements becomes lar¢ee Fig. 1 It should
electrons for the CHHS process. be noted that the AR probabilities presented in Fig. 1 are
The matrix element™ ™ andM (@, on the one hand, and rather smooth functions of the longitudinal momentum of
M®), on the other, describe transitions in which the excitedheavy hole gy), since, in calculating them, the summation is
particle occupies a state of the continuous or discrete spe€lone over discrete quantum states of carriersgtlose to
trum, respectively. Therefore, the contributions to the Augetthe maximum value determined by the conservation of lon-
rate from the first two matrix elements and the last one cafitudinal momentum and energy, the AR probability shows a
be separated. It is more difficult to separate the contribution§quare-root divergence eliminated upon integration with re-
from M® and M®. Even though the physical difference Spect tody, i.e., in calculating the rate of AR. The probabil-
between these terms does exist, there is a term of interfefty of Auger transition for the CHHS process has a form
ence between them, essential at small QW widths, since bogimilar to that for the CHCC process.
processes are in fact thresholdless. However, even when the In line with the aforesaid, let us present the rate of AR as
interference is neglected we still obtain a result of correcfollows:
order, reflecting all the main specific features of the AR co-
efficient as a function of temperature and parameters of a G=G;+G,+Gg3, (41
structure with a QW. In sufficiently wide QW'’s the modulus
of M@ exhibits a maximum at the poirks(q) +ks=k;  where the rat&, corresponds to a thresholdless Auger pro-
+k,, whereasM () as a function of quasimomentum shows cess with the matrix elemeM ,, rateG, to a quasithreshold
no extremum. When the QW width tends to infinitM(?) at  Auger process with the matrix elemet,, and rateG; to a
this point has the form of @& function. In accordance with threshold Auger process with the matrix elemity.
the aforesaid, the AR probability for wide QW's, corre-  The expressions for the rat€&, andG, can be derived
sponding to the matrix elemeM(?), has a maximuntas a  from Eq. (40) by passing from summation ovéy, to inte-
function of the longitudinal momentum of the heavy hqlg  gration and fromé function with respect to energy #®func-
at higherqy, values than the probability associated wWith®). tion with respect to momentum. In what follows we shall
With decreasing QW width the maxima of these probabilitiesstudy the AR coefficient€ related to the rat& by
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G=Cn?p and G=Cp°n

for the CHCC and CHHS Auger processes, respectively.
Heren andp are the 2D densities of electrons and holes.

1 @ 2 2,2
(f(dn.kn))= Z ; fo th(kahn)e_(kh”+q“)/quQh,

For the CHCC process we have where
2 2 2 _ k2 /2
327%e* hy? F(Aso/Eg) Kok Ve _22 e~ (Knn)/aT,
Cix—= =% 2 (12 2 At n
ko By a(a+2/k)” (kg+x ) E
3Ve+V, Kko— Ko 2 qik? 1 gr=v2m,T/% is the thermal wave vector of heavy holes,
- = andk,,, is the wave vector corresponding to thth level of
4Eg KO+ Ko (qh+k ) k4(qh) heavy holes.
(42) For the CHHS process the following expression @y
can be derived:
where
1+2x/3\2 1+ 7x/9+Xx2/6 _2n%e' Vo kokg  F(Ago/Ey) he
FOO= 1% ) (1+x/2)(1+4x/9)" b okgh Eg (Kot ko) a%(at2lke) mog(Eg— Ao’
Kh1KioGh1 (G, +afy) 43
{:Ie?;? that, if Kane’s parametey is discontinuous then the (q§1+ kﬁl)3(qﬁ2+ kﬁz) (43)
where
Eoc ( 57) 2
> - 2x+3(1-x)(1—mgo/mp) 1% 1+2x/3
2Eg F(X)= [ ( )( so h)]

2X%+[x+3(1—x)(1—mgo/my) 1> 1+x

should be added to
In the last case averaging is performed over distribution

2 functions of two holes. In deriving E¢43) we assumed that
(3VC+VU _ KO_KO) Eg_ASO>T(mh/mSO)'

AE = Let us turn to the quasithreshold Auger process. For the
9 KoTKo CHCC process we have
where Eq. is the electron energy in the ground level and

~ 2,4 3.4
Sy=vy— is the difference between Kane's parameters in c, ~ me Ry F(AsolBy)

the QW and the barrier region. However, this addition is K ES a(a+2/kc)’

usually negligible. Similarly, the term— o)/ (ko+ ko) iS o, 1,

usually small compared to &+ V,)/4E4 and can be omit- qck,pL On| ks + ch) 1—cogki—kn—2k.)a
ted. It can be shown that the influence exerted by the differ- > foh “7c

ence between the dielectric constants in the quantum well (i kp)ky 2(kt—kn—2ko)?

and barrier region is even less for the case of the CHHS AR (44)

process. For this reason the corresponding terms for this pro-
cess will be omitted.

The angular brackets in E¢42) and below denote aver- Direct calculation of the Auger coefficief, for the CHHS
aging over the heavy-hole distribution function. In the caseprocess gives a cumbersome result. We present here a sim-
of a Boltzmann distribution, which is commonly the case forplified expression valid for sufficiently narrow QW’s at

holes, this averaging looks like ke>qe:
m2e* E, 73 F(Aso/Eg) <1—cos{kso— kni—kno—ko)a
27 4k EgmZ(Eg—A)¥ @%(a+2/ke) | 2(Kso—Kni—Kna—Ke)?

th[(kz +KP1) 0hg + UfoKhy + 2Ki1 (Gh1Ghe) + (Gha X On2) ]> 45

(i1 ki) (afo+ Kio)Kso
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And, finally, we haveC; for the CHCC process: seems impossible to derive analytically the exact Auger co-
efficientC; for the CHHS process in view of the fact that the
32724 a 1+ Ix+ ix2 1+ 2x matrix elementV 5 is rather cumbersome. However, an ap-
3~ thEg (a+lx)® (1+x/3)2 1+x proximate expression can read_ily be obtained by factoring
out the averaged squared matrix element from the integrand
AT sign
> 77 . ,2.3€ Genl A7 ¢ . (46)
a7 (dthtkp) n 5
NN
Herex=A4,/Eq4, ais a multiplier introduced in Eq:38). In Ca~ [ (M3) 27207

the last case, averaging only over discrete quantum states of
heavy holes is performed. The threshold momentymis
found from the conservation law for energy and longitudinal
component of momentum:

Er(Vki+0g) =Eg+

For simplicity we neglected here the small longitudinal mo-

menta of electrons. Expanding the energy of an excited eled1€"® Eg=Eq+ Eoc+ 2Eon—Eoso, WhereEg, Eos, are the
tron E; into a series in terms of momenta in the vicinity of 9round-state energies of heavy and SO holes, respectively.

qin=Q, whereQ is the electron momentum corresponding Let us introduce a threshold momentum, setting it equal to
to an energy equal thy (Q~ v4m.E, /%2), we get the fol-

2 2 2
Xf d?qpyd2gppe” (hat dn2ldr

f12(Qny+ On2) 2 N thﬁl N ﬁzQﬁz
h2(ga +k2) . h2(k2 +k2) 2mg, 2m, = 2m,
2my, 2m; (49)

X 8| Eg—A—

lowing estimate for the threshold momentum: 5 Z(EQ—A)mSO
= 22— gg)
\/4mcEg 3 P me P (2= pso)
A~ Rz gl m, " (47 where ugo=mMg,/m;,. Then the expression fdB, takes the
form

If the QW width tends to infinity, the threshold momentum
approaches its bulk valtfeAccount must be taken of the fact om .
that for wide quantum wells with a large number of levels Cs~ — 52" e ch/qT<|v|§)_ (50)
the introduced multiplier [see Eq(38)] tends to as func- 7°Qn
tion expressing the conservation law for the transverse qua- = . i
simomentum component: Taking into account the fact th&,,>k,,, we obtain

256m, et Q3

hlks  (Q&+2kd)*
For_ Iarg_e QW widths_ an¥ <Ey, the inequalityC3<C2_is Ve k§ (1—Xgp)? o2
valid, since the ratioC3/C,~+V./E4. Hence, for wide XE T2 1 e Qufr, (53)
QW'’s C5 may be neglected as compared wth. For nar- g fe ™ Ke so

row QW’s the threshold energy of the CHCC process in- ~ . ! .
creasegsee Eq(47)] and the AR coefficient46) decreases where « is a multiplier defined as in the case of the CHCC

m™
a? = 5522 (knT ke Keot Keg). Ca~

relative to the bulk value by a factor process(38), \g, is derived from\, [see Eq.(A3)] by sub-
stituting kg, instead ofk; .
@3K51207  g(3mc/2my) (Eqc /T) Let us consider in more detail the Auger recombination

coefficientC, for the quasi-threshold CHCC process. When
The characteristic width of a QW for which this phenomenonthe QW width approaches infinity, a substitution can be
becomes essential can be readily evaluated from the condirade in the function being averaged in E44):
tion that the exponent is unity:

1-cogki—k,—2k.,)a ma

th@agl (48) 2(K;—kp— 2ko)2 —’75(kf—kh—2kc) at a—oo.

3m, ar’ (52)

EOCNT

Thus, at QW widthsa less than several reciprocal thermal
momentaa< /gy the threshold energs, becomes consid-
erably higher than the bulk valig (Fig. 2). For semicon-
ductor compounds;;;By, the equality (48) is fulfilled at
room temperature at a quantum-well width of order of

This formula clearly shows the occurrence of a threshold in
this limit, and the coefficient, transforms into a 3D expres-
sion on being multiplied by?. For comparison, we present
both the result of Gelmont fo€;5 (Ref. 2 and our limiting

expression.
100 A.
For the threshold CHHS process the heavy-hole momenta o3 1
are not specified by the threshold conditions and, therefore, C3p=627" — —s1r—17—3n€ En/T (53
integration with respect to them has to be performed. It ko Eg T m: my



4048 ANATOLI S. POLKOVNIKOV AND GEORGY G. ZEGRYA PRB 58

03— Auger Coefficients
| Eh e
-~ i E&D
E 02
>
o
[
c
= 0.1
=
9 _Eb_
[72]
2
£
" oo~ .
[~ - . .
E J:‘M*" 20 40 60 80 100 120 140
1 R 1 R 1 A 1 R 1 ) Quantum Well Width (A)
50 100 150 200 250 300

Quantum Well Width (A)

FIG. 2. Threshold energy of the CHCC process as a function of
QW width for three mechanisms of Auger recombination: thresh-
oldless E€}), quasithreshold EZ), and threshold E3) at T
=300 K. The solid curve corresponds to the threshold eneEg) (
of the total Auger coefficient@=C,+C,+ C3). The horizontal
dashed line corresponds to the threshold end&gfy for the bulk
Auger process.
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C2a2: 4

The factor 4 in Eq.(54) results from the necessity to take

into account, in calculatin$yl, in accordance with E¢36), FIG. 3. Auger coefficient€,, C,, andC; for the thresholdless,
not only the terms witlk=Kk.; + k02+ ky,, but also those with  quasithreshold, and threshold processes as functions of QW width
k=Kc;— kc2+ Ky, k=—ke+ kc2+ kn, and k=—Kkg— kc2 at different temperaturdg¢a) T=150 K and(b) T=300 K].

+ky. When the QW width tends to infinity, all the four

H 2
terms make equal contributions @,. As can be seen, the Where Qn is the value of the heavy-hole momenturd;

only difference between expressiof3) and (54) is in a :kﬁ“ﬁi

numerical coefficient. The small discrepancy of about 2/3

times is due to the necessity to distinguish between the mo- c’ Mgy [ T\

menta of the two localized electrons;; # k., . Furthermore, Etzﬁ%? E_m) efn/T, (56)

expression53) was derived for the case whefn,, tends to
infinity, while in obtaining expressiolb4) it was assumed _ . -
thatAy,=<E,. In calculating Eq(54) we neglected the quan- Here)\Eg_fv 27/q;p is a characteristic wa\{elength of an t(;,:Iec-
tity V. as compared withEy. In the general case,Cp;  tron having energy close ty. Comparing the terme;
+C3)a? should be written instead d,a? to make expres- andCj, one can obtain a criterion for the transition from the
sion (54) valid. However, the limiting transition from the quasithreshold to the threshold Auger process:
guasithreshold to the threshold Auger prodese Eq(52)]

can be realized only for very large QW's. When analyzing 312

the probability of Auger transition as a function of the a>a, Wwhere a,=\g (E—> eFin'T, (57)
heavy-hole momentum, one can obtain a qualitative criterion $\ Eth

for this transition. The probability of the quasithreshold Au- icond ith f the order of
ger process has two characteristic extreisee Eq.(44)].  -OF Sémiconductors with an energy gap of the order of 1 eV

The first of them corresponds to the maximum of squaredn® critical width @) may be as large as several thousand
Auger transition matrix element in the vicinity of the thresh- 19stroms. However, the value af is considerably larger
old momentum. The second one lies in the vicinity of thethan the mean free path of carriers in semiconductors. This

thermal momentum of heavy holes. The Auger coefficien bviously shows thr_:lt correct derivatio'n of the Auger rate in
C, can be estimated as a sum of contributions from thes8MOgeneous semiconductors must involve the momentum
extrema. Then scattering process if the critical widtla, exceeds the
mean-free-patf’*

" . With decreasing QW width, the average momentum of
C2~C3(Qn~awm) + Co(Qn~ar), (55  holes participating in the Auger transition shifts to lower
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FIG. 4. Temperature dependence of the total Auger coefficient and the partial contributions of the thresholdless and quasithreshold
mechanisms at different QW widths.

values(see Fig. 1 This reduces the threshold energy of thecharacteristic momentum transferred in the Coulomb interac-
process, and makes weaker the temperature dependencetioh (approximately equal to the thermal momentum of
the AR coefficient. heavy hole grows. This is the reason why at low tempera-
Figure 2 shows the threshold energy of the CHCC procesgure the Auger coefficient increases with temperature. As the
as a function of QW width for all the three mechanisms oftemperature is elevated further, the AR coeffici€qtpasses
Auger recombinatiorC,, C,, andC; separately and for the through a maximum and starts to decrease, since Coulomb
overall proces€€=C,;+C,+Cs, found from the formula interaction responsible for the Auger process is low for large
transferred momenta. The temperature at which the maxi-
mum occurs can be evaluated by equating the ground-state
energy holes to temperatur@~ #27%/2m,a%. Note that
there would be no such maximum if the overlap integral
The threshold energy for the quasithreshold Auger process isetween the electron and the heavy hole were taken to be
less than its bulk value. The reason is that the critical QWproportional to the momentum transferr@dSuch an as-
width a,~1000 A is greater than the maximum width shown sumption, having in our opinion no justification for the ma-
in the figure. The value oE;, for the thresholdless Auger jority of structures investigated, is frequently used and gives
process decreases with QW width and becomes negativencorrect expressions for the rate of AR and incorrect depen-
This is due to the fact that the Auger coeffici€itdecreases dence of this quantity on temperature and QW parameters.
with increasing temperature for wide enough QWsee Fig. The AR coefficientC, depends rather strongly on the QW
5, below. With increasing quantum-well width, the total width a. For wide QW’s, even being multiplied bg?, C;
threshold energy tends to its limiting valllz‘éﬂ3 denoted in remains a decreasing function af At a~ 1/k; the coeffi-
the figure. cient C; exhibits a maximum related to the weak overlap-
We now turn our attention to the thresholdless Auger proJing of electron and hole wave-functions. With the quantum-
cess. As already noted, the probability of a thresholdless Auwell width decreasing further, the rate of the thresholdless
ger transition shows no extrema as a function of the heaviAuger process gradually falls. A similar expression@rin
hole momentum. Therefore, the coefficigdt has a weak the CHCC process was obtained by Dyakonov and Ka-
nonexponential temperature dependence. This phenomenehorovskii, and Zegryat al**°
was first studied by Zegrya and Kharcherfka.addition, the Figure 3 shows AR coefficient§;, C,, andCj for the
function C4(T) is nonmonotonic and has a maximum. The CHCC process as functions of QW width at different tem-
presence of this maximum can readily be explained. At lowperatures for a model structure based on InGaAsP. It can be
temperature and, correspondingly, small longitudinal mo-seen that all curves show a sharply pronounced maximum.
menta of carriers, their wave functions are nearly orthogonal'he positions of the maxima fa€, and C, are practically
and theC, value is small. With increasing temperature, thetemperature independent. The maximum for the threshold

(i) ,dinG
Eth(T):T T’ i=1,2,3. (58)
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the Auger coefficient is a smoother function of temperature
than in the case of the Boltzmann distribution and it does not
tend to zero al — 0. Figure 5 shows the thresholdless Auger
coefficientC; versus temperature at various Fermi energies
for QW’s with different widths. Essential discrepancies be-
tween the values of the Auger coefficients for the Fermi-
Dirac and Boltzmann distributions take place only in the case
T<Eg, whereEg is the Fermi energy for holes. This con-
dition can be realized only at very low temperatures when
the Auger process ceases to be an important mechanism of
recombination.

=y
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Auger Coefficient C, (10‘1gcm4/s)

0.0
0 100 200 300 V. PHONON-ASSISTED AUGER RECOMBINATION
Temperature (K) IN QUANTUM WELLS
1.0
| (b) _
a=150A | ----- Tg=-100K At low temperatures a threshold Auger process becomes
08 Te=50K exponentially weak Czpxe” Etn/T). In this case mecha-

nisms leading to threshold elimination are to be taken into
account. It is commonly believed that the primary mecha-
nism of this kind is emission or absorption of a virtual opti-
cal phonon. At the expense of a large momentum transferred
to the phonon, the AR threshold is eliminated, and the rate of
such an Auger process is a power-law function of
temperaturé:>?’ The rate of the phonon-assisted AR is cal-
culated in terms of the second-order perturbation theory in
00 " 1 N 1 " 1 .
100 200 300 electron-electron and electron-phonon interactfotdow-
Temperature (K) ever, at high carrier de_nsities, carr_ier-carrier scattering may
become a more effective mechanism of threshold elimina-
FIG. 5. Comparison of the thresholdless Auger coeffici€y)(  tion. This is why the problem of the AR mechanism in ho-
as a function of temperature at various Fermi energies of holes famogeneous semiconductors at low temperatures still remains
two different QW widths[(a) a=50 A and(b) a=200A]. Tr de-  open. We shall discuss this problem in more detail else-
notes the Fermi energy expressed in Kelvins. The curve With  where. In the present work we follow the commonly ac-
=—100 K approximately corresponds to the Boltzmann statistics. cepted viewpoint that there exists a competition between the
phonon-assisted and direct AR processes. For quantum wells
process C,) is achieved at a wider QW than for the qua- the situation differs strongly from the 3D case, owing to the
sithreshold or thresholdless processes and its position shiffgesence of a direct thresholdless process. Thereforeait is
with temperature. This is in the first place due to the reducriori evident that the conditions under which the phonon-
tion of the threshold energy of the threshold process wittassisted AR process dominates the direct one strongly de-
increasing quantum-well widtkFig. 2), rather than to the pend on the QW width.
overlapping of the wave functions. As already noted, in the 2D case there exist three AR
Figure 4 shows the temperature dependence of the overdlrocesses: threshold, quasi-threshold, and thresholdless. The
AR coefficient for the CHCC process and the partial contri-AR coefficient for a phonon-assisted CHCC process with the
butions from the thresholdless and quasithreshold mechdhreshold matrix element of electron-electron interaction is
nisms at different QW widths. It can be seen that at lowcomparatively easily calculated wién
temperature and sufficiently wide QW’s the thresholdless
Auger process predominate8{>C,), and at high tempera- Eg>2uEg>hoo.T, (59
ture, conversely, the quasithreshold process becomes molghere w o is the optical phonon frequency,=m./m;. It
important C,>C,). Therefore, the curve describing the can be shown that the coefficient of phonon-assisted AR is
temperature dependence of the overall AR coefficient has gelated to the previously calculated one, E4g), by
characteristic shape with a maximum and a minimum. With
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]
)
H
[]
1l
-
d
d
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Auger Coefficient C, (10™'° cm*/s)

o

increasing QW width, both the maximum and the minimum 3 ehw o

of the AR coefficient shift to lower temperature and, in the Con~=Ca——— 5p9(akn) ehoo/T_q
limit of infinitely wide QW, disappear. Thus, in the case of a 2ka Eth €
homogeneous semiconductor the AR coefficient is a mono- ghoo!/T 1

tonic function of temperature. Note that the Boltzmann dis- % +
tribution of carriers was used in calculating the Auger coef- (ERP—hw o)? (EP+hw o)?
ficients as functions of temperature. At low temperature both (60)
electrons and holes are, as a rule, described by the Fermi- .

Dirac distribution function. Thus, the average momenta ofwhere k= kgx../ko— k., K. IS the high-frequency dielec-
particles participating in the Auger transition depends ortric constant of the mediung(a,k,) is a factor reflecting
temperature only slightly. As a result, at low temperatureghe 2D character of hol&%

2D
et /T
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1 kiha® L2 M My? etherolT
== W, =+— —
g(a,kin) 2+4(T2+kﬁ1a_2) it % (E.Thao—Epe@olT—1
1—e kind X 8(Ej—Ey)dvy, (63
" g
thd whereE; is the energy of the virtual hole, ard, is the
3074 matrix element of scattering of the virtual hole by an optical
X > > |- (61) phonon, with the signs plus and minus corresponding to pho-
(47 +kipa®) (8w + 3kipa®) non emission and absorption, respectively. It is seen that

For comparison, we present a 3D phonon-assisted AR coethere is a singularity in the expressi¢63), when the de-

ficient: nominator is equal to zero. To eliminate this divergence,
account must be taken of transitions into quasistationary
states, i.e., states with complex energy. In this case the pole

CSDNC3De ool T )3/2 Ken (63) will transform into a region of complex energies:
h™ — —\| 3p “ho T 1
2\/;,( E3D ef LO/T—]_ 1
WI‘? o< —_ ’
ehoLo/T 1 o = (Es¥ho o~ Ep)?+T?
+ eEth /T.
(Bl —fo0)?  (ER +hwo)? wherel'=%/7. The characteristic lifetimes corresponding

62) to these states may vary over a wide range, depending on
temperature, free-carrier density, etc. It only makes sense to
It can be seen that the results for the 2D and 3D process&9NSIder a resonant phonon-assisted process in terms of the
with threshold matrix elements of electron-electron imerac_seco_nd—o.rder per:tl:rbatlon ;heorzy when the ha|fW|IdthS ﬁf theh
tion are closely allied. A noticeable difference for the case ofiuasistationary hole and the phonon states are less than the
narrow quantum wells is that the threshold eneffy in- ~ €M€r9Y of the optical phonoriio o). Otherwise, the Auger
creaseg§see Eq(47)]. Correspondingly, the criterion for pre- coefficient must be calculated in the first order of the pertur-
dominance of the phonon-assisted AR proc@@hl over bation theory, using the Lorentz function
the direct one C3) in QW’s is met at somewhat higher
temperature than in the 3D case. As already ndsed Sec.
'), the rate of the threshold Auger process in narrow QW'’s
is in itself by several orders of magnitude lower than those ) ) )
of the thresholdless and quasithreshold processe'EStead of theb‘functlor] expressing the energy cons_ervanon
[Cs<(Cy, C,)]. Hence, the phonon-assisted AR process'aW- For a phonon-assisted AR process with a quasithreshold
with a threshold matrix element of electron-electron interac/Natrx element of electron-electron interaction, both the
tion cannot compete with these processes eithefesonant and virtual Auger processes are possible, with the
(C3h<Cl C,) former predominant in narrow QW’s and the latter in suffi-
p ' '

Let us now consider a phonon-assisted CHCC Auger pro(-:Iently wide QW's. -
cess with the other two matrix elementdvlg=M® In the general case the Auger coefficient for a phonon-

+M@), For the sake of simplicity we will use the assisted process may be written as
momentum-conservation approximation for the hole—optical

HAB)= T RE7sT?

PN 2
phonon scattering In this case the virtual hole state is fixed Con=Cpn+ Cpn. (64)
and we obtain where
|
Cl‘z_ . 77_a)eZ eiﬁwLo/T dZQ dzqh (?_E4 -1
ph™ — — eitho/T_l mnw (2’7T)2 (277)2 ok
K M Pn 4
|Mee(ann th+Q|2
Jnm(Q) fr(m,ap). (65)
RAmMP—nd)m? (g + Q)% hia; P
> - + iﬁwLo +F
2a’m; 2my, 2m;,

Here

a (1+ 8y ) [(m+n)27%+ Q%a?]+ (m—n)2m?+ Q%a?
2 [(m+n)27%+ Q2aZ][(m—n)2m2+ Q%a?] :

d2
=3 [ Gamtuman, nn(Q)-
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f(m,q;,) is the hole-distribution function on theath quan- 10"
tum level. The functionJ, (Q) has been calculated for a : C
nondegenerate barii.in the case of phonon scattering by [

heavy holes its value will be somewhat lower. However, this £
fact is insignificant for our purposes. For momenta of bound e

e

4Is)

electrons in the matrix element of electron-electron interac- S .
tion in Eq. (65) their mean thermal values should be substi- ‘© L S S e
tuted. The Auger coefficien&y, (sign “+”) andC3, (sign E --------

—") correspond, respectively, to phonon emission and ab- (3
sorption. Irrespective of the type of the matrix element of «
Coulomb interaction, the phonon-assisted Auger process i¢ @
thresholdless. This corresponds to the main contribution tc <C 1019 . e 1 I T TR
the Auger coefficienC,, coming from the hole momenta of 0 50 100 150 200 250 300
the same order of magnitude as the thermal momentum Temperature (K)

Therefore, in calculatin€,,, we may substitute for the lon-

gitudinal hole momenturgy, its mean thermal value. Expres- 107
sion (65) can be analyzed easily when the temperature is _
much lower than the optical phonon energy. In this case thev‘\”
thermal momenta of holag, may be neglected as compared &
with the phonon momentur®p, approximately equal to the
threshold one. It is readily seen that the probability of Auger
transition as a function o for phonon emission has two
extrema. The first of these corresponds to the minimum of
the denominator in Eq65) and is related to a resonant Au-
ger transition. Note that for an Auger transition with phonon &
absorption no extremum of this kind is observed and there is &
no resonant process. The second extremum corresponds < 1029 P T T T T
the maximum of the squared matrix element and, as a rule, i 0 50 100 150 200 250 300
related to a virtual Auger transition. For sufficiently wide Temperature (K)

QW’s the matrix element of the electron-electron interaction
as a function of the heavy-hole momentum has a form close F|G. 6. Phonon-assisted and direct Auger coefficients as func-
to the § function. In this case the second extremum predomitions of temperature at different QW widths.

nates, and the process of scattering by phonons is virtual.

With decreasing QW width, thé function broadens for the

guasithreshold matrix element, and, in addition, the role ofF andT are close to each other or at an extremely low
ph

the thresholdiess matrix element, only slightly depending o mperature when the ratio of the matrix elements taken at
Q, becomes more significant. This enhances the resonat P . . i
e momentado andqgs is large. Note that at high nonequi-

Auger transition and weakens the virtual process. For narrow . ) i o
QW's the matrix element of Coulomb electron-electron in-llbrium - carrier densities, when Auger recombination be-
teraction depends o only slightly, and, therefore, the COMES at all significant, the hole-hole scattering turns out to

resonant process is predominant. It can be shown that in thi¥® generally a much more effective mechanism of relaxation
case the following estimation is valid for the AR coefficient than the hole-phonon scattering. This results in a small

uge

Coefficient (¢

of the phonon_assisted Auger process: Tph/F ratio. Therefore, the direct AR mechanism dominates
the phonon-assisted one down to a very low temperature.
wLo€’mpa 27 3K(Eq) ) Figure 6 shows the coefficients of the phonon-assisted Auger
Con~——=—311(Qo) — IMedQo)l?, transition (C,, and direct one as a function of temperature
8khT h 4E,

for different quantum-well widths The parameter is taken
(66) to be equal to a characteristic value of 20 meV.

whereQy= V2myw o /%. Hence, it immediately follows that
the phonon-assisted to direct AR coefficient ratio has the

form VI. SUMMARY
» Our analysis has shown that for the CHCC and CHHS
%% h _[Mee(QO)] (67) processes in semiconductor structures with QW's there exist
C T [Medap]®’ three AR mechanisms: thresholdless, quasithreshold, and

threshold. The first one depends on temperature only
whereC=C,+ C, is the Auger coefficient for the direct pro- slightly. The effective threshold energy for the second pro-
cess,I',=%/mh,, Thp is the time of hole scattering by an cess substantially varies with the QW widttrig. 2).
optical phonon, andy is the thermal momentum of holes. It Namely, it is close to zero for sufficiently narrow QW's and
can be seen that the phonon-assisted Auger process mapproaches the bulk value in the linait>. For this reason
dominate the direct one only in the case when the values dhere is no clear distinction between the thresholdless and
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ger coefficients for the thresholdless and quasithreshold pro-
cessegC,, C,) in shallow QW's[(V,,V,)<E,].

It is also shown that the phonon-assisted AR process in
QW’s undergoes significant changes. Similar to the direct
AR there exist three different phonon mechanisms
(Con. Con. Cpy) corresponding to the threshold, qua-
sithreshold, and thresholdless matrix elements of electron-
electron interaction. The first process is quite similar to its
3D counterpart. However, for narrow QW'’s this process is

1 0»30

10-31_
Lo much weaker than the thresholdless and threshold Auger
Ca? processes. It is this process with the participation of phonons
that is often considered to be the principal AR process in
QW's 3233 AR phonon-assisted processes with quasithresh-

3D Auger Coefficient (cm®/s)

old and thresholdless matrix elements of electron-electron
interaction can be resonant. At low temperatures they can
compete with direct AR processes. However, owing to the
lack of any strong temperature dependence in the latter, such
a competition is possible at lower temperatures than in the
FIG. 7. Three-dimensional Auger coefficierts a> andC, a> 3D case(Fig. 6). With increasing QW width, the resonant

as functions of QW width aT =300 K. The horizontal dotted line scattering by phonons becomes weaker, and we pass to the
corresponds to the bulk Auger coefficiet@). conventional 3D phonon-assisted AR process.

It should be emphasized once again that at high densities
quasithreshold mechanisms in narrow quantum wells, an@f nonequilibrium carriers in a homogeneous semiconductor
they may be considered as a single thresholdless proced§e phonon-assisted AR process may be less intensive than
The third, threshold process, is similar to that in bulk semi-the Auger recombination, with the subsequent carrier-carrier
conductors. The only distinction is that its threshold energyscattering eliminating the threshdfd.
is somewhat higher than in the bulk semiconductor because
of an increase in the effective band ddfx. (47)]. The rate ACKNOWLEDGMENTS
o s process 1o el compated wi e ates 11 151 o atnor wih t thark R. A Surfs and V. | pere o
sithreshold and threshold Auger processes merge and form"&Itlatlng this quk and discussing some results. This worlf
bulk AR process C,a2+Csa2—C3P). The critical QW was supported in part by the Russian Foundation for Basic
width (a,) is a strong(exponential function of temperature ieseRarcﬁGragts N?DS' 96-02-“1P7hg 52 andf 937'|de'é8)15hNd
and may be up to several thousand angstroms at room ternf® usm:’;’m tate Program ysics of Solid State Nano-

) . structures”(Grants Nos. 97-0003 and 97-1035
perature for semiconductors with;~1 eV. The threshold-
less Auger process ceases to be operative on passing to the
homogeneous semiconductor. For narrow QW'’s the 2D Au-
ger coefficient multiplied bya? exceeds the 3D value owing
to predominance of the thresholdless and quasithreshold pro- 1. Holes

cessegFig. 7). Thus, the Auger recombination in QW’s is Selecti dinat ¢ that the lonaitudinal
enhanced as compared with that in a homogeneous semicon- electing a coordinate system so that the longitudina

ductor. This enhancement is more pronounced at a low ten{:_ompon_ents of the_ wave vector (;0|nq|de with thaxis, apd
perature. Note that the entire analysis of the AR coefficient erfor_mlng a Fou_rler transform in this p_Iane we ob_taln the
(C,, C,, Cs) as functions of temperature and QW param- ollowing expressm.ns for the wave functions of carriers.
eters is qualitatively applicable to the same extent to both the For heavy holes:
CHCC and CHHS Auger processes. However, since no q coskyx£
model structures with QW's have been specified, we illus- _ “iky, sin kpxé
trated these relations by the example of the CHCC process. ¥n(Q.X)=H; _oh h

Note that the AR in QW’'s may be suppressed substan- ~kn sinkyxg+q coskpx7
tially if the following conditions are met:\(.,V,)>E4 and q sin kyx7
E,—E,>E, (E; and E, are the energies of the first and ;
second levels in the QW i.e., in the case when the energy +He . Iih cos Ehxﬂ ‘ » (AD)
of an excited particle is insufficient for a transition into the 0 Sinknxg—kn Cosknxz
continuous spectrum or to a next energy level. For thesevhereq andk,;, are they and x components of the heavy-
conditions to be fulfilled, a structure is to be created withhole momentum,
deep and narrow QW'’s for both electrons and holes. The
structures of this kind can be fabricated on the base of InAs/ 1 1 1/1
AISb (Ref. 30 or InAs/GaSh/AlShRef. 3) compounds. In 3 v _1)’ n= 3 1)’
these deep QW'’s only the threshold AR mechanism, corre-
sponding to the coefficier®, is operative. This coefficient andH,; andH, are the normalizing constants.
may be smaller by several orders of magnitude than the Au- For light holes:

10-32 ! ! 1 !
50 100 150 200 250 300

Quantum Well Width (A)

APPENDIX A: WAVE FUNCTIONS OF CARRIERS
IN A RECTANGULAR QUANTUM WELL
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Yi(q,x)=L,| —ig coskxn+ikk sinkxé U(9,X,)=H,| —ikp sinkyxé—q cokpx sin ¢ 7

k, sin kjx7—\,q coskxé ) q coskpxe '%¢
=Nk sinkxé+Nq coskxn —Kky, sinkpxé+q coskpx cos ¢y

—k; cosk;xé—\,q sin kxz q sinkpxe?zy
+L,| —iNKk coskxn—ig sinkx§ |, +H,| ik, coskyxn+q sinkpx sin ¢é
=N g sinkxé—Nk; coskxn —k;, coskpyxn—q sin kyx cos ¢&
(A2) (A7)
i y(k?+q?) ) The boundary conditions for hole wave functions can be
¥s1= Egto-E [Ly coskixn+L, sinkx¢]. derived by integrating Kane's equations across the heter-
(A3) oboundary(see Sec. Il & We also consider the generalized
s Luttinger parameters; andy, continuous for the sake of

= - ] simplicity. Taking into account the fact tharnf1

E+26—1%ki/2m;, ~ 29’/(Eq+ 6—E) >m, " we obtain continuity conditions
at the heteroboundary for the following quantities:
The wave functions of SO holes are similar to those of light
holes.
The functions of another symmetry can be found from the 1 4
above expressions by formal substitutioa 7 for the s, x,y
components ang+« —  for the z component. The wave

functions of carriers in the barrier region may be obtained (2) 7 o, (A8)
similarly to Egs.(A1)—(A3). X
If wave functions of two or more particles are considered
together, then in general tharcomponents of quasimomen-
tum cannot become zero simultaneously. Wave functions (3) div .
with arbitrary direction of quasi momentum can be obtained Eqto—E

using the rotation matrix:

Generally speaking, the wave functions of holes in a QW
D,=R,®S,, (Ad)  are a superposition of three subbands of the valence band:
of heavy, light, and SO holes. However, the last subband
where R, acts on the coordinate components of the wavestrongly (exponentially decays away from the heterobound-

function, gnd$¢ on the spinor components. The Euler anglesary with an exponent~ \/m As a consequence,
for a rotation in theyz plane by an angle are this branch mainly affects the derivative of the wave function
near the heteroboundary, and its influence on the wave func-
O=—-7/2, O=¢, V=m/2. tion itself is negligible. It should be emphasized that such an
approximation is not equivalent to using &4 Hamiltonian
Thus from the very beginning. We shall seek the wave function as
a superposition of the heavy- and light-hole subbands. Near
the upper edge of the valence bgig,~ m,/m, > 1. This

10 0 0 means that only the first and the third of the boundary con-
0 1 0 0 ditions (A8) are applicable. In this approximation, light and
Ry= ; ’ heavy holes do not mix with each other and have different
0O O <cose sing o .
. spectra. The heavy-hole spectrum coincides with the
0 0 —sing cose (A5) guantum-mechanical spectrum of a particle in a rectangular
QW. The dispersion equations are the following:
cosel2  —i sin ¢/2
¢ |lising/l2 cosel2 | Kn
tank,a/2= . for even states,
h
If the vectorg has componentg(0,cose,sin ¢) in the coor- (A9)

dinate systenx,y,z, then

k
cotkna/l2=— " for odd states.
qu lﬁ(p:D—golpO' (AG) Kn

The previously found wave function has a zero subscriptFor light holes the states with different parities cannot be
The wave function of heavy holes, found using E&6), is  separated, and the dispersion equation becomes more cum-
written below, as it will be used later, bersome:



PRB 58 AUGER RECOMBINATION IN SEMICONDUCT®R . .. 4055

Eg+ 0+V.—E ki +0? a2tk 2\ -1 S E2+ E(2E4+208) +(Eg+38)E, R
> K| cotk,a 1= - E+E +26 TN E + 26
Eg+ o—E K|—q2 23, —1 g g (A13)
Eq+0+V—E ki+g? 2\ -1 _
X 75 ki tan kial2—k| — Hereq andk. denote they andx component of the quasi-
Eqtd—E  «i—q 2\ -1 momentum of the electron. Functions with another symmetry

can be derived by the same procedure as that used for holes.
From the boundary condition follows th&t and «, must be

~ 2
2M—1  Eg+6+V.—E ki+q?
+ (A10) continuous. This yields the following dispersion equation:

2

—n2

X-1 Egtd-E «f-q

components of light and heavy holes in the barrier region

respectively,

Here k; and k, denote the moduli ok quasimomentum
( Z

Z z
k. tank.a/2— — Kc) ( k. cotk.a/2+ — Kc)

~ 5 ~ A
)\i: — y 5:_
U, +E+26+#2k22m, 3

~ Z\?
=—02[ Ne— ¢ z| (A14)

Note that agj=0 the light hole states also split into states
with different parities. The constant andL; in Egs.(Al),  where«, is the modulus of the quasimomentum compo-
and(A2) are determined by normalization conditions. In par-npent of electrons in the barrier region
ticular: '

1 1 ~ ~
H,= _ 5_ 52+8(2Eg+2UU+25)+(Eg+UU+35)(Eg+Uv)
\/q2+ k2 2 q2 - — )

"\at— —— E+Eg+U,+26
2 2
Kh q + kh

The opposite is the case for SO holes. The components of _ S
the wave functions of light and heavy holes oscillate rapidly, ANe=———=.
and the contribution from them to the overlap integrals is E+Eg+U,+26

negligibly small. Similarly, it is easy to verify that, and
(Egto— E) ! div ¢ are to be considered continuous in this L i i
case. The type of wave functions of SO holes is similar to 1 he Spectrum splits into even and odd states if the longi-
that given above for light holes. Strictly speaking, with the tudinal wave vectord) is small or the expression in paren-
condition E;—A>U, fulfilled, the spectrum of spin-split theses in the r!ght—h_and side of the Qquatlon is close to zero.
holes is continuous. However, when the rapidly oscillating! "€ 1ast condition is commonly fulfilled, since, as a rule,

contributions from the subbands of light and heavy holes ar&)»<Eg. Which corresponds to semiconductors with about
neglected, the spectrum may be both continuous and didhe same band structure. Note that in the case of discontinu-

crete. The dispersion equation of localized SO holes is simiUS Kane’s parameteag the const, the continuity ofyyy
lar to that of light holes. and ¢ should be used:

2. Electrons APPENDIX B: COULOMB POTENTIAL IN THE

Electrons obey the same symmetry rules as holes. Their PRESENCE OF HETEROBOUNDARIES
wave functions are similar to those of light holes, and inside

the QW can be written as Near the interface of two media with different dielectric

constants, the potential of a point charge differs from that in

(A11) a homogeneous mediuth A similar situation takes place in
the presence of two interfaces; therefore, in a QW the elec-
tron potential takes the form

Psc=Aq COSKkXxn+ Ay sin Kx&,

iy ke sinkex —Ncq coskexé
Y= 7Al —iq coskxyp+ikck sinkxé
— Nk sinkexé+Ncq coskxn

_ ®(ro,r)= +®(ro,1), (BD)
iy —k¢ coskexé—Ncq sinkexy Ko|r =T
+ 7A2 —iNcke coskxn—iq sinkxé |,
— A0 sinkexé— Nk, coskxny wherer is the coordinate of the particle amds the coor-

(A12) dinate of the point where the potential is observed. We con-
sider only the case when the particle is inside the QW
where (|xol<al2). Using the reflection methdtiwe obtain
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1

K0+ Ko

2n
1

Ko™ Ko

+2i

\/[x+x0—(2n—

J’_
1)a]?+ p? \/[x+xo+(2n— 1)a]?+ p?

1

at [x|<a/2

n=1 Ko Ko+ Ko

e KO_FI;O 2e

b=

\/(x—xo—2na)2

+
+p? X—Xo+2na)?+ p?
P Vx—x )" tp (82)

2n

Ko~ Kp 1

— +
KoV (X—Xo)“+p° Kot Ko

2n—1

Ko™ Ko

2e
+

Ko+ Ko n=1

Ko+ Kol (X—Xo+2na)Z+ p?

1
at x>al/2.

Kot Ko n=1 \ Ko+ Kg

Here p2=(y—Y,)2+ (z—2z0)%. These potentials are rather cumbersome. However, they can be simplified if the dielectric

constants<, andx, are supposed to be close to each other.
we get

e -~ -~ Ko_7<o
B(X,%X0,0) = (e Aol 42 ——
2qK0 K0+ Ko
B(X, X0, Q)= ————| eI 04
q(koT o)

It can be seen that while the potential itself is a continuous function across the interface and the difference between its left and

right derivatives is proportional toxg— xo)/(xo+ ko).

V[X+ X0+ (2n—1)a]?+ p?

After taking Fourier transform along lateral coorgirzaies)

cosf[q(X+xc)]eqa> at |x|<a/2,

(B3)
L,’f()e_w+x°+a) at x>a/2.
K0+Ko
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