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Laughlin-Jastrow-correlated Wigner crystal in a strong magnetic field
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We propose a ground-state trial wave function for a two-dimensional Wigner crystal in a strong perpen-
dicular magnetic field. The wave function includes Laughlin-Jastrow correlations between electron pairs, and
may be interpreted as a crystal state of composite fermions or composite bosons. Treating tha pbwer
Laughlin-Jastrow factor as a variational parameter, we use quantum Monte Carlo simulations to compute the
energy of these new states. We find that our wave functions have lower energy than existing crystalline wave
functions in the lowest Landau level. Our results are consistent with experimental observations of the filling
factor at which the transition between the fractional quantum Hall liquid and the Wigner crystal occurs for
electron systems. Exchange contributions to the wave functions are estimated quantitatively and shown to be
negligible for sufficiently small filling factors.
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[. INTRODUCTION state are consistent with the conventionally accepted theoret-
ical understandings of the W(L) First, there is a discrep-

It was first argued by Wigner in 1934 that a system ofancy in the energy of charged excitations. Particularly, trans-
interacting but otherwise structureless electrons can haveort experimentsreveal that the activation gap is an order of
crystalline order in the limit of low density and low magnitude smaller than the theoretically estimated energy to
temperaturé. The first experimental evidence of the Wigner create a point defect in the W7 (1) Moreover, even
crystal (WC) was found well over 40 years later in a two- deep into the insulating phase, anomalous behavior is ob-
dimensional(2D) system of electrons adsorbed on a heliumserved when the filling factor is an inverse odd integer,
surface’? Nowadays, semiconductor heterojunction deviceswhich may be related to the FQH effect. Specifically, trans-
are considered a very promising environment for observingort experiment$ exhibit a dip in the diagonal resistivity
the WC. The advantage of heterojunction structures comes,, of the insulating state near=1/7. Also, photolumines-
from the fact that the 2D electron plane is spatially separatedence experiment$ 22exhibit structure near odd denomina-
from the donor layer, so that the influence of these impuritiedor filling factors down to 1/11, which looks very similar to
can be substantially reduced compared to bulk semicondustructure seen at higher fillings where the FQH effect occurs.
tor environments. Furthermore, it is now well known that a(lll) Finally, experiment$?3?*show that the Hall resistivity
strong magnetic field perpendicular to the 2D plane can efp,, in the insulating phase saturates at its classical value
fectively localize electron wave functions while keeping theB/nec, just as in the FQH liquid phase. This behavian-
kinetic energy controlled-® Since this lessens the otherwise not be understood in terms of a model of thermally activated
severe low-density condition, it is believed that the WC carpoint defects that are essentially noninteracfihénterest-
be stabilized in a sufficiently strong magnetic field. ingly, (II) and (lll) suggest that some characteristics of the

On the other hand, the fractional quantum H@QH) FQH effect are shared by the insulating state.
liquid is known to be the ground state in certain ranges of The unusual behavior gi,, has led to speculation that
strong magnetic fiel@. In this strongly correlated liquid the insulating phase is not a WC at all, but rather a disorder-
state, the Hall resistivity,, is quantized at discrete values dominated state called the “Hall insulatof®*’ However, it
and the diagonal resistivity,, vanishes at zero temperature. has been shown that interstitial defects in a WC can also lead
In contrast,p,, presumably diverges dt=0 in the pinned to Hall insulating behavior if one introduces Laughlin-
WC. The FQH effect forr=1/m (m odd) is now fairly well ~ Jastrow correlations between the interstitials and the lattice
understood in terms of the Laughlin wave functfon. electrong>? The correlation was found to lower the energy

In several recent experiments with high mobility samplesto create such defects. However, more careful stadiets
a sharp phase transition from the FQH state to an insulatinthe above interstitial state using Monte Carlo simulations
state was observed as the magnetic field was increased bathggest that in order to obtain such a small excitation energy
in electror?'® and holé* systems. Some properties of the as found in experiment, one must introduce Laughlin-
insulating state such as the activation gap in charge transpatastrow correlations into the ground state as well. In this
closely resembles those of pinned charge density waves, supaper we explore the energetics of ground state wave func-
porting the interpretation of this insulating state as a WCtions of this form.

Theoretical calculations of both the FQH liquid enefggnd In what follows we will introduce trial wave functions
the WC energ}?!*are also in good agreement with the ex- that take the form of a Laughlin-Jastrow factor multiplying a
periments as to the critical value of the magnetic field atproperly (ant)symmetrized product of single-particle states.
which the transition occurs for a given electron density. ~ The wave function introduced here thus corresponds to com-

However, not all experimental findings of the insulating posite fermion or boson statd%3! The energies of these
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states are computed using quantum Monte Carlo simulation#) minimizing the total energy with respect to the Coulomb
and it will be demonstrated that such states are genericallinteraction. For a classical system, a triangular lattice is well
lower in energy than other lowest Landau level WC states irknown to have the lowest Coulomb energy for a given
the literature. Our computational method in its simplest formdensity>® Therefore, in the limitB—o, the ground state is
ignores exchange corrections; i.e., the state multiplying thexpected to be represented by the above wave function, with
Laughlin-Jastrow factor is approximated as a simple producR; forming a triangular lattice.
of single-particle states. An in-principle exact computational In a finite magnetic field, quantum fluctuations around the
scheme in which permutations of the single-particle statefattice sites become important and the above classical anal-
are sampled shows that this is an excellent approximatiorggy is only approximate. Consequent¥/,- is not guaran-
provided the filling factor is not too large. teed to give the lowest energy at finlBe However, ifB is
This paper is organized as follows: The trial many-bodylarge enough¥ ¢ is still very close to the true ground state.
wave function of the Laughlin-Jastrow-correlated WC is in-For this reason, it has been used even at fiBitey many
troduced and some of its properties are discussed in Sec. buthors, producing very good results. In this paper, however,
In Sec. Ill, the ground-state energy is computed using ave will improve upon it by introducing a correlation. Previ-
Monte Carlo simulation. Various aspects of the results ar@us studie¥' have introduced correlation factors that are ex-
also discussed. Section IV is devoted to discussions on thgct for a harmonic Hamiltonian; however, such wave func-
effect of the exchange energy and validity of our approximations allow fluctuations in which particles may occasionally
tion. Finally, we summarize the findings in Sec. V. Someclosely approach one another. A correlation factor that by
technical details of the energy calculation can be found in th@iow is well known to suppress such fluctuations is the
Appendix. Laughlin-Jastrow factoil; - j(z;—z;)™, wherez;=x;+1iy; is
the complex notation of the electron coordinates. Because of
Il. TRIAL WAVE FUNCTION the extra phase accumulated when one particle encircles a
o o . second, wave functions of this form may be understood as
The Hamiltonian of 2D electrons moving in a magnetic being comprised of particles that have magnetic flux

field B and interacting with the Coulomb energy is written aSquanta attached to them. The idea of constructing wave func-

1 o 2 4 2 tions of this general form was first suggested in the context
H= —|p—-A(r) +=> ——, (2. of the FQH effect in ground breaking work by Jafhthe
T 2m c 2 {7 |ri_rj| combination of electrons and an even number of flux quanta

to form these wave functions have since become known as
electron. and is the vector potential from which the mag- composite fermions. For odd valuesrof the wave function
' P 9 multiplying the Jastrow factor must be symmetric under in-

ggt'(r:egeg ;rseg:jvgrg gﬁ:ﬁ:ﬁ A;ha\lltvft ivg"(lx')srg_:ol;etetlhe cs)gﬂze (ierchange of two particles, so that such states correspond to
g 9 P yp omposite boson statd5The wave functions we study in

by the strong ”?agne“c field. L this work may thus be interpreted as crystals of composite
Since our trial wave function is closely related to thefermions or bosons

Hartree-Fock wave function of the WC suggested in Ref. 32, . . .
it is worthwhile summarizing the aspects of the Hartree-Fock We therefore propose the following trial wave function:
wave function here. Explicitly, it can be written as

wherer; andp; are the 2D position and momentum of tike

\If<{ri}>=Ai1;[j (zi=2)"L] = (r0). (2.4
Vie({rih=ALL ¢x(r), (22

Again, ¢Ri is a single-particle wave function that is localized

where ¢" are single electron wave functions antianti- at R; and_ll_es in the lowest Landau Ievel._ Since we V\_nll
i i __consider finite size systems, only those lattice sites within a

symmetrizes the total many-body wave function. To a firStyjq of radiusR,, will be included in the set ofR;}. In order
approximation in the large magnetic field, all electrons willy, a1 the full wave function antisymmetric, we choose to
lie completely in the lowest Landau level. The unnormallzeduse either a Slater determinaevenm) or a symmetric sum
single-particle wave function is thus given by of all possible permutationéodd m) for the single-particle
wave function part.

We cannot, however, simply usﬁgr in Eq. (2.3 as our
This wave function describes an electron localizedRat ~ Single-particle wave functions, due to the following reason.
within a 2D Gaussian wave packet. The magnetic |engtplsregard|ng the antisymmetrization for the moment, the

| = \%icleB determines the size of the wave packet. TheProbability density is given by
phase factor in Eq(2.3) ensures thatbSiF is a product of

d)giF(r):ef|r7Ri|2/4I27ir><Ri-212I2_ 2.3

2 2 2
e I""4* and an analytic function af=x+ iy, making it lie ¥ Nil;[j [ri=rj] mH | br,(11)] (2.5
entirely in the lowest Landau level. In the largedimit,
|—0, and the electrons become highly localized, behaving = @2ME 4 Inlri=1j| 623 In g (1) 2.6

almost like classical point charges. The kinetic energy is

given by the lowest Landau level energfio/2  As in Laughlin’s “plasma analogy® |¥|2 may be thought
=fheB/2mc, and is the same regardless of the Gaussian ceref as the Boltzmann distribution function for a “dual” clas-
ter R;. This allows one to treaR; as variational parameters sical system whose effective energy is given by the expo-
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X X X ¢Ri(r):e—\r—Ri\2/4|2—ieri-2/2|2
xex;{mE Injz— | +im>, argz—7")|.
X X [ i
(2.8
Once again in the plasma analogy, the logarithms in the ex-
X X ponent describe a 2D Coulomb potential caused by effective

point charges with chargm. Now let us approximate the
point chargeq »;} by a uniform charge distribution whose
density is the same as the average density of the original

X X point charges. To do this, we write the sums in the argument
of the exponential in the form

< % % m; {In|z— )| +iargz— 7))}
FIG. 1. An example of the underlying triangular lattice for a
finite-size WC. The large circle denotes the boundary of the physi- Emf d29{In|z— n|+i argz— 7)}ps(n),
cal disk and the filled dots the lattice sit€%,, within the disk. The
crosses denote the positions of the ghosf8), which balance the (2.9

effective force aR; where pg(#) is the density of ghost particles. We then ap-

nents in the above equation, up to an arbitrary effective tempProximate

perature. The first exponent in EQ.6) is identical to the 2D

(logarithmid Coulomb energy with coupling constant. pG(,])%{p if [7[>Rp and|7-Ri<Rs
Each term in the second exponent describes an attractive 0 otherwise,
effective potential centered at a lattice dRe. Obviously, if (2.10

the effective Coulomb interaction were absent, the minimum — . . .
of the effective energy would be achieved wher R; for Wwherep IS the average ele_ct_ron _densn?D is the ra(_j|us of
all i. However, due to the effective interaction, the staticthe physical disk of the finite size system, aRg is the

solution ofr; will be moved away fronR;, unlessR; is the radius of a “ghost disk,” which must satisfiRs>2Rp .

center of the disk. In general, the electrons will be pushechVidedr is well away from the physical disk edge, this

radially away from the center of the disk. Consequently, theapproximation should be quite good, and we expect correc-

. 2 . .
whole system will spread out and the resulting electron dentions t0 scale asr{Rp)®. Since the real part of the integral

sity will be smaller than that of the intended lattice. corresponds to the potential of a uniform charge densjty
In order to prevent this unwanted expansion of the sysin a disk of radiuRRg, with a circular hole of radiuR; , the
tem, for eachgr, we will introduce extra zerog'ghost  real part of the integral may be computed using Gauss'’ law

effective charges} outside the physical disk. The ghosts arefor two-dimensional eIectrostatics._The imaginary part of the
introduced in such a way that if the real electrons were ﬁxedqteg.ral may be co.mputed analytlcally as well foxRp,

at their lattice sites, the total of both real and ghost effective//€!ding the approximated wave function

charges are symmetrically distributed about any given lattice | IR
site R;. In other words, the ghosts cause each lattice site to Ri(r)—e '
look like it is at the center of the system by “balancing” out —
the effective repulsive force of the surrounding electrons. As Xex;{w—mp(h— R(|2—|r|2)—iwmpr XR;-2
a consequence, each electron will remain centered near its 2 : p :
own lattice site. Obviously, the specific positions of the

21412 —i rxR;-2/212

ghosts depend on the lattice sRg. An example of the way (213
ghosts are placed is shown in Fig. 1. Although outside the o Ir—(1—mp)R;| 2412 —i rx (1= mp)R:- 212

physical disk, the ghosts themselves occupy lattice sites. In- -¢€ ' '
;:]gjltlj;n;v?r?b%hosts, the single-particle wave function is fi- @ Mr(1-m)|R;| 2417 2.12

Note that because the amplitude and phas¢§91’nave been
br(r)=€ Ir=Ri[214i2 =i e xR 222 (2— n}i))m, (2.7  treated on an equal footing, this wave function lies in the
' i lowest Landau level. Ignoring the unimportant constaﬁ{i,
where 77](i) are the complex coordinates of the ghosts thaflescribes an electron in the lowest Landau level, centered at
balance out the effective force B . a renormalized lattice site (Amv)R;. Thus the “bare” lat-

An interesting property of these wave functions is that theice described by fillingpg states will be smaller than the
ghosts may be thought of as “renormalizing” the positionsreal lattice by a factor of £ mv. The physical lattice, how-
of lattice sites. To see this, one can rewrite Et}7) as ever, is spread back to its original size due to the Laughlin-
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Jastrow correlation. Therefore, the above “renormalization”sponds to a finite-temperature classical Boltzmann weight,
of the lattice compensates for the previously mentioned latwe assume there exists a length scaleabove which fluc-
tice expansion due to the Laughlin-Jastrow factor. tuations in the electron positions are uncorrelated. We thus

Before we describe the energy calculation for our waveyse the Monte Carlo method to compute the Coulomb inter-
functions, let us briefly discuss the effect of the Laughlin-action between the charge density in the central unit cell and
Jastrow correlation on the characteristics of the WC, particuthe charge out to some distarRg, which we presume to be
larly in conngcuon with the excitation energy. In a recent|arger thané. . This run is also used to compute the charge
experiment, Jianget al. have measured the temperature de-gensity in the central primitive unit cell. In order to minimize
pendence of the diagonal resistance in the reentrant 'nSUIaBbundary effects, we choo&y, , the radius of the disk con-
mg_phqse sllghftly at;ove= 1/5. Acco_rdm_g o their data, the taining all simulated dynamical electrons, to be greater than
gztrlvz;lig?nn Igapthiosr gngge tirsanrﬁﬁgs Issrr?;\lllz? ?g;\oﬁguﬁ beRS’ so that electrons close ®s do not experience an envi-

P gy, 9y onment significantly different from those in the bulk. Those

X . T

theoretically expected. For example, using states of point . . .

particles whose positions are chosen to optimize the energﬁIectrons between radi andRp , which are dynam|ca}lly
mulated but not used to compute the energy, provide an

the energy to create a point defect such as an interstitial or% ; Lo
vacancy has been estimated by many autfoi€put all the effective medium. .ThIS approach has also been employed
results are an order of magnitude greater than the aboy8 Monte Carlo studies of the FQH eff.eﬁ' _
value of E;. A more recent study of point defects, however, Thg interaction of the charge density in the central unit
shows that the energy can be lowered if the Laughlin-Jastrowell with charge at distances greater tiis computed by
correlation is introduced between the interstitials and the lattreating the distant charge as static and equal to periodic
tice electrong® Our initial studies of interstitial wave func- copies of the numerically computed charge density in the
tions using quantum Monte Carlo techniques such as thogeentral primitive cell. This is essentially a Hartree approxi-
presented here suggest that to reach the very low activatiamation. Since this charge density is treated as static, one may
energies seen in experiment, one needs to include Laughlimompute the interaction for an infinitely large system using
Jastrow correlations among the ground-state electrons ake Ewald sum technique. Our method is checked by increas-
well.2%34 A discussion of such wave functions is deferred toing Rg until the energy is unchanged within the error bars of

a future publication. our Monte Carlo calculations. Our simulations show that for
the wave function parameters we have studg&ds always
Ill. COULOMB ENERGY: MONTE CARLO SIMULATION less than 4, wherea is the lattice constant. This is also

Si ; ion i letelv in the | confirmed by numerical calculations of individual pair ener-
(;ncel ourl wave Iunctlog Ies comp et;:-y In tI e bo.WeStgies, for which the result from the simulation is essentially
Landau level, we only need to minimize the Coulomb inter-y,o same as the Hartree energy if the pair is separated farther

action term in the Hamiltonian: The_ expectation value of thethan 4a. More details of this procedure are discussed in the
Coulomb energy per electron is written as

Appendix.
E 1 2 We have developed a Monte Carlo simulation program
- __ <_> (3.1)  that computes the Coulomb energy per electEyiN, using
N 2N &\ |ri—rj] the standard Metropolis algorithth As a critical test of our

extrapolation technique, we have used our method to com-

_e_zf drdr,<2i¢j5(r_ri)5(r,_rj)> (32 pute the energy of then=0 state, which is identical to the
2N [r—r’| ' ' one used in Ref. 32. Its energy can be calculated analytically
and our results agree with analytic solutions well within the
e? (Zixjb(r—r)o(r' —rj)) statistical error bar of about 0.05%. The results for more
=§fcdff dr r—r| ' 3.3 interesting values ah are plotted in Fig. 2. Treatinm as a

variational parameter, one can find the valuerothat gives
where(---) means the expectation value with respect to thehe lowest energy at a given The graph clearly shows that
wave function¥ in Eqg. (2.4). In the last line, we have atv=1/3 and 1/5, the Laughlin state has a lower Coulomb
dropped 1N and restricted the first integral within a single energy than any of our wave functions. A+ 1/7, however,
primitive cell at the center of the digklenoted byC), using  the Laughlin state has a higher Coulomb energy than our
the lattice symmetry. Since the size of the simulated systerfowest result. This is consistent with experiment in that the
is inevitably finite, in order to obtain the thermodynamic “true” FQH effect — e.g., vanishing diagonal resistivipy
limit, we need to either extrapolate finite-size results, or uset zero temperature — has never been observed at any in
the Ewald sum methot#® We have used the second verse odd filling factors below=1/5. Furthermore, at
method in this paper. Details of the calculation are given inv=1/5, the energy of our wave function is higher than, but
Appendix A, but it must be noted here that we have intro-very close to, that of the Laughlin state, which agrees well
duced a couple of approximations in calculating the Couwith the observation of a reentrant insulating pHasiightly
lomb energy:(I) We have ignored the exchange energy,abovev=1/5. This reentrant phase is believed to occur be-
which in practice means that the antisymmetrization in Eqcause the pure Laughlin wave function is the ground state
(2.4) is dropped. We have tested this approximation and findnly whenwv is preciselyan inverse odd integer. Away from
that it is quite good unless is too close to Ih. The effect the precise filling factors, quasiparticles and quasiholes are
of exchange energy will be discussed in the next section ipresent in the ground state, increasing the energy. Therefore
more detail. (Il) Since |¥|?> when unsymmetrized corre- the FQH states have cusps in energy at every inverse odd
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-0.020 L | | | , FIG. 3. Root mean square of the electron fluctuation from the
: ! ! lattice sites as a function of the filling facter The dashed vertical
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entm states occur.
| 1 | ® i i
L ‘ ‘ v~1/(2my—1) rather thanv~1/my as in the Laughlin

0.10 0.15 0.20 0.25 0.30 0.35

y states. For example, at=1/7, our wave function has the

lowest energy ifm=4, rather tharm=7. Now let us con-
FIG. 2. The Coulomb energy per electron of the Laughlin-tinue to focus on then=4 state increasing above 1/7. It
Jastrow-correlated Wigner crystal as a functionwofor various  continues to be the lowest energy state untieaches about
values ofm. The energy is shown relative to that of the uncorre- ~0.165, where then=3 state becomes lower in energy.
lated Hartree wave functionn{=0). The same quantity is pre- Thijs implies a first-order transition between the two different
sented for the Laughlin stai&ef. 14 and the Lam-Girvin wave  m states. This phase transition may in principle be detectable
function (Ref. 38 at v=1/3, 1/5, and 1/7.".I'he dashed ve.rtlcal lines i photoluminescence experiments, although this is presum-
represent the values of where the transition between differemt ably difficult because the energies of neighboringstates
states occur. are so close together.
A comment about the transitions among states with dif-
filling factor, allowing the WC state to have lower energy in ferent values ofm is in order here. In this work we have
a small but finite range o# right abovel/5. taken the point of view that WC crystal states can be de-
Now, let us compare our results with other WC trial wavescribed as composite boson or composite fermion crystals,
functions, particularly the Lam-Girvin forf The Lam- and we find that in general such states are extremely low in
Girvin wave function also predicts that the phase transitiorenergy for appropriate choices of the single-particle states.
from the WC to the FQH effect occurs betwees 1/5 and  For each value o, these composite particle states may be
1/7. As shown in Fig. 2, however, our wave functions areviewed as belonging to different symmetry classes, specified
lower in energy than the Lam-Girvin counterpart at all valuesby the number of zeroes bound to each electfoBecause
of » where data are available. In other words, our waveor a given value ofn a composite particle state can only be
functions are closer to the true ground state. We believe thisonstructed withv<<1/m, and different values o corre-
difference arises because the harmonic approximation nepond to different symmetry class®sit follows that there
glects rare, but nonetheless important contributions from anmustbe first-order transitions among these states as the fill-
harmonic fluctuations in which two or more electrons comeing factor is varied. However, it should be kept in mind that
close together. In contrast, the Laughlin-Jastrow correlatiomur calculations are ultimately variational: there is no guar-
very effectively suppresses density fluctuations at all disantee that the true ground state will belong to any of these
placements of electrons from the lattice sites. This may beymmetry classes, and in principle one can imagine that
understood using the plasma analogy for the Laughlirsome very complicated trial wave functions may be lower in
state i.e., the Laughlin-Jastrow correlation is equivalent toenergy than any of those studied here. However, to our
the Boltzmann distribution of a 2D one-component plasménowledge these WC states are lower in energy than any
(OCP in which charge density fluctuations are suppressed.others in the literature, and we believe our calculations pro-
An important difference between the weighting associatedide good evidencéf not proof) that there can be first-order
with our wave function and the Boltzmann weight of the phase transitions as a function of within the insulating
OCP is that the electrons are centered at different lattice siteggime of this system.
in our wave function, while they are centered at one single Figure 3 shows\r s, the root-mean-square value of the
point for the OCP. One of the most significant consequenceBuctuation of electrons from their lattice sites. Note that
of this is the following. Let us defineny(v) as the value of Ar,,s increases rapidly as approaches and passes beyond
m for the lowest energy variational state iat Surprisingly, the transition to them—1 state. This indicates that the
near an inverse odd integer filing factor, we find single-electron probability density becomes less and less lo-
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O transitions occur. Moreover, Fig. 2 shows tBat/N starts to
; curve up asv passes beyond the transition value, which is
& /, \3 common for allm. We believe the delocalization and the
. . formation of exchange rings are the main reasons for this
K \ change of curvature in the Coulomb energy. However, it is
‘ N not yet clear why it occurs well below=1/m.

o O » IV. EXCHANGE EFFECT:
PERMUTATION MONTE CARLO SIMULATION

In the previous section, we have seen that the delocaliza-
tion, which is represented bwr,,s, increases ay ap-
proaches th from below. Then the exchange energy is ex-

[ & pected to become more and more important, as the overlap of
d’ 0O Re) wave functions at different lattice sites increases. Indeed, we
¥ ) have more or less directly observed the formation of ex-
] ) ] ] change rings in the snap shots from the Monte Carlo simu-
_ FIG. 4. A typical configuration of the three particle exchange,iinng for relatively large values of Thus, itis clear that as
girl;?u\ll!t]ilc(;g Eﬁgc?r%r?bfs'q.ed from "é Snf%SEOtf.”Of da .M(I)me C;‘rllot_v grows, one must start to include the exchange energy in the
imuiation. positions are denoted by Tiled circles and ‘ate. 1 1ation in order to obtain quantitatively reliable results.
tice sites by empty circles. The arrows indicate which electron is . - .
It is very difficult to estimate the exchange energy ana-

originated from which Gaussian centey. . . .

Iytically for our wave function mainly due to the strong cor-
calized asv increases. However, according to the above elations. However, whem is even, the single-particle wave
mentioned plasma analogy, the Laughlin-Jastrow factor stilfunction part in Eq(2.4) is a Slater determinant, and we can
tries to force the local density to remain uniform. Therefore,{akeé the exchange energy into full account by using other
rather than wandering around randomly, electrons tend t§lonte Carlo methods such as in Ref. 42. Our tests with the
switch positions and form “exchange rings(Fig. 4). This m=4 state show tha_t the exchange energy is negligible when
means that ring exchange energy becomes more and motés1/7. Although this method treats the exchange energy
important. This is most easily seen from “snap shots” of the€xactly, its application is strictly restrlcted to even values of
electron configuration during a Monte Carlo simulation run.M. and we need to resort to a different method for odd
We note that such ring exchanges are commonly observed in One way to estimate the relative importance of the ex-
simulations of melting of the classical OC¢P.In path- change effect is as foI_Iows. The many-body wave function in
integral descriptions of the FQH effettcoherence among EQ- (2.4 may be rewritten as
ring exchanges plays a crucial role in explaining the instabil-
ity of the WC with respect to a liquid state at=1/m for _ ‘I’=H (Zi—Zj)mZ §P¢R_(rp(i>), (4.1)
small enoughm. We believe that quantum coherence in ring P#] P !
exchanges may lead to structure in the energy of the WC as o ) .

a function of filling factor even in the insulating state, which Where the summation is over %”_ possible permutatiens
ultimately could explain the transport and photolumines-For an odgh_], the statistical sig™ is always+ 1, but for an
cence anomalies discussed in the Introduction. However, /€N, ¢ is either+1 or —1 depending on whethd? is
correct description of this requires that exchange be properl@" €ven or odd permutation. When we ignored the exchange
included; we therefore defer a detailed discussion of this to &ffect in the previous section, what we did was to drop all
future publicatior?® As » approaches and increases past thg?€mutations in the above summation, except the identity
critical filling factor, the exchange rings are observed in-Pe€rmutationl such thati(i)=i. In other words, we have
creasingly often in Monte Carlo snap shots. Asncreases approximated the above wave function with
further andAr s grows to the same order of magnitude as
the lattice constant, the WC will eventually become unstable, W irec= H (21— 2)"Pr (1)) (4.2
giving way to a liquidlike state. This is analogous to the i#] !
melting transition of a conventional solid. In this limit, how- ' . .
ever, the exchange energy is clearly no longer negligible anQ!oW, We want to define a quantity, which measures error
our Monte Carlo analysis ceases to be valid. Then, an impoi@used by this approximation, or in other words, measures
tant question arises: when may exchange be ignored? wew _|m[:,)’ortant the e_xchange effect is. First, the “partition
will address this question in the next section. function” may be written as

Now let us focus on the transitions between different
states. First, Fig. 3 shows chargcteristicsﬁ:frms that !s Z[q;]:f |w|?, 4.3
common to alim. In generalAr s is an increasing function
of v, and asv reaches some point, the system undergoes
phase transition to a lowen state. Interestingly, the values
of Ar,,s at the critical v are approximately given by the
same value~1.7 regardless om. We believe this implies Z[V]-Z[ V¥ giroud]
that delocalization plays a crucial role determining where the v= 7071

here the integral is over all coordinatfs}. Then, we de-
fine

4.9
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Note that we have found earlier from Fig. 2 that the tran-
sition between then=4 and them=3 states occurs near
v=0.16. Since the exchange effect is negligible up to
v=0.16 whenm=4, them=4 state is guaranteed to have a
lower energy than then=3 state if v<<0.16, even if the
exchange energy is included. Above-0.16, however, it is
currently not known whether the exchange effect will raise
or lower the total energy of them=4 state. If it lowers the
energy, there is a possibility that the transition froms4 to
m=3 actually occur at a higher filling factor than is shown
in Fig. 2. Form=5, the exchange effect is negligible up to
v=0.14, which is well abover=0.125 where the transition
to them=4 state occurs. Therefore, for this transition, our
estimate of the transition filling factor is accurate. In prin-

FIG. 5. Relative contribution of the exchange terms in the parCiple, however, it is possible that rentrant m=5 phase
tition function. y defined in Eq(4.5) is plotted for several values of occurs within them=4 ground state if the exchange effect
m. The dashed lines denote error bars. brings the energy lower than that of the=4 state above
v=0.14. Form=3, the exchange effect becomes important

m=3

0.0
1.0

0.0
1.0

0.10

v

om . well before the energy level crosses with that of the2
EP#f Iz [2i= 7| "R (1)) R (Fea) state. However, when=0.2, not the WC, but the FQH state
= . (49 is the ground state, and the energy level crossing between
Epf I 4|zi = 2| *"¢r. (1) * dr (") different WC states is not physically relevant Bt 0. Fi-

nally, we note that form=3, the exchange terms are com-
We have used the particle exchange symmetry to reduce thsetely negligible wherv<1/5. Therefore, the comparison
number of permutations in each integral from two to one.of the energy between our correlated WC state, the Laughlin
Note that wheny is small, the exchange effect is small and state, and the Lam-Girvin state is valid iat 1/5 as well as
our approximation is good. at 1/7.

In order to computey numerically, we have developed a

“permutation Monte Carlo method®® which is essentially V. SUMMARY
the same as the usual Monte Carlo simulation method, ex-
cept for one important difference: In a permutation Monte In this paper, we have studied the correlated WC in a
Carlo simulation, not only the electron positions but also  strong magnetic field, which is represented by the product
the permutatiorP is treated as a configurational variable thatwave function of the Laughlin-Jastrow factor and the
is updated, tested, and accepted discardeyl according to  Hartree-Fock wave function in a triangular lattice. We have
the Metropolis algorithmi! Since the integrand in Ed4.5) shown that extra zerofghosts in the single particle wave
is a complex quantity, we have separated the phase factdinction are necessary to balance the expanding effect of the
from the modulus to sample it. More specifically, we havelLaughlin-Jastrow correlation.

averaged the phase factor The energy of the wave function has been calculated us-
ing Monte Carlo simulations and the Ewald sum method.

ér,(1)* &R (Ip(i) Compared to other WC trial wave functions in the lowest

, (4.9 Landau level, particularly Lam-Girvin wave function, the

|¢Ri(ri)* ¢Ri(rP<i>)| new state is found to be the lowest in energy. The Laughlin

FQH state has lower energy than our wave function at
v=1/5 and above, consistent with experiment in that the
phase transition occurs betweer 1/7 and 1/5. The ener-
I1 1zi—z*™ ¢r,(r)* b= (Y] (4.7)  gies of the two states are, however, very close to each other
1#] .. . . .
near v=1/5. This is also consistent with the experimental
as the statistical weight in the Monte Carlo simulation. Weobservation of the reentrant insulating phase slightly above
note that this permutation Monte Carlo scheme in principlev=1/5, considering the cusp in the FQH state energy due to
captures the effects of symmetrization of the wave functiorjuasiparticles and quasiholes.
exactly. In practice, however, the precision of the result de- Treatingm as a variational parameter, we can find the
pends on how accurately the phase may be sampled. As dealue of m that gives our wave function the lowest energy.
scribed below, this becomes problematicias 1/m. Sincem takes only discrete integer values, it is found that
The results of the permutation Monte Carlo simulation arethere is a series of first-order phase transitions between dif-
shown in Fig. 5. It is clear thag is negligible ifv is less than  ferent m states asv changes. For a givem, the spatial
0.2, 0.16, and 0.14, fan=23, 4, and 5, respectively. Beyond fluctuations of the electrons grow as increases above
those values of, the exchange effect can be significant. The~1/(2m—1), eventually causing the energy to curve up.
error bars become quite large as the exchange effect geformation of exchange rings is also observed in this limit,
more and more important. This is because except for th&hich is reminiscent of what occurs near melting in classical
direct term, the phase factor in E.6) fluctuates very one-component plasmas.
much, while its average almost vanishes. We have also developed a permutation Monte Carlo

using the rest of the factors in the integrand
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comes important. Our simulation shows that they are negli- N
gible up tor=0.2, 0.16, and 0.14 fom=3, 4, and 5, re- (A2)
spectively. This ensures the validity of our comparison of the

energy between different trial wave functionsiat 1/5 and ~ Where/c means integral over the central primitive cell as in
1/7. It also shows that when the exchange energy is include&d- (3.3. Now, we assume that the correlation is negligible
the filling factor at which the transition between the=4 if the separation betweemnandr’ is greater than some “cor-
and them= 3 states occurs may be higher, but not lower tharf €/ation length” & . If the distance between the unsampled
our estimate in this paper. However, for the transition fromPrimitive celis U) and the central primitive C_eIIC(.) IS
the m=5 to them=4 states, our estimate of the transition greater tharg;, we may use a Hartree approximation and

filling factor appears to be accurate. write

Eunsmp e’ ,p(l’)p(l")
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APPENDIX: THERMODYNAMIC LIMIT p(r) Z <5(r r|)>' (A4)

In this appendix, we will explain how one can obtain the Note that the condition#j in Eq. (A2) is not needed, be-
thermodynamic limit from the finite-size simulation of the cause the domains of and r’ are exclusive so that
Coulomb energy. We first split the domain of thieintegral ~ 6(r —ri) 8(r’ —r;) 5;;=0. Once the local density profije(r)
in Eq. (3.3 into two regions: is obtained in the central primitive cell from the Monte Carlo

simulations, the triangular periodicity leads to the density
rofile in the whole 2D plane, and EGA3) can be explicitl
f dr’'= Ldr’+ fudr’. (A1) gomputed. P ®3) plerty
Although the integral in Eq(A3) diverges, this diver-
The first term is an integral over many, but a finite number,gence is unphysical and is easily resolved by recalling that
of primitive cells near the center of the disk, which we call there is neutralizing background charge in real samples. As-
the “sampled primitive cells.” In this region, the Coulomb suming uniform distribution for the positive background

energy may be computed directly from the Monte Carlocharge, the final form of the unsampled part is given by
simulations. The second term concerns the rest of the whole

2D plane, the “unsampled primitive cells,” for which we Eunsmp e? ,[p(l‘)—p][p(l")—p]
camot obtain the Coulomb energy directly from the simula- N EJ drf dr Ir—r'] . (A9)
C U
tion. In order to deal with the second region, we use the .
following trick. wherep is the average density of electrons. The above inte-
The contribution from the second region may be writtengral is now well defined and can be computed using the
as Ewald sum method as in Refs. 33 and 35.
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