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Auger recombination in semiconductor quantum wells

Anatoli S. Polkovnikov and Georgy G. Zegrya
Ioffe Physico-Technical Institute, Politechnicheskaya st. 26, 194021, St. Petersburg, Russia
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The principal mechanisms of Auger recombination of nonequilibrium carriers in semiconductor heterostruc-
tures with quantum wells~QW’s! are investigated. It is shown that there exist three fundamentally different
Auger recombination mechanisms of~i! thresholdless,~ii ! quasithreshold, and~iii ! threshold types. The rate of
the thresholdless Auger process depends on temperature only slightly. The threshold energy of the quasithresh-
old process essentially varies with QW width and is close to zero for narrow QW’s. It is shown that the
thresholdless and the quasithreshold Auger processes dominate in narrow QW’s, while the threshold and the
quasithreshold processes prevail in wide QW’s. The limiting case of a three-dimensional~3D! Auger process
is reached for infinitely wide QW’s. The critical QW width is found at which the quasithreshold and threshold
Auger processes merge into a single 3D Auger process. Also studied is phonon-assisted Auger recombination
in QW’s. It is shown that for narrow QW’s the act of phonon emission becomes resonant, which in turn
increases substantially the coefficient of phonon-assisted Auger recombination.@S0163-1829~98!00628-6#
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I. INTRODUCTION

Two recombination processes are predominant in se
conductors at high excitation levels: radiative and nonrad
tive Auger recombination~AR!. For homogeneous semicon
ductors, mechanisms of AR have been extensiv
studied.1–4 In narrow gap semiconductors there occur A
processes involving two electrons and a heavy hole~CHCC
Auger process! or an electron and two heavy holes, wi
transition of one of the holes to the spin-orbit split-off~SO!
band~CHHS Auger process!.2,4,5 Both of these processes a
of threshold nature, and the rate of Auger recombinat
changes with temperature exponentially.1,2 The only excep-
tions are semiconductors in which the spin-orbit splitting
close to the energy gap~GaSb and InAs!. Under certain con-
ditions the rate of the CHHS process in these semiconduc
depends on temperature only slightly.6 It is commonly be-
lieved that the phonon-assisted AR process dominates
direct one at low temperature.3,5 Because of the large mo
mentum transferred to a phonon, the threshold is elimina
and the rate of phonon-assisted Auger process becom
power-law function of temperature. However, the carri
carrier scattering can also cause large momentum transf
the electron-hole subsystem and thus eliminate the thres
conditions. The problem of the predominant AR mechani
in bulk semiconductors needs further consideration.

Single semiconductor heterostructures, quantum w
~QW’s!, quantum wires, and quantum dots are spatially
homogeneous owing to the existence of barriers. The p
ence of a heteroboundary affects not only the energy
wave functions of carriers, but also the macroscopic prop
ties of heterostructures.7 It is commonly believed that the AR
mechanism in QW’s is similar to that in homogeneo
semiconductors.5,8–11 Nevertheless, the heteroboundary lif
restrictions imposed on the electron-electron interaction p
cess by the energy and momentum conservation la
Namely, the conservation of quasimomentum perpendic
to the heteroboundary breaks down. In turn, this leads to
PRB 580163-1829/98/58~7!/4039~18!/$15.00
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appearance in heterostructures of new thresholdless cha
of Auger recombination.7 The rate of the thresholdless AR
process is a power function of temperature. A direct exp
ment aimed at observing the thresholdless AR channe
T577 K was reported in Ref. 12.

A detailed analysis of the threshold and thresholdless
mechanisms has been performed for a single heterobarr7

Conditions were studied under which the thresholdless ch
nel dominates the threshold one. For QW’s no such deta
analysis has been done. Tayloret al.13 considered the possi
bility of threshold for AR in QW’s being eliminated upo
transition of excited carriers to the continuous part of t
spectrum. However, no microscopic theory of the thresho
less process was given in this work, and no theoretical an
sis performed of the competition between different A
mechanisms at various temperatures and QW widths. O
the thresholdless AR channel, corresponding to small m
menta transferred in the Coulomb interaction of particles,
the CHCC process with spin-orbit interaction neglected, w
considered in Refs. 14 and 15.

The aim of the present work is to investigate theoretica
the principal mechanisms of AR for nonequilibrium carrie
in semiconductor QW’s. It will be shown that there exi
three fundamentally different AR mechanisms:~i! threshold
mechanism similar to the Auger process in a homogene
semiconductor,~ii ! quasithreshold mechanism with a thres
old energy strongly depending on the QW width, and~iii !
thresholdless mechanism inoperative in a homogene
semiconductor. All three processes will be shown to ha
different dependences on temperature and QW parame
Rates of the processes corresponding to these AR me
nisms at different temperatures and QW parameters will
compared. Conditions will be found under which the qu
sithreshold and threshold Auger processes merge to for
single three-dimensional~3D! AR process. Also, the phonon
assisted AR in QW’s will be studied. The act of phono
emission will be shown to become resonant for sufficien
narrow quantum wells.
4039 © 1998 The American Physical Society
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The paper is organized as follows. In Sec. II wave fun
tions and the energy spectrum of electrons and holes
QW are investigated, using Kane’s model. In Sec. III t
matrix element of Auger transition is calculated. Section
is concerned with investigation of AR coefficients for thr
different mechanisms existing in a QW. In Sec. V t
phonon-assisted AR mechanism in a QW is considered. S
tion VI summarizes the results of the paper.

II. PRINCIPAL EQUATIONS

To analyze the AR mechanisms and find the rate of
Auger process, wave functions of charge carriers are to
known. As already established for bulk Auger processes,
wave functions of electrons and holes must be calcula
using the multiband approximation.2 We will use four-band
Kane’s model, the most adequate describing the wave fu
tions and energy spectrum of carriers in narrow-gapAIIIBV
semiconductors.16

A. Wave functions in a homogeneous semiconductor

For mostAIIIBV semiconductors, wave functions of ele
trons and holes in the center of the Brillouin zone are
scribed by theG6

1 representation for the conduction band a
by theG7

1 andG8
1 representations for the valence band.

these the first two and the last are doubly and fourfold
generate, respectively. The corresponding equations
wave functions may be written in differential form. Com
monly, the basis wave functions of the conduction and
lence bands are taken in form of eigenfunctions of the an
lar momentum.16,17 However, another representation of th
basis functions is more appropriate for our purposes:

us↑&, us↓&, ux↑&, ux↓&, uy↑&, uy↓&, uz↑&, uz↓&,
~1!

whereus& and ux&, uy&, uz& are the Bloch functions ofs and
p type with angular momenta of 0 and 1, respectively. T
former describe the state of the conduction band and
latter the state of the valence band at theG point. Arrows
denote the direction of spin. The wave function of carriersc
can be written in the form

c5Csus&1Cup&,

whereCs and C are spinors. In the vicinity of theG point
the equations forCs andC envelopes written in the spher
cal approximation are as follows:

~Ec2E!Cs2 i\g¹C50,
~2!

~Ev2d2E!C2 i\g¹Cs1
\2

2m
~ g̃114g̃2!¹~¹C!

2
\2

2m
~ g̃122g̃2!¹3@¹3C#1 id@s3C#50.

Here, g is Kane’s matrix element having dimension of v
locity, g̃1 and g̃25g̃3 are the generalized Luttinge
parameters,17 d5Dso /3, Dso is the spin-orbit splitting,Ev
andEc are the energies of the lower edge of the conduct
band and the upper edge of the valence band,m is the free-
-
a

c-

e
e
e
d

c-

-

f
-
or

-
u-

e
e

n

electron mass, ands5(sx ,sy ,sz) are the Pauli spin matri-
ces. If, instead of using the Luttinger parameters, the hea
hole mass describing the interaction with higher bands
introduced phenomenologically, then Eq.~2! is transformed
into equations derived by Suris.18 It is easy to verify that Eq.
~2! is identical to those commonly used.17,19–21 In the first
equation in the system~2! we neglect the term with the free
electron mass.

1. Hole states

The expression forCs can be found from the first equa
tion of the system~2!. Substitution ofCs into the second
equation gives

2EC1
\2

2ml
¹~¹C!2

\2

2mh
¹3@¹3C#1 id@s3C#50,

~3!

where

ml
215

2g2

Eg1d2E
1m21~ g̃114g̃2!,

mh
215m21~ g̃122g̃2!.

Here mh coincides with the heavy-hole mass, andml with
the light-hole mass in the case of zero constant of spin-o
interaction;Eg5Ec2Ev is the semiconductor band gap. F
the sake of convenience, it is assumed thatEv5d. This
choice is due to an increase in the heavy-hole and light-h
energies at theG point by d and a decrease in the SO ho
energy by 2d under the action of spin-orbital interaction@Eq.
~8!#. Equation~3! can be simplified by introducing new func
tions

f5div C and h5s rot C. ~4!

After taking the divergence and rotor of Eq.~3! multiplied
by s, it is transformed into a system of two differential equ
tions

2Ef1
\2

2ml
Df1 idh50,

~5!

2~E1d!h1
\2

2mh
Dh22idf50.

Fourier transform of these equations gives hole spectra
a homogeneous semiconductor

F E1
\2

2ml
k2 id

22id E1
\2

2mh
k21d

G S f

h
D 50. ~6!

The characteristic equation has two roots

E1,252
d

2
2

\2k2

4
~ml

211mh
21!

6A2d21S d

2
2

\2k2

4
~ml

212mh
21! D 2

. ~7!
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It should be noted thatml depends on energy@see Eq.
~3!#. At the G point (k50) we have the rootsE15d and
E2522d. The positive solution corresponds to light hole
and that with a negative sign, to SO holes.

In the vicinity of the G point the energiesE1,2 can be
expanded into a series in terms of a wave vector to relate
effective masses of light and SO holesmhl , mso , and the
Luttinger parameters:

E1'd2
\2k2

2mhl
, E2'22d2

\2k2

2mso
, ~8!

where

mhl
215

4g2

3Eg
1

~ g̃112g̃2!

m
, mso

215
2g2

3~Eg13d!
1

g̃1

m
.

An approximate light-hole spectrum can be obtained
means of a widely used 434 Hamiltonian.20 However, the
range of its applicability is rather narrow, since common
ml;0.1mh and the expansion~8! is only valid whenE
! (ml /mh) Dso . Moreover, such a model cannot descri
Auger transitions at all, since the basis states of carrier
different bands are orthogonal. The same applies to the s
trum of the SO band.

The Fourier amplitudes of the wave functions of bo
light and SO holes can be presented in the form

C5k f 1
id

E1d1
\2k2~E!

2mh

@k3sf #,

~9!

Cs52
\gk2~E!

Eg1d2E
f ,

wheref is an arbitrary spinor related to the previously intr
duced functionf by f5k2(E) f .

The third solution of Eq.~3! pertaining to heavy holes
satisfies the relations divC50 ~as a consequenceCs50!
and s rot C50. This follows from Eq.~5!, since, iff50,
then h50 and vice versa. It can be readily seen th
@s3Ch#52 i Ch . Thus, the dispersion law describing th
heavy-hole spectrum looks like

Eh5d2
\2kh

2

2mh
. ~10!

The components of the heavy hole wave function m
satisfy the equations

Cz↓5~Cx↑1 iCy↑!

Cz↑5~2Cx↓1 iCy↓!
⇔@s3C#52 i C, ~11!

kzCz↑1kxCx↑1kyCy↑50
kzCz↓1kxCx↓1kyCy↓50⇔div C50. ~12!

By solving these equations, one may obtain explicit expr
sions for the wave functions. For a QW they are given
Appendix A.
,

he

y

in
c-

t

t
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2. Electron states

In principle, the conventional equations for electrons ha
the same form as those for holes. Since theG point in the
conduction band is only doubly degenerate and the cry
field causes no additional splitting, there is no need to re
terms with the parametersg̃ i . Moreover, the presence o
these terms in the equations for electrons gives a far
exact model. Thus, a simplified set of equations will be us
for electrons

~Ec2E!Cs2 i\g¹C50,
~13!

~Ev2d2E!C2 i\g¹Cs1 id@s3C#50.

The electron energies can be conveniently reckoned from
lower edge of the conduction band (Ec50). This energy
will be denoted byE, so that it would not be confused wit
the full energy of electronE, reckoned from the same leve
as the hole energy. Introducing into Eq.~13! the functionsf
andh in the same form as in Eq.~4!, we have

2~Eg1d1E!f1
\2g2

E Df1 idh50,
~14!

2~Eg1E12d!h22idf50.

Passing to the Fourier transform, we find the electron disp
sion law

k25
E

\2g2

E 21E~2Eg13d!1~Eg13d!Eg

Eg1E12d
. ~15!

If E!Eg then the energy is quadratic in wave vector,

E5
\2k2

2mc
where mc

2152g2
Eg12d

~Eg13d!Eg
. ~16!

The Fourier amplitude of the wave function is given by

Cs5 f , C5
E

\gk2~E! Fk f 1
id

E1Eg12d
@k3~sf !#G ,

~17!

where f is an arbitrary spinor@see Eq.~9!#.

3. Probability flux and the equations near the heteroboundary

An expression for the probability flux density can be d
rived from Eq. ~2! by substitutingE→2 i\ ]/]t and then
using a procedure similar to that employed in quant
mechanics.22 It can also be derived by thek–p method in the
second-order perturbation theory. As a result, the follow
expression is obtained in the case of holes:

jh5
Eg1d2E

2mlg
@CsC* 1Cs* C#

2
i\

2mh
~C3rot C* 2C* 3rot C!. ~18!

For electrons in the conduction band this expression tak
simpler form,

je5g@CsC* 1Cs* C#. ~19!
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The exact procedure for deriving the boundary conditions
wave functions still remains to be devised. However, so
approximate methods for solving this problem have been
veloped in recent years. Usually in aAIIIBV semiconductor
heterostructure Kane’s parameterg varies only slightly;
hence continuity ofg is often supposed~see, for example
Ref. 17!. The discrepancy of the parameterg in a QW and
barrier region results in a small change of the Auger coe
cient ~see Sec. IV!. Following the method elaborated b
Burt19 and assuming the contunuity of Kane’s parameter,
derive from the system~2! equations that can be integrate
across the heterobarrier:

~Eg1d2E!Cs2 i\g¹C50,
~20!

2EC2 i\g¹Cs1
\2

2m
¹@6g̃2¹C#

1
\2

2m

]

]xk
~ g̃122g̃2!

]

]xk
C1 id@s3C#50.

Using these equations and the probability flux density c
servation law the boundary conditions for the wave-funct
envelopes will be derived.

B. Carrier states in a quantum well

The wave functions of carriers in a QW can be fou
using the symmetry properties of the Hamiltonian. The sp
less HamiltonianH0 is invariant with respect to the subst
tution x→2x. Consider an operatorR such that

R:~x,y,z!→~2x,y,z!, R5ICpx ,
~21!

H0R5RH0 ,

whereI is the inversion operator, andCpx is the operator of
rotation by an anglep around thex axis perpendicular to the
plane of the QW.

With the account of the spin-orbit interaction the Ham
tonian can be written in the form

H5H01
\

4m2c2 @¹V3p#s, ~22!

where p is the momentum operator andV is the potential
energy of an electron in the crystal. The last term does
commute withR. Therefore, the symmetry operatorD may
be sought as a product of the operatorR and some spin
matrix S to be found:D5R^ S. Since inversion leaves un
changed the sign of the vector product, the matrixS must
satisfy the relations

Ssx5sxS,

Ssy52syS, ~23!

Ssz52szS.

Obviously, a Pauli spin matrixsx may be taken for the ma
trix S: S5sx .
r
e
e-

-

e

-
n

-

ot

The functionsC(x,y,z) and DC(2x,y,z) satisfy the
same equation. For this reason the eigenfunctions of
Hamiltonian may be sought as eigenfunctions of the oper
D.

C~x,y,z!5nDC~2x,y,z! where n561. ~24!

The valuesn561 correspond to carrier states with differe
symmetry. With the wave functions chosen in such a w
the boundary conditions can be satisfied at one heterobo
ary only, since at the other they will be fulfilled automa
cally. Solving Eq.~24! we find the necessary conditions fo
various components of the symmetrized wave function.

Cs↑~x,y,z!56Cs↓~2x,y,z!,

Cx↑~x,y,z!57Cx↓~2x,y,z!,

Cy↑~x,y,z!56Cy↓~2x,y,z!,

Cz↑~x,y,z!56Cz↓~2x,y,z!,

where the sign ‘‘1’’ corresponds ton51, and ‘‘2’’ to n5
21 for the s, y, z components and vice versa for thex
component. The corresponding expressions for the com
nents of electron and hole-wave functions are given in A
pendix A.

III. MATRIX ELEMENT OF AUGER RECOMBINATION

The differential rate of AR can be calculated in terms
the first-order perturbation theory in electron-electron int
action:

Wi→ f5
2p

\
uM f i u2d~« f2« i !, ~25!

where

M f i5 K C f~r1 ,r2 ,n1 ,n2!U e2

k0ur12r2u

1F̃~r1 ,r2!UC i~r1 ,r2 ,n1 ,n2!L ~26!

is the matrix element of electron-electron interaction,r1 and
r2 are the carrier coordinates,n1 and n2 are spin variables
@see Eq.~24!#, e is the electron charge,k0 is the dielectric
constant of the intrinsic semiconductor, andF̃(r1 ,r2) is the
additional potential arising because of the difference betw
the QW and barrier region dielectric constants. An expli
expression forF̃(r1 ,r2) is given in Appendix B.

With an account of the antisymmetrized form of the wa
functions, the matrix element of the Auger transition is t
following:

M f i5M I2M II , ~27!
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M I5 K C3~r1 ,n1!C4~r2 ,n2!U e2

k0ur12r2u

1F̃~r1 ,r2!UC1~r1 ,n1!C2~r2 ,n2!L , ~28!

an expression forM II can be derived from Eq.~28! by inter-
changing indices 1 and 2 in the wave functionsC1 andC2 .
Hereafter the indices I and II in the expressions for the m
trix elements will be omitted.

We shall consider two AR processes, CHCC and CHH
since in fact only these two determine the rate of Aug
recombination. Strictly speaking, such a terminology is in
plicable to carriers in a QW, since there exists mixing b
tween heavy-hole, light-hole, and SO-hole subbands. H
ever, the mixing of SO holes with heavy and light holes
negligible atDso@T. The last condition is fulfilled for the
majority of AIIIBV semiconductors. For this reason we m
rely on the above terminology.

Procedures for evaluating matrix elements for the CH
and CHHS Auger processes are similar. For the sake of s
plicity, mainly the matrix element of the CHCC Auger tra
sition will be discussed further in this section. In the follow
ing section approximate expressions for the Aug
coefficient will be given for both the CHCC and the CHH
processes.

The matrix element of an electron-electron Coulomb
teraction can be most conveniently calculated using a Fou
transform. We take into account that the wave functions
carriers in a QW are plane waves propagating along the
eral direction:

C i~r !5c i~x,qi !exp~ iqir!,

whereq andr are, respectively, the lateral wave vector a
coordinate of carriers. Then

M5
4pe2

k0

1

2q E
2`

` E
2a/2

a/2

c4* ~x1!c3* ~x2!@e2qux12x2u

1f̃~x1 ,x2 ,q!#c1~x1!c2~x2!dx1dx2 , ~29!

q5uq12q4u5uq32q2u is the momentum transferred in th
plane of the QW in the Coulomb interaction,a is the QW
width, andf̃, for which an expression is given in Append
B, corresponds to the potentialF̃. Integration overx2 is
limited to within the QW owing to the fact that heavy hole
are usually strongly localized inside the well because of th
relatively large mass. Hereafter,x and r denote the coordi-
nates orthogonal and parallel to the QW plane respectivelq
and k are the lateral andx quasimomentum components
particles.

As seen from Eq.~29!, Auger scattering occurs on a on
dimensional exponentially decaying potential that depe
on the transferred lateral momentum. The state of an exc
particle may lie in either continuous or discrete spectru
with the latter situation occurring when the longitudinal m
mentum of the particle much exceeds the transverse mom
tum. @We assume that, as is commonly the case, (Vc , Vv)
,Eg .# In determining the rate of AR, both localized an
delocalized states must be considered as final states o
excited particle. The possibility of an electron~hole! transi-
-

,
r
-
-
-

-

r

-
er
f
t-

ir

s
ed
,

n-

the

tion into a localized or a free state leads to the existence
different AR mechanisms in QW’s.

A. Calculation of the matrix element for a transition
of an excited particle into the continuous spectrum

For evaluating the matrix element we use the approxim
tion Vc ,Vv!Eg , whereVc andVv are the barrier heights fo
electrons and holes, respectively. Obviously, this approxim
tion also implies thatk4

21q2@k1
2, i.e., the total momentum

of an excited electron, is much larger than that of a localiz
one. The integral over thex1 coordinate can be found b
integrating by parts. Thenth antiderivative of the function
c4e2qx is

F4
n~q,x!5~21!n

@eqxc4~x!#~n!

~k4
21q2!n e22qx.

Then an approximate expression for the matrix elementMI
can be obtained:

M'M ~1!1M ~2!, ~30!

where

M ~1!52
4pe2

k0~q21k4
2! SF~a/2!E

2a/2

a/2

eqx2c3* ~x2!c2~x2!dx2

2F~2a/2!E
2a/2

a/2

e2qx2c3* ~x2!c2~x2!dx2D . ~31!

Here

F~a/2!5e2qa/2c4s* ~a/2!c1s~a/2!S 3Vc1Vv

4Eg

2
k02k̃0

k01k̃0

D .

~32!

The indexs in c4s andc1s implies that only thes compo-
nents of the wave functions are taken,k̃0 is the dielectric
constant in the barrier region. ForM (2) we have,

M ~2!5
4pe2

k0~q21k4
2!
E

2a/2

a/2

c4* ~x!c3* ~x!c2~x!c1~x!dx.

~33!

Note that since the wave functions are spinors, the com
nents ofc4* should be multiplied by components ofc1 , and,
vice versa, the components ofc3* should be multiplied by
those ofc2 .

In this way it appears that the matrix element of Aug
transition splits into two parts. The first is related to t
presence of heteroboundaries and the second correspon
the short-range Coulomb scattering. The latter can be ea
understood since during Auger transition a large energy
transmitted and this is possible only if the scattering partic
find themselves very close to each other. Note that bothM (1)

and M (2) are in fact thresholdless matrix elements. Inde
they are not subject to any restrictions imposed on the in
momenta of carriers:k1 , k2 , andk3 . However, the mecha
nisms responsible for the momentum nonconserva
(k11k2Þk31k4) in M (1) andM (2) are different. InM (1) the
latter is related to carrier scattering at the heterobound
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and the same mechanism gives rise to a thresholdless A
process in scattering on a single heterobarrier.7 The reason
why the conservation law breaks down forM (2) is that the
volume of integration with respect tox is restricted to the
QW region, which results in the appearance of a function
the type sin (ka/2)k instead ofd(k). Substituting Eq.~32!
into Eq. ~31! and integrating overx2 , we obtain

M ~1!'
8pe2

k0~q21k4
2!~q21k3

2!
S 3Vc1Vv

4Eg

2
k02k̃0

k01k̃0

D
3@c4* ~a/2!c1~a/2!#@c3* ~a/2!c2~a/2!#8~16e2qa!.

~34!

The sign in the last pair of parentheses is chosen accordin
the parity of the productc3* (x)c2(x): ‘‘ 1’’ corresponds to
an even product and ‘‘2’’ to an odd one. In the case
qa @1 the exponent may be omitted and the matrix elem
M (1) corresponds to independent scattering at two het
boundaries. When evaluating Eq.~34!, we took into account
thatk3

21q2@k2
2, which reflects the fact that the average m

mentum of holes is larger than that of electrons. The te
(k02k̃0)/(k01k̃0) in Eq. ~34! arises from taking into con
sideration the additional potentialF̃(r1 ,r2) @see Eq.~28!#.
Note that the matrix elementM is zero if the parities of the
productsc3* (x)c2(x) andc4* (x)c1(x) are different.

Let us now analyzeM (2). The integral inM (2) is propor-
tional to the sum

E
0

a

c4* ~x!c3* ~x!c1~x!c2~x!dx}( 6
sin~k42k!a/2

k42k
,

~35!

where k runs through eight different valuesk56k16k2
6k3 . Of all terms in the sum from Eq.~35!, the largest is
that for whichk5k11k21k3 . ~The reason is that this term
has the lowest threshold energy. By the threshold energy
understand the mean energy of a heavy hole taking part i
Auger transition.! The contributions to the sum from othe
terms are less significant and will be neglected for the s
of simplicity. Then the expression for the matrix eleme
M (2) takes the following form:

M ~2!'
pe2

k0~q21k4
2!

eid
\g

Eg

112/3a

11a
Ac

2AfAh

3
sin~kf2kc12kc22kh!a/2

kf2kc12kc22kh

3H qhkce
if2,31qckh , nc56nh

qcqh sin f2,3, nc57nh .
~36!

Here d is an insignificant phase coefficient,Ai denotes the
normalizing constant,nc and nh are the spin indexes intro
duced according to Eq.~24!, andf2,3 is the angle between
the lateral momenta of the electron and the hole. As follo
from Eq. ~36!, in the limit a→` the matrix elementM (2)

becomes proportional tod(kf2k12k22kh) and hence tends
to the bulk matrix element. On the contrary,M (1) exhibits no
extremum in the same limit. Therefore, Auger processes
er
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responding toM (1) andM (2) will be referred to as threshold
less and quasi-threshold processes, respectively. Note th
this work the matrix element for transition into continuo
spectrum (M ) is split into M (1) andM (2) in a different way
than in our previous work,23 to make the corresponding ex
pressions more clear.

B. Calculation of the matrix element of Auger recombination
for a transition of an excited particle

into the discrete spectrum

We now turn our attention to analyzing the matrix el
ment of an Auger transition in which the high-energy partic
c4 remains in the bound state. This case corresponds to
condition q4@k4 . The matrix element can be calculate
similarly to M (2) above:

M ~3!'
4pe2

k0~q21k4
2!
E

2a/2

a/2

~c4* c1!~c3* c2!dx. ~37!

This integral can be readily calculated; however, the g
eral formula is rather cumbersome and will not be presen
here. We shall only make an estimate ofM3 , valid in the
case when bound carriers are in the ground quantum s
Then we have

M ~3!'
1

q21k4
2 eid

\ga

2Z
Ac

2AfAhaqcqhsin f2,3, ~38!

wheref2,3 is the angle between the lateral quasimoment
components of an electron and a heavy hole, anda is a
coefficient of order unity, resulting from integrating th
product of the envelopes of the carrier wave functions o
the quantum well:

E
0

a/2

f 1f 2f 3f 4dx5aa/2, ~39!

wheref i5coskix, andi numerates the initial and final state
of particles taking part in the AR process.

IV. AUGER RECOMBINATION COEFFICIENT

To calculate the rate of AR, the probabilities of Aug
transition ~25! should be summed over all initial and fina
states of carriers with appropriate weights-occupation nu
bers.

G5
2p

\ (
k1 ,k2 ,k3 ,k4

^M2& f 1f 2~12 f 3!~12 f 4!

3d~E31E42E12E2!. ~40!

Here f 1 , f 2 are the occupancies of the initial states andf 3 ,
f 4 are those of the final states,

^M2&5 (
n1 ,n2 ,n3 ,n4

uM f i u2

is a sum of squared Auger matrix elements over spins of
initial and final states. It is more convenient to choose el
trons and holes as carriers for the CHCC and CHHS p
cesses, respectively. For high-excited states the distribu
function f 4 may be set to zero. Note that instead of 12 f 3 ,
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FIG. 1. Auger transition probabilitiesw1(q) andw2(q), corresponding to the thresholdless and quasithreshold matrix elementsM1 and
M2 as functions of the longitudinal momentum of heavy holes atT5300 K for different QW widths@~a! a550 Å, ~b! a5100 Å, ~c! a
5200 Å, and~d! a5500 Å#.
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we may write f 3̃, where f 3̃ is the distribution function for
carriers of the opposite sign: holes for the CHCC process
electrons for the CHHS process.

The matrix elementsM (1) andM (2), on the one hand, an
M (3), on the other, describe transitions in which the exci
particle occupies a state of the continuous or discrete s
trum, respectively. Therefore, the contributions to the Au
rate from the first two matrix elements and the last one
be separated. It is more difficult to separate the contributi
from M (1) and M (2). Even though the physical differenc
between these terms does exist, there is a term of inte
ence between them, essential at small QW widths, since
processes are in fact thresholdless. However, even when
interference is neglected we still obtain a result of corr
order, reflecting all the main specific features of the AR c
efficient as a function of temperature and parameters o
structure with a QW. In sufficiently wide QW’s the modulu
of M (2) exhibits a maximum at the pointk4(q)1k35k1

1k2 , whereasM (1) as a function of quasimomentum show
no extremum. When the QW width tends to infinity,M (2) at
this point has the form of ad function. In accordance with
the aforesaid, the AR probability for wide QW’s, corr
sponding to the matrix elementM (2), has a maximum~as a
function of the longitudinal momentum of the heavy holeqh!
at higherqh values than the probability associated withM (1).
With decreasing QW width the maxima of these probabilit
d

d
c-
r
n
s

r-
th

the
t
-
a

s

approach each other, and the region of overlapping betw
these matrix elements becomes larger~see Fig. 1!. It should
be noted that the AR probabilities presented in Fig. 1
rather smooth functions of the longitudinal momentum
heavy hole (qh), since, in calculating them, the summation
done over discrete quantum states of carriers. Atqh close to
the maximum value determined by the conservation of l
gitudinal momentum and energy, the AR probability show
square-root divergence eliminated upon integration with
spect toqh , i.e., in calculating the rate of AR. The probabi
ity of Auger transition for the CHHS process has a for
similar to that for the CHCC process.

In line with the aforesaid, let us present the rate of AR
follows:

G5G11G21G3 , ~41!

where the rateG1 corresponds to a thresholdless Auger p
cess with the matrix elementM1 , rateG2 to a quasithreshold
Auger process with the matrix elementM2 , and rateG3 to a
threshold Auger process with the matrix elementM3 .

The expressions for the ratesG1 and G2 can be derived
from Eq. ~40! by passing from summation overk4 to inte-
gration and fromd function with respect to energy tod func-
tion with respect to momentum. In what follows we sha
study the AR coefficientsC related to the rateG by
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G5Cn2p and G5Cp2n

for the CHCC and CHHS Auger processes, respectiv
Heren andp are the 2D densities of electrons and holes

For the CHCC process we have

C1'
32p2e4

k0
2

\g2

Eg
3

F~Dso /Eg!

a~a12/kc!
2

kc
2kc

2

~kc
21kc

2!2

Vc

Eg

3S 3Vc1Vv

4Eg

2
k02k̃0

k01k̃0

D 2K qh
2kh

2

~qh
21kh

2!3

1

k4~qh!
L ,

~42!

where

F~x!5S 112x/3

11x D 2 117x/91x2/6

~11x/2!~114x/9!
.

Note that, if Kane’s parameterg is discontinuous then the
term

E0c

2Eg
S dg

g D 2

should be added to

S 3Vc1Vv

4Eg

2
k02k̃0

k01k̃0

D 2

,

where E0c is the electron energy in the ground level a
dg5g2g̃ is the difference between Kane’s parameters
the QW and the barrier region. However, this addition
usually negligible. Similarly, the term (k02k̃0)/(k01k̃0) is
usually small compared to (3Vc1Vv)/4Eg and can be omit-
ted. It can be shown that the influence exerted by the dif
ence between the dielectric constants in the quantum
and barrier region is even less for the case of the CHHS
process. For this reason the corresponding terms for this
cess will be omitted.

The angular brackets in Eq.~42! and below denote aver
aging over the heavy-hole distribution function. In the ca
of a Boltzmann distribution, which is commonly the case
holes, this averaging looks like
y.

n

r-
ll

R
o-

e
r

^ f ~qh ,kh!&5
1

Z (
n
E

0

`

qhf ~qh ,khn!e
2 ~khn

2
1qh

2
!/qT

2
dqh,

where

Z5
2

qT
2 (

n
e2 ~khn

2
!/qT

2
,

qT5A2mhT/\ is the thermal wave vector of heavy hole
andkhn is the wave vector corresponding to thenth level of
heavy holes.

For the CHHS process the following expression forC1
can be derived:

C1'
2p2e4

k0
2\

Vc

Eg

kc
2kc

2

~kc
21kc

2!2

F̃~Dso /Eg!

a2~a12/kc!

\3

mso
3 ~Eg2Dso!

3

3K kh1
2 kh2

2 qh1
2 ~qh1

2 1qh2
2 !

~qh1
2 1kh1

2 !3~qh2
2 1kh2

2 ! L , ~43!

where

F̃~x!5
@2x13~12x!~12mso /mh!#2

2x21@x13~12x!~12mso /mh!#2

112x/3

11x
.

In the last case averaging is performed over distribut
functions of two holes. In deriving Eq.~43! we assumed tha
Eg2Dso@T(mh /mso).

Let us turn to the quasithreshold Auger process. For
CHCC process we have

C2'
p2e4

k0
2

\3g4

Eg
5

F~Dso /Eg!

a~a12/kc!
2

3K qc
2kh

21qh
2S kc

21
1

2
qc

2D
~qh

21kh
2!kf

12cos~kf2kh22kc!a

2~kf2kh22kc!
2

L .

~44!

Direct calculation of the Auger coefficientC2 for the CHHS
process gives a cumbersome result. We present here a
plified expression valid for sufficiently narrow QW’s a
kc@qc :
C2'
p2e4

4k0
2

Ec

Eg

\3

mso
2 ~Eg2D!3

F̃~Dso /Eg!

a2~a12/kc!
K 12cos~kso2kh12kh22kc!a

2~kso2kh12kh22kc!
2

3
qh2

2 @~kso
2 1kh1

2 !qh1
2 1qh2

2 kh1
2 12kh1

2 ~qh1qh2!1~qh13qh2!2#

~qh1
2 1kh1

2 !~qh2
2 1kh2

2 !kso
L . ~45!
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And, finally, we haveC3 for the CHCC process:

C3'
32p2e4

k0
2\Eg

a

~a11/kc!
3

11 7
9 x1 1

6 x2

~11x/3!2

11 2
3 x

11x

3K qth
2

qT
2

qc
2

~qth
2 1kh

2!3 e2 qth
2 /qT

2
a2L

n

. ~46!

Herex5Dso /Eg , a is a multiplier introduced in Eq.~38!. In
the last case, averaging only over discrete quantum state
heavy holes is performed. The threshold momentumqth is
found from the conservation law for energy and longitudin
component of momentum:

Ef~Akf
21qth

2 !5Eg1
\2~qth

2 1kh
2!

2mh
1

\2~kc1
2 1kc2

2 !

2mc
.

For simplicity we neglected here the small longitudinal m
menta of electrons. Expanding the energy of an excited e
tron Ef into a series in terms of momenta in the vicinity
qth5Q, whereQ is the electron momentum correspondi
to an energy equal toEg (Q'A4mcEg /\2), we get the fol-
lowing estimate for the threshold momentum:

qth'A4mcEg

\2 1
3

2 S kc
21

mc

mh
kh

2D . ~47!

If the QW width tends to infinity, the threshold momentu
approaches its bulk value.2 Account must be taken of the fac
that for wide quantum wells with a large number of leve
the introduced multipliera @see Eq.~38!# tends to ad func-
tion expressing the conservation law for the transverse q
simomentum component:

a2→
p

128
a( d~kh6kc16kc26kc4!.

For large QW widths andVc!Eg , the inequalityC3!C2 is
valid, since the ratioC3 /C2'AVc /Eg. Hence, for wide
QW’s C3 may be neglected as compared withC2 . For nar-
row QW’s the threshold energy of the CHCC process
creases@see Eq.~47!# and the AR coefficient~46! decreases
relative to the bulk value by a factor

e3kc
2/2qT

2
'e~3mc/2mh!~E0c /T!.

The characteristic width of a QW for which this phenomen
becomes essential can be readily evaluated from the co
tion that the exponent is unity:

E0c'T
2mh

3mc
⇔a'

p

qT
. ~48!

Thus, at QW widthsa less than several reciprocal therm
momentaa&p/qT the threshold energyEth

3 becomes consid
erably higher than the bulk valueEth

bulk ~Fig. 2!. For semicon-
ductor compoundsAIIIBV the equality ~48! is fulfilled at
room temperature at a quantum-well width of order
100 Å.

For the threshold CHHS process the heavy-hole mome
are not specified by the threshold conditions and, theref
integration with respect to them has to be performed
of

l

-
c-

a-

-

di-

f

ta
e,
It

seems impossible to derive analytically the exact Auger
efficientC3 for the CHHS process in view of the fact that th
matrix elementM3 is rather cumbersome. However, an a
proximate expression can readily be obtained by factor
out the averaged squared matrix element from the integr
sign:

C3'
2p

\
^M3

2&
1

2p2qT
4

3E d2qh1d2qh2e2 ~qh1
2

1qh2
2

!/qT
2

3dS Ẽg2D2
\2~qh11qh2!

2

2mso
1

\2qh1
2

2mh
1

\2qh2
2

2mh
D ,

~49!

Here Ẽg5Eg1E0c12E0h2E0 so , whereE0h E0 so are the
ground-state energies of heavy and SO holes, respectiv
Let us introduce a threshold momentum, setting it equal

Qth
2 5

2~Ẽg2D!mso

\2~22mso!
,

wheremso5mso /mh . Then the expression forC3 takes the
form

C3'
2mso

\3Qth
2 e2 Qth

2 /qT
2
^M3

2&. ~50!

Taking into account the fact thatQth@kso , we obtain

C3'
256msop

2e4

\3k0
2

Qth
2

~Qth
2 12kh

2!4

3
Vc

Eg

kc
2

kc
21kc

2

~12lso!
2

112lso
2 ã2e2 Qth

2 /qT
2
, ~51!

whereã is a multiplier defined as in the case of the CHC
process~38!, lso is derived froml l @see Eq.~A3!# by sub-
stituting kso instead ofkl .

Let us consider in more detail the Auger recombinati
coefficientC2 for the quasi-threshold CHCC process. Wh
the QW width approaches infinity, a substitution can
made in the function being averaged in Eq.~44!:

12cos~kf2kh22kc!a

2~kf2kh22kc!
2 →

pa

2
d~kf2kh22kc! at a→`.

~52!

This formula clearly shows the occurrence of a threshold
this limit, and the coefficientC2 transforms into a 3D expres
sion on being multiplied bya2. For comparison, we presen
both the result of Gelmont forC3D ~Ref. 2! and our limiting
expression.

C3D56A2p5
e4\3

k0
2

1

Eg
5/2T1/2mc

1/2mh
3/2e2 Eth /T, ~53!
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C2a254
8A2p5

9

e4\3

k0
2

1

Eg
5/2T1/2mc

1/2mh
3/2e2 Eth /T. ~54!

The factor 4 in Eq.~54! results from the necessity to tak
into account, in calculatingM2 in accordance with Eq.~36!,
not only the terms withk5kc11kc2

1kh , but also those with

k5kc12kc2
1kh , k52kc11kc2

1kh , and k52kc12kc2

1kh . When the QW width tends to infinity, all the fou
terms make equal contributions toC2 . As can be seen, th
only difference between expressions~53! and ~54! is in a
numerical coefficient. The small discrepancy of about
times is due to the necessity to distinguish between the
menta of the two localized electrons:kc1Þkc2 . Furthermore,
expression~53! was derived for the case whenDso tends to
infinity, while in obtaining expression~54! it was assumed
thatDso&Eg . In calculating Eq.~54! we neglected the quan
tity Vc as compared withEg . In the general case, (C2
1C3)a2 should be written instead ofC2a2 to make expres-
sion ~54! valid. However, the limiting transition from the
quasithreshold to the threshold Auger process@see Eq.~52!#
can be realized only for very large QW’s. When analyzi
the probability of Auger transition as a function of th
heavy-hole momentum, one can obtain a qualitative criter
for this transition. The probability of the quasithreshold A
ger process has two characteristic extrema@see Eq.~44!#.
The first of them corresponds to the maximum of squa
Auger transition matrix element in the vicinity of the thres
old momentum. The second one lies in the vicinity of t
thermal momentum of heavy holes. The Auger coeffici
C2 can be estimated as a sum of contributions from th
extrema. Then

C2'C2
th~Qh'qth!1C2

T~Qh'qT!, ~55!

FIG. 2. Threshold energy of the CHCC process as a functio
QW width for three mechanisms of Auger recombination: thre
oldless (Eth

1 ), quasithreshold (Eth
2 ), and threshold (Eth

3 ) at T
5300 K. The solid curve corresponds to the threshold energy (Eth

tot)
of the total Auger coefficient (C5C11C21C3). The horizontal
dashed line corresponds to the threshold energyEth

3D for the bulk
Auger process.
3
o-

n

d

t
e

where Qh is the value of the heavy-hole momentum:Qh
2

5kh
21qh

2 ;

C2
T

C2
th '

lEg

a S T

Eth
D 3/2

eEth /T. ~56!

HerelEg
'2p/qth is a characteristic wavelength of an ele

tron having energy close toEg . Comparing the termsC2
th

andC2
T , one can obtain a criterion for the transition from th

quasithreshold to the threshold Auger process:

a@ac where ac5lEgS T

Eth
D 3/2

eEth /T. ~57!

For semiconductors with an energy gap of the order of 1
the critical width (ac) may be as large as several thousa
angstroms. However, the value ofac is considerably larger
than the mean free path of carriers in semiconductors. T
obviously shows that correct derivation of the Auger rate
homogeneous semiconductors must involve the momen
scattering process if the critical widthac exceeds the
mean-free-path.24

With decreasing QW width, the average momentum
holes participating in the Auger transition shifts to low

f
-

FIG. 3. Auger coefficientsC1 , C2 , andC3 for the thresholdless,
quasithreshold, and threshold processes as functions of QW w
at different temperatures@~a! T5150 K and~b! T5300 K#.
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FIG. 4. Temperature dependence of the total Auger coefficient and the partial contributions of the thresholdless and quas
mechanisms at different QW widths.
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values~see Fig. 1!. This reduces the threshold energy of t
process, and makes weaker the temperature dependen
the AR coefficient.

Figure 2 shows the threshold energy of the CHCC proc
as a function of QW width for all the three mechanisms
Auger recombinationC1 , C2 , andC3 separately and for the
overall processC5C11C21C3 , found from the formula

Eth
~ i !~T!5T2

d ln Ci

dT
, i 51,2,3. ~58!

The threshold energy for the quasithreshold Auger proces
less than its bulk value. The reason is that the critical Q
width ac'1000 Å is greater than the maximum width show
in the figure. The value ofEth for the thresholdless Auge
process decreases with QW width and becomes nega
This is due to the fact that the Auger coefficientC1 decreases
with increasing temperature for wide enough QW’s~see Fig.
5, below!. With increasing quantum-well width, the tota
threshold energy tends to its limiting valueEth

3D denoted in
the figure.

We now turn our attention to the thresholdless Auger p
cess. As already noted, the probability of a thresholdless
ger transition shows no extrema as a function of the he
hole momentum. Therefore, the coefficientC1 has a weak
nonexponential temperature dependence. This phenom
was first studied by Zegrya and Kharchenko.7 In addition, the
function C1(T) is nonmonotonic and has a maximum. T
presence of this maximum can readily be explained. At l
temperature and, correspondingly, small longitudinal m
menta of carriers, their wave functions are nearly orthogo
and theC1 value is small. With increasing temperature, t
of

ss
f

is

e.

-
u-
y

on

-
al

characteristic momentum transferred in the Coulomb inter
tion ~approximately equal to the thermal momentum
heavy hole! grows. This is the reason why at low temper
ture the Auger coefficient increases with temperature. As
temperature is elevated further, the AR coefficientC1 passes
through a maximum and starts to decrease, since Coul
interaction responsible for the Auger process is low for la
transferred momenta. The temperature at which the m
mum occurs can be evaluated by equating the ground-s
energy holes to temperature:T' \2p2/2mha2. Note that
there would be no such maximum if the overlap integ
between the electron and the heavy hole were taken to
proportional to the momentum transferred.25 Such an as-
sumption, having in our opinion no justification for the m
jority of structures investigated, is frequently used and giv
incorrect expressions for the rate of AR and incorrect dep
dence of this quantity on temperature and QW paramete

The AR coefficientC1 depends rather strongly on the QW
width a. For wide QW’s, even being multiplied bya2, C1
remains a decreasing function ofa. At a'1/kc the coeffi-
cient C1 exhibits a maximum related to the weak overla
ping of electron and hole wave-functions. With the quantu
well width decreasing further, the rate of the thresholdle
Auger process gradually falls. A similar expression forC1 in
the CHCC process was obtained by Dyakonov and K
chorovskii, and Zegryaet al.14,15

Figure 3 shows AR coefficientsC1 , C2 , andC3 for the
CHCC process as functions of QW width at different te
peratures for a model structure based on InGaAsP. It ca
seen that all curves show a sharply pronounced maxim
The positions of the maxima forC1 and C2 are practically
temperature independent. The maximum for the thresh
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process (C3) is achieved at a wider QW than for the qu
sithreshold or thresholdless processes and its position s
with temperature. This is in the first place due to the red
tion of the threshold energy of the threshold process w
increasing quantum-well width~Fig. 2!, rather than to the
overlapping of the wave functions.

Figure 4 shows the temperature dependence of the ov
AR coefficient for the CHCC process and the partial con
butions from the thresholdless and quasithreshold me
nisms at different QW widths. It can be seen that at l
temperature and sufficiently wide QW’s the thresholdle
Auger process predominates (C1.C2), and at high tempera
ture, conversely, the quasithreshold process becomes
important (C2.C1). Therefore, the curve describing th
temperature dependence of the overall AR coefficient ha
characteristic shape with a maximum and a minimum. W
increasing QW width, both the maximum and the minimu
of the AR coefficient shift to lower temperature and, in t
limit of infinitely wide QW, disappear. Thus, in the case of
homogeneous semiconductor the AR coefficient is a mo
tonic function of temperature. Note that the Boltzmann d
tribution of carriers was used in calculating the Auger co
ficients as functions of temperature. At low temperature b
electrons and holes are, as a rule, described by the Fe
Dirac distribution function. Thus, the average momenta
particles participating in the Auger transition depends
temperature only slightly. As a result, at low temperatu

FIG. 5. Comparison of the thresholdless Auger coefficient (C1)
as a function of temperature at various Fermi energies of holes
two different QW widths@~a! a550 Å and~b! a5200 Å#. TF de-
notes the Fermi energy expressed in Kelvins. The curve withTF

52100 K approximately corresponds to the Boltzmann statisti
fts
-
h

all
-
a-

s

ore

a
h

o-
-
-
h
i-

f
n
s

the Auger coefficient is a smoother function of temperat
than in the case of the Boltzmann distribution and it does
tend to zero atT→0. Figure 5 shows the thresholdless Aug
coefficientC1 versus temperature at various Fermi energ
for QW’s with different widths. Essential discrepancies b
tween the values of the Auger coefficients for the Ferm
Dirac and Boltzmann distributions take place only in the ca
T!EF , whereEF is the Fermi energy for holes. This con
dition can be realized only at very low temperatures wh
the Auger process ceases to be an important mechanis
recombination.

V. PHONON-ASSISTED AUGER RECOMBINATION
IN QUANTUM WELLS

At low temperatures a threshold Auger process becom
exponentially weak (C3D}e2 Eth /T). In this case mecha
nisms leading to threshold elimination are to be taken i
account. It is commonly believed that the primary mech
nism of this kind is emission or absorption of a virtual op
cal phonon. At the expense of a large momentum transfe
to the phonon, the AR threshold is eliminated, and the rate
such an Auger process is a power-law function
temperature.3,5,27 The rate of the phonon-assisted AR is ca
culated in terms of the second-order perturbation theory
electron-electron and electron-phonon interaction.26 How-
ever, at high carrier densities, carrier-carrier scattering m
become a more effective mechanism of threshold elimi
tion. This is why the problem of the AR mechanism in h
mogeneous semiconductors at low temperatures still rem
open. We shall discuss this problem in more detail el
where. In the present work we follow the commonly a
cepted viewpoint that there exists a competition between
phonon-assisted and direct AR processes. For quantum w
the situation differs strongly from the 3D case, owing to t
presence of a direct thresholdless process. Therefore, ita
priori evident that the conditions under which the phono
assisted AR process dominates the direct one strongly
pend on the QW width.

As already noted, in the 2D case there exist three
processes: threshold, quasi-threshold, and thresholdless
AR coefficient for a phonon-assisted CHCC process with
threshold matrix element of electron-electron interaction
comparatively easily calculated when27

Eg@2mEg@\vLO ,T, ~59!

wherevLO is the optical phonon frequency,m5mc /mh . It
can be shown that the coefficient of phonon-assisted AR
related to the previously calculated one, Eq.~46!, by

Cph
3 'C3

e2\vLO

2k̄a

T

Eth
2D

g~a,kth!
1

e\vLO /T21

3F e\vLO /T

~Eth
2D2\vLO!2

1
1

~Eth
2D1\vLO!2GeEth

2D/T,

~60!

where k̄5 k0k` /k02k` , k` is the high-frequency dielec
tric constant of the medium,g(a,kth) is a factor reflecting
the 2D character of holes28

or

.
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g~a,kth!5F1

2
1

kth
2 a2

4~4p21kth
2 a2!G

3F12
12e2ktha

ktha

3
32p4

~4p21kth
2 a2!~8p213kth

2 a2!G . ~61!

For comparison, we present a 3D phonon-assisted AR c
ficient:

Cph
3D'C3D

e2\vLO

2Apk̄
S T

Eth
3DD 3/2

kth

e\vLO /T21

3F e\vLO /T

~Eth
3D2\vLO!2

1
1

~Eth
3D1\vLO!2GeEth

3D/T.

~62!

It can be seen that the results for the 2D and 3D proce
with threshold matrix elements of electron-electron inter
tion are closely allied. A noticeable difference for the case
narrow quantum wells is that the threshold energyEth

2D in-
creases@see Eq.~47!#. Correspondingly, the criterion for pre
dominance of the phonon-assisted AR process (C3

ph) over
the direct one (C3) in QW’s is met at somewhat highe
temperature than in the 3D case. As already noted~see Sec.
III !, the rate of the threshold Auger process in narrow QW
is in itself by several orders of magnitude lower than tho
of the thresholdless and quasithreshold proces
@C3!(C1 , C2)#. Hence, the phonon-assisted AR proce
with a threshold matrix element of electron-electron inter
tion cannot compete with these processes eit
(Cph

3 !C1 , C2).
Let us now consider a phonon-assisted CHCC Auger p

cess with the other two matrix elements (Mee5M (1)

1M (2)). For the sake of simplicity we will use th
momentum-conservation approximation for the hole–opt
phonon scattering.28 In this case the virtual hole state is fixe
and we obtain
f-

es
-
f

s
e
es
s
-
r

-

l

wi→ f56
2p

\

uMeeu2uMhpu2

~Es7\vLO2Eh!2

e6\vLO /T

e6\vLO /T21

3d~Ei2Ef !dn f , ~63!

whereEs is the energy of the virtual hole, andMhp is the
matrix element of scattering of the virtual hole by an optic
phonon, with the signs plus and minus corresponding to p
non emission and absorption, respectively. It is seen
there is a singularity in the expression~63!, when the de-
nominator is equal to zero. To eliminate this divergen
account must be taken of transitions into quasistation
states, i.e., states with complex energy. In this case the
~63! will transform into a region of complex energies:

wi→ f}
1

~Es7\vLO2Eh!21G2 ,

whereG5\/t. The characteristic lifetimest corresponding
to these states may vary over a wide range, depending
temperature, free-carrier density, etc. It only makes sens
consider a resonant phonon-assisted process in terms o
second-order perturbation theory when the halfwidths of
quasistationary hole and the phonon states are less tha
energy of the optical phonon (\vLO). Otherwise, the Auger
coefficient must be calculated in the first order of the pert
bation theory, using the Lorentz function

f ~DE!5
1

p

G

DE21G2

instead of thed function expressing the energy conservati
law. For a phonon-assisted AR process with a quasithres
matrix element of electron-electron interaction, both t
resonant and virtual Auger processes are possible, with
former predominant in narrow QW’s and the latter in suf
ciently wide QW’s.

In the general case the Auger coefficient for a phon
assisted process may be written as

Cph5Cph
1 1Cph

2 , ~64!

where
Cph
1,256

pve2

k̄Z

e6\vLO /T

e6\vLO /T21
(

m,n,nn

E d2Q

~2p!2

d2qh

~2p!2 S ]E4

]k4
D 21

3
uMee~n,nn ,qh1Qu2

S \2~m22n2!p2

2a2mh
2

2
\2~qh1Q!2

2mh

1
\2qh

2

2mh

6\vLOD 2

1G2

Jn,m~Q! f h~m,qh!. ~65!

Here

Z5(
m

E d2qh

~2p!2 f h~m,qh!, Jn,m~Q!'
a

2

~11dm,n!@~m1n!2p21Q2a2#1~m2n!2p21Q2a2

@~m1n!2p21Q2a2#@~m2n!2p21Q2a2#
,
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f (m,qh) is the hole-distribution function on themth quan-
tum level. The functionJn,m(Q) has been calculated for
nondegenerate band.28 In the case of phonon scattering b
heavy holes its value will be somewhat lower. However, t
fact is insignificant for our purposes. For momenta of bou
electrons in the matrix element of electron-electron inter
tion in Eq. ~65! their mean thermal values should be subs
tuted. The Auger coefficientsCph

1 ~sign ‘‘1’’ ! andCph
2 ~sign

‘‘ 2’’ ! correspond, respectively, to phonon emission and
sorption. Irrespective of the type of the matrix element
Coulomb interaction, the phonon-assisted Auger proces
thresholdless. This corresponds to the main contribution
the Auger coefficientCph coming from the hole momenta o
the same order of magnitude as the thermal moment
Therefore, in calculatingCph , we may substitute for the lon
gitudinal hole momentumqh its mean thermal value. Expres
sion ~65! can be analyzed easily when the temperature
much lower than the optical phonon energy. In this case
thermal momenta of holesqh may be neglected as compare
with the phonon momentumQ, approximately equal to the
threshold one. It is readily seen that the probability of Aug
transition as a function ofQ for phonon emission has tw
extrema. The first of these corresponds to the minimum
the denominator in Eq.~65! and is related to a resonant Au
ger transition. Note that for an Auger transition with phon
absorption no extremum of this kind is observed and ther
no resonant process. The second extremum correspon
the maximum of the squared matrix element and, as a rul
related to a virtual Auger transition. For sufficiently wid
QW’s the matrix element of the electron-electron interact
as a function of the heavy-hole momentum has a form cl
to thed function. In this case the second extremum predo
nates, and the process of scattering by phonons is vir
With decreasing QW width, thed function broadens for the
quasithreshold matrix element, and, in addition, the role
the thresholdless matrix element, only slightly depending
Q, becomes more significant. This enhances the reso
Auger transition and weakens the virtual process. For nar
QW’s the matrix element of Coulomb electron-electron
teraction depends onQ only slightly, and, therefore, the
resonant process is predominant. It can be shown that in
case the following estimation is valid for the AR coefficie
of the phonon-assisted Auger process:

Cph'
vLOe2mha

8k̃\G
J1,1~Q0!

2p

\

3k~Eg!

4Eg

uMee~Q0!u2,

~66!

whereQ05A2mhvLO /\. Hence, it immediately follows tha
the phonon-assisted to direct AR coefficient ratio has
form

Cph

C
'

Ghp

G

@Mee~QO!#2

@Mee~qT!#2 , ~67!

whereC5C11C2 is the Auger coefficient for the direct pro
cess,Ghp5\/thp , thp is the time of hole scattering by a
optical phonon, andqT is the thermal momentum of holes.
can be seen that the phonon-assisted Auger process
dominate the direct one only in the case when the value
s
d
-

-

b-
f
is

to

.

is
e

r

f

is
to

is

n
e

i-
al.

f
n
nt
w
-

is

e

ay
of

Gph and G are close to each other or at an extremely lo
temperature when the ratio of the matrix elements taken
the momentaQO andqT is large. Note that at high nonequ
librium carrier densities, when Auger recombination b
comes at all significant, the hole-hole scattering turns ou
be generally a much more effective mechanism of relaxa
than the hole-phonon scattering. This results in a sm
Gph /G ratio. Therefore, the direct AR mechanism domina
the phonon-assisted one down to a very low temperat
Figure 6 shows the coefficients of the phonon-assisted Au
transition ~Cph and direct one as a function of temperatu
for different quantum-well widths!. The parameterG is taken
to be equal to a characteristic value of 20 meV.

VI. SUMMARY

Our analysis has shown that for the CHCC and CH
processes in semiconductor structures with QW’s there e
three AR mechanisms: thresholdless, quasithreshold,
threshold. The first one depends on temperature o
slightly. The effective threshold energy for the second p
cess substantially varies with the QW width~Fig. 2!.
Namely, it is close to zero for sufficiently narrow QW’s an
approaches the bulk value in the limita→`. For this reason
there is no clear distinction between the thresholdless

FIG. 6. Phonon-assisted and direct Auger coefficients as fu
tions of temperature at different QW widths.
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quasithreshold mechanisms in narrow quantum wells,
they may be considered as a single thresholdless proc
The third, threshold process, is similar to that in bulk sem
conductors. The only distinction is that its threshold ene
is somewhat higher than in the bulk semiconductor beca
of an increase in the effective band gap@Eq. ~47!#. The rate
of this process is small compared with the rates of the fi
two processes in narrow QW’s. In the limita@ac the qua-
sithreshold and threshold Auger processes merge and fo
bulk AR process (C2a21C3a2→C3D). The critical QW
width (ac) is a strong~exponential! function of temperature
and may be up to several thousand angstroms at room
perature for semiconductors withEg'1 eV. The threshold-
less Auger process ceases to be operative on passing t
homogeneous semiconductor. For narrow QW’s the 2D A
ger coefficient multiplied bya2 exceeds the 3D value owin
to predominance of the thresholdless and quasithreshold
cesses~Fig. 7!. Thus, the Auger recombination in QW’s
enhanced as compared with that in a homogeneous sem
ductor. This enhancement is more pronounced at a low t
perature. Note that the entire analysis of the AR coefficie
~C1 , C2 , C3! as functions of temperature and QW para
eters is qualitatively applicable to the same extent to both
CHCC and CHHS Auger processes. However, since
model structures with QW’s have been specified, we ill
trated these relations by the example of the CHCC proce

Note that the AR in QW’s may be suppressed subst
tially if the following conditions are met: (Vc ,Vv).Eg and
E22E1.Eg ~E1 and E2 are the energies of the first an
second levels in the QW!,29 i.e., in the case when the energ
of an excited particle is insufficient for a transition into th
continuous spectrum or to a next energy level. For th
conditions to be fulfilled, a structure is to be created w
deep and narrow QW’s for both electrons and holes. T
structures of this kind can be fabricated on the base of In
AlSb ~Ref. 30! or InAs/GaSb/AlSb~Ref. 31! compounds. In
these deep QW’s only the threshold AR mechanism, co
sponding to the coefficientC3 , is operative. This coefficien
may be smaller by several orders of magnitude than the

FIG. 7. Three-dimensional Auger coefficientsC1 a2 andC2 a2

as functions of QW width atT5300 K. The horizontal dotted line
corresponds to the bulk Auger coefficient (C3D).
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ger coefficients for the thresholdless and quasithreshold
cesses~C1 , C2! in shallow QW’s@(Vc ,Vv),Eg#.

It is also shown that the phonon-assisted AR proces
QW’s undergoes significant changes. Similar to the dir
AR there exist three different phonon mechanis
(Cph

3 , Cph
2 , Cph

1 ) corresponding to the threshold, qu
sithreshold, and thresholdless matrix elements of electr
electron interaction. The first process is quite similar to
3D counterpart. However, for narrow QW’s this process
much weaker than the thresholdless and threshold Au
processes. It is this process with the participation of phon
that is often considered to be the principal AR process
QW’s.32,33 AR phonon-assisted processes with quasithre
old and thresholdless matrix elements of electron-elect
interaction can be resonant. At low temperatures they
compete with direct AR processes. However, owing to
lack of any strong temperature dependence in the latter, s
a competition is possible at lower temperatures than in
3D case~Fig. 6!. With increasing QW width, the resonan
scattering by phonons becomes weaker, and we pass to
conventional 3D phonon-assisted AR process.

It should be emphasized once again that at high dens
of nonequilibrium carriers in a homogeneous semiconduc
the phonon-assisted AR process may be less intensive
the Auger recombination, with the subsequent carrier-car
scattering eliminating the threshold.24
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APPENDIX A: WAVE FUNCTIONS OF CARRIERS
IN A RECTANGULAR QUANTUM WELL

1. Holes

Selecting a coordinate system so that the longitudi
components of the wave vector coincide with they axis, and
performing a Fourier transform in this plane we obtain t
following expressions for the wave functions of carriers.

For heavy holes:

ch~q,x!5H1S q coskhxj
2 ikh sin khxj

2kh sin khxj1q coskhxh
D

1H2S q sin khxh
ikh coskhxh

2q sin khxj2kh coskhxh
D , ~A1!

whereq and kh are they and x components of the heavy
hole momentum,

j5
1

&
S 1

21D , h5
1

&
S 1
1D ,

andH1 andH2 are the normalizing constants.
For light holes:
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cl~q,x!5L1S kl sin klxh2l lq cosklxj
2 iq cosklxh1 il lkl sin klxj
2l lkl sin klxj1l lq cosklxh

D
1L2S 2kl cosklxj2l lq sin klxh

2 il lkl cosklxh2 iq sin klxj
2l lq sin klxj2l lkl cosklxh

D ,

~A2!

csl5
i\g~kl

21q2!

Eg1d2E
@L1 cosklxh1L2 sin klxj#.

~A3!

l l5
d

E12d2\2kl
2/2mh

.

The wave functions of SO holes are similar to those of lig
holes.

The functions of another symmetry can be found from
above expressions by formal substitutionj↔h for thes,x,y
components andj↔2h for the z component. The wave
functions of carriers in the barrier region may be obtain
similarly to Eqs.~A1!–~A3!.

If wave functions of two or more particles are consider
together, then in general theirz components of quasimomen
tum cannot become zero simultaneously. Wave functi
with arbitrary direction of quasi momentum can be obtain
using the rotation matrix:

Dw5Rw ^ Sw , ~A4!

where Rw acts on the coordinate components of the wa
function, andSw on the spinor components. The Euler ang
for a rotation in theyz plane by an anglew are

F52p/2, Q5w, C5p/2.

Thus

Rf5F 1 0 0 0

0 1 0 0

0 0 cosw sin w

0 0 2sin w cosw

G ,

~A5!

Sw5F cosw/2 2 i sin w/2

i sin w/2 cosw/2 G .
If the vectorq has componentsq(0,cosw,sinw) in the coor-
dinate systemx,y,z, then

cq[cw5D2wc0 . ~A6!

The previously found wave function has a zero subscr
The wave function of heavy holes, found using Eq.~A6!, is
written below, as it will be used later,
t

e

d

s
d

e
s

t.

ch~q,x,f!5H1F q coskhxe2 ifj
2 ikh sin khxj2q coskhx sin fh
2kh sin khxj1q coskhx cosfh

G
1H2F q sin khxeifh

ikh coskhxh1q sin khx sin fj
2kh coskhxh2q sin khx cosfj

G .

~A7!

The boundary conditions for hole wave functions can
derived by integrating Kane’s equations across the he
oboundary~see Sec. II C!. We also consider the generalize
Luttinger parametersg̃1 and g̃2 continuous for the sake o
simplicity. Taking into account the fact thatml

21

' 2g2/(Eg1d2E) @mh
21 we obtain continuity conditions

at the heteroboundary for the following quantities:

~1! c,

~2!
]

]x
c' , ~A8!

~3!
1

Eg1d2E
div c.

Generally speaking, the wave functions of holes in a Q
are a superposition of three subbands of the valence b
of heavy, light, and SO holes. However, the last subba
strongly~exponentially! decays away from the heteroboun

ary with an exponentkso'A(mhD/\2) 4
3 . As a consequence

this branch mainly affects the derivative of the wave functi
near the heteroboundary, and its influence on the wave fu
tion itself is negligible. It should be emphasized that such
approximation is not equivalent to using a 434 Hamiltonian
from the very beginning. We shall seek the wave function
a superposition of the heavy- and light-hole subbands. N
the upper edge of the valence bandulsou' mh /ml @1. This
means that only the first and the third of the boundary c
ditions ~A8! are applicable. In this approximation, light an
heavy holes do not mix with each other and have differ
spectra. The heavy-hole spectrum coincides with
quantum-mechanical spectrum of a particle in a rectang
QW. The dispersion equations are the following:

tan kha/25
kh

kh
for even states,

~A9!

cot kha/252
kh

kh
for odd states.

For light holes the states with different parities cannot
separated, and the dispersion equation becomes more
bersome:
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FEg1d1Vc2E

Eg1d2E

kl
21q2

k l
22q2

k l cot kla/21kl

2l l21

2l̃ l21
G

3FEg1 d̃1Vc2E

Eg1d2E

kl
21q2

k l
22q2

k l tan kla/22kl

2l l21

2l̃ l21
G

5q2F 2l l21

2l̃ l21
1

Eg1 d̃1Vc2E

Eg1d2E

kl
21q2

k l
22q2G 2

. ~A10!

Here k l and kh denote the moduli ofx quasimomentum
components of light and heavy holes in the barrier regi
respectively,

l̃ i5
d̃

Uv1E12d̃1\2k l
2/2mh

, d̃5
D̃so

3
.

Note that atq50 the light hole states also split into stat
with different parities. The constantsHi andLi in Eqs.~A1!,
and~A2! are determined by normalization conditions. In pa
ticular:

Hi5
1

Aq21kh
2

1

Aa1
2

kh

q2

q21kh
2

.

The opposite is the case for SO holes. The componen
the wave functions of light and heavy holes oscillate rapid
and the contribution from them to the overlap integrals
negligibly small. Similarly, it is easy to verify thatcx and
(Eg1d2E)21 div c are to be considered continuous in th
case. The type of wave functions of SO holes is similar
that given above for light holes. Strictly speaking, with t
condition Eg2D.Uv fulfilled, the spectrum of spin-spli
holes is continuous. However, when the rapidly oscillat
contributions from the subbands of light and heavy holes
neglected, the spectrum may be both continuous and
crete. The dispersion equation of localized SO holes is s
lar to that of light holes.

2. Electrons

Electrons obey the same symmetry rules as holes. T
wave functions are similar to those of light holes, and ins
the QW can be written as

csc5A1 coskcxh1A2 sin kcxj, ~A11!

cc5
i\g

Z
A1S kc sin kcx h2lcq coskcxj

2 iq coskcxh1 ilckc sin kcxj
2lckc sin kcxj1lcq coskcxh

D
1

i\g

Z
A2S 2kc coskcxj2lcq sin kcxh

2 ilckc coskcxh2 iq sin kcxj
2lcq sin kcxj2lckc coskcxh

D ,

~A12!

where
,

-

of
,
s

o

re
is-
i-

ir
e

Z5
E 21E~2Eg12d!1~Eg13d!Eg

E1Eg12d
, lc5

d

E1Eg12d
.

~A13!

Here q and kc denote they and x component of the quasi
momentum of the electron. Functions with another symme
can be derived by the same procedure as that used for h
From the boundary condition follows thatcs andcx must be
continuous. This yields the following dispersion equation

S kc tan kca/22
Z

Z̃
kcD S kc cot kca/21

Z

Z̃
kcD

52q2S lc2l̃c

Z

Z̃
D 2

, ~A14!

wherekc is the modulus of thex quasimomentum compo
nent of electrons in the barrier region,

Z̃5
E 21E~2Eg12Uv12d̃ !1~Eg1Uv13d̃ !~Eg1Uv!

E1Eg1Uv12d̃
,

l̃c5
d̃

E1Eg1Uv12d̃
.

The spectrum splits into even and odd states if the lon
tudinal wave vector (q) is small or the expression in paren
theses in the right-hand side of the equation is close to z
The last condition is commonly fulfilled, since, as a ru
Uv!Eg , which corresponds to semiconductors with abo
the same band structure. Note that in the case of discont
ous Kane’s parameter thegÞconst, the continuity ofgcx
andcs should be used.19

APPENDIX B: COULOMB POTENTIAL IN THE
PRESENCE OF HETEROBOUNDARIES

Near the interface of two media with different dielectr
constants, the potential of a point charge differs from tha
a homogeneous medium.34 A similar situation takes place in
the presence of two interfaces; therefore, in a QW the e
tron potential takes the form

F~r0 ,r !5
e

k0ur2r0u
1F̃~r0 ,r !, ~B1!

wherer0 is the coordinate of the particle andr is the coor-
dinate of the point where the potential is observed. We c
sider only the case when the particle is inside the Q
(ux0u,a/2). Using the reflection method34 we obtain
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F̃5 (
n>1

e

k0
S k02k̃0

k01k̃0

D 2n21S 1

A@x1x02~2n21!a#21r2
1

1

A@x1x01~2n21!a#21r2
D

1 (
n>1

e

k0
S k02k̃0

k01k̃0

D 2nS 1

A~x2x022na!21r2
1

1

A~x2x012na!21r2
D at uxu,a/2

~B2!

F̃5
e

k0A~x2x0!21r2

k02k̃0

k01k̃0

1
2e

k01k̃0
(
n>1

S k02k̃0

k01k̃0
D 2n

1

A~x2x012na!21r2

1
2e

k01k̃0
(
n>1

S k02k̃0

k01k̃0
D 2n21

1

A@x1x01~2n21!a#21r2
at x.a/2.

Here r25(y2y0)21(z2z0)2. These potentials are rather cumbersome. However, they can be simplified if the die
constantsk0 andk̃0 are supposed to be close to each other. After taking Fourier transform along lateral coordinates~y andz!
we get

f~x,x0,q!'
e

2qk0
S e2qux2x0u12

k02k̃0

k01k̃0

cosh@q~x1x0!#e2qaD at uxu,a/2,

~B3!

f~x,x0,q!'
e

q~k01k̃0!
S e2q~x2x0!1

k02k̃0

k01k̃0

e2q~x1x01a!D at x.a/2.

It can be seen that while the potential itself is a continuous function across the interface and the difference between it
right derivatives is proportional to (k02k̃0)/(k01k̃0).
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