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Laughlin-Jastrow-correlated Wigner crystal in a strong magnetic field

Hangmo Yi and H. A. Fertig
Department of Physics and Astronomy and Center for Computational Sciences, University of Kentucky, Lexington, Kentucky 4

~Received 9 March 1998!

We propose a ground-state trial wave function for a two-dimensional Wigner crystal in a strong perpen-
dicular magnetic field. The wave function includes Laughlin-Jastrow correlations between electron pairs, and
may be interpreted as a crystal state of composite fermions or composite bosons. Treating the powerm of the
Laughlin-Jastrow factor as a variational parameter, we use quantum Monte Carlo simulations to compute the
energy of these new states. We find that our wave functions have lower energy than existing crystalline wave
functions in the lowest Landau level. Our results are consistent with experimental observations of the filling
factor at which the transition between the fractional quantum Hall liquid and the Wigner crystal occurs for
electron systems. Exchange contributions to the wave functions are estimated quantitatively and shown to be
negligible for sufficiently small filling factors.
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I. INTRODUCTION

It was first argued by Wigner in 1934 that a system
interacting but otherwise structureless electrons can h
crystalline order in the limit of low density and low
temperature.1 The first experimental evidence of the Wign
crystal ~WC! was found well over 40 years later in a two
dimensional~2D! system of electrons adsorbed on a heliu
surface.2 Nowadays, semiconductor heterojunction devic
are considered a very promising environment for observ
the WC. The advantage of heterojunction structures co
from the fact that the 2D electron plane is spatially separa
from the donor layer, so that the influence of these impuri
can be substantially reduced compared to bulk semicon
tor environments. Furthermore, it is now well known tha
strong magnetic field perpendicular to the 2D plane can
fectively localize electron wave functions while keeping t
kinetic energy controlled.3–5 Since this lessens the otherwis
severe low-density condition, it is believed that the WC c
be stabilized in a sufficiently strong magnetic field.

On the other hand, the fractional quantum Hall~FQH!
liquid is known to be the ground state in certain ranges
strong magnetic field.6,7 In this strongly correlated liquid
state, the Hall resistivityrxy is quantized at discrete value
and the diagonal resistivityrxx vanishes at zero temperatur
In contrast,rxx presumably diverges atT50 in the pinned
WC. The FQH effect forn51/m (m odd! is now fairly well
understood in terms of the Laughlin wave function.8

In several recent experiments with high mobility sampl
a sharp phase transition from the FQH state to an insula
state was observed as the magnetic field was increased
in electron9,10 and hole11 systems. Some properties of th
insulating state such as the activation gap in charge trans
closely resembles those of pinned charge density waves,
porting the interpretation of this insulating state as a W
Theoretical calculations of both the FQH liquid energy12 and
the WC energy13,14 are also in good agreement with the e
periments as to the critical value of the magnetic field
which the transition occurs for a given electron density.

However,not all experimental findings of the insulatin
PRB 580163-1829/98/58~7!/4019~9!/$15.00
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state are consistent with the conventionally accepted theo
ical understandings of the WC.~I! First, there is a discrep
ancy in the energy of charged excitations. Particularly, tra
port experiments9 reveal that the activation gap is an order
magnitude smaller than the theoretically estimated energ
create a point defect in the WC.15–17 ~II ! Moreover, even
deep into the insulating phase, anomalous behavior is
served when the filling factorn is an inverse odd integer
which may be related to the FQH effect. Specifically, tran
port experiments18 exhibit a dip in the diagonal resistivity
rxx of the insulating state nearn51/7. Also, photolumines-
cence experiments19–22exhibit structure near odd denomina
tor filling factors down to 1/11, which looks very similar t
structure seen at higher fillings where the FQH effect occu
~III ! Finally, experiments18,23,24show that the Hall resistivity
rxy in the insulating phase saturates at its classical va
B/nec, just as in the FQH liquid phase. This behaviorcan-
not be understood in terms of a model of thermally activa
point defects that are essentially noninteracting.25 Interest-
ingly, ~II ! and ~III ! suggest that some characteristics of t
FQH effect are shared by the insulating state.

The unusual behavior ofrxy has led to speculation tha
the insulating phase is not a WC at all, but rather a disord
dominated state called the ‘‘Hall insulator.’’26,27 However, it
has been shown that interstitial defects in a WC can also
to Hall insulating behavior if one introduces Laughlin
Jastrow correlations between the interstitials and the lat
electrons.25,28 The correlation was found to lower the energ
to create such defects. However, more careful studies29 of
the above interstitial state using Monte Carlo simulatio
suggest that in order to obtain such a small excitation ene
as found in experiment, one must introduce Laughl
Jastrow correlations into the ground state as well. In t
paper we explore the energetics of ground state wave fu
tions of this form.

In what follows we will introduce trial wave functions
that take the form of a Laughlin-Jastrow factor multiplying
properly ~anti!symmetrized product of single-particle state
The wave function introduced here thus corresponds to c
posite fermion or boson states.30,31 The energies of these
4019 © 1998 The American Physical Society
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states are computed using quantum Monte Carlo simulati
and it will be demonstrated that such states are generic
lower in energy than other lowest Landau level WC state
the literature. Our computational method in its simplest fo
ignores exchange corrections; i.e., the state multiplying
Laughlin-Jastrow factor is approximated as a simple prod
of single-particle states. An in-principle exact computatio
scheme in which permutations of the single-particle sta
are sampled shows that this is an excellent approximat
provided the filling factor is not too large.

This paper is organized as follows: The trial many-bo
wave function of the Laughlin-Jastrow-correlated WC is
troduced and some of its properties are discussed in Se
In Sec. III, the ground-state energy is computed usin
Monte Carlo simulation. Various aspects of the results
also discussed. Section IV is devoted to discussions on
effect of the exchange energy and validity of our approxim
tion. Finally, we summarize the findings in Sec. V. Som
technical details of the energy calculation can be found in
Appendix.

II. TRIAL WAVE FUNCTION

The Hamiltonian of 2D electrons moving in a magne
field B and interacting with the Coulomb energy is written

H5(
i

1

2mUpi2
e

c
A~r i !U2

1
1

2 (
iÞ j

e2

ur i2r j u
, ~2.1!

wherer i andpi are the 2D position and momentum of thei th
electron, andA is the vector potential from which the mag
netic field is given byB5¹3A. We will ignore the spin
degree of freedom assuming that it is completely polari
by the strong magnetic field.

Since our trial wave function is closely related to t
Hartree-Fock wave function of the WC suggested in Ref.
it is worthwhile summarizing the aspects of the Hartree-Fo
wave function here. Explicitly, it can be written as

CHF~$r i%!5A)
i

fRi

HF~r i !, ~2.2!

where fRi

HF are single electron wave functions andA anti-

symmetrizes the total many-body wave function. To a fi
approximation in the large magnetic field, all electrons w
lie completely in the lowest Landau level. The unnormaliz
single-particle wave function is thus given by

fRi

HF~r !5e2 ur2Ri u
2/4l 2 2 i r3Ri• ẑ/2l 2. ~2.3!

This wave function describes an electron localized atRi
within a 2D Gaussian wave packet. The magnetic len
l 5A\c/eB determines the size of the wave packet. T
phase factor in Eq.~2.3! ensures thatfRi

HF is a product of

e2ur u/4l 2 and an analytic function ofz[x1 iy , making it lie
entirely in the lowest Landau level. In the large-B limit,
l→0, and the electrons become highly localized, behav
almost like classical point charges. The kinetic energy
given by the lowest Landau level energy\vc/2
[\eB/2mc, and is the same regardless of the Gaussian c
ter Ri . This allows one to treatRi as variational parameter
s,
lly
n
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in minimizing the total energy with respect to the Coulom
interaction. For a classical system, a triangular lattice is w
known to have the lowest Coulomb energy for a giv
density.33 Therefore, in the limitB→`, the ground state is
expected to be represented by the above wave function,
Ri forming a triangular lattice.

In a finite magnetic field, quantum fluctuations around t
lattice sites become important and the above classical a
ogy is only approximate. Consequently,CHF is not guaran-
teed to give the lowest energy at finiteB. However, ifB is
large enough,CHF is still very close to the true ground stat
For this reason, it has been used even at finiteB by many
authors, producing very good results. In this paper, howe
we will improve upon it by introducing a correlation. Prev
ous studies14 have introduced correlation factors that are e
act for a harmonic Hamiltonian; however, such wave fun
tions allow fluctuations in which particles may occasiona
closely approach one another. A correlation factor that
now is well known to suppress such fluctuations is t
Laughlin-Jastrow factor:) i , j (zi2zj )

m, wherezi5xi1 iy i is
the complex notation of the electron coordinates. Becaus
the extra phase accumulated when one particle encircl
second, wave functions of this form may be understood
being comprised of particles that havem magnetic flux
quanta attached to them. The idea of constructing wave fu
tions of this general form was first suggested in the cont
of the FQH effect in ground breaking work by Jain;30 the
combination of electrons and an even number of flux qua
to form these wave functions have since become known
composite fermions. For odd values ofm, the wave function
multiplying the Jastrow factor must be symmetric under
terchange of two particles, so that such states correspon
composite boson states.31 The wave functions we study in
this work may thus be interpreted as crystals of compo
fermions or bosons.

We therefore propose the following trial wave function

C~$r i%!5A)
iÞ j

~zi2zj !
m)

i
fRi

~r i !. ~2.4!

Again,fRi
is a single-particle wave function that is localize

at Ri and lies in the lowest Landau level. Since we w
consider finite size systems, only those lattice sites withi
disk of radiusRD will be included in the set of$Ri%. In order
to make the full wave function antisymmetric, we choose
use either a Slater determinant~evenm) or a symmetric sum
of all possible permutations~odd m) for the single-particle
wave function part.

We cannot, however, simply usefRi

HF in Eq. ~2.3! as our

single-particle wave functions, due to the following reaso
Disregarding the antisymmetrization for the moment, t
probability density is given by

uCu2;)
iÞ j

ur i2r j u2m)
i

ufRi
~r i !u2 ~2.5!

5e2m( iÞ j lnur i2r j ue2( i lnufRi
~r i !u. ~2.6!

As in Laughlin’s ‘‘plasma analogy,’’8 uCu2 may be thought
of as the Boltzmann distribution function for a ‘‘dual’’ clas
sical system whose effective energy is given by the ex
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nents in the above equation, up to an arbitrary effective te
perature. The first exponent in Eq.~2.6! is identical to the 2D
~logarithmic! Coulomb energy with coupling constantm.
Each term in the second exponent describes an attra
effective potential centered at a lattice siteRi . Obviously, if
the effective Coulomb interaction were absent, the minim
of the effective energy would be achieved whenr i5Ri for
all i . However, due to the effective interaction, the sta
solution ofr i will be moved away fromRi , unlessRi is the
center of the disk. In general, the electrons will be push
radially away from the center of the disk. Consequently,
whole system will spread out and the resulting electron d
sity will be smaller than that of the intended lattice.

In order to prevent this unwanted expansion of the s
tem, for eachfRi

, we will introduce extra zeros~‘‘ghost
effective charges’’! outside the physical disk. The ghosts a
introduced in such a way that if the real electrons were fix
at their lattice sites, the total of both real and ghost effect
charges are symmetrically distributed about any given lat
site Ri . In other words, the ghosts cause each lattice sit
look like it is at the center of the system by ‘‘balancing’’ o
the effective repulsive force of the surrounding electrons.
a consequence, each electron will remain centered nea
own lattice site. Obviously, the specific positions of t
ghosts depend on the lattice siteRi . An example of the way
ghosts are placed is shown in Fig. 1. Although outside
physical disk, the ghosts themselves occupy lattice sites
cluding the ghosts, the single-particle wave function is
nally given by

fRi
~r !5e2 ur2Ri u

2/4l 2 2 i r3Ri• ẑ/2l 2)
j

~z2h j
~ i !!m, ~2.7!

where h j
( i ) are the complex coordinates of the ghosts t

balance out the effective force atRi .
An interesting property of these wave functions is that

ghosts may be thought of as ‘‘renormalizing’’ the positio
of lattice sites. To see this, one can rewrite Eq.~2.7! as

FIG. 1. An example of the underlying triangular lattice for
finite-size WC. The large circle denotes the boundary of the ph
cal disk and the filled dots the lattice sites,Ri , within the disk. The
crosses denote the positions of the ghosts,h j

(1) , which balance the
effective force atR1 .
-
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fRi
~r !5e2 ur2Ri u

2/4l 2 2 i r3Ri• ẑ/2l 2

3expFm(
j

lnuz2h j
~ i !u1 im(

j
arg~z2h j

~ i !!G .
~2.8!

Once again in the plasma analogy, the logarithms in the
ponent describe a 2D Coulomb potential caused by effec
point charges with chargem. Now let us approximate the
point charges$h j% by a uniform charge distribution whos
density is the same as the average density of the orig
point charges. To do this, we write the sums in the argum
of the exponential in the form

m(
j

$ lnuz2h j u1 iarg~z2h j !%

[mE d2h$ lnuz2hu1 i arg~z2h!%rG~h!,

~2.9!

whererG(h) is the density of ghost particles. We then a
proximate

rG~h!'H r̄ if uhu.RD and uhW 2RW i u,RG

0 otherwise,
~2.10!

wherer̄ is the average electron density,RD is the radius of
the physical disk of the finite size system, andRG is the
radius of a ‘‘ghost disk,’’ which must satisfyRG.2RD .
Providedr is well away from the physical disk edge, th
approximation should be quite good, and we expect corr
tions to scale as (r /RD)2. Since the real part of the integra
corresponds to the potential of a uniform charge densitymr̄
in a disk of radiusRG , with a circular hole of radiusRD , the
real part of the integral may be computed using Gauss’
for two-dimensional electrostatics. The imaginary part of t
integral may be computed analytically as well forr !RD ,
yielding the approximated wave function

f8Ri
~r !5e2 ur2Ri u

2/4l 2 2 i r3Ri• ẑ/2l 2

3expFpmr̄

2
~ ur2Ri u22ur u2!2 ipmr̄r3Ri• ẑG

~2.11!

5e2 ur2~12mn!Ri u
2/4l 2 2 i r3~12mn!Ri• ẑ/2l 2

3e2 mn~12mn!uRi u
2/4l 2. ~2.12!

Note that because the amplitude and phase offRi
8 have been

treated on an equal footing, this wave function lies in t
lowest Landau level. Ignoring the unimportant constant,fRi

8

describes an electron in the lowest Landau level, centere
a renormalized lattice site (12mn)Ri . Thus the ‘‘bare’’ lat-
tice described by fillingfRi

8 states will be smaller than th

real lattice by a factor of 12mn. The physical lattice, how-
ever, is spread back to its original size due to the Laugh

i-
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4022 PRB 58HANGMO YI AND H. A. FERTIG
Jastrow correlation. Therefore, the above ‘‘renormalizatio
of the lattice compensates for the previously mentioned
tice expansion due to the Laughlin-Jastrow factor.

Before we describe the energy calculation for our wa
functions, let us briefly discuss the effect of the Laughl
Jastrow correlation on the characteristics of the WC, part
larly in connection with the excitation energy. In a rece
experiment,9 Jianget al. have measured the temperature d
pendence of the diagonal resistance in the reentrant ins
ing phase slightly aboven51/5. According to their data, the
activation gap for charge transport is given byEg;0.63 K.
Surprisingly, this energy is much smaller than would
theoretically expected. For example, using states of p
particles whose positions are chosen to optimize the ene
the energy to create a point defect such as an interstitial
vacancy has been estimated by many authors,15–17but all the
results are an order of magnitude greater than the ab
value ofEg . A more recent study of point defects, howeve
shows that the energy can be lowered if the Laughlin-Jast
correlation is introduced between the interstitials and the
tice electrons.28 Our initial studies of interstitial wave func
tions using quantum Monte Carlo techniques such as th
presented here suggest that to reach the very low activa
energies seen in experiment, one needs to include Laug
Jastrow correlations among the ground-state electron
well.29,34 A discussion of such wave functions is deferred
a future publication.

III. COULOMB ENERGY: MONTE CARLO SIMULATION

Since our wave function lies completely in the lowe
Landau level, we only need to minimize the Coulomb int
action term in the Hamiltonian. The expectation value of
Coulomb energy per electron is written as

Ec

N
5

1

2N (
iÞ j

K e2

ur i2r j u
L ~3.1!

5
e2

2NE drdr 8
^( iÞ jd~r2r i !d~r 82r j !&

ur2r 8u
, ~3.2!

5
e2

2 EC
drE dr 8

^( iÞ jd~r2r i !d~r 82r j !&
ur2r 8u

, ~3.3!

where^¯& means the expectation value with respect to
wave functionC in Eq. ~2.4!. In the last line, we have
dropped 1/N and restricted the first integral within a sing
primitive cell at the center of the disk~denoted byC), using
the lattice symmetry. Since the size of the simulated sys
is inevitably finite, in order to obtain the thermodynam
limit, we need to either extrapolate finite-size results, or
the Ewald sum method.33,35 We have used the secon
method in this paper. Details of the calculation are given
Appendix A, but it must be noted here that we have int
duced a couple of approximations in calculating the C
lomb energy:~I! We have ignored the exchange energ
which in practice means that the antisymmetrization in E
~2.4! is dropped. We have tested this approximation and fi
that it is quite good unlessn is too close to 1/m. The effect
of exchange energy will be discussed in the next section
more detail. ~II ! Since uCu2 when unsymmetrized corre
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sponds to a finite-temperature classical Boltzmann weig
we assume there exists a length scalejc above which fluc-
tuations in the electron positions are uncorrelated. We t
use the Monte Carlo method to compute the Coulomb in
action between the charge density in the central unit cell
the charge out to some distanceRS , which we presume to be
larger thanjc . This run is also used to compute the char
density in the central primitive unit cell. In order to minimiz
boundary effects, we chooseRD , the radius of the disk con
taining all simulated dynamical electrons, to be greater th
RS , so that electrons close toRS do not experience an envi
ronment significantly different from those in the bulk. Tho
electrons between radiusRS andRD , which are dynamically
simulated but not used to compute the energy, provide
‘‘effective medium.’’ This approach has also been employ
in Monte Carlo studies of the FQH effect.36

The interaction of the charge density in the central u
cell with charge at distances greater thanRS is computed by
treating the distant charge as static and equal to perio
copies of the numerically computed charge density in
central primitive cell. This is essentially a Hartree appro
mation. Since this charge density is treated as static, one
compute the interaction for an infinitely large system us
the Ewald sum technique. Our method is checked by incre
ing RS until the energy is unchanged within the error bars
our Monte Carlo calculations. Our simulations show that
the wave function parameters we have studied,jc is always
less than 4a, where a is the lattice constant. This is als
confirmed by numerical calculations of individual pair ene
gies, for which the result from the simulation is essentia
the same as the Hartree energy if the pair is separated fa
than 4a. More details of this procedure are discussed in
Appendix.

We have developed a Monte Carlo simulation progr
that computes the Coulomb energy per electron,Ec /N, using
the standard Metropolis algorithm.37 As a critical test of our
extrapolation technique, we have used our method to c
pute the energy of them50 state, which is identical to the
one used in Ref. 32. Its energy can be calculated analytic
and our results agree with analytic solutions well within t
statistical error bar of about 0.05%. The results for mo
interesting values ofm are plotted in Fig. 2. Treatingm as a
variational parameter, one can find the value ofm that gives
the lowest energy at a givenn. The graph clearly shows tha
at n51/3 and 1/5, the Laughlin state has a lower Coulom
energy than any of our wave functions. Atn51/7, however,
the Laughlin state has a higher Coulomb energy than
lowest result. This is consistent with experiment in that t
‘‘true’’ FQH effect — e.g., vanishing diagonal resistivityrxx
at zero temperature — has never been observed at an
verse odd filling factors belown51/5. Furthermore, at
n51/5, the energy of our wave function is higher than, b
very close to, that of the Laughlin state, which agrees w
with the observation of a reentrant insulating phase9 slightly
aboven51/5. This reentrant phase is believed to occur b
cause the pure Laughlin wave function is the ground s
only whenn is preciselyan inverse odd integer. Away from
the precise filling factors, quasiparticles and quasiholes
present in the ground state, increasing the energy. There
the FQH states have cusps in energy at every inverse
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filling factor, allowing the WC state to have lower energy
a small but finite range ofn right above1/5.

Now, let us compare our results with other WC trial wa
functions, particularly the Lam-Girvin form.14 The Lam-
Girvin wave function also predicts that the phase transit
from the WC to the FQH effect occurs betweenn51/5 and
1/7. As shown in Fig. 2, however, our wave functions a
lower in energy than the Lam-Girvin counterpart at all valu
of n where data are available. In other words, our wa
functions are closer to the true ground state. We believe
difference arises because the harmonic approximation
glects rare, but nonetheless important contributions from
harmonic fluctuations in which two or more electrons co
close together. In contrast, the Laughlin-Jastrow correla
very effectively suppresses density fluctuations at all d
placements of electrons from the lattice sites. This may
understood using the plasma analogy for the Laugh
states,8 i.e., the Laughlin-Jastrow correlation is equivalent
the Boltzmann distribution of a 2D one-component plas
~OCP! in which charge density fluctuations are suppresse

An important difference between the weighting associa
with our wave function and the Boltzmann weight of th
OCP is that the electrons are centered at different lattice s
in our wave function, while they are centered at one sin
point for the OCP. One of the most significant consequen
of this is the following. Let us definem0(n) as the value of
m for the lowest energy variational state atn. Surprisingly,
near an inverse odd integer filling factor, we fin

FIG. 2. The Coulomb energy per electron of the Laughl
Jastrow-correlated Wigner crystal as a function ofn for various
values ofm. The energy is shown relative to that of the uncor
lated Hartree wave function (m50). The same quantity is pre
sented for the Laughlin state~Ref. 14! and the Lam-Girvin wave
function~Ref. 38! at n51/3, 1/5, and 1/7. The dashed vertical lin
represent the values ofn where the transition between differentm
states occur.
n

s
e
is
e-
n-
e
n
-
e
n

a
.
d

es
e
es

n;1/(2m021) rather thann;1/m0 as in the Laughlin
states. For example, atn51/7, our wave function has the
lowest energy ifm54, rather thanm57. Now let us con-
tinue to focus on them54 state increasingn above 1/7. It
continues to be the lowest energy state untiln reaches abou
;0.165, where them53 state becomes lower in energ
This implies a first-order transition between the two differe
m states. This phase transition may in principle be detecta
in photoluminescence experiments, although this is pres
ably difficult because the energies of neighboringm states
are so close together.

A comment about the transitions among states with d
ferent values ofm is in order here. In this work we hav
taken the point of view that WC crystal states can be
scribed as composite boson or composite fermion cryst
and we find that in general such states are extremely low
energy for appropriate choices of the single-particle sta
For each value ofm, these composite particle states may
viewed as belonging to different symmetry classes, speci
by the number of zeroes bound to each electron.39 Because
for a given value ofm a composite particle state can only b
constructed withn,1/m, and different values ofm corre-
spond to different symmetry classes,39 it follows that there
mustbe first-order transitions among these states as the
ing factor is varied. However, it should be kept in mind th
our calculations are ultimately variational: there is no gu
antee that the true ground state will belong to any of th
symmetry classes, and in principle one can imagine t
some very complicated trial wave functions may be lower
energy than any of those studied here. However, to
knowledge these WC states are lower in energy than
others in the literature, and we believe our calculations p
vide good evidence~if not proof! that there can be first-orde
phase transitions as a function ofn within the insulating
regime of this system.

Figure 3 showsDr rms, the root-mean-square value of th
fluctuation of electrons from their lattice sites. Note th
Dr rms increases rapidly asn approaches and passes beyo
the transition to them21 state. This indicates that th
single-electron probability density becomes less and less

-

-

FIG. 3. Root mean square of the electron fluctuation from
lattice sites as a function of the filling factorn. The dashed vertica
lines represent the values ofn where the transition between differ
ent m states occur.
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calized asn increases. However, according to the abo
mentioned plasma analogy, the Laughlin-Jastrow factor
tries to force the local density to remain uniform. Therefo
rather than wandering around randomly, electrons tend
switch positions and form ‘‘exchange rings’’~Fig. 4!. This
means that ring exchange energy becomes more and
important. This is most easily seen from ‘‘snap shots’’ of t
electron configuration during a Monte Carlo simulation ru
We note that such ring exchanges are commonly observe
simulations of melting of the classical OCP.40 In path-
integral descriptions of the FQH effect,41 coherence among
ring exchanges plays a crucial role in explaining the insta
ity of the WC with respect to a liquid state atn51/m for
small enoughm. We believe that quantum coherence in ri
exchanges may lead to structure in the energy of the WC
a function of filling factor even in the insulating state, whic
ultimately could explain the transport and photolumine
cence anomalies discussed in the Introduction. Howeve
correct description of this requires that exchange be prop
included; we therefore defer a detailed discussion of this
future publication.29 As n approaches and increases past
critical filling factor, the exchange rings are observed
creasingly often in Monte Carlo snap shots. Asn increases
further andDr rms grows to the same order of magnitude
the lattice constant, the WC will eventually become unsta
giving way to a liquidlike state. This is analogous to t
melting transition of a conventional solid. In this limit, how
ever, the exchange energy is clearly no longer negligible
our Monte Carlo analysis ceases to be valid. Then, an im
tant question arises: when may exchange be ignored?
will address this question in the next section.

Now let us focus on the transitions between differentm
states. First, Fig. 3 shows characteristics ofDr rms that is
common to allm. In general,Dr rms is an increasing function
of n, and asn reaches some point, the system undergoe
phase transition to a lowerm state. Interestingly, the value
of Dr rms at the criticaln are approximately given by th
same value;1.7l regardless ofm. We believe this implies
that delocalization plays a crucial role determining where

FIG. 4. A typical configuration of the three particle exchan
ring which can be obtained from a ‘‘snapshot’’ of a Monte Ca
simulation. Electron positions are denoted by filled circles and
tice sites by empty circles. The arrows indicate which electron
originated from which Gaussian centerR1 .
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transitions occur. Moreover, Fig. 2 shows thatEc /N starts to
curve up asn passes beyond the transition value, which
common for allm. We believe the delocalization and th
formation of exchange rings are the main reasons for
change of curvature in the Coulomb energy. However, i
not yet clear why it occurs well belown51/m.

IV. EXCHANGE EFFECT:
PERMUTATION MONTE CARLO SIMULATION

In the previous section, we have seen that the delocal
tion, which is represented byDr rms, increases asn ap-
proaches 1/m from below. Then the exchange energy is e
pected to become more and more important, as the overla
wave functions at different lattice sites increases. Indeed,
have more or less directly observed the formation of
change rings in the snap shots from the Monte Carlo sim
lations for relatively large values ofn. Thus, it is clear that as
n grows, one must start to include the exchange energy in
calculation in order to obtain quantitatively reliable result

It is very difficult to estimate the exchange energy an
lytically for our wave function mainly due to the strong co
relations. However, whenm is even, the single-particle wav
function part in Eq.~2.4! is a Slater determinant, and we ca
take the exchange energy into full account by using ot
Monte Carlo methods such as in Ref. 42. Our tests with
m54 state show that the exchange energy is negligible w
n&1/7. Although this method treats the exchange ene
exactly, its application is strictly restricted to even values
m, and we need to resort to a different method for oddm.

One way to estimate the relative importance of the
change effect is as follows. The many-body wave function
Eq. ~2.4! may be rewritten as

C5)
iÞ j

~zi2zj !
m(

P
zPfRi

~r P~ i !!, ~4.1!

where the summation is over all possible permutationsP.
For an oddm, the statistical signzP is always11, but for an
evenm, zP is either11 or 21 depending on whetherP is
an even or odd permutation. When we ignored the excha
effect in the previous section, what we did was to drop
permutations in the above summation, except the iden
permutationI such thatI ( i )5 i . In other words, we have
approximated the above wave function with

Cdirect5)
iÞ j

~zi2zj !
mfRi

~r i !. ~4.2!

Now, we want to define a quantityg, which measures erro
caused by this approximation, or in other words, measu
how important the exchange effect is. First, the ‘‘partitio
function’’ may be written as

Z@C#5E uCu2, ~4.3!

where the integral is over all coordinates$r i%. Then, we de-
fine

g[U Z@C#2Z@Cdirect# U ~4.4!

t-
s

Z@C#
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(PÞIE P iÞ j uzi2zj u2mfRi
~r i !* fRi

~r P~ i !!

(PE P iÞ j uzi2zj u2mfRi
~r i !* fRi

~r P~ i !!

. ~4.5!

We have used the particle exchange symmetry to reduce
number of permutations in each integral from two to on
Note that wheng is small, the exchange effect is small an
our approximation is good.

In order to computeg numerically, we have developed
‘‘permutation Monte Carlo method,’’43 which is essentially
the same as the usual Monte Carlo simulation method,
cept for one important difference: In a permutation Mon
Carlo simulation, not only the electron positionsr i , but also
the permutationP is treated as a configurational variable th
is updated, tested, and accepted~or discarded! according to
the Metropolis algorithm.37 Since the integrand in Eq.~4.5!
is a complex quantity, we have separated the phase fa
from the modulus to sample it. More specifically, we ha
averaged the phase factor

fRi
~r i !* fRi

~r P~ i !!

ufRi
~r i !* fRi

~r P~ i !!u
, ~4.6!

using the rest of the factors in the integrand

)
iÞ j

uzi2zj u2mufRi
~r i !* fRi

~r P~ i !!u ~4.7!

as the statistical weight in the Monte Carlo simulation. W
note that this permutation Monte Carlo scheme in princi
captures the effects of symmetrization of the wave funct
exactly. In practice, however, the precision of the result
pends on how accurately the phase may be sampled. As
scribed below, this becomes problematic asn→1/m.

The results of the permutation Monte Carlo simulation
shown in Fig. 5. It is clear thatg is negligible ifn is less than
0.2, 0.16, and 0.14, form53, 4, and 5, respectively. Beyon
those values ofn, the exchange effect can be significant. T
error bars become quite large as the exchange effect
more and more important. This is because except for
direct term, the phase factor in Eq.~4.6! fluctuates very
much, while its average almost vanishes.

FIG. 5. Relative contribution of the exchange terms in the p
tition function.g defined in Eq.~4.5! is plotted for several values o
m. The dashed lines denote error bars.
he
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Note that we have found earlier from Fig. 2 that the tra
sition between them54 and them53 states occurs nea
n50.16. Since the exchange effect is negligible up
n50.16 whenm54, them54 state is guaranteed to have
lower energy than them53 state if n<0.16, even if the
exchange energy is included. Aboven50.16, however, it is
currently not known whether the exchange effect will ra
or lower the total energy of them54 state. If it lowers the
energy, there is a possibility that the transition fromm54 to
m53 actually occur at a higher filling factor than is show
in Fig. 2. Form55, the exchange effect is negligible up
n50.14, which is well aboven50.125 where the transition
to the m54 state occurs. Therefore, for this transition, o
estimate of the transition filling factor is accurate. In pri
ciple, however, it is possible that areentrant m55 phase
occurs within them54 ground state if the exchange effe
brings the energy lower than that of them54 state above
n50.14. Form53, the exchange effect becomes importa
well before the energy level crosses with that of them52
state. However, whenn*0.2, not the WC, but the FQH stat
is the ground state, and the energy level crossing betw
different WC states is not physically relevant atT50. Fi-
nally, we note that form53, the exchange terms are com
pletely negligible whenn<1/5. Therefore, the compariso
of the energy between our correlated WC state, the Laug
state, and the Lam-Girvin state is valid atn51/5 as well as
at 1/7.

V. SUMMARY

In this paper, we have studied the correlated WC in
strong magnetic field, which is represented by the prod
wave function of the Laughlin-Jastrow factor and t
Hartree-Fock wave function in a triangular lattice. We ha
shown that extra zeros~ghosts! in the single particle wave
function are necessary to balance the expanding effect o
Laughlin-Jastrow correlation.

The energy of the wave function has been calculated
ing Monte Carlo simulations and the Ewald sum metho
Compared to other WC trial wave functions in the lowe
Landau level, particularly Lam-Girvin wave function, th
new state is found to be the lowest in energy. The Laugh
FQH state has lower energy than our wave function
n51/5 and above, consistent with experiment in that
phase transition occurs betweenn51/7 and 1/5. The ener
gies of the two states are, however, very close to each o
near n51/5. This is also consistent with the experimen
observation of the reentrant insulating phase slightly ab
n51/5, considering the cusp in the FQH state energy du
quasiparticles and quasiholes.

Treating m as a variational parameter, we can find t
value ofm that gives our wave function the lowest energ
Sincem takes only discrete integer values, it is found th
there is a series of first-order phase transitions between
ferent m states asn changes. For a givenm, the spatial
fluctuations of the electrons grow asn increases above
;1/(2m21), eventually causing the energy to curve u
Formation of exchange rings is also observed in this lim
which is reminiscent of what occurs near melting in classi
one-component plasmas.

We have also developed a permutation Monte Ca

-
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method in order to estimate when the exchange effect
comes important. Our simulation shows that they are ne
gible up ton50.2, 0.16, and 0.14 form53, 4, and 5, re-
spectively. This ensures the validity of our comparison of
energy between different trial wave functions atn51/5 and
1/7. It also shows that when the exchange energy is inclu
the filling factor at which the transition between them54
and them53 states occurs may be higher, but not lower th
our estimate in this paper. However, for the transition fro
the m55 to them54 states, our estimate of the transitio
filling factor appears to be accurate.
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APPENDIX: THERMODYNAMIC LIMIT

In this appendix, we will explain how one can obtain t
thermodynamic limit from the finite-size simulation of th
Coulomb energy. We first split the domain of ther 8 integral
in Eq. ~3.3! into two regions:

E dr 85E
S
dr 81E

U
dr 8. ~A1!

The first term is an integral over many, but a finite numb
of primitive cells near the center of the disk, which we c
the ‘‘sampled primitive cells.’’ In this region, the Coulom
energy may be computed directly from the Monte Ca
simulations. The second term concerns the rest of the w
2D plane, the ‘‘unsampled primitive cells,’’ for which w
cannot obtain the Coulomb energy directly from the simul
tion. In order to deal with the second region, we use
following trick.

The contribution from the second region may be writt
as
am

el
e-
li-

e

d,

n

.

,
l

le

e

Eunsmp

N
5

e2

2 EC
drE

U
dr 8

^( iÞ jd~r2r i !d~r 82r j !&
ur2r 8u

,

~A2!

where*C means integral over the central primitive cell as
Eq. ~3.3!. Now, we assume that the correlation is negligib
if the separation betweenr andr 8 is greater than some ‘‘cor
relation length’’ jc . If the distance between the unsampl
primitive cells (U) and the central primitive cell (C) is
greater thanjc , we may use a Hartree approximation a
write

Eunsmp

N
5

e2

2 EC
drE

U
dr 8

r~r !r~r 8!

ur2r 8u
, ~A3!

where we have defined the expectation value of the lo
density

r~r ![(
i

^d~r2r i !&. ~A4!

Note that the conditioniÞ j in Eq. ~A2! is not needed, be-
cause the domains ofr and r 8 are exclusive so tha
d(r2r i)d(r 82r j )d i j 50. Once the local density profiler(r )
is obtained in the central primitive cell from the Monte Car
simulations, the triangular periodicity leads to the dens
profile in the whole 2D plane, and Eq.~A3! can be explicitly
computed.

Although the integral in Eq.~A3! diverges, this diver-
gence is unphysical and is easily resolved by recalling t
there is neutralizing background charge in real samples.
suming uniform distribution for the positive backgroun
charge, the final form of the unsampled part is given by

Eunsmp

N
5

e2

2 EC
drE

U
dr 8

@r~r !2 r̄ #@r~r 8!2 r̄ #

ur2r 8u
, ~A5!

wherer̄ is the average density of electrons. The above in
gral is now well defined and can be computed using
Ewald sum method as in Refs. 33 and 35.
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